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Abstract

This research proposes three machine learning methods as well as a novel hybrid method
to carry out a comparative analysis on their ability to accurately model and forecast
the volatility of the Amsterdam Exchange Index (AEX). Furthermore the machine
learning methods are assessed in their ability to effectively select and use information
in stock data and macroeconomic variables in order to increase forecast performances.
The proposed methods are support vector regression, random forest, gradient boosted
trees and the novel EGARCH-SVR model, since they possess promising characteris-
tics to capture the complex structure of volatility. To evaluate the hypothesis that
the proposed learning methods can accurately predict the AEX volatility they are
benchmarked against traditional statistical time series models; the Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH), exponential GARCH (EGARCH)
and Glosten-Jaganathan-Runkle (GJR)-GARCH model, all with two distributional as-
sumptions. The predictive performances are compared with two goodness-of-fit mea-
sures and significant differences in performance as well as robustness over different
forecasting horizons are evaluated. Additional data includes variables on the largest
components of the AEX as well as additional (macroeconomic) variables as possible
drivers of volatility. The machine learning methods can significantly increase predic-
tive performance compared to the traditional volatility models, especially in times of
higher average volatility. The hybrid method disappoints and is highly affected by
rapid fluctuation of the market. Overall, applying learning techniques to the out-of-
sample forecasting of volatility show great potential in both prediction and extracting
important information out of additional data.
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1 Introduction

The goal of this research is to evaluate if three machine learning methods as well as a
suggested novel hybrid method can accurately model and forecast the volatility of the
Amsterdam Exchange Index (AEX) and can compete with or even outperform traditional
volatility models. Furthermore, the machine learning methods are evaluated in their abil-
ity to effectively select and apply information in stock data of the largest components of
the AEX as well as macroeconomic variables indicating the state of the Dutch and Eu-
ropean economy. The proposed machine learning methods are support vector regression
(SVR), random forest (RF) and gradient boosted trees (GB). All aforementioned methods
possess qualities that are expected to be able to capture the nonlinearities and complex
structure of financial return series data and have the ability to effectively select valuable
information from high dimensional data to increase predictive accuracy. Additionally, a
novel hybrid model is considered: the exponential generalized heteroskedasticity support
vector regression (EGARCH-SVR) model. Combining a parametric volatility model with
a nonparametric machine learning model is expected to lead to an increase in predictive
performance by gaining benefits from both.

In order to evaluate the performances of these methods besides addressing only their relative
predictive power, three traditional volatility models are selected to serve as a benchmark
and substantiate the performance of the learning methods. These are three models of
the generalized autoregressive conditional heteroskedasticity (GARCH) class: the GARCH
model, the exponential GARCH (EGARCH) model and the Glosten-Jaganathan-Runkle
(GJR)-GARCH model that are widely applied and often proved well performing in volatil-
ity forecasting (Hansen and Lunde, 2005; Monfared and Enke, 2014; McAleer, 2014).

These parametric models require a distributional assumption on the returns which is fre-
quently assumed to be normal, despite the highly nonlinear structure and excess skewness
and kurtosis often exhibited by a financial return series. In order to get a comprehensive
representation of benchmark models this research is extended by including the student t
distributional assumption. Furthermore, since the predictive performances of the applied
methods can be influenced by selecting a particular forecasting window, the AEX volatility
is predicted for multiple horizons and the robustness of the performances is assessed. The
performance is compared with two well known performance measures and further justifi-
cation of statistical differences in performance is based on the pairwise Diebold-Mariano
test. Finally, through the variable importance measures of the tree based machine learning
methods the informativeness of additional data on the stocks, exchange rates and other
macroeconomic indicators is evaluated.

First of all, out of the benchmark models the EGARCH model performs the best for nearly
all forecasting horizons. Interestingly, assuming a student t distribution of the returns does
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not lead to an increase in predictive performance, on the contrary; in almost all cases per-
formance is slightly worse based on this assumption. The learning models often outperform
the benchmark models, especially in the longer forecasting horizons containing a higher
average volatility of the AEX. Amongst the learning methods the support vector regression
and gradient boosting algorithms perform the best, whilst the performance of the hybrid
model disappoints. Furthermore, it is found that the best performing machine learning
models are more robust to the forecast horizon compared to the other considered models.
Based on the Diebold-Mariano test superior performance of the machine learning methods
can be concluded for some, however not for all forecasting horizons and not for both per-
formance measures.

Finally, based on the variable importance measures of the tree based methods it is shown
that additional data of stocks, exchange rates and some macroeconomic variables include
some information regarding the future AEX volatility. However, it should be noted that
volatility prediction remains a challenging task and especially in high volatile market pe-
riods all considered models have a hard time estimating the spiked structure of the series.
Additionally, the need of using a proxy for the AEX volatility makes prediction complex
and slightly flawed.

The volatility of a stock or index is an indicator of the fluctuation of the price around its
mean and thus an indicator of the uncertainty of its profitability. Therefore, this variable
takes up an important role in the estimation of financial risk models and many different
types of models have been developed and used in the past decades (Dash et al., 2015).
Amidst the statistical time series models the most widely applied are models of the autore-
gressive integrated moving average (ARIMA) and the GARCH class, where the latter is
proven more suitable to capture the characteristics of persistence in volatility (Engle, 1982;
Bollerslev, 1986; Hansen and Lunde, 2005).

In spite of their extensive use, the GARCH model in its simplest form is a symmetrical model
and experiences some drawbacks in measuring persistence and inadequately responds to
different shocks. In order to overcome these limitations multiple extensions are proposed,
amongst them the EGARCH model that is designed to fit the difference in behavior of
volatility within different market trends (Nelson, 1991). Another way to model the asym-
metry in volatility is by employing the asymmetric power ARCH (APARCH) model or the
GJR-GARCH model, that both incorporate a leverage effect parameter (Ding et al., 1993;
Glosten et al., 1993). Numerous alternatives have been proposed in previous literature,
however in this research the GARCH, EGARCH and GJR-GARCH are selected to serve
as a benchmark based on often proven superior performance (Hansen and Lunde, 2005;
Monfared and Enke, 2014; McAleer, 2014).
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Limitations of parametric time series models of the GARCH class include the need of
prespecification of the structure of the data. In the past the normal distribution is of-
ten imposed on the financial returns, however such a series usually exhibits a significantly
negative skewness coefficient and excess kurtosis which leads to a non-symmetric, peaked
and fat tailed distribution (Tsay, 2002). To fit these characteristics other distributional
assumptions have been introduced such as the generalized error distribution or the student
t distribution (Gong et al., 2019). In this research besides the normal distribution the stu-
dent t distribution is adopted in order to potentially increase predictive performance.

Apart from the disadvantage of prespecification of the data structure, forecasting volatility
using GARCH models can lead to unsatisfactory results as they are sometimes incapable
to describe its complex and nonlinear structure. In order to increase prediction accuracy
more advanced techniques are necessary when working with such complex patterns (Cheng
and Wei, 2009). Thus, the interest in applying nonparametric and nonlinear models to the
estimation of the volatility of a stock or index has grown tremendously.

The main focus of machine learning methods in financial market forecasting has been in
the field of artificial neural networks (ANN). In the research of Donaldson and Kamstra
(1997), they prove that applied ANNs can outperform the traditional GARCH class models
in out-of-sample forecasting of the volatility for four large markets. Similarly, Miranda
and Burgess (1997) apply standalone neural networks to the Ibex35 index to forecast the
out-of-sample volatility and find that the neural networks indeed surpass traditional linear
models by their flexibility and ability to deal with the complex structure of the financial
time series. Hamid and Iqbal (2004) use neural networks in forecasting the S&P500 Index
volatility, where they conclude that the neural networks provide better forecasts compared
to the implied volatility forecasts, however not compared to the realized volatility forecasts.

Despite the appointed advantages of neural networks in financial forecasting the algorithm
is extremely sensitive to the tuning of its parameters and tends to overfit in highly noisy
and non-stationary data sets (Kara et al., 2011). In such situations support vector ma-
chines may be preferred, a powerful algorithm that adjusts its parameters relying on the
structural risk minimisation principle which increases the ability of generalization (Boser
et al., 1992; Cao and Tay, 2001). Cao and Tay (2003) prove in a simulation study that
a support vector machine with adaptive parameters can outperform a back propagated
neural network in the volatility forecasting of multiple bonds and futures. Furthermore,
Radovic and Stankovic (2015) use the algorithm to forecast the volatility of the Belex15
index and compute its value at risk, where they find that the support vector machines
outperform both feed forward neural network as well as markov regime switching models.
Furthermore, Yuan (2013) applies support vector machines on the prediction of financial
time series movement direction and states that the support vector algorithm might be able
to find the global optimum where the neural network produces a local optimum solution.
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Thus, the use of regression support vector machines in financial forecasting seem like a
promising tool, since they are able to effectively select information from amongst others in-
puts of lagged returns and show better results than traditional methods and other machine
learning methods such as neural networks (Cavalcante et al., 2016). Given these directions
of previous research comparing neural networks and support vector machines in financial
forecasting, in this research support vector machines are preferred over neural networks and
applied to the AEX volatility forecasting.

Besides neural networks and support vector machines, tree based learning methods are
applied to forecast volatility, such as random forest and boosted trees. The application
of random forest is wide spread and the algorithm has been successfully applied to the
forecasting of the euro to dollar exchange rate by Theofilatos et al. (2012), where it showed
better predictive performances compared to multiple other learning techniques such as neu-
ral networks. Moreover, Luong and Dokuchaev (2018) show in their research that due to
the great features the algorithm possesses, random forest can reduce the forecasting error
when applied to nonlinear structured stock index data by better capturing volatility per-
sistence or clustering throughout different time spans.

Boosted trees are less frequently applied to forecast volatility, since boosting methods are
often more effected by highly noisy datasets such as financial returns (Dietterich, 2000).
However Mittnik et al. (2015) use gradient boosted trees in their research to identify macroe-
conomic drivers of volatility and conclude that besides the usefulness of the boosted tree
to identify variable importances and their ability to extract information out of additional
input variables, they also produce better out-of-sample volatility forecasts on multiple hori-
zons compared to the EGARCH model. Moreover, Christensen et al. (2021) assesses the
capability of gradient boosted trees as well as other learning techniques in extracting infor-
mation out of not only lagged returns but also additional macroeconomic indicators. They
find that the machine learning algorithms can indeed obtain additional valuable informa-
tion and produce better volatility forecasts compared to a heterogeneous autoregressive
model. As both tree based methods appear to be useful in volatility forecasting they are
both included in this research.

Besides the application of all aforementioned standalone learning methods efforts have
been made to combine the advantages of the traditional time series models and the learn-
ing techniques to form hybrid models to increase predictive performance. Much of the
research related to volatility forecasting is in the direction of combining neural networks
with GARCH class models. Roh (2007) for instance suggests a combination of a neural
network with a GARCH and EGARCH model and demonstrates the utility of the hybrid
model in volatility forecasting, where it proves to be superior. The same is proven by Lu
et al. (2016), who construct multiple hybrid models to estimate the volatility of the Chi-
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nese energy market and conclude that the hybrid ANN-EGARCH model performs the best.
Other previous research has shown that combining asymmetric types of GARCH model
with the more intelligent neural network structures increases the closeness of predictions to
the actual volatility of oil prices (Kristjanpoller and Minutolo, 2016).

Another manner of combining methods is done by Monfared and Enke (2014), who apply an
adaptive neural network in order to predict the errors made by the GJR-GARCH model in
forecasting the volatility of multiple indices, whereafter a combination of the two provides
more accurate out-of-sample volatility forecasts. Instead of neural networks, support vector
machines have also been used in combination with GARCH models, where often the maxi-
mum likelihood method used to estimate the GARCH parameters is replaced by estimation
with support vector machines, leading to better out-of-sample volatility forecasts than the
standalone GARCH type models (Bezerra and Albuquerque, 2017; Peng et al., 2018).

However, according to the recent work of Sun and Yu (2020) the predictive performance can
be increased even more when training the support vector machine on the prediction errors
made by the GARCH class model. In their research the GARCH and GJR-GARCH models
both with normal as well as student t distributional assumptions are combined with support
vector regression to obtain a two stage volatility forecasting method and they find that the
hybrid model indeed improves volatility predictions. Following this promising direction, in
this research the EGARCH model is combined with the support vector regression in a simi-
lar manner to construct a novel hybrid EGARCH-SVR model to forecast the AEX volatility.

Hence, in previous literature often one of the following directions is taken; either a single
machine learning method is applied to volatility forecasting and compared to a traditional
volatility method, or multiple learning methods are applied and compared in relative per-
formance and/ or compared to a single benchmark model. This research contributes to
existing literature as multiple learning methods are applied and compared to a comprehen-
sive set of benchmark models of the GARCH class to substantiate performances. In this
way a better and more complete view on the power of machine learning methods in volatil-
ity forecasting is achieved. Moreover, this research introduces the novel EGARCH-SVR
model extending the work of Sun and Yu (2020). Furthermore, in the discussed literature
often only the lagged (squared) return or another proxy is used as input for the machine
learning methods, whilst only few use additional macroeconomic variables and discuss their
informativeness as is done in this research.

The remainder of this research is structured as follows. First, a methodology section is
presented which consists of an introduction to volatility, followed by an introduction of
statistical time series methods; the GARCH, EGARCH and GJR-GARCH models, the
machine learning methods; support vector machines, random forest and gradient boosted
trees and finally the hybrid EGARCH-SVR model. Furthermore in this section the metrics
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and tests used to evaluate the data and the performance of the models is presented. In the
next section the data used for this research is described. The movement of the response
variable is analyzed and the additional explanatory variables used for the machine learning
methods are discussed. Next, the results are presented in tables and figures and discussed.
The most technical assumptions and long lists and tables are presented in the Appendix.
Finally, a conclusion is presented which covers a summary of this research, the approach,
results and limitations and some recommendations for further research.

2 Methodology

This chapter first describes the basic definitions of volatility, followed by a description of
the statistical methods used to serve as a benchmark, the machine learning methods and
finally the hybrid method. It concludes with the tests used and the evaluation measurements
implemented to validate and compare the results.

2.1 Volatility

The volatility of the AEX is the level of variation of the price over time and thus an impor-
tant indication of the fluctuation of the Dutch stock market. A complication in forecasting
volatility is that it is a latent variable, i.e. it can not be observed directly from the AEX
data, which makes estimation and evaluation of the forecasts more complex (Andersen and
Bollerslev, 1998). To approximate volatility different proxies can been used, however any
volatility proxy is a more or less flawed estimator and will not lead to the same outcome in
terms of model performances in every case (Patton, 2006).

The most commonly used volatility proxy is the squared close-to-close return (Vilder and
Visser, 2007). Another widely used proxy for volatility is realized volatility, a measure
based on the intraday data which is calculated as high minus low (Barndorff-Nielsen and
Shephard, 2002; Andersen et al., 2003). In this research the squared daily close-to-close
return is selected as proxy, where the logarithm of the daily returns is taken rather than
the raw returns. This conveniently leads to the formula for the daily log return series rt as
in eq. (1) with pt the closing price of the regarding index at time t. The squared log return
series is simply r2t .

rt = log(pt)− log(pt−1) (1)

Now assume that the daily close-to-close log return series follow a stationary process as
described in eq. (2), with µ the mean of rt and the heteroskedastic error term ϵt, which has
zero mean and time varying variance σ2

t conditional on It−1, the information set at time
t− 1. If the mean is assumed to be zero, the squared daily log return series is an unbiased
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estimator for the actual conditional variance. In this research, a constant mean is assumed
and subtracted from the return series to obtain the residual vector.

rt = µ+ ϵt (2)

σ2
t = E[ϵ2t |It−1] (3)

Both the statistical methods as well as the machine learning methods will be assessed in
their performance of the out-of-sample forecasting of the volatility of the AEX. In the next
sections these methods will be described separately. Note that hereafter the daily close-to-
close log return series is sometimes referred to as the log return series or return series for
simplicity.

2.2 Statistical Methods

In the following paragraphs first an introduction to the ARCH framework will be presented
whereafter the three statistical models of the GARCH class serving as benchmarks for the
machine learning methods are described.

2.2.1 ARCH Framework

Assume a return series that follow the stationary process as in eq. (2). In order to define
the conditional variance the underlying processes of the shocks (ϵt) to the returns need to
be specified (McAleer, 2014). A well known method that allows the conditional variance
to vary over time is the autoregressive conditional heteroskedasticity (ARCH(p)) model by
Engle (1982). The conditional variance is specified as a constant unconditional variance
and a function of past errors and is specified as follows:

rt = µ+ ϵt, ϵt = ztσt (4)

σ2
t = ω +

p∑
i=1

αiϵ
2
t−i (5)

Where rt the return series with its mean µ, ϵt the error term and σ2
t the conditional

variance. The error term ϵt is conveniently described as zt, which is assumed to be an I.I.D.
process and zt ∼ N (0, 1), multiplied with σt. To impose that the conditional variance is
always nonnegative the parametric constraints are ω > 0 and αi ≥ 0. The ARCH model
is a symmetric model, which implies that a positive shock has the same influence on the
conditional variance as a negative shock of the same size. Past research has proven that in
practically all cases a more sophisticated form outperforms the simple ARCH model and
therefore the ARCH model in its simplest form is not evaluated in this research (Hansen
and Lunde, 2005).
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2.2.2 GARCH

An extended form of the ARCH(p) model is the generalized autoregressive conditional het-
eroskedasticity (GARCH(p,q)) model by Bollerslev (1986), where the return series follows
the same process as in eq. (4) and the conditional variance is described as:

σ2
t = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjσ
2
t−j (6)

The parametric restrictions for the GARCH model are: ω > 0, αi ≥ 0 ∀i, βj ≥ 0 ∀j, to
guarantee that σ2

t is always positive and αi+βj < 1 ∀i, j to guarantee a covariance stationary
process. When complying these conditions, the long term average of the unconditional
variance of a GARCH(1,1) model is well defined as:

σ2 =
ω

1− α− β
(7)

The GARCH model has a symmetric form similar to the ARCH model and therefore does
not allow for different responses to positive or negative shocks, which is considered as a
downside of the GARCH model.

2.2.3 EGARCH

The exponential generalized autoregressive conditional heteroskedasticity (EGARCH(p,q))
model is an extended form of the GARCH model that does allow for asymmetry and also
for leverage effect (Nelson, 1991). The returns again follow the same process as in eq. (4)
and the model specifies the conditional variance as:

ln (σ2
t ) = ω +

q∑
i=1

(
αi

∣∣∣∣ ϵt−i

σt−i

∣∣∣∣+ γi
ϵt−i

σt−i

)
+

p∑
j=1

βj ln (σ
2
t−j) (8)

This exponential model utilizes the logarithms of the conditional variances σ2
t−j , which

implies that the conditional variances are always positive and therefore no restrictions on
the parameters signs are necessary. However |βj | < 1 ∀j is necessary as stability condition
and furthermore the EGARCH model only allows for asymmetry if |γi| ≠ 0 and for leverage
effect if γi < 0, and γi < αi < −γi ∀i (McAleer and Hafner, 2014).

2.2.4 GJR-GARCH

Another asymmetric model of the GARCH class is the Glosten-Jaganathan-Runkle GARCH
(GJR-GARCH(p,q)) model specified in eq. (9) with again the return process as in eq. (4),
which allows for a different effect of a positive or a negative movement of the returns on
the conditional variance through an indicator variable (Glosten et al., 1993).
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σ2
t = ω +

q∑
i=1

(αi + γiIt−i)ϵ
2
t−i +

p∑
i=1

βjσ
2
t−j (9)

It−i =

{
0, if ϵt−i ≥ 0

1, if ϵt−i < 0

The parameter restrictions of this model are ω > 0, αi+γi
2 > 0 ∀i, βj ≥ 0 ∀j, to guarantee

that σ2
t is always positive. The indicator variable allows for asymmetry in the model and

in order for leverage effect to exist in the GJR model γi > 0, which implies that a larger
conditional variance is caused by a negative shock. If these restrictions in combination
with αi+γi

2 + β < 1 are respected, the long term average of unconditional variance of a
GJR-GARCH(1,1) model is well defined as:

σ2 =
ω

1− α+γ
2 − β

(10)

2.2.5 Assumed Distributions and Estimation

The assumption in eq. (4) that zt follows a gaussian process does not directly imply that
the distribution of the returns follows a gaussian process. It is demonstrated in previous
research that this is often not the case, due to the presence of skewness and excess kurtosis
of the residual distribution (Tsay, 2002). When assuming the distribution of the returns
to be normal there is a serious risk of over- or underestimating the actual returns and
conditional variances (Bollerslev, 1986). A (partial) solution to this problem is the use of
other underlying distributions such as the student t distribution that allows for fatter tails
(Nugroho et al., 2021).

As showed in previous research, GARCH models with lags p = 1 and q = 1 in the variance
equation often outperform specifications with more distant lags in forecasting volatility
(Bollerslev et al., 1992; Hansen and Lunde, 2005). Therefore in this research all models are
computed as such: GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1). To estimate the
described GARCH type models maximum likelihood method is used where the likelihood
function and thus also the log likelihood function depend on the assumed distribution of the
returns. For the complete density functions of the two assumed distributions please refer to
Appendix A.1. The log likelihood functions are optimized using a numerical procedure in
Python to estimate the parameters per each model, whereafter the fitted models are applied
to predict the one-day-ahead out-of-sample conditional variances, following the forecasting
scheme described in paragraph 2.5.1.
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2.3 Machine Learning Methods

The following paragraphs are structured as follows: first a short introduction on the machine
learning framework is presented, followed by a description of the three selected machine
learning methods applied to forecast the volatility of the AEX.

2.3.1 Machine Learning Framework

Machine learning can be broadly viewed as the process of computer algorithms that can in-
teract and learn from their environment with the goal of making better predictions through
structural adaption. These learning methods are often applied in cases where building ac-
curate predicting models is difficult and highly useful in cases of high dimensional data
(Alpaydin, 2020). A great power of these machine learning methods is their ability to se-
lect only the descriptive variables from high dimensional data and model complex patterns
accurately. For the purpose of examining the predictive performance of machine learning
methods in financial time series a selection of promising methods is selected to estimate the
AEX volatility.

Contrary to the GARCH type models that try to estimate volatility through the conditional
variance σ2

t , these machine learning methods try to predict the AEX volatility through the
behaviour of ϵt in eq. (2) in squared form by predicting the demeaned squared log return
series.

2.3.2 Support Vector Machines

Support vector machine (SVM) is a supervised learning method developed by Boser et al.
(1992) for classification problems. The aim of the SVM algorithm is to construct a hy-
perplane that has the maximum margin between data points of different classes, in order
to classify them. These separating hyperplanes can be viewed as decision boundaries that
define the classification of the data points where linear equations are used to construct the
support vectors of the model. The algorithm was later extended for the use on regression
problems by Vapnik et al. (1997) as support vector regression (SVR) and can be applied to
time series data.

Support vector regression holds some noteworthy advantages over various other machine
learning methods that often adopt the so called empirical risk minimisation principle (min-
imising the squared error), as the SVR objective function is to minimize a loss function that
is not affected when the difference between the prediction and the actual value is less then
a certain predefined level η. The error term is controlled in the models constraints, where
the quadratic error function makes place for the η-insensitive error function introduced by
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Vapnik et al. (1997) which allows to set the error to a certain margin1. The error function
now gives a weight of zero when the absolute difference between the prediction and the
target is smaller than this η. Thus, this maximum error η is conveniently functional as
tuning parameter to gain accuracy of the model.

Additionally, the SVR is expected to achieve relatively enormous gains compared to tra-
ditional models in capturing the nonlinear dynamics present in financial time series data
by introducing kernel functions (Qu and Zhang, 2016). These kernel functions provide a
method to transform the data in order to change a nonlinear decision plane to a linear
equation within a higher dimension. Another advantage of applying SVR in volatility fore-
casting compared to the traditional methods is their ability to efficiently select information
from additional data to increase predictive performance.

The SVR regularized error minimization problem for the AEX volatility is as in eq. (11),
with ϵ̂2t the predicted value of the AEX volatility at time t and ϵ2t the true value at that
time. The parameter w is the direction and C is the (positive) regularization parameter in
order to balance complexity and the error made in training the model which assists in the
prevention of overfitting.

C
T∑
t=1

Eη(ϵ̂
2
t − ϵ2t ) +

1

2
||w||2

Eη(ϵ̂
2
t − ϵ2t ) =

{
0, if |ϵ̂2t − ϵ2t | < η

|ϵ̂2t − ϵ2t | − η, otherwise

(11)

Often in real-world problems there is no function that satisfies all constraints imposed
above. In order to be able to allow some data points to fall outside the margins two slack
variables are introduced; ξt ≥ 0 and ξ∗t ≥ 0, where if ξt > 0 (ξ∗t > 0) for the corresponding
data point holds that ϵ2t > ϵ̂2t + η (ϵ2t < ϵ̂2t − η). This leads to the corresponding error
function to be minimized and its constraints:

C
T∑
t=1

(ξt + ξ∗t ) +
1

2
||w||2

s.t. ϵ2t ≤ ϵ̂2t + η + ξt

ϵ2t ≥ ϵ̂2t − η − ξ∗t

ξt ≥ 0, ξ∗t ≥ 0

(12)

1Note that Vapnik et al. (1997) introduced this loss function as the ϵ-insensitive error function, however
here it is renamed η to avoid confusion with the response variable ϵ2t
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By using the Lagrange multipliers αt ≥ 0, α∗
t ≥ 0 together with the Karush-Kuhn-Tucker

optimality conditions this minimization problem can be solved through the dual problem
as defined as in eq. (13).

argmaxQ(α, α∗) = −1

2

T∑
t=1

T∑
k=1

(αt − α∗
t )(αk − α∗

k)κ(xt, xk)

−η
T∑
t=1

(αt + α∗
t ) +

T∑
t=1

(αt − α∗
t )ϵ

2
t

s.t.
N∑
i=1

(αt − α∗
t ) = 0, 0 ≤ αt, α

∗
t ≤ C

(13)

Finally, the obtained model by solving the dual problem can be used to make predictions
for out-of-sample data through:

ϵ̂2t =

T∑
t=1

(αt − α∗
t )κ(x, xt) + b (14)

Using the dual formulation of the optimization problem can be seen as disadvantageous,
since the number of variables can exceed the number of variables in the original problem
and therefore leads to a computationally more complex problem. However, this dual for-
mulation introduces the kernel function κ(xt, xk) that allows the model to be applied to
high dimensional data sets and to even work efficiently when the dimensionality surpasses
the number of observations. There are a large amount of kernels available and in Table 1
three popular and widely used kernels are presented; the polynomial kernel (of order d), the
gaussian radial basis function kernel and the hyperbolic tangent (sigmoid) function kernel
(Perez-Cruz et al., 2003; Santamaria-Bonfil et al., 2013; Qu and Zhang, 2016).

Table 1: Kernel functions

Polynomial RBF Sigmoid
κ(xt, xk) = (1 + xt · xk)d κ(xt, xk) = exp (−γ||xt − xk||2) κ(xt, xk) = tanh(κ1xt · xk − κ2)

The gaussian radial basis function kernel is used in this research and is probably the most
extensively employed kernel due to the resemblance of the gaussian distribution (Peng
et al., 2018). The similarities between data points are based on their Euclidian distances
and the specific hyperparameter of this kernel is γ. Each different kernel relies on different
assumptions about the generating process of the particular time series and it is difficult to
conclude beforehand which kernel will perform the best. The radial basis kernel is often
selected when applying SVR to time series data, however the tuning of the hyperparameters
based on the particular data set plays a substantial role in its performance (Ruping, 2001).
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2.3.3 Random Forest

The random forest algorithm was first introduced by Breiman (2001) as a supervised learn-
ing method building on an ensemble of decision trees both employable for classification as
well as regression problems. These decision trees are constructed following the Classifica-
tion And Regression Trees (CART) algorithm by Breiman et al. (1984) (for the step-wise
algorithm refer to Appendix A.2). Next, the model makes a partition of the explanatory
variable space to fit a noncomplex model on each of them. In order to build a regression
tree the data set of N observations with p input variables (that is: (xt, ϵ

2
t ) for t = 1, .., T

and xt = (xt1, .., xtp)) is partitioned in M separate regions R1, ..., RM with cm the response
variable as a constant per each region as follows:

f(x) =
M∑

m=1

cmI(x ∈ Rm) (15)

The criterion function minimized affects the prediction of the constant cm, in this research
this is the sum of squared residuals. This leads to the optimum for ĉm as the average of
the response variable ϵ2t in the region Rm:

ĉm = average(ϵ2t |(xT ∈ Rm)) (16)

Generally, finding the best split based on this minimum sum of squares criterion is infea-
sible and therefore the CART algorithm builds from the top down and applies a greedy
algorithm to find the best pairs of splitting points leading to the highest reduction of the
selected criterion function. The process continues until all leafs consist of a single observa-
tion or is stopped when a certain stopping criteria is reached (Hastie et al., 2009).

Random forests employ the so called bagging technique in order to lower the variance when
used for prediction. In a regression problem random forest will average the predicted values
of multiple decision trees. Additionally, the algorithm deviates from the CART algorithm
to grow its decision trees by selecting a fixed number of randomly chosen explanatory vari-
ables instead of selecting all explanatory variables to calculate the best split on. In this
way the random forest algorithm can significantly raise the forecasting accuracy compared
to the accuracy of a single decision tree, by reducing the variance due to the averaging of
many maybe noisy but nearly unbiased models (Hastie et al., 2009). Algorithm 1 shows
step-wise how the random forest in regression is constructed.

The output of this random forest algorithm for regression are B trees Tb and the random
forest model will then be the average of these trees as below.

f̂B
RF (x) =

1

B

B∑
b=1

Tb(x) (17)
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Algorithm 1: Random forest algorithm for regression trees.
Data: Data set (xt, ϵ

2
t ) with response variable ϵ2t for t = 1, ..T and features xti for t = 1, ..T ,

i = 1, .., p.
1. Bootstrap B samples (with replacement) from the data to fit a tree.

2. For a selected bootstrapped sample take a root node with the complete data set.

3. At the current node, select m explanatory variables at random from all explanatory variables in the
sample.

4. Find the best split points s maximizing the splitting criterion for these m variables.

5. Find among the pairs of explanatory variables and best splits (i, s) from step 4 the best pair
maximizing the splitting criterion and split the current node on this split.

6. Repeat the process from step 2 for all terminal nodes until the stopping criteria is reached or the
tree is fully grown.

7. Repeat the process for each bootstrapped sample.

2.3.4 Gradient Boosted Trees

Tree boosting is contrary to random forest a sequential approach to form a prediction model
based on an ensemble of decision trees. It was originally described in order to solve classi-
fication problems in binary form by Freund and Schapire (1996). Later boosting was also
described in the regression framework by Friedman (2001) where it is especially worthy to
apply in the case of a large number of explanatory variables, with a high chance of mul-
ticollinearity problems as it restraints their influence by shrinking the coefficients to zero.
The goal of the boosting method is sequentially add a simple algorithm to the ensemble
taking into account the errors encountered in the previous trees. The final model will then
be a combination of all these estimator through weighted majority voting. Gradient boost-
ing relies on the gradient descent in order to locate the errors of the previous tree (Nabipour
et al., 2020).

Due to this sequential approach boosted trees hold some advantages over other tree based
methods; they can easily work with very high dimensional problems where they select rel-
evant variables only and will ignore useless ones. Compared to random forests which loose
most interpretability due to the combining of many trees, a boosted tree is straightforward
in terms of interpretation. Additionally, a boosted tree is capable of capturing nonlinear-
ities quite well and has proven to exhibit great properties in the estimation of such series
(Mittnik et al., 2015). As financial time series data exhibit nonlinear properties this quality
along with the other described advantages of boosted trees make them a promising tool in
the estimation of the AEX volatility.

The gradient boosting algorithm again builds on multiple regression trees following the
CART algorithm as in eq. (15). Then, a boosted tree is the summation of these single trees,
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where the following tree is estimated in a forward manner given the present model fm−1.
First, the model is initialized with a constant, depending on the loss function L(·) that
is selected. The boosted tree then solves in a forward manner the following minimization
problem:

argmin
T∑
t=1

L(ϵ2t , fm−1(xt) +
M∑

m=1

cmI(x ∈ Rm) (18)

Where L(·) is again the loss function employed, which in this research is the squared loss:
1
2(ϵ

2
t − f(xt))

2. Next, in order to solve the minimization problem the gradient descent is
applied. After computing the negative gradient values or pseudo residuals rtm, a regression
tree is fitted to them producing the regions Rjm. These negative gradient values simply
become the regular residuals ϵ2t − fm−1(xt) when applying squared loss. Finally, the mul-
tiplier cjm can be computed and is used to update the model. This is repeated until the
number of trees M is reached. Algorithm 2 shows the step-wise procedure with as output
fM (x), the estimated gradient boosted tree.

Algorithm 2: Gradient regression tree boosting algorithm
Data: Data set (xt, ϵ

2
t ) with response variable ϵ2t for t = 1, ..T and features xti for t = 1, ..T ,

i = 1, .., p.
1. Initialize for f0(x) = argminc

∑T
t=1 L(ϵ

2
t , c) and set m=1.

2. Compute rtm = −
[
∂L(ϵ2t ,f(xt))

∂f(xt)

]
f=fm−1

∀t = 1, .., T .

3. Fit a regression tree following the CART algorithm to rtm producing regions Rjm.

4. Compute cjm = argminc

∑
xt∈Rjm

L(ϵ2t , fm−1(xt) + c) ∀j = 1, ..J .

5. Update fm(x) = fm−1(x) +
∑J

j=1 cjmI(x ∈ Rjm).

6. Do m+=1 and repeat from step 2 until m=M.

2.4 Hybrid Method

The following paragraph contains a description of the hybrid method applied to the fore-
casting of the AEX volatility.

2.4.1 EGARCH-SVR

A novel method is introduced in order increase the predictive performances of the standalone
GARCH as well as machine learning methods. Since financial time series is a complex se-
ries to predict, its different characteristics might not be captured by the standalone models.
Combining the parametric EGARCH model and its convenient statistical information on

18



the AEX volatility and the nonparametric SVR model to better capture the nonlinear fea-
tures could increase predictive performance. In past research on volatility forecasting often
the maximum likelihood method to estimate the GARCH parameters is replaced by sup-
port vector machines (Perez-Cruz et al., 2003; Bezerra and Albuquerque, 2017). However
recently, Sun and Yu (2020) introduced a novel two stage combined method of GARCH
and SVR as well as GJR-GARCH and SVR to forecast volatility.

In their approach first the traditional maximum likelihood method is applied to estimate
the GARCH parameters whereafter the SVR model is trained to fit the errors made by
the in-sample-estimations of the GARCH model and finally the combined model is applied
to forecast the volatility. Algorithm 3 describes step-wise the construction of this model,
where it differs from the research by Sun and Yu (2020) in terms of the volatility proxy
as they select the five day moving average of the squared log return series, whereas in this
research this is the demeaned squared log return series. Therefore, the SVR is trained on
the data matrix containing: σ2

t−1, the estimated in-sample conditional variances by the
EGARCH model, Mt−1, the sequence of the true volatility (proxy) minus the estimated
volatility by the EGARCH model and finally ϵ2t−1, the true value of the volatility (proxy),
all at time t− 1. Note that the forecasted value of ϵ̂2t is bounded by zero below.

Algorithm 3: GARCH-SVR hybrid model algorithm
Data: Daily log return series r1, ..rT for the AEX.

1. Estimate the GARCH parameters with the ML method

2. With the estimated parameters compute the in-sample conditional variances σ2
1 , .., σ

2
T

3. Compute the sequence M1, ..,MT , where Mt = ϵ2t − σ2
t

4. Train a SVR on the data matrix containing σ2
t−1,Mt−1, ϵ

2
t−1

5. Compute the one-day-ahead forecast of M̂T+1 with the SVR model

6. Compute one-day-ahead forecast of σ̂T+1 using the GARCH model

7. Compute the forecasted value of ϵ̂2T+1 by computing M̂T+1 + σ̂T+1

This method of model combination presents a promising extension to the volatility fore-
casting based on their simulation study on the GARCH-SVR and GJR-GARCH-SVR and
therefore is adapted to fit the framework of this research. Furthermore, instead of employing
the GARCH and the GJR-GARCH model the EGARCH model with normal distributional
assumption is applied, leading to the novel EGARCH-SVR model.
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2.5 Tests and Evaluation Measurements

In this section first the forecasting procedure is described followed by the performance
measures and Diebold-Mariano test for forecast comparisons.

2.5.1 Forecasting Procedure and Performance Measures

In order to asses the predictive performance of the described methods, one-day-ahead out-
of-sample forecasts are computed over different forecasting horizons, as the selection of a
forecast horizon may lead to dissimilar results in terms of best performing model. In order
to assess the robustness of the methods in volatility forecasting over different horizons and
different levels of average volatility, seven windows are distinguished: one, two, three and
six months ahead, one and two years ahead as well as the complete reserved test set of 784
observations, where a month is defined as 20 successive business days. The estimated pa-
rameters for the statistical methods are not re-estimated and the machine learning models
are not re-fitted in this procedure.

Next, the predicted volatilities are evaluated in their fit to the actual values of the volatility
of the reserved test set. A popular approach in order to do so is computing a certain loss
function, however a single criterion that selects the best performing method is nonexistent
which makes the evaluation of competing models more difficult (Bollerslev and Nelson,
1994). In most literature on the comparison of volatility models the focus is on the (root)
mean squared error ((R)MSE) as loss function to be minimized (Ryll and Seidens, 2019).
However, the RMSE is highly effected by large errors that can occur in volatility forecasting
and therefore it is suggested to deviate to for example an absolute error loss function that
is less sensitive to these extreme observations (Patton, 2006).

Since there is no conclusive evidence on what evaluation function is the most suitable to
compare volatility models, for this research the following two goodness-of-fit metrics are
used: the mean absolute error (MAE) and the RMSE. By not selecting a single evaluation
function the insights in the performance of the forecasting models can improve (Brailsford
and Faff, 1996). Initially the mean absolute percentage error (MAPE) measure was also
considered, but it is omitted as it takes on extreme values when there are some true values
that are very close to zero, which is common in the financial return series.

The lower the value of these function the closer the prediction is to the true volatility, where
ŷt is the predicted value of the model, ϵ2t the true value of the AEX volatility and n the
number of observations. Note that ŷt takes the form of σ̂2

t when considering the statistical
methods and ϵ̂2t when considering the machine learning methods.
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MAE =
1

n

n∑
t=1

∣∣ŷt − ϵ2t
∣∣ (19)

The MAE denotes the average of the absolute errors made by the model as in eq. (19) and
is also known as the L1 loss of the model. The function is easily calculated and is useful in
the case of outliers in the training data as it does not extra penalize higher errors caused
by these outliers.

RMSE =

√√√√ 1

n

n∑
t=1

(
ŷt − ϵ2t

)2 (20)

The RMSE as in eq. (20) denotes the square root of the squared errors and is also known
as L2 loss of the model, which penalizes a model with high errors more by squaring them.
This causes the RMSE to be more sensitive to outliers.

An additional measure that can be computed for the tree based methods is the relative
importance of the explanatory variables. A tree following the CART methodology is grown
through reducing a node’s impurity in a recursive manner (for the step-wise CART algor-
tihm refer to Appendix A.2). Since both random forest as well as gradient boosted trees are
based on this methodology, the impurity of the explanatory variables is a side product of
the algorithms splitting rule and therefore easy to compute and is determined by averaging
the amount of decrease of a node’s impurity over all trees. The Gini index measures this im-
purity in case of a classification problem (Breiman, 2001), whereas for a regression problem
this is typically the sum of squares (Ishwaran, 2015). The way of averaging depends on the
type of tree based method used. Through this measure it is possible to express the relative
importances of the explanatory variables in the forecasting of the AEX volatility, indicating
the informativeness of the additional data on stocks, exchange rates and macroeconomic
variables.

2.5.2 Diebold-Mariano Test

The Diebold-Mariano (DM) test is a test designed for the purpose of comparing forecasts
(Diebold and Mariano, 1995). The goal of this test is to determine if a forecast of a
certain model is significantly better compared to the forecast of another model. One can
be tempted to favor a model with a slightly smaller value of the loss functions as described
in the previous paragraph, however this does not necessarily indicates that the particular
model is significantly better. The DM test relies on the differences between loss functions
and defines the loss differential δij,t between model i and j at time t is as in eq. (21) where
Li,t (Lj,t) the loss function at time t for model i (j).

δij,t = Li,t − Lj,t (21)
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The test assumes that the loss differential δij,t process is covariance stationary (Diebold,
2012). Under the null hypothesis (H0) both competing models are of equal forecasting
quality and thus have equal expected loss: E[δij,t] = 0. Under the alternative hypothesis
(HA) the mean of the loss differential series is not equal to zero and therefore there is a
significant difference between the two tested models regarding their forecasting performance.
To test the null a asymptotic z-test is employed and the DM test statistic is as follows:

DM =
δ̄ij
σ̂δ̄ij

(22)

With δ̄ij,t = 1
T

∑T
t=1 δij , the average of the loss differential over time t, σ̂δ̄ij a consistent

estimator for the standard deviation of the average of the loss differential and T the out-
of-sample number of observations. If the assumption of a covariance stationary process
holds the DM test statistics simply follows the standard normal distribution under null.
The null hypothesis is rejected if the p-value is below the selected significance level α in
which case there is a significant difference between the two forecasts. A downside of the
Diebold-Mariano test is that it might reject too often in small sample sizes. In that case
an alternative to this test could be the Harvey Leybourne and Newbold test (Harvey and
Newbold, 1997).

3 Data

In this chapter the data will be presented and its characteristics will be described to provide
insight in the dynamics of the AEX. Since the statistical models as described in section 2.2
and the machine learning models as described in section 2.3 do not employ entirely the
same data set, this section is split into two parts. The first part describes the AEX data
particularly on the index price, its daily close-to-close log return series and squared log
return series. The second part describes all additional (macroeconomic) variables used for
the machine learning methods.

3.1 AEX Historical Data

The Amsterdam Exchange Index provides a historical data set of the daily closing price of
the index which is retrieved from the Yahoo! Finance2 website where it is publicly available.
The AEX is a good representation of the development of the Dutch stock market as it is a
weighted index of the 25 most prominent stock market listed companies in the Netherlands.
To asses the performance of the considered models in the prediction of the volatility of the
AEX the data is analyzed from 2012-01-01 until 2021-12-31, which are 2555 observations.

2Retrieved from: https://finance.yahoo.com/
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Figure 1: AEX daily closing prices

The daily closing prices are presented in Figure 1 and exhibit a bullish trend with some
smaller and some bigger drawdowns. An example of a drawdown is the peak visible at the
end of 2015: the year of the refugee crisis in Europe. The largest peak is evidently observed
early on in 2020 representing the economic disruption caused by the Covid-19 crisis. In
general the drift is upwards sloping and these movements indicate that this financial time
series is non-stationary.

Figure 2: AEX log return series and squared log return series

In the figure on the left the daily close-to-close log return series for the AEX is presented as calculated
in eq. (1) and in the figure on the right the squared daily close-to-close squared log return series is
presented. Both series are displayed from the period of January 2012 to December 2021.

The daily log return series and squared daily log return series in Figure 2 clearly show
these drawdowns through higher peaks or in other words, bigger differences between the
close-to-close prices. Furthermore, the phenomenon of volatility persistence or clustering,
which is a common occurrence in financial time series, is visible in both figures as well.
This persistence of the magnitude of the returns is caused by the fact that large changes in
stock price are likely to follow large changes (Cont, 2004).

Table 2 shows the descriptive statistics for the closing price, log return and squared log
return series. In order to check for stationarity of the series the augmented Dickey-Fuller
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test is applied and in order to check for normality the Jarque-Bera test is applied. For
a complete description of these tests please refer to Appendix A.3 and A.4 respectively.
As expected from the theory for the closing prices of the AEX the null hypothesis of non-
stationarity is not rejected and thus the series is non-stationary, whilst for the log return
series as well as the squared log return series the null is rejected and thus these series are
stationary. Both return series exhibit excess kurtosis whilst the closing price series has a
kurtosis of less than three. All three skewness coefficients deviate from zero, where the log
return is negative as expected. From these values it is expected that the normality assump-
tion is violated. The Jarque-Bera test for nomality confirms this, where for all series the
test statistic exceeds the critical value at the 1% significance level. This indicates that for
the modeling of the log return series a thicker tailed distribution is expected to be favored.

Table 2: Summary statistics of the AEX data

Series Mean Median Std. deviation Minimum Maximum
Close 492.51 491.75 116.90 283.07 827.57
Log return 3.6100e-4 7.4045e-4 0.010620 -0.11376 0.085907
Squared log return 1.1300e-4 2.7444e-5 3.8600e-4 0.00 0.012941

Series Skewness Kurtosis ADF JB
Close 0.61856 0.20643 -0.09181 (p=0.95) 167.59 (p=0.0)
Log return -0.76410 9.7981 -18.071 (p=2.6045e-30) 1.0469e4 (p=0.0)
Squared log return 19.639 556.57 -6.4478 (p=1.5499e-8) 3.3142e7 (p=0.0)

In the table the descriptive statistics for the AEX closing price, the log return series as well as the
squared log return series are presented for the period of January 2012 to December 2021. Where
JB is the test statistic and its p value in parenthesis of the Jarque-Bera test for normality and ADF
the test statistic and its p-value in parenthesis of the augmented Dickey-Fuller test for unit roots.

The histograms and quantile-quantile plots (QQ plot) in Figure 3 indicate the same results
as the Jarque-Bera test results. Considering the log return series, the histogram shows that
the series is centered around zero, however the tails are worth noticing. In the QQ plot
the quantiles are compared to those of the normal distribution, where the deviation from
the line in both tails shows that the data is heavier in the tails compared to the normal
distribution. The squared log return series evidently does not follow a normal distribution.
Furthermore, in Figure 4 the log return series partial autocorrelation shows almost no
significant correlations besides one minor at the sixth lag. This indicates that the series is
most likely serially uncorrelated. However, the partial autocorrelation of the squared log
return series clearly shows a higher autocorrelation with past lags, indicating that the series
is not serially independent.
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Figure 3: Histograms and QQ plots of AEX daily log return series

In the top left figure the histogram of the log return series is presented with in the top right figure
the corresponding QQ plot. In the bottom left figure the histogram of the squared log return series
is presented with in the bottom right figure the corresponding QQ plot. For both QQ plots the x-axis
are the theoretical quantiles of the normal distribution. Both figures are presented for the period of
January 2012 to December 2021.

Figure 4: Partial autocorrelation of AEX daily log return series and daily squared log return
series

In the figure on the left the partial autocorrelation for the log return series of the AEX is presented
an in the figure on the right the partial autocorrelation for the squared log return series of the AEX
is presented, both for the period of January 2012 to December 2021.
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3.2 Additional Data

An important strength of the applied machine learning methods is their ability to deal with
high dimensional data. This makes it feasible to include many explanatory variables in the
data set whereof the methods select the ones most valuable in order to construct the best
predictive model (Bishop, 2006). Therefore, the data set is extended with multiple variables
of the most prominent stocks the AEX contained in the period from 2012 to 2021. The
stocks are selected based on their size and share in the AEX and are the following thirteen
stocks: Aegon, Royal Ahold Delhaize, Akzo Nobel, ArcelorMittal, ASML Holding, Royal
DSM, Heineken, ING Groep, KPN, Randstad, Shell PLC, Unibail-Rodamco-Westfield and
Wolters Kluwer. Since these stocks together are considerably the largest part of the AEX3,
it is expected that the machine learning models can extract valuable information out of
their data to more accurately predict the AEX volatility.

From the data of all these stocks as well as from the data of the AEX multiple variables are
incorporated. These include for example not only the high, low and close values for each
stock but also the volume of the stocks, since empirical research has showed that volume
is positively correlated to the return of the series (Chen et al., 2001; Wang and Huang,
2012). Moving averages are included as they can be important indicators for future volatil-
ity (Brailsford and Faff, 1996). Finally, besides these variables the data is supplemented
with a number of macroeconomic variables as well. As proven in previous literature on
equity return forecasts, some macroeconomic variables might be good indicators for the
fluctuation of a national stock index (Welch and Goyal, 2008). The first set of variables
included in this research concern the fluctuations in the supply and demand of the oil
markets through Dutch prices of benzine, diesel and gas. The second set of variables are
included to get an idea on the state of the Dutch and European economy; exchange rates,
nominal effective exchange rate, gold price, composite indicator of systemic stress (CISS),
short-term european paper (STEP), yield curve spot rates and yield curve forward rates.

Table 3 contains all variables as input for the machine learning methods. As from figure 4,
the lags of the squared log return series exhibit significant correlation with the current value.
The last significant correlation is present at lag 28 and therefore this series is incorporated
up to this lag. For the additional explanatory variables the first lags are added to the input
data matrix. In order to ensure a similar scale data normalization is applied for all additional
variables described. Hereafter all variables are checked for stationarity with the augmented
Dickey-Fuller test. If a series is non-stationary data transformation is applied, i.e. either
the logarithm of the variable or the first difference of the variable is taken before adding
it to the data matrix, if a variable remained non-stationary after these transformations it
will be omitted from this research due to lack of interpretability. However the latter was
not necessary, since after the data preparation all explanatory variables are stationary.

3Composition of AEX retrieved from euronext.com
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Table 3: Complete list of additional explanatory variables

Variable Description Source

Stock data Open, high, low, close, adjusted close and volume data for all
stocks included in this research as well as the AEX. Yahoo! Finance1

Log close-to-close return Computed log close-to-close return series for all stocks included. -
Squared log
close-to-close return

Computed squared log close-to-close return series for all stocks
included. -

Simple moving
averages

Simple moving averages of the log return series of the AEX
with 3, 12 and 26 days as windows for short term averages and 50
and 200 days for long term averages.

-

Exponential moving
averages

Exponential moving averages of the log return series of the AEX
with 3, 12 and 26 days as windows for short term averages
and 50 and 200 days for long term averages.

-

Oil prices
Contains average pump prices of motor fuels per day in euros for
the Netherlands. The three pump prices considered are; benzine
Euro95, diesel and LPG. Prices are including VAT and excise duty.

CBS Open
Data Statline4

Exchange rates

Open, high, low, close and adjusted close data for three data sets
of exchange rates; United States dollar to euro (USD/EUR),
British pound sterling to euro (GBP/EUR) and the Japanese
yen to euro (JPY/EUR).

Yahoo! Finance1

Nominal effective
exchange rate

Computed Effective Exchange Rate (EER) by the ECB on the
euro opposed to a group of 19 trading partners.

European Central
Bank Statistical
Data Warehouse5

Gold price

London Bullion Market Association Gold Price (previously
London Gold Fix). Gold price set in USD two times a day,
this data set contains the gold price at 15:00 London GMT.
Corrected data set from US dollars to euros per troy ounce.

ICE Benchmark
Administration
Limited6

Composite indicator
of systemic stress
(CISS)

The CISS is computed for the entire euro area. It is an indicator
that measures the current level of instability (i.e. stress and
frictions) and is therefore a measure of systemic risk.

CBS Open
Data Statline3

Short-term european
paper (STEP)

The STEP is an aggregated value of total outstanding amounts
of short term issued debt securities that possess the STEP label.
Value is issued by the total economy (world) expressed in euros.

European Central
Bank Statistical
Data Warehouse4

Yield curve spot rate

The yield curve spot rate presents the yield to the remainder of
the time to maturity for a zero coupon bond. The yield curve
spot rate of the Euro area is included for 1-year, 2-year, 5-year
and 10-year maturity.

European Central
Bank Statistical
Data Warehouse4

Yield curve forward
rate

The yield curve forward rate presents the expected interest rate
or a zero coupon bond. The yield curve forward rate of the Euro
area is included for 1-year, 2-year, 5-year and 10-year maturity.

European Central
Bank Statistical
Data Warehouse4

In this table the complete list of explanatory variables for the machine learning methods is presented
including a description per each variable. The periodicity of the variables is daily on business days.
For the complete list of corresponding abbreviations, please refer to Appendix B.3.

4Retrieved from: https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS
5Retrieved from: https://sdw.ecb.europa.eu/
6Retrieved from: Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org/
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4 Results

The result chapter is structured as follows: the first section will be dedicated to the results
of the GARCH models, whereafter the results of the learning models are described and
compared to the GARCH benchmarks.

4.1 GARCH Models

The GARCH models are primarily used as a benchmark for the machine learning models to
get an in depth examination of the true performances of the considered models in volatility
forecasting. To fit the GARCH models, the preprocessed data set is split into two parts;
a training and a testing set. The training set contains 70% of the observations which
are 1763 observations leaving 30% or 756 observations for testing. The models predictive
performance will be evaluated over different forecasting horizons as described in paragraph
2.5.1, where the estimation of the parameters will be done once on the training set.

Table 4: Log likelihood and information criteria of the GARCH models

Normal Student t
GARCH EGARCH GJR-GARCH GARCH EGARCH GJR-GARCH

Log L 5740 5789 5779 5774 5817 5810
AIC -11474 -11570 -11550 -11540 -11623 -11610
BIC -11457 -11548 -11528 -11521 -11596 -11583

In the table the maximized log likelihood (Log L) function value is presented together with the in-
formation criteria (AIC and BIC) for all models. The results are based on the maximum of the
likelihood function of the models in their fit to the training data.

In Table 4 the maximized log likelihood function value and information criteria values are
presented. The results unanimously select the EGARCH model as best fitted model to the
training set for both the normal and the student t distributional assumption by exhibiting
the largest likelihood in combination with the lowest values of the information criteria. The
GJR-GARCH model fits second best leaving the GARCH to be the worst fitted to the train-
ing data. This finding is in line with expectation that due to the asymmetrical behaviour
of the financial return series the models that allow for asymmetry and leverage effect,
which are the EGARCH and the GJR-GARCH model, are likely to fit better to the series
compared to the symmetrical GARCH model. When comparing the two distributional as-
sumptions of the returns, the use of the student t distribution increases the fit of the models
to the return series. This was expected since financial returns often exhibit non-normalities.

In Table 5 the estimated parameters are presented, where not all parameters are significant.
However, for the EGARCH model all parameters are significant for both distributional
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assumptions. This indicates that the EGARCH model probably fits well to the data,
which is coinciding with the previous results based on the likelihood and the information
criteria. Moreover, both the EGARCH model as well as the GJR-GARCH model allow for
asymmetry and the presence of leverage effect in the series as the parameters satisfy the
conditions described in section 2.2.

Table 5: Estimated parameters of the GARCH models

Normal GARCH EGARCH GJR-GARCH
Parameter Coefficient (p-value) Coefficient (p-value) Coefficient (p-value)
ω 2.292e-06 (0.500) -0.423 (0.00)∗∗∗ 2.419e-06 (0.499)
α 9.978e-02 (0.00)∗∗∗ 0.135 (0.00)∗∗∗ -6.420e-03 (0.189)
β 0.877 (0.00)∗∗∗ 0.967 (0.00)∗∗∗ 0.880 (0.00)∗∗∗

γ - -0.159 (0.00)∗∗∗ 0.201 (0.00)∗∗∗

η - - -

Student t GARCH EGARCH GJR-GARCH
Parameter Coefficient (p-value) Coefficient (p-value) Coefficient (p-value)
ω 2.350e-06 (0.500) -0.483 (0.00)∗∗∗ 2.970e-06 (0.499)
α 0.108 (0.00)∗∗∗ 0.143 (0.00)∗∗∗ -1.337e02 (4.124e-02)
β 0.871 (0.00)∗∗∗ 0.961 (0.00)∗∗∗ 0.865 (0.00)∗∗∗

γ - -0.180 (0.00)∗∗∗ 0.235 (0.00)∗∗∗

η 6.490 (1.607e-03)∗∗∗ 8.070 (0.00)∗∗∗ 7.687 (0.00)∗∗∗

In the tables the estimated parameters for the GARCH models are presented with their p-values in
parenthesis. The p-values are based on the standard errors computed through the square root of the
inverse of the Hessian, following the work of Gill and King (2004). One or three asterisks indicate
significance at the 5% or 1% significance level respectively. All parameters are estimated in the
training data set.

Table 6 shows the performance measures of the GARCH models in the one-day-ahead
volatility forecasting of the AEX for all forecasting horizons. Overall the performance mea-
sures are lowest for the six months and one year forecasting horizons. This is directly related
to the AEX developments as visible in Figures 1 and 2, where the start of the out-of-sample
prediction period shows higher peaks in volatility caused by more fluctuation in the AEX.
This is followed by a calmer market period leading to lower average errors made by all
considered models wherafter the massive impact of the Covid-19 crisis clearly manifests in
an increase in the performance measures.

Based on the MAE measure the EGARCH model with normal distribution is preferred
for most long term horizons, except for the one year window where the GARCH model
with normal distribution is preferred. In the shorter horizons the GARCH normal and
EGARCH student t model appear. Based on the RMSE, for all forecasting windows except
the one year window, the EGARCH model with normal distribution is preferred. It is clear
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that based on both measures, the GJR-GARCH model is never favored. In most cases the
differences in performance measures of the models are small and statistical significance of
superiority is not always supported by the Diebold-Mariano test.

In the short term forecast horizons a significantly better performance can not be concluded
based on the MAE measure, however for the longer horizons of a year, 2 years and the full
data set, both EGARCH models outperform both GARCH as well as both GJR-GARCH
models. These findings indicate that the EGARCH models are probably less effected by
a higher average volatility of the AEX that appears in the last two forecasting horizons.
Conducting the Diebold-Mariano test based on the RMSE measure will reduce to the MAE
measure as the test computes the loss differential forecast error per observation and therefore
the results will be identical. For a more complete review of the performance of the models
the Diebold-Mariano test is executed based on the MSE measure. Based on this measure it
can not be concluded that any model outperforms the others significantly for all horizons.
For the complete list of executed Diebold-Mariano tests please refer to Appendix B.2.

Table 6: Performance measures of the GARCH models

Distr Model Measure 1 month 2 months 3 months 6 months 1 year 2 years Full testset
Normal GARCH MAE 1.468 1.335 1.062 0.785 0.747 2.078 1.639

RMSE 2.328 2.155 1.830 1.368 1.394 7.409 5.910
EGARCH MAE 1.493 1.319 1.038 0.746 0.752 1.905 1.515

RMSE 2.288 2.116 1.818 1.355 1.405 7.289 5.808
GJR-GARCH MAE 1.516 1.337 1.071 0.772 0.783 2.195 1.704

RMSE 2.319 2.158 1.853 1.376 1.429 7.423 5.925
Student t GARCH MAE 1.484 1.352 1.073 0.791 0.752 2.098 1.654

RMSE 2.329 2.158 1.832 1.370 1.396 7.412 5.913
EGARCH MAE 1.502 1.314 1.034 0.747 0.758 1.916 1.521

RMSE 2.293 2.121 1.824 1.360 1.412 7.306 5.822
GJR-GARCH MAE 1.570 1.345 1.083 0.781 0.791 2.215 1.717

RMSE 2.329 2.172 1.867 1.387 1.441 7.486 5.974
Best over period MAE G (n) EG (st) EG (st) EG (n) G (n) EG (n) EG (n)

RMSE EG (n) EG (n) EG (n) EG (n) G (n) EG (n) EG (n)

In the table the computed performance measures are presented for all models and distributions, for all
forecasting horizons. All values are multiplied by 1000. The best performing models per forecasting
period based on the two performance measures are indicated in the bottom two rows of the table,
where G, EG and GJR represents the GARCH, EGARCH and GJR-GARCH model respectively
and (n) and (st) indicate the normal and student t distributional assumption respectively.

Furthermore looking at the distributional assumptions, it is found that an underlying stu-
dent t distribution does not lead to a better out-of-sample forecasting performance, on the
contrary; assuming a student t distribution almost always leads to a slight increase in per-
formance measure compared to the normal assumption, with the exception of the EGARCH
MAE measure at the two and three month forecasting horizon. Based on previous findings
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the models with student t distributional assumption where expected to perform better in
the out-of-sample forecasting due to a better fit to the training data, however the opposite
seems to be true based in the out-of-sample results. However, based on the Diebold-Mariano
tests this difference in performance is not significant, with the exception of the GARCH
model for all forecasting horizons besides one and six months.

In Figure 5 the one-day-ahead volatility forecasts of the GARCH models with normal dis-
tributional assumption are plotted along with the squared log return series as proxy for
the AEX volatility. As visible the GARCH model tends to estimate the AEX volatility the
most conservative whilst the GJR-GARCH model predicts the volatility spikes the highest.
The EGARCH model seems to predict closely to the GJR-GARCH model in low volatile
times and somewhere in between both other models in high volatile times. Clearly all three
models struggle to accurately estimate the high peaks in the AEX volatility, which is for
example apparent between August and September of 2019. Furthermore, the three models
seem to follow the general trend of volatility reasonably, where the GARCH model performs
the worst most likely caused by its symmetrical form.

Figure 5: Daily GARCH volatility forecasts

In the figure the daily volatility forecasts are plotted for the three GARCH class models with normal
distributional assumption together with the daily squared log return series as proxy for the AEX
volatility for the one year ahead forecasting horizon.
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4.2 Machine Learning and Hybrid Models

In the next paragraphs first the tuning of the machine learning models as well as the hybrid
model is described, followed by a discussion of the results and a comprehensive comparison.

4.2.1 Hyperparameter Settings

As past research has shown, the building of a well performing SVR model requires carefully
selected hyperparameters (Chih Hung et al., 2009). In order to fine tune these parameters
the SVR is fitted multiple times on five folds. Since random search is used this process is
repeated 100 times, to ensure the combination of parameters found indeed approaches the
optimal set. After preliminary testing the SVR model with rbf kernel appeared to often
estimate negative values for the AEX volatility, most likely caused by the range of very
low and almost zero values of the squared log return series. In order to resolve this issue
the SVR model is trained to estimate the natural logarithm of the series whereafter the
exponential of the predictions is taken. A drawback of this approach is the fact that the
error function of the SVR is now minimized regarding the logarithmic values of the response
variable, where it makes no distinction in penalizing errors of different magnitudes which
can lead to lower values in terms of absolute error but higher values in terms of squared error.

The best set of parameters are presented in Table 7. The first parameter C is the strictly
positive regularization parameter and determines the trade-off of the model complexity and
the errors made on in testing. A decrease in C leads to an increase in the strength of
regularization and lowers the probability of overfitting of the model on training data. The
second parameter applicable is η, that determines the accuracy level of the function ap-
proximated. The value of η is highly dependent on the values of the response variable thus
must reflect the data. If η falls outside of the range of values that the response variable can
take, the SVR will lead to very poor predictive results and when η is set at zero, there is no
error allowed. The final parameter applicable is γ, which is a kernel specific parameter that
defines the way that the decision boundary is shaped. If γ is underestimated the kernel will
lose its nonlinear power but if overestimated the extent of regularization will decrease and
the resulting model will be sensitive to noise in the training data set.

The random forest is fitted following the same process and some preliminary testing is per-
formed beforehand to decrease the ranges of the parameter bounds to lower computational
costs in this way, since these are often high for tree based models. The optimal values for
the parameters based on the training set are described in Table 7. The higher the number
of estimators the more likely the random forest is to make accurate predictions since the
more simple trees are combined the more the variance is reduced. However, the more trees
that need to be grown the higher the computational costs will rise, whilst the true marginal
gain of adding trees decreases (Friedman, 2001).
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As the maximum number of variables considered at each split increases the single tree will
be more powerful however will also be more correlated with the rest of the trees in the
forest. Choosing the optimum value for this maximum variables parameter will attain a
trade-off between the two in order to obtain the best model (Breiman, 2001). Also, if this
number is high the random forest is more likely to overfit on the training data due to the
level of complexity and performance on the testing set will be poor. To avoid this the
parameter should be significantly lower compared to the number of explanatory variables
in the model. The final parameter that is tuned is the maximum depth of the tree, which
determines the flexibility of the single trees in the forest. A large or fully grown tree will
presumably fit better to complicated noisy functions but tends to overfit on the training
data, whereas a very small tree might miss the structures within the data.

Table 7: Hyperparameters of the machine learning and hybrid models

SVR RF GB
Parameter Bounds Optimal Parameter Bounds Optimal Parameter Bounds Optimal
C 0.001 - 10 1.508 No. estimators 300 - 800 640 No. estimators 40 - 800 40
η 1e-02 - 0.6 0.482 Max variables 6 - 61 11 Max variables 4 - 61 9
γ 1e-06 - 1e-02 6.020e-04 Max depth 3 - 12 4 Learning rate (fixed) - 0.1

EGARCH-SVR
EGARCH parameters SVR parameters
Parameter Coefficient Parameter Bounds Optimal
ω -0.423 C 0.1 - 6 4.239
α 0.135 η 1e-09 - 1e-06 4.751e-07
β 0.967 γ 1e-10 - 1e-06 6.441e-07
γ -0.159 - - -

In the top table the bounds as well as the optimal values found by randomized search for the hy-
perparameters of the machine learning models are presented and in the bottom table the same is
presented for the hybrid model.

The gradient boosted tree is fitted following the same process and the optimal values are
described in Table 7. In order to select the learning rate some preliminary research was
performed, since it is undesirable to optimize the learning rate as a hyperparameter through
an optimizer. Smaller values for the learning rate lead to smaller improvement steps which
require more iterations for training and a higher number of estimators, but can increase the
robustness of the model. In most cases the performance of a gradient boosted tree increases
when more estimators are added since the algorithm is fairly robust to overfitting. However,
in cases of a very noisy data set adding more boosting stages can increase overfitting to the
training data (Dietterich, 2000). This is most likely the reason that the number of boosting
stages is low. The maximum number of variables is as for random forest the number of
variables considered to find the best split.
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The hybrid EGARCH-SVR model is trained using a two-stage approach. The EGARCH
parameters are estimated with the maximum likelihood method normal distributional as-
sumption and since the coefficients are only estimated once on the training set the param-
eters are identical to ones stated in Table 5. Next, the hyperparameters of the SVR are
optimized with the same approach of randomized search as the machine learning models,
however with different training data as described in section 2.4. In Table 10 the list of
optimal hyperparameters are presented.

4.2.2 Comprehensive Model Comparisons

In Table 8 the performance measures of the volatility forecasts of the machine learning mod-
els as well as the hybrid model are presented for all forecasting windows. For all models
both performance measures are relatively lowest at the six month and one year forecasting
horizons, which is as expected since the average volatility of the AEX is lowest in these
periods. In the one month, two years and full test set the performance measures are the
highest, corresponding with the highest level of average volatility of the AEX.

Based on the MAE measure the SVR model has a lower error in the out-of-sample predic-
tion of the AEX volatility for all horizons compared to the other models. Interestingly, the
gradient boosted tree performs second best in the three horizons with the highest average
volatility, followed by the random forest. This stronger performance of the tree based mod-
els in these particular forecasting windows is opposite to the expectation that they would
suffer more from the extreme spikes in volatility causing the problematic phenomenon of
covariate shift. This is a well known problem in machine learning where the response vari-
able takes on values outside the bounds of the data in the training set, which is difficult for
all models to predict but especially for the tree based models, since their predictions are
limited as an average of previous observed values of the response variable, meaning that
the forecasts are bounded by the range of the training data.

Apparently the EGARCH-SVR model suffers even more from the higher fluctuation of the
market compared to the tree based models. It was expected that this hybrid model would
be more robust in terms of volatility prediction in high volatile market times by taking
the advantages of both the parametric EGARCH model as well as the nonparametric SVR
model and would increase the predictive performance compared to the singular models.
The poor performance of the hybrid model could have been caused by an expected poor
performance of the parametric EGARCH model in high volatile market times, however
this is contradicted since the standalone EGARCH model performs better. Between the
tree based models, it was expected that the bagging model would outperform the boosting
model due to the high noise in the financial return series that boosting algorithms are of-
ten more sensitive to. However according to the MAE, almost always the opposite is true
and GB performs better than RF, with the exception of the two months forecasting horizon.
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According the the RMSE measure, the GB consistently outperforms all other models in
forecasting the AEX volatility. The RF is again inferior compared to the boosting model,
where it performs second best from the two months until one year forecasting horizon. For
the first horizon as well as the largest two horizons the RF seems to be highly affected by
the higher average level of volatility of the series and is outperformed by the SVR. Inter-
estingly, the SVR performs the worst out of all models for the calmer times in terms of
volatility whilst outperforming the RF and EGARCH-SVR in the last two horizons with
higher volatility. The hybrid model disappoints compared to the machine learning stan-
dards, as it only outperforms the standalone SVR model in the horizons up until a year.

Table 8: Performance measures of the machine learning and hybrid models

Model Measure 1 month 2 months 3 months 6 months 1 year 2 years Full testset
SVR MAE 1.440 1.143 0.870 0.654 0.611 1.766 1.379

RMSE 2.493 2.243 1.903 1.432 1.442 7.334 5.862
RF MAE 1.495 1.319 1.060 0.801 0.752 1.874 1.499

RMSE 2.302 2.113 1.805 1.350 1.367 7.428 5.925
GB MAE 1.467 1.351 1.050 0.778 0.718 1.869 1.494

RMSE 2.206 2.057 1.754 1.315 1.340 7.240 5.783
EGARCH-SVR MAE 1.554 1.323 0.984 0.728 0.681 1.964 1.517

RMSE 2.364 2.174 1.860 1.409 1.418 7.626 6.076
Best over period MAE SVR SVR SVR SVR SVR SVR SVR

RMSE GB GB GB GB GB GB GB

In the table the computed performance measures are presented for all machine learning models as
well as the hybrid model, for all forecasting horizons. All values are multiplied by 1000. The best
performing models per forecasting period based on the two performance measures are indicated in
the bottom two rows of the table.

In Figure 6 the one-day-ahead volatility forecasts are plotted together with the squared log
return series as proxy for the AEX volatility. Comparing the tree based models, both have a
hard time predicting the spiked structure of the squared log return series, which is especially
visible in the underestimating the high peaks of volatility as well as overestimating of the
days where the volatility is nearly zero. The boosting model has a more spiked structure
and seems to fit the structure of the day-ahead volatility better compared to the RF. Both
the SVR model as well as the EGARCH-SVR model seem to fit the nearly zero values of
the day-ahead volatility better compared to the tree based models. Additionally, the SVR
model is more conservative in estimating the volatility spikes compared to both tree based
models and the EGARCH-SVR, where the latter seems to fit the spiked structure of the
day-ahead volatility better.
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Figure 6: Daily volatility forecasts

In the top figure the daily volatility forecasts are plotted for both tree based models and in the bottom
figure the daily volatility forecasts are plotted for the SVR model as well as the hybrid EGARCH-
SVR. Both are plotted together with the daily squared log return series as proxy for the AEX volatility
for the one year ahead forecasting horizon.

In Figure 7 the performances of the learning models based on the MAE measure are pre-
sented relative to the benchmark GARCH models with normal distributional assumption.
The SVR consistently outperforms the benchmark models, indicating that the SVR model
is indeed better at capturing the nonlinear complex structure of the series and provides
more accurate volatility forecasts. The tree based models seem to be closer in terms of
predictive performance with the benchmark models especially in the short(er) forecasting
horizons, where they alternate in performance. For the larger horizons, both tree based

36



models have a lower prediction error compared to all GARCH type models, where GB is
the better of the two. This indicates that the tree based models are more robust to periods
of higher average volatility and are better able to predict the volatility in uncertain times.
Unfortunately, the hybrid EGARCH-SVR model does not perform consistently and is out-
performed by the singular EGARCH model in multiple horizons, whereas it was expected
that the combination of the EGARCH predictions with the nonlinear SVR model could
decrease the errors made compared to the singular EGARCH model.

Figure 7: Relative performance of the learning models to the benchmark models based on
MAE

GB
RF

SVR
EGARCH-SVR

In the figure the MAE values are presented for the three machine learning models as well as the
hybrid model relative to the benchmark models with normal distributional assumption. A relative
value below one indicates that the learning model performs better compared to the benchmark model.
For completeness this figure based on GARCH models with student t distributional assumption is
included in Appendix B.1.

In Figure 8 the same is presented based on the RMSE measure. Here the GB model
consistently outperforms all traditional models. The RF model performs worse compared
to the EGARCH model in times of high average volatility and SVR model performs poorly
for most forecasting horizons. The latter could be explained by the fact that the SVR model
is the only model discussed whose objective function is the minimizing of the logarithm of
the response variable and thus does not distinguish errors of different magnitude which will
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likely cause a higher RMSE. However for the last two forecasting horizons, the SVR performs
better and is only outperformed by the EGARCH benchmark model. The EGARCH-SVR
again disappoints and performs worse compared to all benchmark models with a single
exception.

Figure 8: Relative performance of the learning models to the benchmark models based on
RMSE

GB RF

SVR EGARCH-SVR

In the figure the RMSE values are presented for the three machine learning models as well as the
hybrid model relative to the benchmark models with normal distributional assumption. A relative
value below one indicates that the learning model performs better compared to the benchmark model.
For completeness this figure based on GARCH models with student t distributional assumption is
included in Appendix B.1.

In order to assess the significant difference in predictive performance the Diebold-Mariano
test is applied. Based on the MAE measure the learning models do not significantly outper-
form the benchmark models for the shortest two forecasting horizons. In the three month
horizon, the SVR significantly outperforms both GARCH models and RF and in the six
month forecasting horizon the GB as well. In the one year ahead forecasting window, both
the standalone SVR as well as the hybrid EGARCH-SVR model significantly outperform
all benchmark models, where the SVR is the superior model. As of the two year forecasting
window, all machine learning models significantly outperform both GARCH as well as both
GJR-GARCH models, however this is not the case for EGARCH models. For the full test
set the SVR model is also significantly better than the EGARCH.
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Again, computing the Diebold-Mariano test based on the RMSE measure will not lead to
different results and the test is therefore conducted based on the MSE measure. Based
on this no model can be significantly favored for any forecasting horizon with a single
exception; for the one year horizon both tree based model significantly outperform both
EGARCH and GJR-GARCH models and the GB outperforms the EGARCH-SVR. Please
refer to Appendix B.2 for the complete list of executed Diebold-Mariano significance tests.

Another interesting feature of the tree based models is the possibility to examine the impor-
tance per explanatory variable through the trees variable importance measure. In Figure
9 the 20 most important variables for both tree based algorithms are presented. Both the
simple moving averages as well as the exponential moving averages for especially the log
return series but also the squared log return series of the AEX receive high importances.
This is not a surprise since it is shown in previous literature that these moving averages
can be good indicators of stock market movement and are therefore useful to include in the
model (Brailsford and Faff, 1996). For random forest the first 11 most important variables
are even all moving average variables, followed by variables regarding the Japanese yen and
British pound sterling exchange rate as well as a variable regarding the Unibail and KPN
stocks. The 20th most important variable is the first lag of the log return series.

The gradient boosting algorithm ranks the moving averages high as well, however includes
more variables on stocks; variables regarding Heineken, KPN, AEGON, AKZO, Unibail,
Shell and DSM appear. The gradient boosting algorithm gives a relatively high weight
to the fourth (21st most important variable) and the ninth lag of the squared log return
series, which coincides with the autocorrelation plot of the squared log return series where
there is a clear spike in correlation visible at these lags. However, even more autocorre-
lation occurs at the third and eight lag, which are ranked significantly lower by both models.

An advantage of these tree based models that rank the explanatory variables based on
importance is that in cases of many explanatory variables where the probability of multi-
collinearity rises, the models restrain the influence of these particular variables by shrinking
their coefficients. Therefore some variables on the stocks are ranked low, since for all stocks
included in this research multiple variables are incorporated such as high, low and close,
which are likely highly correlated.

Interestingly, the macroeconomic variables on the Dutch oil market are not highly ranked
by the tree based models. The CISS indicator is ranked far higher compared to all yield
rates, the STEP indicator, the gold price and the effective exchange rate. This indicates
that this indicator on systemic stress indeed has some predictive power for future values of
volatility. Furthermore, most lagged values of the squared log return series are not ranked
high. The gradient boosting algorithm applies even more regularization and shrinks the
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Figure 9: Variable importance measures

In the figures the 20 most important explanatory variables based on variable importances are pre-
sented, with on the x-axis the (abbreviated) names of the explanatory variables and on the y-axis
their relative importance. The left figure shows the ranking for the random forest and the right figure
for the gradient boosted tree. For the complete list of explanatory variables and their abbreviations,
please refer to Appendix B.3.

coefficient of 50 explanatory variables to zero, namely; some variables on the stocks, some
distant lags of the squared log return series, some exchange rates, the gold price and yield
curves spot and forward rates. This suggests that the gradient boosted tree tackles the
multicollinearity more compared to the random forest and this coincides with its better
performance.

5 Conclusion

The aim of this research was to investigate the power of three machine learning models as
well as a novel hybrid model in the out-of-sample volatility forecasting of the AEX based on
data of the period of January 2012 to December 2021. The proposed methods are support
vector regression, random forest, gradient boosted tree and the hybrid method EGARCH-
SVR. In order to assess not only their relative performance but also substantiate these
findings the models are compared to the traditional statistical time series models of the
GARCH class, whereof the GARCH, EGARCH and GJR-GARCH models are estimated
with both the normal as well as student t distributional assumption. To check the robustness
of all models regarding different levels of average volatility the out-of-sample predictions of
volatility are made over multiple horizons. The models are compared with two well known
performance measures and their statistical significance in terms of predictive performance
is assessed. Finally, the tree based variable importance measures are discussed to evaluate
if these machine learning models are indeed able to extract information out of additional
explanatory variable based on stocks and macroeconomic indicators.
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It is shown that amongst the traditional time series models, the EGARCH model with nor-
mally distributed returns outperforms the others which is most likely due to the allowance
for leverage effect in the model. Surprisingly, the student t distributional assumption leads
to a slight decrease in performance for almost all forecasts however this difference is not
often significant. Regarding the forecasting horizons, it is evident that the GARCH type
models are highly effected by an increase in average volatility of the AEX, leading their out-
of-sample performances to decrease significantly. Furthermore, it is shown that compared
to these benchmark models, the machine learning models indeed appear to better adapt
to the noisiness and complex structure of the data due to their higher flexibility and non-
parametric form. This leads them to often significantly outperform the benchmark models
especially in the larger forecasting horizons, where the GARCH type models struggle more
to grasp the spiked structure of the AEX volatility. However, the results for the hybrid
EGARCH-SVR model are disappointing, as it is also highly influenced in more volatile
periods of the market and is often outperformed by the standalone EGARCH models.

Furthermore, even though the aforementioned learning methods indeed increase predictive
performance and often significantly outperform the benchmark models based on absolute
errors, the same statistical significance can not be concluded based on squared errors. Also,
the resulting best performing model differs for both measures. As a consequence, selecting
a single best performing model amongst the machine learning methods is a difficult task.
Overall taking both performance measures into account the gradient boosted tree is favored,
however based on proven significance it is more reasonable to base a conclusion solely on the
MAE measure, which would lead to selecting the support vector machine model followed
by the gradient boosted tree as best performing models.

Finally, the variable importance measures of both tree based methods show that indeed
the additional explanatory variables regarding the stocks the AEX consists of contain some
information on the future value of the AEX volatility. Besides these variables, moving
averages of the AEX volatility prove to be important indicators as well as some variables
regarding exchange rates, whilst most macroeconomic variables are not selected as impor-
tant drivers of the AEX volatility.

Thus, machine learning approaches indeed show good qualities to be applied to a highly
nonlinear and complex time series as financial returns and are able to outperform more
traditional statistical time series models. They show to be especially fitting in high volatile
market times, where both the hybrid model as well as the traditional models perform less
satisfactory.
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5.1 Limitations and Further Research

Predicting volatility remains a difficult task as it is a non-observable variable and can not
be precisely measured, but can only be extracted including a certain amount of error. The
framework used in this research is based on the replacement of the unobserved variance
with the demeaned squared log return series. This measure for daily volatility is a very
specific one, possibly leading to poorer out-of-sample forecasts of the models. To gain a
better understanding of the usefulness of machine learning and hybrid models in volatility
forecasting more proxies could be applied, such as realized volatility. Furthermore, as more
training data is often beneficial to both the traditional time series methods as well as the
learning methods described it would be advisable to extend the historical data as much as
possible. This could especially be useful for the tree based methods, that can not extrapo-
late from training data.

Also, since the variable importance measures of the tree based models shrunk the coefficients
of some variables to (almost) zero, the models might improve when these variables are
excluded. For future research it might be interesting to include many variables and apply
the tree based methods to select the informative ones, and apply the models with the
reduced number of variables to the AEX volatility forecasting. Another suggestion for
further research is in the direction of the hybrid method, since the novel hybrid EGARCH-
SVR model did not prove to perform effectively compared to either the standalone SVR
model as well as the standalone EGARCH model. More research on the input data of the
SVR part of the hybrid model should be conducted as well as the possibility of using other
kernels.
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A Additional Methodology

A.1 Distributions

Let p(rt) be the probability density function of the returns on time t, independent of the
previous returns rt−1. Then, the normal distribution and the student t distribution follow
the probability density function of eq. (23) and eq. (24) respectively.

p(rt) = (2πσ2
t )

−1/2 exp

(
−(rt − µt)

2

2σ2
t

)
(23)

p(rt) =
Γ((ν + 1)/2)

Γ(ν/2)
√

πσ2
t (ν − 2)

(
1 +

(rt − µt)
2

(ν − 2)σ2
t

)− ν+1
2

, ν > 0 (24)

Where Γ(ν) =
∫ inf
0 e−xxν−1dx is the gamma function, and ν parameter of the thickness of

the tail.

A.2 CART Algorithm

Algorithm 4: CART algorithm for decision trees.
Data: Data set (xt, ϵ

2
t ) with dependent series ϵ2t for t = 1, ..T and features xti for t = 1, ..T ,

i = 1, .., p.
1. Take a root node with the complete data set.

2. Find the best split points s that maximizes the splitting criterion for all features.

3. Find among the pairs of features and best splits (i, s) from step 2 the best pair that maximizes the
splitting criterion.

4. Split the current node on this split.

5. Repeat the process from step 2, until the stopping criteria is reached or the tree is fully grown.
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A.3 Augmented Dickey-Fuller Test

The augmented Dickey-Fuller (ADF) test is a unit-root test designed to test the stationairity
of a time series (Dickey and Fuller, 1979). Let yt the value of the series in time t and consider
a simple autoregressive model (AR):

yt = ρyt−1 + ϵt (25)

Where the null hypothesis (H0) in this test is the case that coefficient ρ is equal to one; there
is a unit root present in the considered series and therefore the series is non-stationary. The
alternative hypothesis (HA) states that the tested series has no unit roots and therefore is
stationary. Next, the first order difference of eq. (25) is taken:

∆yt = ϕyt−1 + ϵt (26)

The null hypothesis (H0) becomes ϕ = 0 which is equal to testing ρ = 1 and states that there
is a unit root present in the considered time series. Under the alternative hypothesis (HA),
ϕ < 1 and the series follow a stationary process. The null hypothesis of non-stationairity
is rejected if the p-value is lower then 0.05 at the α = 5% significance level. This discussed
p-value is based on MacKinnons p-value (MacKinnon, 1994).

A.4 Jarque-Bera Test

The Jarque-Bera test for normality is used to test if a data set is normally distributed by
testing simultaneously if the skewness of the data is equal to zero and the kurtosis of the
data is equal to three (Jarque and Bera, 1987). Under the null hypothesis (H0) the data is
normally distributed, under the alternative hypothesis (HA) it is not normally distributed.
The Jarque-Bera test statistic is defined as in eq. (27).

JB = N

(
(
√
b1)

2

6
+

(b2 − 3)2

24

)
(27)

Where N the number observations, b1 skewness coefficient and b2 the kurtosis coefficient.
The test statistic can be compared with a critical value from the χ2 distribution, where
the number of degrees of freedom is two. If the measured test statistic results in a higher
value than the value of χ2

(2), the null hypothesis is rejected and therefore the tested data
does not follow a normal distribution. The critical value for multiple significance levels can
be obtained from a χ2 table. It should be mentioned that the Jarque-Bera test does not
perform well in small samples and furthermore loses power when applied to non-symmetric
distributions that do not have long tails. In such cases the Shapiro-Wilk test could be a
good substitute (Thadewald and Buning, 2004).
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A.5 Information Criteria

The first measures to compare relative prediction performance of the statistical time series
models are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC) (Akaike, 1974; Schwarz, 1978). These information criteria provide a method to select
the model that is relatively the best fitted model on the training data. The AIC and the
BIC criteria are designed to compare statistical models and therefore will be used in this
research to determine which of the benchmark models fits best to the data and therefore
is expected to produce the best out-of-sample forecasts as well. The AIC and the BIC are
calculated as below, where L is the models maximum value of the likelihood function, n
the number of observations and k the number of parameters to be estimated in the model
and a lower value for these criteria is preferred. The BIC is a similar measure as the AIC,
however it incorporates a penalty for an extra added parameter.

AIC = 2k − 2 ln(L)

BIC = ln(n)k − 2 ln(L)
(28)
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B Results

B.1 Model Comparisons

Figure 10: Relative performance of the learning models to the benchmark models based on
MAE

GB RF

SVR EGARCH-SVR

In the figure the MAE values are presented for the three machine learning models as well as the
hybrid model relative to the benchmark models with student t distributional assumption. A relative
value below one indicates that the learning model performs better compared to the benchmark model.
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Figure 11: Relative performance of the learning models to the benchmark models based on
RMSE

GB RF

SVR EGARCH-SVR

In the figure the RMSE values are presented for the three machine learning models as well as the
hybrid model relative to the benchmark models with student t distributional assumption. A relative
value below one indicates that the learning model performs better compared to the benchmark model.
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B.2 Diebold-Mariano

In the tables the Diebold-Mariano test statistics are presented for all considered models for
all forecasting horizons. A positive value indicates that the model in the column performs
better that its row counterpart. Performance is significant at the 5% and 1% level for *, **
respectively.

GARCH (st) EGARCH (n) EGARCH (st) GJR (n) GJR (st) SVR RF GB EGARCH-SVR
DM - 1 month MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GARCH (n) -1.07 -0.33 -0.35 0.67 -0.44 0.61 -0.76 0.26 -1.28 -0.01 0.16 -1.28 -0.23 0.32 0.01 0.72 -0.65 -0.44
GARCH (st) -0.14 0.77 -0.26 0.69 -0.56 0.30 -1.18 0.00 0.24 -1.18 -0.08 0.34 0.13 0.75 -0.52 -0.44
EGARCH (n) -0.69 -0.83 -0.42 -0.65 -1.29 -0.99 0.27 -1.21 0.01 -0.28 0.26 0.69 -0.51 -1.04
EGARCH (st) -0.29 -0.60 -1.27 -0.96 0.31 -1.19 0.12 -0018 0.35 0.71 -0.46 -0.98
GJR-GARCH (n) -2.24∗ -0.60 0.39 -1.13 0.31 0.24 0.43 0.72 -0.34 -0.53
GJR-GARCH (st) 0.64 -0.99 0.91 0.40 0.89 0.84 0.15 -0.43
SVR -0.30 1.17 -0.13 1.15 -0.69 0.86
RF 0.34 0.94 -0.51 -0.72
GB -0.52 -1.05

GARCH (st) EGARCH (n) EGARCH (st) GJR (n) GJR (st) SVR RF GB EGARCH-SVR
DM - 2 months MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GARCH (n) -2.12∗ -0.47 0.28 0.69 0.31 0.54 -0.02 -0.05 -0.11 -0.26 1.57 -0.98 0.39 0.92 -0.21 0.89 0.14 -0.28
GARCH (st) 0.60 0.82 0.60 0.64 0.22 0.01 0.09 -0.22 1.63 -0.88 0.72 1.07 0.01 0.96 0.35 -0.24
EGARCH (n) 0.42 -0.74 -0.52 -1.66 -0.54 -1.68 1.22 -0.96 0.07 0.20 -0.56 0.84 -0.06 -1.07
EGARCH (st) -0.80 -1.53 -0.79 -1.75 1.15 -0.90 -0.04 0.36 -0.59 0.91 -0.13 -1.01
GJR-GARCH (n) -0.47 -0.86 1.21 -0.66 0.31 1.21 -0.18 1.17 0.19 -0.33
GJR-GARCH (st) 1.19 -0.51 0.36 1.29 -0.07 1.38 0.29 -0.05
SVR -1.43 1.13 -1.41 1.03 -1.44 0.55
RF -0.72 0.73 -0.11 -1.21
GB 0.30 -1.22

GARCH (st) EGARCH (n) EGARCH (st) GJR-GARCH (n) GJR-GARCH (st) SVR RF GB EGARCH-SVR
DM - 3 months MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GARCH (n) -2.00∗ -0.38 0.55 0.26 0.56 0.11 -0.16 -0.45 -0.31 -0.58 2.21∗ -0.97 0.12 0.77 0.25 0.88 1.26 -0.53
GARCH (st) 0.86 0.33 0.83 0.17 0.05 -0.44 -0.15 -0.58 2.24∗ -0.88 0.46 0.91 0.49 0.96 1.47 -0.51
EGARCH (n) 0.45 -0.70 -1.22 -1.40 -1.19 -1.30 1.60 -0.79 -0.54 0.54 -0.28 1.03 1.08 -0.93
EGARCH (st) -1.71 -1.41 -1.58 -1.36 1.50 -0.70 -0.57 0.65 -0.35 1.15 1.02 -0.82
GJR-GARCH (n) -0.90 -0.93 1.71 -0.43 0.24 1.29 0.38 1.52 1.61 -0.15
GJR-GARCH (st) 1.73 -0.28 0.40 1.31 0.53 1.75 1.73 0.17
SVR -2.19∗ 1.06 -1.79 1.02 -1.24 0.42
RF 0.24 0.82 1.38 -1.28
GB 1.04 -1.32

GARCH (st) EGARCH (n) EGARCH (st) GJR-GARCH (n) GJR-GARCH (st) SVR RF GB EGARCH-SVR
DM - 6 months MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GARCH (n) -1.94 -0.45 1.78 0.53 1.45 0.29 0.45 -0.23 0.13 -0.44 2.68∗∗ -1.27 -0.79 0.78 0.27 0.92 1.54 -1.21
GARCH (st) 2.11∗ 0.62 1.74 0.37 0.70 -0.19 0.32 -0.43 2.70∗∗ -1.16 -0.48 0.92 0.49 1.00 1.70 -1.17
EGARCH (n) -0.32 -0.85 -1.56 -0.98 -1.61 -1.04 1.69 -1.22 -2.62∗∗ 0.27 -1.33 0.78 0.59 -1.87
EGARCH (st) -1.75 -0.90 -1.83 -1.02 1.64 -1.08 -2.24∗ 0.48 -1.15 0.89 0.64 -1.70
GJR-GARCH (n) -1.34 -1.08 1.86 -0.75 -0.98 1.09 -0.18 1.35 1.25 -1.01
GJR-GARCH (st) 1.91 -0.57 -0.60 1.22 0.09 1.60 1.43 -0.62
SVR -2.98∗∗ 1.31 -2.28∗∗ 1.21 -1.64 0.40
RF 1.15 0.85 2.06∗ -1.91
GB 1.30 -1.55

GARCH (st) EGARCH (n) EGARCH (st) GJR-GARCH (n) GJR-GARCH (st) SVR RF GB EGARCH-SVR
DM - 1 year MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GARCH (n) -2.78∗∗ -0.66 -0.32 -0.65 -0.58 -0.84 -1.63 -1.26 -1.75 -1.34 4.30∗∗ -1.50 -0.38 1.48 1.61 1.61 2.68∗∗ -0.79
GARCH (st) 0.02 -0.59 -0.31 -0.81 -1.49 -1.30 -1.64 -1.37 4.33∗∗ -1.36 0.01 1.67 1.91 1.76 2.94∗∗ -0.76
EGARCH (n) -1.32 -1.13 -2.50∗ -1.41 -2.46* -1.46 3.81∗∗ -0.88 -0.01 2.28∗ 1.79 2.17∗ 3.35∗∗ -0.50
EGARCH (st) -2.61∗∗ -1.38 -2.64** -1.50 3.75∗∗ -0.63 0.29 2.46∗ 1.93 2.46∗ 3.62∗∗ -0.24
GJR-GARCH (n) -1.79 -1.48 3.94∗∗ -0.23 1.30 2.67∗∗ 2.65∗∗ 3.12∗∗ 4.20∗∗ 0.44
GJR-GARCH (st) 3.96∗∗ -0.01 1.51 2.56∗ 2.77∗∗ 3.22∗∗ 4.38∗∗ 0.83
SVR -4.52∗∗ 1.74 -3.24∗∗ 1.73 -2.18∗ 0.48
RF 2.74∗∗ 1.24 3.02∗∗ -1.71
GB 1.51 -2.11∗
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GARCH (st) EGARCH (n) EGARCH (st) GJR-GARCH (n) GJR-GARCH (st) SVR RF GB EGARCH-SVR
DM - 2 years MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GARCH (n) -3.29∗∗ -0.17 2.97∗∗ 1.34 2.52∗ 0.89 -1.48 -0.04 -1.47 -0.19 2.96∗∗ 0.25 2.43∗ -0.16 2.70∗∗ 1.40 1.39 -0.91
GARCH (st) 3.29∗∗ 1.49 2.84∗∗ 1.00 -1.29 -0.03 -1.31 -0.19 3.05∗∗ 0.26 2.58∗∗ -0.13 2.89∗∗ 1.41 1.68 -0.92
EGARCH (n) -1.12 -0.58 -3.36∗∗ -0.44 -3.33∗∗ -0.55 1.48 -0.19 0.51 -0.78 0.70 0.57 -1.02 -1.56
EGARCH (st) -3.31∗∗ -0.41 -3.34∗∗ -0.53 1.53 -0.12 0.66 -0.62 0.88 0.65 -0.90 -1.57
GJR-GARCH (n) -1.17 -0.92 2.86∗∗ 0.21 2.54∗ -0.03 2.97∗∗ 0.55 2.62∗∗ -0.61
GJR-GARCH (st) 2.88∗∗ 0.33 2.58∗∗ 0.10 3.00∗∗ 0.63 2.76∗∗ -0.39
SVR -2.04∗ -0.33 -1.38 0.41 -1.57 -0.76
RF 0.10 1.42 -0.99 -0.69
GB -1.18 -1.57

GARCH (st) EGARCH (n) EGARCH (st) GJR-GARCH (n) GJR-GARCH (st) SVR RF GB EGARCH-SVR
DM - full set MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GARCH (n) -3.72∗∗ -0.18 3.47∗∗ 1.42 2.96∗∗ 0.96 -1.28 -0.06 -1.32 -0.21 3.90∗∗ 0.21 2.68∗∗ -0.16 2.97∗∗ 1.37 2.41∗ -0.89
GARCH (st) 3.84∗∗ 1.59 3.33∗∗ 1.08 -1.05 -0.05 -1.12 -0.21 3.99∗∗ 0.22 2.86∗∗ -0.13 3.18∗∗ 1.38 2.76∗∗ -0.90
EGARCH (n) -0.91 -0.58 -3.51∗∗ -0.50 -3.47∗∗ -0.60 2.27∗ -0.29 0.42 -0.81 0.62 0.42 -0.07 -1.59
EGARCH (st) -3.46∗∗ -0.47 -3.48∗∗ -0.58 2.26∗ -0.22 0.53 -0.65 0.75 0.51 0.09 -1.60
GJR-GARCH (n) -1.23 -0.93 3.44∗∗ 0.19 2.58∗∗ -0.01 3.01∗∗ 0.55 3.37∗∗ -0.58
GJR-GARCH (st) 3.43∗∗ 0.32 2.62∗∗ 0.11 3.05∗∗ 0.63 3.50∗∗ -0.36
SVR -3.50∗∗ -0.29 -2.39∗ 0.44 -1.76 -0.73
RF 0.16 1.40 -0.32 -0.66
GB -0.45 -1.53
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B.3 Explanatory Variables

Table 9: List of explanatory variables of included stocks and their abbreviations as used in
text

Stock Variable Name Abbreviation Stock Variable Name Abbreviation
Aegon High AEG High Koninklijke Ahold High AHOLD High

Low AEG Low Delhaize N.V. Low AHOLD Low
Close AEG Close Close AHOLD Close
Adjusted Close AEG Adj Close Adjusted Close AHOLD Adj Close
Volume AEG Volume Volume AHOLD Volume
Log return Return AEG Log return Return AHOLD
Squared log return Return AEG sq Squared log return Return AHOLD sq

Akzo Nobel High AKZO High ArcelorMittal SA High ARC High
Low AKZO Low Low ARC Low
Close AKZO Close Close ARC Close
Adjusted Close AKZO Adj Close Adjusted Close ARC Adj Close
Volume AKZO Volume Volume ARC Volume
Log return Return AKZO Log return Return ARC
Squared log return Return AKZO sq Squared log return Return ARC sq

ASML Holding High ASML High Royal DSM N.V. High DSM High
Low ASML Low Low DSM Low
Close ASML Close Close DSM Close
Adjusted Close ASML Adj Close Adjusted Close DSM Adj Close
Volume ASML Volume Volume DSM Volume
Log return Return ASML Log return Return DSM
Squared log return Return ASML sq Squared log return Return DSM sq

Heineken N.V. High HEI High ING Groep N.V. High ING High
Low HEI Low Low ING Low
Close HEI Close Close ING Close
Adjusted Close HEI Adj Close Adjusted Close ING Adj Close
Volume HEI Volume Volume ING Volume
Log return Return HEI Log return Return ING
Squared log return Return HEI sq Squared log return Return ING sq

Koninklijke KPN N.V. High KPN High Randstad N.V. High RDS High
Low KPN Low Low RDS Low
Close KPN Close Close RDS Close
Adjusted Close KPN Adj Close Adjusted Close RDS Adj Close
Volume KPN Volume Volume RDS Volume
Log return Return KPN Log return Return RANDST
Squared log return Return KPN sq Squared log return Return RANDST sq

Shell PLC High SHELL High Unibail-Rodamco- High UNI High
Low SHELL Low Westfield SE Low UNI Low
Close SHELL Close Close UNI Close
Adjusted Close SHELL Adj Close Adjusted Close UNI Adj Close
Volume SHELL Volume Volume UNI Volume
Log return Return SHELL Log return Return UNIBAIL
Squared log return Return SHELL sq Squared log return Return UNIBAIL sq

Wolters Kluwer High WOLT High AEX Lagged log return (t-1) t-1.1
Low WOLT Lagged squared log t-28 .. t-1
Close WOLT Close return (t-28 .. t-1)
Adjusted Close WOLT Adj Close
Volume WOLT Volume
Log return Return WOLTERS
Squared log return Return WOLTERS sq
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Table 10: List of additional explanatory variables and their abbreviations as used in text

Simple Moving Average Variable Abbreviation Exponential Moving Average Variable Abbreviation
Log Return 3 days SMA 3 Log Return 3 days EMA 3

12 days SMA 12 12 days EMA 12
26 days SMA 26 26 days EMA 26
50 days SMA 50 50 days EMA 50
200 days SMA 200 200 days EMA 200

Squared Log Return 3 days SMA 3 SQ Squared Log Return 3 days EMA 3 SQ
12 days SMA 12 SQ 12 days EMA 12 SQ
26 days SMA 26 SQ 26 days EMA 26 SQ
50 days SMA 50 SQ 50 days EMA 50 SQ
200 days SMA 200 SQ 200 days EMA 200 SQ

Exchange Rate Variable Abbreviation Exchange Rate Variable Abbreviation
United States Dollar to Open USD open British Pound Sterling to Open GBP open
Euro High USD high Euro High GBP high

Low USD low Low GBP low
Close USD close Close GBP close
Adjusted Close USD adj close Adjusted Close GBP adj close

Japanese Yen to Euro Open JPY open
High JPY high
Low JPY low
Close JPY close
Adjusted Close JPY adj close

Yield Curve Variable Abbreviation Yield Curve Variable Abbreviation
Yield Curve Spot Rate 1-year maturity Yield Spot 1 yr Yield Curve Forward Rate 1-year maturity Yield Forward 1 yr

2-year maturity Yield Spot 2 yr 2-year maturity Yield Forward 2 yr
5-year maturity Yield Spot 5 yr 5-year maturity Yield Forward 5 yr
10-year maturity Yield Spot 10 yrs 10-year maturity Yield Forward 10 yrs

Oil Prices Variable Abbreviation
Dutch Oil prices Benzine Euro95 Benzine

Diesel Diesel
LPG LPG gas

Additional Indicators Variable Abbreviation
Nominal Effective
Exchange Rate EER-19

Gold Price Gold price
Composite Indicator
of Systemic Stress logCISS

Short Term European
Paper logSTEP
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