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Abstract

This paper will introduce a Hybrid Approach for nowcasting. The Hybrid Ap-

proach is a combination of Random Forest and Extreme Gradient Boosting. The

nowcast of the Hybrid Approach will be compared to the Dynamic Factor Model

and the sole use of both Random Forest and Extreme Gradient Boosting. For this

comparison, four different variations of a combined data set from the FRED-MD

and FRED-QD are used. The investigation of which method works best will be

done by looking at the MSE followed by the usage of variables. This paper will

show that the proposed Hybrid Approach will result in a lower MSE for nowcast-

ing than the benchmark of Dynamic Factor Model and both individual methods of

Random Forest and Extreme Gradient Boosting. The lower MSE will result from a

more accurate variable selection in the technique. The Hybrid Approach seems like

a good technique to be explored in future research.
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1 Introduction

In this research machine learning techniques will be used to investigate if nowcasts can

be improved. Nowcasting is done by most central banks with the use of Dynamic Factor

Models. Bok et al. (2017) showed us how the New York FED uses the Dynamic Factor

Model for their nowcasts. Bok et al. (2017) create multiple nowcasts each month since

there is a delay in the release of certain variables. Since the computing power is now

increasing more powerful nowcasts techniques can be considered using machine learning.

In this research, three machine learning methods will be compared to the Dynamic

Factor Model. Richardson et al. (2021) already showed us that machine learning tech-

niques do outperform simple AR models for nowcasting. The machine learning techniques

that will be considered are Random Forest, Extreme Gradient Boosting and a Hybrid Ap-

proach consisting of these two methods. Yoon (2021) already discovered that Random

Forest and Extreme Gradient Boosting can have more accurate nowcasts than a Dynamic

Factor Model. However, Yoon (2021) only uses a small set of variables which limits the

possibilities of the different models. Jansen et al. (2016) showed that a Dynamic Factor

Model with a lot of variables does outperform other traditional econometric methods for

nowcasting. Therefore it should be interesting to do this evaluation of the Dynamic Factor

Model with large vintages of the data.

The vintage of the data that will be used in this paper is a combination of the FRED-

MD and FRED-QD from McCracken and Ng (2016) and McCracken and Ng (2020) re-

spectively. To get a more thorough look in the machine learning methods four different

variations of the vintage of the data will be used. First of all, these vintages of the data

will be downloaded with a starting date of 1980 but since not all the variables were avail-

able in the 1980s and 1990s this paper has also chosen to train the models with a starting

date of 2000. Both these alterations will have a version were the variables of the previous

quarter, so-called lag variables, will be included and one where only the variables of the

quarter itself will be used. A Dynamic Factor Model automatically uses lag variables since

it uses previous observation to predict the new observation, so for this technique there

will not be any difference in the performance. Using both with and without lag variables

will be done because the vintage of the data already contains over 400 variables without

lag variables included using too many variables could be harmful. All these vintages of

the data will be downloaded at the 1st of January 2017 until the 1st of January 2020 with
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intervals for the 1st and 15th day of each month.

Having too many variables can have a negative effect for the prediction of a Random

Forest, that is why Speiser et al. (2019) explain methods to reduce variables for a Random

Forest by using the Random Forest itself. In which the methods of Jiang et al. (2004)

and Genuer et al. (2015) seemed to work best. However, this has been compared in a

discrete setting. While this paper works in a continuous setting. Soybilgen and Yazgan

(2021) did nowcasting with a random forest on a reduced data set. For this it used the

factors of their Dynamic Factor Model. Extreme Gradient Boosting does not use a lot

of variables because of its penalization term in the objective function. This penalization

term can also be used to reduce the variables. Therefore, this paper introduces a Hybrid

Approach. This Approach uses only the variables that Extreme Gradient Boosting selects

and put these in a Random Forest. To get the best input parameters for each model a

cross validation will be done for each vintage of the data.

The results of the algorithms show great promise for the Hybrid Approach since it

performs best for each of the four different variations of the data. It really shows a lot

of promise with a longer data set since the variance of the squared error is low as well in

that case. The percentage of variables used shows that Random Forest uses more different

kind of variables than Extreme Gradient Boosting and that the Hybrid Approach is in

between these two techniques.

2 Data

For this paper a combination of the FRED-MD and FRED-QD data sets are being used.

These data sets are explained in McCracken and Ng (2016) and McCracken and Ng (2020)

respectively. When variables are in both the FRED-QD and FRED-MD only the variable

in the FRED-MD will be selected. In the FRED-QD McCracken and Ng (2020) decided

to use the average of the three months when monthly variables are available. In this paper

the value of the first month in the quarter will be used as input for the transformation.

Since the first months’ data is soonest available, it will be more accurate for the nowcast.

The same holds true for daily variables where the first day of the month will be selected

to use as input for the transformation. All the variables that have been used and their

transformation can be found in Appendix A. All the vintages of the data are downloaded
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with a starting date of 1980-01-01. Since this is real time data some values will be added

during the month and therefore data is downloaded twice a month, on the first and 15th

of every month. Since not every variable was defined during the 1980s and 1990s it is

chosen to train the models with a starting date of 1980-01-01 as well as a starting date of

2000-01-01. The vintages of the data are downloaded between 2017-01-01 until 2020-01-01

which results in two vintages of the data for each month (first and 15th of the month)

for 3 years (2017, 2018, 2019) plus one vintage of the data on 2020-01-01. Besides the

different starting dates, another variation of the data set is created where the values of

the previous quarter will be included as lag variables. The aforementioned choices result

in four different data sets for each downloaded vintage of the data. Where the two data

sets without lag variables have 467 variables and the two data sets with lag variables have

934 variables.

3 Methodology

The FRED-MD consists mostly of monthly data and the FRED-QD of quarterly data.

Combining these data sets results in a mixed frequency data set. Most machine learning

techniques are not able to handle a mixed frequency data set. Therefore the monthly

variables will be used to create three new variables for the quarter. For example if you

have the monthly variable IPMAT the quarterly variables will be IPMATM1 for the

first month, IPMATM2 for the second month and IPMATM3 for the third month in the

quarter.

In this research there are 73 vintages of the data. Each vintage of the data will nowcast

the GDP of the quarter in which the vintage of the data is downloaded. Since the vintages

of the data are downloaded twice a month, each quarter has six nowcasts.

3.1 Dynamic Factor Model

For the Dynamic Factor Model, the same notation and program as Bok et al. (2017) will

be used. A Dynamic Factor Model can be seen as a regression as shown in equation 1.

the equation is a regression of the data yi,t, on the common factors f1,t, . . . , fr,t and ei,t.

With ei,t being the idiosyncratic movement of the individual variables. In this paper only
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one common factor will be used.

yi,t = λi,1f1,t + · · ·+ λi,rfr,t + ei,t, for i = 1, . . . , n (1)

To use the Kalman smoother, the common factors and the idiosyncratic component are

considered to be following a Gaussian autoregressive processes as shown in equations 2

and 3.

fj,t = ajfj,t−1 + uj,t, uj,t
i.i.d∼ N (0, σ2

uj
) for j = 1, . . . , r (2)

ei,t = piei,t−1 + εi,t, εi,t
i.i.d∼ N (0, σ2

εi
) for i = 1, . . . , n (3)

Together the equations 1, 2 and 3 form a state space model. With equation 1 as the

measurement equation and equations 2 and 3 as the transition equations.

To estimate the Dynamic Factor Model the EM algorithm with a Kalman smoother

will be used. For the initialization of the algorithm, principal components are calculated.

These principal components usually give a reliable estimation of the unobserved common

factors and therefore should work as a good starting point. In the first step of the

algorithm the model parameters are estimated via an OLS regression using the common

factors. In the second step the common factors are updated via the Kalman smoother.

To get a maximum likelihood estimation these two steps are repeated until convergence.

3.2 Decision Tree

A Decision Tree is a commonly used Machine Learning method and is used for Random

Forest and Extreme Gradient Boosting. The most common implementation of Decision

Tree is the one from Pedregosa et al. (2011). A Decision Tree consists of various nodes

and leafs. The beginning of a tree is just one single node. In this node a variable is used to

split the data creating two new nodes. The split in the data is based on different criteria.

In this paper the mean squared error (MSE) criteria will determine the split. The MSE

is calculated for each variable in the dataset, from which the best variable for a split is

chosen. The splitting of the data continues until a stopping criteria is met. When this

criteria is met the node that reached the criteria will be considered a leaf. The average
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of all the observations in the leaf will be the value associated with the leaf.

A Decision Tree will not work when there are missing values because the splitting

criterion for each variable has to be calculated. However, this paper uses vintages of the

data, which are real time data sets. Not all the observations for each variable are known

at a certain time. To deal with this issue data can be imputed. There are different ways

to impute the data. In this paper the missing data will be imputed by using the smoothed

series from the Dynamic Factor Model as explained in section 3.1.

3.2.1 Hyperparameters Decision Tree

When optimizing a Decision Tree there are several input values which can be optimized.

The input values are also known as hyperparameters. Since a Decision Tree tend to

over-fit the data, the hyperparameters should be chosen in such a way that it counters

over-fitting. To counter over-fitting two hyperparameters are chosen in this paper. The

chosen hyperparameters are the maximum depth of the tree and the minimum samples

per leaf. When a maximum depth is set for the tree, it means that the amount of nodes

and leaves in the tree are limited. For example when having a maximum depth of 2 the

tree can at most have 3 nodes and 4 leaves, one node in the first layer and two nodes in

the second, which will result in at most 4 leaves. By restricting the amount of nodes in

the tree the tree cannot continue growing until each observation has its own leaf. The

second chosen hyperparameter tells the tree how many samples are needed in each node

to be allowed to split. The effect of this hyperparameter could be that the outliers in the

data set will be mixed with non-outlier observations and will therefore have a significant

influence on the result of the respective leaf.

3.3 Random Forest

A Random Forest is a combination of multiple Decision Trees. The Decision Trees in a

Random Forest are created by using only a few variables from the entire data set. The

variables for each tree are randomly selected which results in different trees in the forest.

The prediction of the Random Forest will be the average outcome of all Decision Trees.

The algorithm that will be used in this paper is the algorithm of Pedregosa et al. (2011).

Because this paper is using vintages of the data which are real time data sets, not

all variables are available. To deal with this ragged edge issue, the smoothed series from
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the Dynamic Factor Model, as explained in section 3.1, will be used. Since the Dynamic

Factor Model has a prediction for all the variables this could be a good solution.

As mentioned in section 3 there are 73 vintages of the data in this research. Each

vintage of the data will nowcast the GDP of the quarter in which the vintage of the data

is downloaded. Since the vintages of the data are downloaded twice a month, the first

and 15th of each month, each quarter has six nowcasts.

3.3.1 Hyperparameters Random Forest

Besides the hyperparameters explained in section 3.2.1 there are other hyperparameters a

Random Forest can use to determine how much it should over-fit. Three hyperparameters

will be highlighted. First of all, there is the number of estimators. The number of

estimators regulates the number of trees that will be created in the forest. More trees in

the forest will result in more possible combinations of variables.

Secondly, there is a maximum number of variables parameter. This parameter tells

the algorithm how many variables it can include in each creation of a tree. Having a small

amount of variables in each tree reduces the chance of having used all the variables in the

forest. Another effect of using a small amount of variables in each tree is that there is a

higher variance between the trees. This could cause the trees to over-fit but the forest will

not. This approach can be seen as column sub-sampling. The most common value to pick

for the maximum number of variables parameter is the square root of the total amount

of variables. Therefore, in this paper the square root of the total amount of variables will

be used.

Another hyperparameter that could be used is selecting a maximum number of obser-

vations for each tree to train on, also known as row sub-sampling. Since there are not

that many observations in total, this option will not be further explored in this paper.

3.4 Extreme Gradient Boosting

The boosting algorithm that will be used in this paper is the algorithm from Chen and

Guestrin (2016). Boosting is a method which combines models, who normally do not

have an high performance when there is a bias or variance in the data, by training new

models more heavenly on the wrongly predicted outcome of the previous model. In the

algorithm of Chen and Guestrin (2016) the used models are Decision Trees. Equation 4
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shows how the combination of different models generally is used to calculate the outcome

of the regression, with fk being the kth tree.

ŷi = φ(xi) =
K∑
k=1

fk(xi), fk ∈ F (4)

In each boosting round the amount of trees will grow with the initial amount of trees.

To reduce the complexity of the algorithm there has been chosen to start with 1 tree.

Each subsequent boosting round tries to explain more of the variance or the bias of the

data. The objective of the algorithm is to minimize the regularized object shown in

equation 5. Where l(ŷi, yi) needs to be a differential convex loss function and Ω penalizes

the complexity of the model. Where T is the amount of leaves in a tree and ||w||2 is

the square root of the sum of the squared weights also known as the L2-norm. γ is a

parameter which can be set to different values to increase the penalization of more leaves

in a tree. λ is a parameter which can be set to different values to get a more smooth

prediction to reduce over-fitting.

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk),

where Ω(f) = γT +
1

2
λ||w||2

(5)

In this paper the convex loss function is the squared error between the predicted ŷi and

the true value yi.

Equation 5 has functions as parameters which cannot be optimized in Euclidean space

via traditional optimization methods. Therefore the model will be trained in an additive

manner. Which will finally result in the optimal value shown in equation 6. Where Ij

is the set of leaf j and gi and hi are explained in equation 7 & 8 respectively. With the

optimal weight of leaf j shown in equation 9. For the complete derivation please look at

Chen and Guestrin (2016).

L̃(t)(q) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT (6)

gi = ∂ŷ(t−1)l(yi, ŷ
(t−1)) (7)

hi = ∂2ŷ(t−1)l(yi, ŷ
(t−1)) (8)
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w∗j = −
(
∑

i∈Ij gi)∑
i∈Ij hi + λ

(9)

In tree based methods it is important to find the best possible split. The Extreme

Gradient Boosting algorithm uses a different formula for finding the best split than the

Decision Tree as explained in section 3.2. The Extreme Gradient Boosting algorithm uses

the formula in equation 10 to calculate the values for the split. To find the best possible

split two different methods can be considered, an exact greedy algorithm and an approx-

imate algorithm. Building multiple trees in each boosting round is very computational

demanding. Therefore, it can be very helpful to use the approximate algorithm. Since

only one tree is used in each boosting round the exact greedy algorithm is chosen.

Lsplit =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ (10)

Because this paper is using vintages of the data which are real time datasets, not all

variables are available. To deal with this ragged edge issue, the smoothed series from

the Dynamic Factor Model, as explained in section 3.1, will be used. Since the Dynamic

Factor Model has a prediction for all the variables this could be a good solution.

As mentioned in section 3 there are 73 vintages of the data in this research. Each

vintage of the data will nowcast the GDP of the quarter in which the vintage of the data

is downloaded. Since the vintages of the data are downloaded twice a month, the first

and 15th of each month, each quarter has six nowcasts.

3.4.1 Hyperparameters Extreme Gradient Boosting

The Extreme Gradient Boosting algorithm also has some extra hyperparameters which

can be implemented to reduce over-fitting. From the hyperparameters discussed in section

3.2.1, one will be used in this algorithm, this is the maximum depth of the tree. Besides

the maximum depth of the tree, the number of estimators can be defined. This is number

K from equation 4. The number of estimators tells how many boosting rounds will be

used, which consequentially shows how many trees will be constructed. A higher number

of boosting rounds means a more precise prediction in the training data, which means

more over-fitting. The other hyperparameter which can be changed to reduce over-fitting

is the learning rate. The learning rate can also be seen as a shrinkage factor. The learning

rate shrinks the newly added weights after each boosting round. That means that a lower
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learning rate will increase the amount of boosting rounds necessary to fit the training

data perfectly. Therefore, it reduces the chance of over-fitting.

3.5 Hybrid approach

A Random Forest only has a choice of a certain amount of variables for each tree. If

all variables that are randomly chosen for a tree do not contain much information, the

tree will not have a good prediction. Since this paper makes use of a big data set, this

could happen in multiple occasions. That is why, this paper proposes to combine Extreme

Gradient Boosting and Random Forest.

The penalization term of the objective function of Extreme Gradient Boosting is shown

in 11 where T is the amount of leaves in a tree and ||w||2 is the square root of the sum of

the squared weights also known as the L2-norm.

Ω(f) = γT +
1

2
λ||w||2 (11)

This penalization therm shows that a simpler model with less variables is preferred. The

first term of the penalization of the objective function restrict the amount of variables

that are being used. This is because having less leaves means less possibilities for the data

to split. Combining this with the second term which is shrinking the individual weights

to 0 only a small amount of variables will be chosen. To make sure only a small amount

will be chosen the γ and λ parameters can be given a higher value. The increase in the γ

value will have the most effect on the decrease of variables.

When the Extreme Gradient Boosting algorithm is trained, it uses a small amount

of variables. These variables will than be used to train a Random Forest. The Random

Forest will be trained in a similar matter as mentioned earlier in Section 3.3.

Because this paper is using vintages of the data which are real time data sets, not

all variables are available. To deal with this ragged edge issue, the smoothed series from

the Dynamic Factor Model, as explained in section 3.1, will be used. Since the Dynamic

Factor Model has a prediction for all the variables this could be a good solution.

As mentioned in section 3 there are 73 vintages of the data in this research. Each

vintage of the data will nowcast the GDP of the quarter in which the vintage of the data

is downloaded. Since the vintages of the data are downloaded twice a month, the first

9



and 15th of each month, each quarter has six nowcasts.

3.6 Cross Validation

To get the best results from your machine learning algorithm, the right hyperparameters

need to be chosen. Since it is difficult to know which values are the best, cross validation

will be used.

A normal cross validation consists of a couple of steps. First of all the data needs to be

split in N separate groups. In this paper, N = 10. The second step is to train the machine

learning algorithm on N − 1 groups and get the test value on the last remaining group.

The algorithm will be trained with all the different combinations of the hyperparameter

input. However, since this paper is working with time sensitive data a normal cross

validation could include a look-ahead bias. Therefore an expanding window will be used,

the first training data only contains the first N + 1 part of the observations with the test

data being the second N + 1 part of the observations, the second training data contains

the first two N + 1 parts of the observations and the second test data contains the third

N+1 part of the observation, etcetera. Thirdly, the test score values will be calculated for

every given hyperparameter combination in each trained window on a given test set. To

calculate the test score the Coefficient of Determination will be used. The Coefficient of

Determination, well known as the R2, is shown in equation 12. Where Ŷi is the predicted

value for Yi and Ȳ is the average of Y .

R2 =

(
1−

∑N−1
i=0 (Yi − Ŷi)2∑N−1
i=0 (Yi − Ȳ )2

)
(12)

The Coefficient of Determination can be seen as a comparison between the forecast of the

model and the average of the true values. Finally, the average of all these test score will

be calculated and the highest one will be chosen as the optimal value.

Table 1 shows the hyperparameter values that are chosen for this cross validation.

Since there is not an infinite amount of time available to do all the cross validations, some

choices have been made on which values to pick to optimize. The standard values given

by Chen and Guestrin (2016) are a maximum depth of 6, number of Boosts of 100 and a

learning rate of 0.3. Since there are not that many observations it has been chosen for the

maximum depth to be less than 6. Since the maximum depth of the tree is so low it is
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not necessary to also add the minimal sample per leaf hyperparameter, therefore this one

is omitted from the cross validation. The number of Boosts is a difficult hyperparameter

to consider. Normally, more boosting rounds with a not so deep tree really improves the

algorithm. However, since this is a variable which can over-fit the algorithm, lower and

higher values considered. The learning rate has an almost direct influence on the number

of Boosts. A higher learning rate will make the algorithm converge faster, since there is

less shrinkage on the newly added boosting round. Because the number of Boosts has

such a large variety the learning rate also needs to have some variety to make sure the

optimal combination can be chosen.

Pedregosa et al. (2011) use a standard value for the number of Trees of 100. Since

there are a lot of variables in the data sets a high value for the number of Trees will give

a bigger chance to include the most important variables at least once. Thus a high value

could improve the forest. The maximum depth and the minimal sample per leaf of each

tree in the forest reduces the risk of over-fitting each tree. However, if a tree over-fits it is

not that big of a problem. Therefore, the maximum depth and minimal sample per leaf

are chosen to include quite a wide range.

Table 1: Hyperparameters that are being tested in the cross validation for a Random Forest
and Extreme Gradient Boosting

Extreme Gradient Boosting Random Forest
Max. Depth Nr. of Boosts Learning rate Max. Depth Nr. of Trees Min. Sample Leaf
1 10 0.1 1 100 1
2 30 0.3 2 200 2
3 50 0.5 3 300 3
4 70 0.7 4 400 4
5 90 0.9 5 500 5

100 1 6 600 6
300 7 700 7
500 8 800 8
700 9 900 9
900 10 1000 10
1000

The different values for the hyperparameters in the cross validation in which the max depth restricts
the amount of possible leaves; the Nr. of Boosts how many boosting rounds and trees the algorithm
will create; the Learning rate decides how much each newly boosted tree their influence will be on the
outcome; Nr. of Trees the amount of trees that will be created in the forest; the Min Sample Leaf the
number of observations needed in each leaf.
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3.7 Nowcasting Framework

In this paper the training data has two different starting dates namely January 1980 and

January 2000. The nowcasts will be done only on the latest available data. On the first

day of every quarter normally there have not been released any values for the quarter.

Therefore, the first vintage of the data of every quarter will be used to nowcast the value

of the previous quarter. This means that the vintage of the data of the first of January of

2017 will be used to nowcast Q4 of 2016 and that the vintages of the data from the 15th

of January until the first of April of 2017 will be used to nowcast Q1 of 2017. This will

result in only one nowcast for 2016 Q4 and 6 nowcasts for every following quarter.

4 Results

4.1 General Performance

Each nowcasting method has a model with different hyperparameters for each vintage of

the data. Each of these models predict only the GDP growth for the latest quarterly data

input, since there are 2 vintages of the data each month this results in 6 nowcasts for each

quarter. Table 2 shows the mean squared error of the Dynamic Factor Model, Random

Forest, Extreme Gradient Boosting and the Hybrid Approach for the data set without

the variables of the previous quarter (lag variables) with starting dates of the training

data in January 1980 and January 2000. The variance of the squared errors can be found

in the parenthesis. First thing to notice is the lower mean squared error for the more

recent starting date of the training data for all the techniques. However, the smallest

difference can be found with extreme gradient boosting and the hybrid approach. These

two approaches also have a lower variance with the 1980 starting date of the training data

than with the 2000 starting date of the training data were the Dynamic Factor Model

and the Random Forest seem to have the lowest variance for their respective techniques.

Table 2: Mean Squared Errors of each method

Start training data Dynamic Factor Model Random Forest Extreme Gradient Boosting Hybrid

01-01-1980 1.335 (2.731) 0.827 (1.190) 0.732 (0.646) 0.682 (0.442)
01-01-2000 0.634 (0.672) 0.614 (0.601) 0.691 (0.997) 0.615 (0.638)

The mean squared error of a Dynamic Factor Model, Random Forest, Extreme Gradient Boosting and
Hybrid Approach with different starting date for the training data and the mean calculated over all the
individual predictions from each vintage of the data. The variance of the squared error is shown in the
parenthesis.
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Table 3 shows the mean squared error of the Dynamic Factor Model, Random Forest,

Extreme Gradient Boosting and the Hybrid Approach for the data set with lag variables

with starting dates of the training data in January 1980 and January 2000. The variance

of the squared errors can be found in the parenthesis. When comparing Table 2 with Table

3 the most interesting thing to notice is the similar performance of the Random Forest,

while the Extreme Gradient Boosting and Hybrid Approach perform better. Furthermore,

the Hybrid Approach seems to have the lowest mean squared error and the lowest variance

of the squared error which suggests it might be the best technique to use.

Table 3: Mean Squared Errors of each method including all lag variable in data

Start training data Dynamic Factor Model Random Forest Extreme Gradient Boosting Hybrid

01-01-1980 1.335 (2.731) 0.832 (1.050) 0.619 (0.540) 0.564 (0.412)
01-01-2000 0.634 (0.672) 0.598 (0.598) 0.552 (0.628) 0.537 (0.587)

The mean squared error of a Dynamic Factor Model, Random Forest, Extreme Gradient Boosting and
Hybrid Approach with different starting dates for the training data and the mean calculated over all the
individual predictions from each vintage of the data with lag variables. The variance of the squared error
is shown in the parenthesis.

4.2 Variables

Figure 1 shows us the ten most used variables for each algorithm for the vintages of the

data with starting date of the training data in 1980. The two most used variables are

the same for all tree algorithms. However the percentage of time used is quite differently.

The Random Forest only picks the most used variable 1.28% of the time while Extreme

Gradient Boosting chose it 24.55% of the time. The Hybrid Approach selected it 15.83%

of the time. This also results in more usage of other variables which can be seen further

in the graph. This behavior is very easily explained by the selection of a random set of

variables for each tree in a Random Forest. It is also noteworthy to see that the eight

most used variables in Extreme Gradient Boosting can also be found in the eight most

used variables of the Hybrid Approach. On the other hand it is seen that only one other

variable besides the two most used variables of the Random Forest can be found in the

top 10 most used variables of the Hybrid Approach.
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(a) Random Forest (b) Extreme Gradient Boosting (c) Hybrid Approach

Figure 1: Percentage of the 10 most used variables in each method with start date of
the training data in 1980 without lag variables.

Figure 2 shows us the ten most used variables for each algorithm for the vintages of

the data with starting date of the training data in 2000. When comparing these results

to the results of the earlier starting date of the training data shown in Figure 1, they

seem very similar. Most noteworthy is the switch between the two most used variables for

Extreme Gradient Boosting. The other two methods have the same most used variable.

The most used variable for the Random Forest is only used 1.59% of the time. Although

the Extreme Gradient Boosting is now using a different variable the most, it uses it with

the highest usage percentage for all algorithms, 24.02%. The Hybrid Approach is in the

middle with 16.12%.

(a) Random Forest (b) Extreme Gradient Boosting (c) Hybrid Approach

Figure 2: Percentage of the 10 most used variables in each method with start date of
the training data in 2000 without lag variables.

Figure 3 shows us the ten most used variables for each algorithm for the vintages

of the data with starting date of the training data in 1980 with lag variables. Section

14



4.1 showed us that the Extreme Gradient Boosting and Hybrid Approach worked better

with lag variables and the Random forest seemed to have the same performance. This

can be seen by the inclusion of a lag variable in the 10 most used variables for Extreme

Gradient Boosting and the Hybrid Approach and the lack thereof in the 10 most used

variables for the Random Forest. Figure 3 also shows us that the Random Forest most

used variable is used only 0.87% of the time which is quite a bit lower than the 1.28%

without lag variables which could be expected since the Random Forest selects a lot of

different variables because of the limitation of variables that are available to be chosen in

each tree. The Extreme Gradient Boosting most used variable is used 38.26% of the time.

Which is a lot more than the one without lag variable where it was only used 24.55% of

the time. Which is an interesting finding since it could have been expected to be less due

to having more variables available. The Hybrid Approach most used variable is chosen

15.76% of the time which is quite similar to the 15.83% without lag variables.

(a) Random Forest (b) Extreme Gradient Boosting (c) Hybrid Approach

Figure 3: Percentage of the 10 most used variables in each method with start date of
the training data in 1980 with lag variables.

Figure 4 shows us the ten most used variables for each algorithm for the vintages of

the data with starting date of the training data in 2000 with lag variables. Comparing

these results with the earlier starting date shown in Figure 3 shows they are quite different

except the Random Forest where the five most used variables are the same. The most used

variables in Extreme Gradient Boosting are quite different from before. Now the most

used variable was not even included in the top 10 most used variables for the vintages of

the data with an earlier starting date of the training data. This variable is also only used

13.85% of the time while the most used variable with Extreme Gradient Boosting with

the earlier starting date of the training data of the vintage of the data is used 38.26% of

the time. The Hybrid Approach also seems to be different, with the exception of the two
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most used variables. However, the most used variable is only used 12.34% which is less

than the 15.76% with the earlier starting date of the training data of the vintage of the

data.

(a) Random Forest (b) Extreme Gradient Boosting (c) Hybrid Approach

Figure 4: Percentage of the 10 most used variables in each method with start date of
the training data in 2000 with lag variables.

4.3 Performance per Quarter

Table 4 shows the GDP for each nowcast quarter with the MSE of the Dynamic Factor

Model, Random Forest, Extreme Gradient Boosting and the Hybrid Approach with the

start of the training data in 1980. Each individual nowcast for each vintage of the data

can be found in Table 14 in Appendix B. Table 4 shows that Q4 of 2018 is the quarter

where the Dynamic Factor Model, Random Forest and Hybrid Approach have the worst

performance. At the same time this is the quarter where the GDP is lowest. Since the

Dynamic Factor Model overestimated the GDP, other values which have an positive effect

on the GDP also have been overestimated if they were not known at the time of the

nowcast. For example the estimation for the two most used variables in Random Forest

and Hybrid Approach were twice as high as their true value. Extreme Gradient Boosting

seems less prone to predict high or low values than the other techniques. This results

in the biggest MSE for Extreme Gradient Boosting in Q4 2017, where the GDP has the

biggest difference from the average.

16



Table 4: Mean Squared Errors of each method not including lag variables with the training
data starting in 1980

Nowcast Quarter GDP Dynamic Factor Model Random Forest Extreme Gradient Boosting Hybrid

2016 Q4 2.541 0.494 (N.A.) 0.027 (N.A.) 0.022 (N.A.) 0.006 (N.A.)
2017 Q1 2.282 0.618 (0.164) 0.348 (0.024) 0.342 (0.202) 0.703 (0.340)
2017 Q2 1.719 1.765 (0.387) 1.511 (0.297) 1.405 (0.155) 0.961 (0.388)
2017 Q3 2.947 0.248 (0.015) 0.026 (0.001) 0.011 (0.000) 0.034 (0.003)
2017 Q4 3.878 0.125 (0.031) 0.549 (0.040) 2.261 (1.000) 1.263 (0.027)
2018 Q1 3.779 0.092 (0.009) 0.297 (0.014) 1.440 (0.001) 1.036 (0.039)
2018 Q2 2.701 0.734 (0.264) 0.297 (0.024) 0.046 (0.001) 0.024 (0.001)
2018 Q3 2.117 2.363 (0.282) 1.303 (0.062) 0.257 (0.040) 0.431 (0.046)
2018 Q4 1.320 5.292 (0.871) 3.671 (0.460) 1.595 (0.330) 2.095 (0.142)
2019 Q1 2.932 0.118 (0.032) 0.031 (0.001) 0.614 (0.138) 0.395 (0.083)
2019 Q2 1.491 3.697 (0.487) 1.838 (0.399) 0.584 (0.038) 0.887 (0.196)
2019 Q3 2.572 0.527 (0.315) 0.120 (0.053) 0.228 (0.010) 0.393 (0.171)
2019 Q4 2.366 0.582 (0.020) 0.062 (0.002) 0.115 (0.000) 0.075 (0.001)

The GDP with the mean squared error of a Dynamic Factor Model, Random Forest, Extreme Gradient
Boosting and Hybrid Approach for each quarter. The variance of the squared error is shown in the
parenthesis.

Table 5 shows the GDP for each nowcast quarter with the MSE of the Dynamic Factor

Model, Random Forest, Extreme Gradient Boosting and the Hybrid Approach with the

start of the training data in 2000. Each individual nowcast for each vintage of the data can

be found in Table 15 in Appendix B. Table 5 shows that Q4 of 2018 is the quarter where

the Dynamic Factor Model, Random Forest and Hybrid Approach have the highest MSE.

This is the same quarter where these techniques have the highest MSE as with the longer

training data. The reason is the same as with the longer training data. Variables that

are not known yet are predicted, by the Dynamic Factor Model, with a higher value than

the true value of the variable. Both the Dynamic Factor Model and Random Forest have

a lower MSE with the training data starting in 2000. The lower MSE can be explained

by the lower predictions of the GDP. The GDP is generally predicted lower because the

training data set from 2000 has a lower average GDP than the training data set from

1980.
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Table 5: Mean Squared Errors of each method including no lag variable in 2000 data

Nowcast Quarter GDP Dynamic Factor Model Random Forest Extreme Gradient Boosting Hybrid

2016 Q4 2.541 0.003 (N.A.) 0.088 (N.A.) 0.287 (N.A.) 0.006 (N.A.)
2017 Q1 2.282 0.105 (0.007) 0.037 (0.002) 0.027 (0.001) 0.013 (0.000)
2017 Q2 1.719 0.567 (0.034) 0.687 (0.118) 0.182 (0.075) 0.560 (0.211)
2017 Q3 2.947 0.048 (0.006) 0.098 (0.006) 0.391 (0.199) 0.099 (0.012)
2017 Q4 3.878 1.071 (0.152) 1.207 (0.039) 3.156 (0.552) 1.101 (0.168)
2018 Q1 3.779 0.743 (0.112) 1.302 (0.059) 1.333 (0.348) 0.869 (0.080)
2018 Q2 2.701 0.041 (0.003) 0.020 (0.001) 0.018 (0.000) 0.133 (0.002)
2018 Q3 2.117 0.639 (0.023) 0.374 (0.048) 0.365 (0.219) 0.415 (0.063)
2018 Q4 1.320 2.605 (0.174) 2.477 (0.296) 1.556 (1.298) 2.526 (0.782)
2019 Q1 2.932 0.051 (0.002) 0.118 (0.017) 0.394 (0.097) 0.366 (0.099)
2019 Q2 1.491 1.741 (0.277) 1.060 (0.299) 0.727 (0.277) 1.231 (0.642)
2019 Q3 2.572 0.077 (0.025) 0.055 (0.000) 0.164 (0.005) 0.152 (0.021)
2019 Q4 2.366 0.025 (0.001) 0.015 (0.000) 0.044 (0.000) 0.019 (0.000)

The mean squared error of a Dynamic Factor Model, Random Forest, Extreme Gradient Boosting and
Hybrid Approach for each quarter. The variance of the squared error is shown in the parenthesis.

Table 6 shows the GDP for each nowcast quarter with the MSE of the Dynamic Factor

Model, Random Forest, Extreme Gradient Boosting and the Hybrid Approach with the

start of the training data in 1980 that include lag variables. Each individual nowcast for

each vintage of the data can be found in Table 16 in Appendix B. Table 6 shows that

Q4 of 2018 is the quarter where the Dynamic Factor Model, Random Forest and Hybrid

Approach have the worst performance. This is similar to the results shown in Table 4

and 5. The reason of the bad performance is also the same as in Table 4 and 5. However,

there is an improvement in the Hybrid Approach with a lower MSE and lower variance of

the MSE in this quarter. This improvement can also be seen in the general performance

as described in Section 4.1. Extreme Gradient Boosting has the biggest improvement in

Q2 of 2017. This improvement shows that adding the lag variables can help quite a lot

in some instances.

Table 6: Mean Squared Errors of each method including all lag variable in 1980 data

Nowcast Quarter GDP Dynamic Factor Model Random Forest Extreme Gradient Boosting Hybrid

2016 Q4 2.541 0.494 (N.A.) 0.022 (N.A.) 0.221 (N.A.) 0.093 (N.A.)
2017 Q1 2.282 0.618 (0.164) 0.262 (0.034) 0.040 (0.000) 0.044 (0.003)
2017 Q2 1.719 1.765 (0.387) 1.468 (0.032) 0.158 (0.010) 0.240 (0.025)
2017 Q3 2.947 0.248 (0.015) 0.027 (0.003) 0.467 (0.083) 0.166 (0.026)
2017 Q4 3.878 0.125 (0.031) 1.505 (0.173) 2.205 (0.821) 1.483 (0.433)
2018 Q1 3.779 0.092 (0.009) 0.434 (0.010) 1.440 (0.001) 1.036 (0.039)
2018 Q2 2.701 0.734 (0.264) 0.360 (0.011) 0.046 (0.001) 0.024 (0.001)
2018 Q3 2.117 2.363 (0.282) 1.002 (0.018) 0.210 (0.026) 0.347 (0.048)
2018 Q4 1.320 5.292 (0.871) 3.570 (0.462) 1.433 (0.296) 1.887 (0.071)
2019 Q1 2.932 0.118 (0.032) 0.053 (0.003) 0.511 (0.089) 0.423 (0.078)
2019 Q2 1.491 3.697 (0.487) 1.332 (0.087) 0.604 (0.034) 0.919 (0.091)
2019 Q3 2.572 0.527 (0.315) 0.067 (0.008) 0.223 (0.022) 0.211 (0.020)
2019 Q4 2.366 0.582 (0.020) 0.049 (0.004) 0.160 (0.000) 0.071 (0.001)

The mean squared error of a Dynamic Factor Model, Random Forest, Extreme Gradient Boosting and
Hybrid Approach for each quarter. The variance of the squared error is shown in the parenthesis.
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Table 7 shows the GDP for each nowcast quarter with the MSE of the Dynamic Factor

Model, Random Forest, Extreme Gradient Boosting and the Hybrid Approach with the

start of the training data in 2000 that include lag variables. Each individual nowcast for

each vintage of the data can be found in Table 17 in Appendix B. Table 7 shows that

every technique has the highest MSE in Q4 of 2018. Extreme Gradient Boosting seems to

have made an improvement in Q4 of 2017 which results in the highest MSE for Q4 2018

which is more in line with the other techniques.

Table 7: Mean Squared Errors of each method including all lag variable in 2000 data

Nowcast Quarter GDP Dynamic Factor Model Random Forest Extreme Gradient Boosting Hybrid

2016 Q4 2.541 0.003 (N.A.) 0.036 (N.A.) 0.372 (N.A.) 0.083 (N.A.)
2017 Q1 2.282 0.105 (0.007) 0.054 (0.002) 0.068 (0.006) 0.063 (0.003)
2017 Q2 1.719 0.567 (0.034) 0.442 (0.031) 0.400 (0.160) 0.387 (0.077)
2017 Q3 2.947 0.048 (0.006) 0.240 (0.008) 0.084 (0.004) 0.081 (0.021)
2017 Q4 3.878 1.071 (0.152) 1.912 (0.059) 1.236 (0.389) 1.076 (0.063)
2018 Q1 3.779 0.743 (0.112) 1.003 (0.004) 0.823 (0.103) 0.701 (0.035)
2018 Q2 2.701 0.041 (0.003) 0.013 (0.000) 0.071 (0.008) 0.035 (0.001)
2018 Q3 2.117 0.639 (0.023) 0.265 (0.031) 0.645 (0.485) 0.284 (0.074)
2018 Q4 1.320 2.605 (0.174) 2.329 (0.377) 2.209 (2.214) 2.284 (0.462)
2019 Q1 2.932 0.051 (0.002) 0.180 (0.021) 0.311 (0.085) 0.185 (0.026)
2019 Q2 1.491 1.741 (0.277) 0.724 (0.132) 0.522 (0.297) 1.290 (1.285)
2019 Q3 2.572 0.077 (0.025) 0.029 (0.001) 0.137 (0.010) 0.101 (0.039)
2019 Q4 2.366 0.025 (0.001) 0.083 (0.001) 0.146 (0.003) 0.030 (0.001)

The mean squared error of a Dynamic Factor Model, Random Forest, Extreme Gradient Boosting and
Hybrid Approach for each quarter. The variance of the squared error is shown in the parenthesis.

5 Conclusion & Discussion

This paper looks at a new approach to nowcast the US GDP. This new approach is a

combination of Extreme Gradient Boosting and Random Forest. This Hybrid approach

is compared to the two methods of which it consists and the Dynamic Factor Model as

benchmark.

The Dynamic Factor Model is used to deal with the ragged edge issue where it uses

it smoothed series as input variables for the delayed data. Each model is than trained

by each vintage of the data and gives one nowcasts for the latest available quarter. The

algorithms are compared by the MSE and the variance of the squared error.

Looking at the results it shows that the Dynamic Factor Model can be tough to beat

but there seems to be a big difference with the different starting dates for vintage of the

data. When the vintage of the data has a more recent starting date the Dynamic Factor

Model seems to perform better. This is because the in-sample average GDP of the shorter
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data set is more similar with the out of sample GDP than the in-sample GDP of the longer

data set. The results also show that the Random Forest does not perform better when

adding the variables of the previous quarter (lag variables). Extreme Gradient Boosting

and the Hybrid Approach seem to perform better when adding lag variables. Extreme

Gradient Boosting and the Hybrid Approach also have a smaller variance when having

a longer vintage of the data to train with. The opposite is true for the Dynamic Factor

Model and Random Forest.

While looking at the percentage use of variables it shows that the Random Forest

spreads the usage of variables more evenly than Extreme Gradient Boosting. This also

explains why Random Forest does not perform better when adding lag variables. Extreme

Gradient Boosting is less likely to add more variables but can be very heavily invested in

some variables. Here the Hybrid Approach seems to make the most advantage. Since it

selects the variables more evenly, similar to the random forest, it takes in more information

from the variables. However, the variable selection of the extreme gradient boosting

reduces the noise in the input data which results in a lower MSE.

The promising results of the Hybrid Approach should make it an interesting method

to explore in future research in this field or any other field when having a lot of different

variables.
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Appendices

A Data

All these series id’s can be directly downloaded by the use of the FRED API 1. The

transformations are the same as in McCracken and Ng (2016) and McCracken and Ng

(2020). Namely, (1) No transformation; (2)∆xt; (3)∆2xt; (4) log(xt); (5) ∆log(xt); (6)

∆2log(xt); (7) ∆(xt/xt−1− 1.0). Tables 8, 9, 10, 11, 12, 13 show how all the variables are

transformed and which series were included in the FRED-MD and which in the FRED-

QD.

Table 8: Transformation 1

FRED-MD FRED-QD

CES0600000007 A014RE1Q156NBEA
AWHMAN A823RL1Q225SBEA
TB3SMFFM TCU
TB6SMFFM BAA10YM
T1YFFM DRIWCIL
T5YFFM
T10YFFM
AAAFFM
BAAFFM
VXOCLS

The variables that follow no transformation in the FRED-MD and FRED-QD

1https : //fred.stlouisfed.org/docs/api/fred/
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Table 9: Transformation 2

FRED-MD FRED-QD:

CUMFNS CIVPART
UNRATE LNS14000012
UEMPMEAN LNS14000025
AWOTMAN LNS14000026
ISRATIO AWHNONAG
UMCSENT USEPUINDXM
FEDFUNDS B020RE1Q156NBEA
TB3MS B021RE1Q156NBEA
TB6MS GFDEGDQ188S
GS1 GFDEBTN
GS5
GS10
AAA
BAA

The variables that follow ∆xt in the FRED-MD and FRED-QD

Table 10: Transformation 4

FRED-MD FRED-QD:

HOUST
HOUSTNE
HOUSTMW
HOUSTS
HOUSTW
PERMIT
PERMITNE
PERMITMW
PERMITS
PERMITW

The variables that follow log(xt) in the FRED-MD and FRED-QD

24



Table 11: Transformation 5

FRED-MD FRED-QD

RPI PCECC96
W875RX1 PCDG
DPCERA3M086SBEA PCESV
CMRMTSPL PCND
INDPRO GPDIC1
IPFPNSS FPI
IPFINAL Y033RC1Q027SBEA
IPCONGD PNFI
IPDCONGD PRFI
IPNCONGD GCEC1
IPBUSEQ FGRECPT
IPMAT SLCE
IPDMAT EXPGSC1
IPNMAT IMPGSC1
IPMANSICS DPIC96
IPB51222S OUTNFB
IPFUELS OUTBS
CLF16OV OUTMS
CE16OV IPB51110SQ
UEMPLT5 IPB51220SQ
UEMP5TO14 USPRIV
UEMP15OV USEHS
UEMP15T26 USINFO
UEMP27OV USPBS
PAYEMS USLAH
USGOOD USSERV
CES1021000001 USMINE
USCONS CES9091000001
MANEMP CES9092000001
DMANEMP CES9093000001
NDMANEMP LNS13023621
SRVPRD LNS13023557
USTPU LNS13023705
USWTRADE LNS13023569
USTRADE LNS12032194
USFIRE HOABS
USGOVT HOAMS
ACOGNO HOANBS
DGORDER HOUST5F
ANDENO RSAFS
AMDMUO INVCQRMTSPL
BUSINV WPU0531
M2REAL WPU0561
EXCAUS AHETPI
EXUSUK COMPRMS
EXJPUS COMPRNFB
EXSZUS RCPHBS

OPHMFG
OPHNFB
OPHPBS

ULCBS
ULCMFG
ULCNFB

UNLPNBS
IMFSL

M1REAL
MZMREAL

CONSUMER
REVOLSL
TOTALSL
TABSHNO
TLBSHNO

TNWBSHNO
HNOREMQ027S

TFAABSHNO
USSTHPI

SPCS10RSA
SPCS20RSA

EXUSEU
TLBSNNCB

TTAABSNNCB
TNWMVBSNNCB

TLBSNNB
TABSNNB

TNWBSNNB
CNCF

The variables that follow ∆log(xt) in the FRED-MD and FRED-QD
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Table 12: Transformation 6

FRED-MD FRED-QD

M1SL PCECTPI
M2SL PCEPILFE
BOGMBASE GDPCTPI
TOTRESNS GPDICTPI
BUSLOANS IPDBS
REALLN DGDSRG3Q086SBEA
NONREVSL DDURRG3Q086SBEA
WPSFD49207 DSERRG3Q086SBEA
WPSFD49502 DNDGRG3Q086SBEA
WPSID61 DHCERG3Q086SBEA
WPSID62 DMOTRG3Q086SBEA
PPICMM DFDHRG3Q086SBEA
CPIAUCSL DREQRG3Q086SBEA
CPIAPPSL DODGRG3Q086SBEA
CPITRNSL DFXARG3Q086SBEA
CPIMEDSL DCLORG3Q086SBEA
CUSR0000SAC DGOERG3Q086SBEA
CUSR0000SAD DONGRG3Q086SBEA
CUSR0000SAS DHUTRG3Q086SBEA
CPIULFSL DHLCRG3Q086SBEA
CUSR0000SA0L2 DTRSRG3Q086SBEA
CUSR0000SA0L5 DRCARG3Q086SBEA
PCEPI DFSARG3Q086SBEA
DDURRG3M086SBEA DIFSRG3Q086SBEA
DNDGRG3M086SBEA DOTSRG3Q086SBEA
DSERRG3M086SBEA CPILFESL
CES0600000008 PPIACO
CES2000000008 WPSFD4111
CES3000000008 PPIIDC
MZMSL CUSR0000SEHC
DTCOLNVHFNM
DTCTHFNM
INVEST

The variables that follow ∆2log(xt) in the FRED-MD and FRED-QD

Table 13: transformation 7

FRED-MD FRED-QD

NONBORRES

The variables that follow ∆(xt/xt−1 − 1.0) in the FRED-MD and FRED-QD
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Table 14: The results of the vintages of the data with starting date 1980 without lag variables

Date GDP Dynamic Factor Model Random Forest Extreme Gradient Boosting Hybrid
Prediction Error2 Prediction Error2 Prediction Error2 Prediction Error2

01/01/2017 2.541 3.244 0.494 2.704 0.027 2.690 0.022 2.465 0.006
15/01/2017 2.282 3.126 0.712 2.962 0.462 2.690 0.166 2.419 0.019
01/02/2017 2.282 2.393 0.012 2.631 0.122 2.678 0.156 2.062 0.048
15/02/2017 2.282 2.925 0.414 2.845 0.317 2.678 0.156 3.137 0.732
01/03/2017 2.282 2.980 0.487 2.822 0.291 2.677 0.156 3.174 0.796
15/03/2017 2.282 3.241 0.921 2.846 0.318 2.677 0.156 3.354 1.150
01/04/2017 2.282 3.359 1.160 3.042 0.578 3.405 1.260 3.496 1.475
15/04/2017 1.719 3.260 2.374 2.934 1.478 2.680 0.924 3.187 2.155
01/05/2017 1.719 2.667 0.898 2.733 1.029 2.653 0.873 2.385 0.443
15/05/2017 1.719 3.100 1.909 2.923 1.449 3.010 1.668 2.649 0.865
01/06/2017 1.719 3.309 2.528 3.319 2.562 3.013 1.674 2.747 1.057
15/06/2017 1.719 2.905 1.407 2.903 1.402 3.013 1.674 2.502 0.614
01/07/2017 1.719 2.933 1.475 2.789 1.146 2.989 1.615 2.514 0.633
15/07/2017 2.947 3.462 0.264 3.139 0.037 2.989 0.002 2.589 0.128
01/08/2017 2.947 3.025 0.006 2.980 0.001 3.043 0.009 2.702 0.060
15/08/2017 2.947 3.518 0.326 3.230 0.080 3.061 0.013 3.057 0.012
01/09/2017 2.947 3.519 0.327 3.147 0.040 3.072 0.016 2.995 0.002
15/09/2017 2.947 3.471 0.274 2.964 0.000 2.802 0.021 2.914 0.001
01/10/2017 2.947 3.487 0.291 2.964 0.000 3.002 0.003 2.999 0.003
15/10/2017 3.878 3.228 0.423 3.032 0.715 1.950 3.718 2.660 1.483
01/11/2017 3.878 3.375 0.253 2.956 0.849 2.042 3.371 2.677 1.441
15/11/2017 3.878 3.619 0.067 3.118 0.577 2.603 1.625 2.761 1.248
01/12/2017 3.878 3.800 0.006 3.255 0.388 2.607 1.616 2.790 1.183
15/12/2017 3.878 3.896 0.000 3.238 0.410 2.607 1.616 2.846 1.065
01/01/2018 3.878 3.940 0.004 3.282 0.355 2.605 1.621 2.801 1.160
15/01/2018 3.779 3.803 0.001 3.273 0.256 2.605 1.379 2.850 0.863
01/02/2018 3.779 3.292 0.237 3.159 0.384 2.581 1.436 2.643 1.290
15/02/2018 3.779 3.475 0.092 3.177 0.363 2.581 1.436 2.736 1.088
01/03/2018 3.779 3.367 0.170 3.114 0.443 2.580 1.437 2.689 1.188
15/03/2018 3.779 3.843 0.004 3.369 0.168 2.562 1.480 2.766 1.026
01/04/2018 3.779 3.993 0.046 3.372 0.165 2.566 1.471 2.908 0.760
15/04/2018 2.701 4.015 1.726 3.448 0.558 2.566 0.018 2.921 0.048
01/05/2018 2.701 3.265 0.318 3.050 0.122 2.421 0.078 2.671 0.001
15/05/2018 2.701 3.517 0.665 3.132 0.185 2.541 0.026 2.623 0.006
01/06/2018 2.701 3.583 0.777 3.303 0.362 2.539 0.026 2.600 0.010
15/06/2018 2.701 3.408 0.499 3.261 0.314 2.539 0.026 2.571 0.017
01/07/2018 2.701 3.347 0.417 3.192 0.240 2.386 0.100 2.456 0.060
15/07/2018 2.117 3.404 1.656 3.137 1.039 2.386 0.072 2.415 0.088
01/08/2018 2.117 3.537 2.014 3.214 1.203 2.426 0.095 2.971 0.729
15/08/2018 2.117 3.639 2.315 3.217 1.208 2.779 0.438 2.701 0.341
01/09/2018 2.117 3.615 2.243 3.210 1.193 2.357 0.057 2.744 0.393
15/09/2018 2.117 3.812 2.873 3.438 1.744 2.781 0.440 2.820 0.493
01/10/2018 2.117 3.872 3.079 3.312 1.428 2.780 0.440 2.852 0.540
15/10/2018 1.320 3.919 6.753 3.430 4.454 2.780 2.133 2.873 2.412
01/11/2018 1.320 3.371 4.206 3.171 3.426 2.354 1.071 2.564 1.549
15/11/2018 1.320 3.686 5.600 3.397 4.314 2.773 2.112 2.865 2.389
01/12/2018 1.320 3.726 5.788 3.315 3.983 2.773 2.112 2.886 2.453
15/12/2018 1.320 3.501 4.757 3.028 2.919 2.354 1.071 2.716 1.949
01/01/2019 1.320 3.476 4.650 3.031 2.929 2.354 1.069 2.667 1.816
15/01/2019 2.932 3.588 0.430 3.214 0.079 2.772 0.026 2.734 0.039
01/02/2019 2.932 3.420 0.238 3.121 0.036 2.346 0.344 2.573 0.129
15/02/2019 2.932 2.993 0.004 2.777 0.024 2.011 0.848 2.029 0.815
01/03/2019 2.932 3.098 0.027 2.793 0.019 2.166 0.586 2.343 0.348
15/03/2019 2.932 2.949 0.000 2.968 0.001 1.964 0.938 2.169 0.583
01/04/2019 2.932 3.019 0.007 3.100 0.028 1.961 0.944 2.257 0.456
15/04/2019 1.491 3.042 2.406 2.970 2.188 1.961 0.220 2.149 0.433
01/05/2019 1.491 3.596 4.432 3.175 2.837 2.333 0.709 2.628 1.292
15/05/2019 1.491 3.441 3.804 2.832 1.798 2.324 0.694 2.304 0.661
01/06/2019 1.491 3.514 4.090 2.848 1.842 2.323 0.693 2.307 0.666
15/06/2019 1.491 3.377 3.556 2.610 1.252 2.323 0.693 2.326 0.697
01/07/2019 1.491 3.465 3.897 2.545 1.110 2.193 0.493 2.746 1.574
15/07/2019 2.572 3.350 0.605 2.936 0.132 2.183 0.152 2.993 0.177
01/08/2019 2.572 3.839 1.606 3.332 0.578 2.819 0.061 3.682 1.233
15/08/2019 2.572 2.935 0.132 2.638 0.004 2.035 0.288 2.061 0.261
01/09/2019 2.572 2.894 0.103 2.547 0.001 2.035 0.288 2.043 0.280
15/09/2019 2.572 3.095 0.273 2.511 0.004 2.035 0.288 2.101 0.221
01/10/2019 2.572 3.238 0.443 2.579 0.000 2.035 0.289 2.140 0.187
15/10/2019 2.366 3.103 0.544 2.686 0.102 2.035 0.109 2.050 0.100
01/11/2019 2.366 3.229 0.745 2.740 0.140 2.024 0.117 2.148 0.047
15/11/2019 2.366 3.005 0.409 2.542 0.031 2.024 0.117 2.015 0.123
01/12/2019 2.366 3.063 0.486 2.573 0.043 2.026 0.115 2.111 0.065
15/12/2019 2.366 3.109 0.553 2.493 0.016 2.026 0.115 2.112 0.064
01/01/2020 2.366 3.236 0.758 2.559 0.037 2.026 0.116 2.140 0.051
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Table 15: The results of the vintages of the data with starting date 2000 without lag variables

Date GDP Dynamic Factor Model Random Forest Extreme Gradient Boosting Hybrid
Prediction Error2 Prediction Error2 Prediction Error2 Prediction Error2

01/01/2017 2.541 2.599 0.003 2.245 0.088 2.005 0.287 2.464 0.006
15/01/2017 2.282 2.476 0.038 2.456 0.030 2.005 0.077 2.310 0.001
01/02/2017 2.282 1.850 0.186 2.343 0.004 2.127 0.024 2.263 0.000
15/02/2017 2.282 2.426 0.021 2.392 0.012 2.134 0.022 2.454 0.030
01/03/2017 2.282 2.439 0.025 2.394 0.013 2.136 0.021 2.300 0.000
15/03/2017 2.282 2.677 0.156 2.613 0.109 2.377 0.009 2.306 0.001
01/04/2017 2.282 2.735 0.205 2.517 0.055 2.381 0.010 2.494 0.045
15/04/2017 1.719 2.574 0.731 2.592 0.763 2.267 0.300 2.540 0.674
01/05/2017 1.719 2.335 0.380 2.379 0.435 1.558 0.026 2.076 0.128
15/05/2017 1.719 2.543 0.679 2.631 0.833 1.821 0.011 2.648 0.864
01/06/2017 1.719 2.604 0.783 2.847 1.274 2.552 0.694 2.848 1.275
15/06/2017 1.719 2.348 0.395 2.335 0.380 1.549 0.029 2.229 0.261
01/07/2017 1.719 2.376 0.432 2.381 0.439 1.545 0.030 2.118 0.160
15/07/2017 2.947 2.688 0.067 2.762 0.034 1.858 1.187 2.643 0.093
01/08/2017 2.947 2.506 0.194 2.514 0.188 2.132 0.666 2.387 0.314
15/08/2017 2.947 2.822 0.016 2.682 0.070 2.574 0.139 2.688 0.067
01/09/2017 2.947 2.898 0.002 2.764 0.034 2.607 0.116 2.776 0.029
15/09/2017 2.947 2.879 0.005 2.503 0.197 2.580 0.135 2.724 0.050
01/10/2017 2.947 2.880 0.004 2.696 0.063 2.623 0.105 2.751 0.038
15/10/2017 3.878 2.580 1.685 2.663 1.475 2.469 1.986 2.587 1.666
01/11/2017 3.878 2.698 1.391 2.725 1.329 1.989 3.567 2.933 0.892
15/11/2017 3.878 2.874 1.007 2.727 1.324 1.935 3.775 2.703 1.380
01/12/2017 3.878 2.926 0.907 2.849 1.059 1.891 3.949 2.734 1.308
15/12/2017 3.878 3.020 0.736 2.836 1.086 2.197 2.827 3.060 0.670
01/01/2018 3.878 3.041 0.701 2.894 0.968 2.195 2.833 3.047 0.690
15/01/2018 3.779 2.939 0.706 2.746 1.067 2.241 2.367 2.964 0.664
01/02/2018 3.779 2.677 1.214 2.683 1.201 2.610 1.367 2.694 1.178
15/02/2018 3.779 2.861 0.843 2.776 1.006 2.610 1.367 2.710 1.143
01/03/2018 3.779 2.803 0.953 2.547 1.518 2.609 1.369 2.789 0.980
15/03/2018 3.779 3.133 0.418 2.577 1.445 2.964 0.664 2.889 0.792
01/04/2018 3.779 3.212 0.322 2.524 1.574 2.850 0.864 3.102 0.459
15/04/2018 2.701 3.074 0.138 2.950 0.062 2.850 0.022 3.057 0.126
01/05/2018 2.701 2.731 0.001 2.782 0.007 2.636 0.004 3.115 0.171
15/05/2018 2.701 2.895 0.037 2.851 0.022 2.848 0.022 3.113 0.169
01/06/2018 2.701 2.915 0.046 2.742 0.002 2.854 0.023 3.107 0.165
15/06/2018 2.701 2.824 0.015 2.749 0.002 2.549 0.023 3.013 0.097
01/07/2018 2.701 2.786 0.007 2.863 0.026 2.585 0.013 2.963 0.068
15/07/2018 2.117 2.728 0.373 2.779 0.437 2.585 0.219 2.855 0.544
01/08/2018 2.117 2.948 0.690 3.003 0.784 3.244 1.268 3.049 0.867
15/08/2018 2.117 2.911 0.630 2.704 0.344 2.188 0.005 2.582 0.216
01/09/2018 2.117 2.887 0.592 2.540 0.179 2.201 0.007 2.598 0.231
15/09/2018 2.117 2.984 0.751 2.621 0.253 2.702 0.342 2.664 0.299
01/10/2018 2.117 3.011 0.799 2.614 0.246 2.708 0.349 2.696 0.334
15/10/2018 1.320 3.138 3.306 3.119 3.237 3.122 3.249 3.065 3.044
01/11/2018 1.320 2.799 2.187 2.800 2.190 2.083 0.583 2.572 1.569
15/11/2018 1.320 2.963 2.701 3.007 2.847 2.794 2.173 3.167 3.411
01/12/2018 1.320 2.989 2.788 2.975 2.739 2.794 2.173 3.189 3.495
15/12/2018 1.320 2.854 2.355 2.715 1.947 2.083 0.583 2.667 1.816
01/01/2019 1.320 2.835 2.296 2.699 1.901 2.077 0.573 2.669 1.821
15/01/2019 2.932 2.865 0.005 2.914 0.000 2.786 0.021 2.880 0.003
01/02/2019 2.932 2.846 0.007 2.867 0.004 2.786 0.021 2.921 0.000
15/02/2019 2.932 2.646 0.082 2.558 0.140 2.104 0.686 2.145 0.620
01/03/2019 2.932 2.768 0.027 2.635 0.088 2.338 0.353 2.338 0.353
15/03/2019 2.932 2.596 0.113 2.578 0.125 2.133 0.639 2.060 0.761
01/04/2019 2.932 2.668 0.070 2.339 0.352 2.130 0.643 2.254 0.460
15/04/2019 1.491 2.588 1.203 2.442 0.905 2.130 0.408 2.331 0.705
01/05/2019 1.491 3.149 2.747 2.921 2.045 2.831 1.796 3.178 2.846
15/05/2019 1.491 2.762 1.616 2.525 1.069 2.208 0.513 2.438 0.897
01/06/2019 1.491 2.806 1.730 2.300 0.654 2.225 0.539 2.543 1.107
15/06/2019 1.491 2.714 1.496 2.583 1.191 2.235 0.554 2.446 0.911
01/07/2019 1.491 2.778 1.656 2.194 0.495 2.235 0.553 2.449 0.918
15/07/2019 2.572 2.771 0.040 2.774 0.041 2.723 0.023 2.915 0.118
01/08/2019 2.572 3.204 0.400 2.831 0.067 3.032 0.212 3.221 0.422
15/08/2019 2.572 2.517 0.003 2.366 0.042 2.127 0.198 2.201 0.138
01/09/2019 2.572 2.484 0.008 2.363 0.044 2.132 0.193 2.162 0.168
15/09/2019 2.572 2.572 0.000 2.280 0.085 2.132 0.193 2.343 0.052
01/10/2019 2.572 2.667 0.009 2.345 0.052 2.169 0.162 2.442 0.017
15/10/2019 2.366 2.410 0.002 2.378 0.000 2.115 0.063 2.170 0.038
01/11/2019 2.366 2.516 0.023 2.316 0.002 2.162 0.042 2.236 0.017
15/11/2019 2.366 2.430 0.004 2.164 0.041 2.162 0.042 2.228 0.019
01/12/2019 2.366 2.451 0.007 2.152 0.046 2.169 0.039 2.224 0.020
15/12/2019 2.366 2.567 0.040 2.346 0.000 2.169 0.039 2.472 0.011
01/01/2020 2.366 2.633 0.071 2.399 0.001 2.168 0.039 2.455 0.008
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Table 16: The results of the vintages of the data with starting date 1980 with lag variables

Date GDP Dynamic Factor Model Random Forest Extreme Gradient Boosting Hybrid
Prediction Error2 Prediction Error2 Prediction Error2 Prediction Error2

01/01/2017 2.541 3.244 0.494 2.688 0.022 2.071 0.221 2.237 0.093
15/01/2017 2.282 3.126 0.712 2.786 0.254 2.071 0.044 2.307 0.001
01/02/2017 2.282 2.393 0.012 2.750 0.219 2.060 0.049 2.027 0.065
15/02/2017 2.282 2.925 0.414 2.580 0.089 2.060 0.049 2.276 0.000
01/03/2017 2.282 2.980 0.487 2.608 0.106 2.060 0.049 2.355 0.005
15/03/2017 2.282 3.241 0.921 2.836 0.307 2.060 0.049 2.524 0.059
01/04/2017 2.282 3.359 1.160 3.055 0.598 2.296 0.000 2.647 0.133
15/04/2017 1.719 3.260 2.374 2.957 1.534 2.062 0.118 2.340 0.386
01/05/2017 1.719 2.667 0.898 2.789 1.145 1.924 0.042 1.880 0.026
15/05/2017 1.719 3.100 1.909 2.912 1.424 2.133 0.171 2.238 0.270
01/06/2017 1.719 3.309 2.528 3.017 1.685 2.293 0.329 2.389 0.450
15/06/2017 1.719 2.905 1.407 2.947 1.509 2.153 0.188 2.128 0.167
01/07/2017 1.719 2.933 1.475 2.948 1.512 2.032 0.098 2.095 0.141
15/07/2017 2.947 3.462 0.264 2.964 0.000 2.032 0.839 2.280 0.445
01/08/2017 2.947 3.025 0.006 2.948 0.000 2.037 0.829 2.421 0.277
15/08/2017 2.947 3.518 0.326 3.319 0.138 2.362 0.342 2.635 0.098
01/09/2017 2.947 3.519 0.327 3.091 0.021 2.368 0.336 2.748 0.040
15/09/2017 2.947 3.471 0.274 2.877 0.005 2.470 0.228 2.660 0.083
01/10/2017 2.947 3.487 0.291 2.963 0.000 2.470 0.228 2.710 0.056
15/10/2017 3.878 3.228 0.423 2.900 0.957 2.040 3.378 2.204 2.802
01/11/2017 3.878 3.375 0.253 2.469 1.984 2.042 3.371 2.677 1.441
15/11/2017 3.878 3.619 0.067 2.458 2.015 2.603 1.625 2.761 1.248
01/12/2017 3.878 3.800 0.006 2.737 1.302 2.607 1.616 2.790 1.183
15/12/2017 3.878 3.896 0.000 2.679 1.437 2.607 1.616 2.846 1.065
01/01/2018 3.878 3.940 0.004 2.723 1.333 2.605 1.621 2.801 1.160
15/01/2018 3.779 3.803 0.001 3.057 0.522 2.605 1.379 2.850 0.863
01/02/2018 3.779 3.292 0.237 3.072 0.500 2.581 1.436 2.643 1.290
15/02/2018 3.779 3.475 0.092 3.089 0.477 2.581 1.436 2.736 1.088
01/03/2018 3.779 3.367 0.170 3.075 0.496 2.580 1.437 2.689 1.188
15/03/2018 3.779 3.843 0.004 3.207 0.328 2.562 1.480 2.766 1.026
01/04/2018 3.779 3.993 0.046 3.249 0.281 2.566 1.471 2.908 0.760
15/04/2018 2.701 4.015 1.726 3.400 0.487 2.566 0.018 2.921 0.048
01/05/2018 2.701 3.265 0.318 3.165 0.215 2.421 0.078 2.671 0.001
15/05/2018 2.701 3.517 0.665 3.303 0.362 2.541 0.026 2.623 0.006
01/06/2018 2.701 3.583 0.777 3.383 0.465 2.539 0.026 2.600 0.010
15/06/2018 2.701 3.408 0.499 3.275 0.328 2.539 0.026 2.571 0.017
01/07/2018 2.701 3.347 0.417 3.251 0.302 2.386 0.100 2.456 0.060
15/07/2018 2.117 3.404 1.656 3.058 0.885 2.386 0.072 2.415 0.088
01/08/2018 2.117 3.537 2.014 3.062 0.893 2.426 0.095 2.971 0.729
15/08/2018 2.117 3.639 2.315 3.113 0.991 2.712 0.354 2.613 0.246
01/09/2018 2.117 3.615 2.243 3.074 0.916 2.290 0.030 2.606 0.239
15/09/2018 2.117 3.812 2.873 3.216 1.206 2.714 0.356 2.711 0.352
01/10/2018 2.117 3.872 3.079 3.176 1.121 2.713 0.355 2.770 0.426
15/10/2018 1.320 3.919 6.753 3.490 4.711 2.713 1.942 2.785 2.146
01/11/2018 1.320 3.371 4.206 3.202 3.544 2.288 0.937 2.569 1.561
15/11/2018 1.320 3.686 5.600 3.256 3.749 2.706 1.923 2.777 2.123
01/12/2018 1.320 3.726 5.788 3.233 3.662 2.706 1.923 2.773 2.112
15/12/2018 1.320 3.501 4.757 3.028 2.920 2.288 0.937 2.627 1.708
01/01/2019 1.320 3.476 4.650 3.003 2.833 2.287 0.935 2.613 1.674
15/01/2019 2.932 3.588 0.430 3.141 0.044 2.705 0.052 2.687 0.060
01/02/2019 2.932 3.420 0.238 3.068 0.018 2.287 0.416 2.480 0.205
15/02/2019 2.932 2.993 0.004 2.545 0.150 1.952 0.960 2.031 0.812
01/03/2019 2.932 3.098 0.027 2.826 0.011 2.122 0.656 2.343 0.347
15/03/2019 2.932 2.949 0.000 2.671 0.068 2.234 0.488 2.255 0.459
01/04/2019 2.932 3.019 0.007 3.101 0.028 2.231 0.491 2.124 0.654
15/04/2019 1.491 3.042 2.406 2.651 1.345 1.969 0.228 2.071 0.336
01/05/2019 1.491 3.596 4.432 2.728 1.529 2.295 0.646 2.588 1.202
15/05/2019 1.491 3.441 3.804 2.787 1.680 2.321 0.688 2.487 0.991
01/06/2019 1.491 3.514 4.090 2.694 1.447 2.320 0.687 2.522 1.064
15/06/2019 1.491 3.377 3.556 2.419 0.860 2.320 0.687 2.449 0.917
01/07/2019 1.491 3.465 3.897 2.554 1.129 2.321 0.688 2.493 1.005
15/07/2019 2.572 3.350 0.605 2.781 0.044 2.321 0.063 2.360 0.045
01/08/2019 2.572 3.839 1.606 3.063 0.241 2.629 0.003 2.746 0.030
15/08/2019 2.572 2.935 0.132 2.621 0.002 2.009 0.317 2.101 0.222
01/09/2019 2.572 2.894 0.103 2.731 0.025 2.009 0.318 1.991 0.338
15/09/2019 2.572 3.095 0.273 2.835 0.069 2.009 0.318 2.000 0.327
01/10/2019 2.572 3.238 0.443 2.707 0.018 2.008 0.318 2.023 0.302
15/10/2019 2.366 3.103 0.544 2.693 0.107 2.008 0.128 2.014 0.124
01/11/2019 2.366 3.229 0.745 2.749 0.147 1.956 0.168 2.196 0.029
15/11/2019 2.366 3.005 0.409 2.448 0.007 1.956 0.168 2.041 0.105
01/12/2019 2.366 3.063 0.486 2.423 0.003 1.958 0.166 2.172 0.038
15/12/2019 2.366 3.109 0.553 2.443 0.006 1.958 0.166 2.095 0.073
01/01/2020 2.366 3.236 0.758 2.518 0.023 1.958 0.166 2.131 0.055
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Table 17: The results of the vintages of the data with starting date 2000 with lag variables

Date GDP Dynamic Factor Model Random Forest Extreme Gradient Boosting Hybrid
Prediction Error2 Prediction Error2 Prediction Error2 Prediction Error2

01/01/2017 2.541 2.599 0.003 2.350 0.036 1.931 0.372 2.253 0.083
15/01/2017 2.282 2.476 0.038 2.390 0.012 2.138 0.021 2.260 0.000
01/02/2017 2.282 1.850 0.186 2.295 0.000 2.032 0.063 1.942 0.115
15/02/2017 2.282 2.426 0.021 2.498 0.047 2.316 0.001 2.442 0.026
01/03/2017 2.282 2.439 0.025 2.517 0.055 2.311 0.001 2.439 0.025
15/03/2017 2.282 2.677 0.156 2.595 0.098 2.690 0.167 2.578 0.088
01/04/2017 2.282 2.735 0.205 2.615 0.111 2.676 0.156 2.635 0.125
15/04/2017 1.719 2.574 0.731 2.508 0.622 2.326 0.369 2.443 0.524
01/05/2017 1.719 2.335 0.380 2.245 0.277 1.656 0.004 2.010 0.085
15/05/2017 1.719 2.543 0.679 2.516 0.636 2.676 0.917 2.486 0.588
01/06/2017 1.719 2.604 0.783 2.455 0.542 2.651 0.869 2.596 0.769
15/06/2017 1.719 2.348 0.395 2.259 0.292 2.083 0.133 2.186 0.218
01/07/2017 1.719 2.376 0.432 2.253 0.285 2.050 0.110 2.094 0.141
15/07/2017 2.947 2.688 0.067 2.618 0.109 2.666 0.079 2.670 0.077
01/08/2017 2.947 2.506 0.194 2.354 0.353 2.484 0.214 2.340 0.369
15/08/2017 2.947 2.822 0.016 2.502 0.198 2.685 0.069 2.778 0.029
01/09/2017 2.947 2.898 0.002 2.512 0.189 2.754 0.037 2.867 0.007
15/09/2017 2.947 2.879 0.005 2.418 0.281 2.729 0.048 2.920 0.001
01/10/2017 2.947 2.880 0.004 2.390 0.310 2.716 0.053 2.904 0.002
15/10/2017 3.878 2.580 1.685 2.339 2.368 2.493 1.918 2.620 1.581
01/11/2017 3.878 2.698 1.391 2.484 1.942 2.698 1.392 2.872 1.013
15/11/2017 3.878 2.874 1.007 2.491 1.924 2.586 1.669 2.880 0.995
01/12/2017 3.878 2.926 0.907 2.560 1.738 2.650 1.507 2.873 1.009
15/12/2017 3.878 3.020 0.736 2.546 1.775 3.185 0.479 2.932 0.895
01/01/2018 3.878 3.041 0.701 2.565 1.725 3.209 0.447 2.897 0.963
15/01/2018 3.779 2.939 0.706 2.763 1.032 3.155 0.389 2.879 0.810
01/02/2018 3.779 2.677 1.214 2.777 1.005 2.774 1.011 2.841 0.881
15/02/2018 3.779 2.861 0.843 2.787 0.985 2.727 1.107 2.914 0.748
01/03/2018 3.779 2.803 0.953 2.750 1.060 2.697 1.171 3.057 0.521
15/03/2018 3.779 3.133 0.418 2.755 1.049 3.043 0.543 3.134 0.416
01/04/2018 3.779 3.212 0.322 2.837 0.887 2.933 0.716 2.867 0.832
15/04/2018 2.701 3.074 0.138 2.862 0.026 2.948 0.061 2.977 0.076
01/05/2018 2.701 2.731 0.001 2.720 0.000 2.714 0.000 2.824 0.015
15/05/2018 2.701 2.895 0.037 2.762 0.004 3.130 0.184 2.863 0.026
01/06/2018 2.701 2.915 0.046 2.631 0.005 3.118 0.173 2.978 0.076
15/06/2018 2.701 2.824 0.015 2.569 0.018 2.748 0.002 2.819 0.014
01/07/2018 2.701 2.786 0.007 2.546 0.024 2.645 0.003 2.640 0.004
15/07/2018 2.117 2.728 0.373 2.819 0.492 2.639 0.272 2.602 0.235
01/08/2018 2.117 2.948 0.690 2.816 0.488 3.485 1.869 3.021 0.817
15/08/2018 2.117 2.911 0.630 2.452 0.112 2.316 0.039 2.415 0.089
01/09/2018 2.117 2.887 0.592 2.528 0.168 2.340 0.049 2.431 0.098
15/09/2018 2.117 2.984 0.751 2.474 0.127 3.031 0.835 2.537 0.176
01/10/2018 2.117 3.011 0.799 2.569 0.204 3.016 0.807 2.655 0.289
15/10/2018 1.320 3.138 3.306 3.179 3.457 3.291 3.886 3.051 2.996
01/11/2018 1.320 2.799 2.187 2.741 2.020 2.372 1.106 2.569 1.559
15/11/2018 1.320 2.963 2.701 2.871 2.405 3.180 3.461 2.972 2.731
01/12/2018 1.320 2.989 2.788 2.878 2.429 3.138 3.306 3.038 2.953
15/12/2018 1.320 2.854 2.355 2.688 1.871 2.215 0.802 2.600 1.640
01/01/2019 1.320 2.835 2.296 2.658 1.790 2.153 0.695 2.670 1.822
15/01/2019 2.932 2.865 0.005 2.822 0.012 2.923 0.000 2.821 0.012
01/02/2019 2.932 2.846 0.007 2.759 0.030 2.840 0.009 2.751 0.033
15/02/2019 2.932 2.646 0.082 2.424 0.259 2.248 0.468 2.340 0.351
01/03/2019 2.932 2.768 0.027 2.578 0.125 2.535 0.158 2.639 0.086
15/03/2019 2.932 2.596 0.113 2.346 0.343 2.138 0.631 2.330 0.362
01/04/2019 2.932 2.668 0.070 2.375 0.311 2.157 0.602 2.414 0.268
15/04/2019 1.491 2.588 1.203 2.405 0.835 2.103 0.374 2.446 0.912
01/05/2019 1.491 3.149 2.747 2.653 1.349 2.768 1.630 3.386 3.590
15/05/2019 1.491 2.762 1.616 2.353 0.743 2.056 0.319 2.307 0.666
01/06/2019 1.491 2.806 1.730 2.305 0.663 2.027 0.287 2.339 0.719
15/06/2019 1.491 2.714 1.496 2.165 0.454 1.964 0.224 2.418 0.859
01/07/2019 1.491 2.778 1.656 2.038 0.299 2.036 0.297 2.487 0.991
15/07/2019 2.572 2.771 0.040 2.531 0.002 2.626 0.003 2.589 0.000
01/08/2019 2.572 3.204 0.400 2.879 0.094 3.120 0.300 3.279 0.500
15/08/2019 2.572 2.517 0.003 2.415 0.025 2.265 0.095 2.364 0.043
01/09/2019 2.572 2.484 0.008 2.416 0.024 2.158 0.172 2.329 0.059
15/09/2019 2.572 2.572 0.000 2.432 0.020 2.173 0.159 2.605 0.001
01/10/2019 2.572 2.667 0.009 2.472 0.010 2.268 0.093 2.587 0.000
15/10/2019 2.366 2.410 0.002 2.187 0.032 2.098 0.072 2.149 0.047
01/11/2019 2.366 2.516 0.023 2.008 0.128 1.891 0.226 2.148 0.047
15/11/2019 2.366 2.430 0.004 2.095 0.073 2.004 0.131 2.156 0.044
01/12/2019 2.366 2.451 0.007 2.114 0.063 1.958 0.166 2.160 0.042
15/12/2019 2.366 2.567 0.040 2.054 0.097 2.003 0.132 2.365 0.000
01/01/2020 2.366 2.633 0.071 2.043 0.104 1.980 0.149 2.328 0.001

The GDP and the prediction, squared error of a Dynamic Factor Model, Random Forest, Extreme
Gradient Boosting and Hybrid Approach for the vintages of the data with starting date 2000 with lag
variables
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