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Abstract

Many applications require accurate wind forecasts for example, in the renewable energy

sector or improving the efficiency of wind power production. One approach to improve the

reliability of the wind forecasts is to include additional characteristics about wind. This paper

focuses on comparing several variable selection methods to determine which wind covariates

are the most informative to include in the cGEV model. This model is based on a generalized

extreme value distribution with censoring at the 50% quantile of the observations. The wind

gusts observed from the Hamburg Weather Mast at five different height levels between 10

and 250 m are modelled with wind characteristics from the COSMO-REA6 dataset. We

use five different variable selection methods, which are ridge regression, lasso, elastic net,

adaptive lasso and adaptive elastic net. The most informative variables are the maximum

wind gust diagnostic at 10 m and its variance, the barotropic mode, the mean of the horizontal

wind speed at 700 pHa, and the surface pressure tendency which are selected in all variable

selection methods. Results reveal that the adaptive lasso is the best performing method in

terms of the continuous ranked probability score (CRPS) with an improvement of 7.8984%

with respect to the baseline model. The adaptive lasso also performs well for the daily

wind gusts, the top 5% strongest wind and overall. Lastly, this paper confirms that adding

additional informative variables to the model results in an improvement of at least 23%.
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1 Introduction

Wind power has been receiving increased attention over the last years because of the focus on

the exploitation in renewable energy[46]. This is especially influenced by government policies for

sustainable energy and the current state of global warming and climate change. In fact, wind

energy is becoming one of the most reliable, significant and cleanest power sources of renewable

energy and recently became an important source in electricity markets as well [39]. It provides as

an environmentally friendly alternative for fossil fuels. However, wind energy is an intermittent

power source and as a result, an efficient power system of wind energy depends on the ability to

forecast future available wind power. Therefore, accurate and precise wind forecasts are required

for stable wind energy.

Moreover, reliable wind forecasts are not only relevant for a viable and sustainable energy

program but also important to identify extreme wind events in advance. Extreme winds are

one of the main weather threats with dangerous consequences for both humans and economies.

It often results in serious damage to infrastructures, such as direct damage to buildings in the

city or indirect damage in the form of the risk of a loose object flying through the sky crashing

on other construction or even on a citizen. In addition to that, the aftermath of the damages

caused by severe wind events generally involves a large amount of money and time to clean up

the damages. Besides, other risks of extreme wind speeds are the fact that offshore areas are

more likely to experience stronger wind speeds such that the consequences are more severe in

those areas. For example, offshore wind farms are more likely to experience higher damage [21].

Therefore, it is of great importance to have more accurate, reliable and precise wind forecasts.

One of the main problems for wind forecasting is the fact that wind is often not continuous and

steady which can cause irregular and strong variations of wind gusts [43]. Wind speeds occur

intermittently, vary on an inter-annual, inter-decadal time scale and differ along their entire

vertical extent. In other words, there are many factors in deciding which distribution is the

most appropriate and suitable to use for modelling wind speed since these distributions are

constantly changing over time [7].

One approach for wind prediction modelling is to combine the observed wind gusts with

numerical weather predictions [25] and more specifically with meteorological reanalysis data

which has recently gained popularity among academia and government. Reanalysis data is often

used for monitoring climate change or describing the history of the atmosphere, land surface or

ocean. In short, reanalysis datasets contain a lot of explanatory detailed atmospheric variables

that are mostly used in meteorological and climatological studies. These datasets are generally

obtained by means of data assimilation and put into a chosen NWP model. Then, these models
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are used for providing weather forecasts based on current weather conditions. Newly received

observations are continuously inserted into the model such that the old forecasts are corrected

using the updated observations in order to give a more accurate outcome.

However, reanalysis produces large datasets, since these datasets contain decades worth

of detailed information about the atmosphere or climate. Analyzing everything for predictive

modelling takes a large computation time and space which often results in large computation

incurred costs. As a solution, variable selection methods are implemented to remove the unnec-

essary variables and select the essential ones which have the most significant impact on wind

forecasting [20]. The advantages of variable selection methods are that they not only reduce

the computation time, space and data acquisition costs but also simplify the interpretation of

the remaining variables. In addition to that, the efficiency and efficacy of the final model in-

crease as the amount of variables reduces without affecting the accuracy and precision too much.

Lastly, simpler models are usually easier to validate and are more easily and better understood.

Therefore, variable selection methods are very popular and widely applied in different fields.

By increasing the reliability and precision of wind forecasts, these forecasts can be further

enhanced to determine the wind more precisely, taking its intermittent nature into consideration.

Moreover, wind farms can anticipate and schedule wind energy based on the intensity of the

accurate wind forecasting as well as reduce the production costs to a large extent. In short,

reliable wind forecasts are applied to the risk assessment of wind farms to improve the efficiency

of wind power production [56]. Furthermore, a measure of the potential risk by means of reliable,

precise forecasts offers better insights to emergency managers, air and trail traffic on the time of

disruption, and on how to take certain actions to diminish destruction. Also, this measure offers

helpful insights to offshore wind operators when considering opening a potential new wind farm

[27, 44]. It explores the need for wind energy resources as well as the high cost of wind farm

construction [31]. Lastly, this information might also be useful for public entities or companies

in the energy sector if they are interested in investing in renewable energy.

We investigate and compare in this paper several variable selection methods for the censored

generalized extreme value (cGEV) model for the wind gusts in Germany as we are interested to

know whether the choice of a variable selection method will impact the predictive performance

of the model. We define the objective and the focus of this paper with the following research

question:

Which state-of-the-art variable selection methods can be used to optimally choose the most in-

formative meteorological variables that provide a diagnostic of the observed wind gust at a height
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of 10 m?

In order to answer this research question, we use a high-resolution regional reanalysis dataset

for Europe called the COSMO-REA6. It consists of 150 different variables associated with the

characteristics of the weather conditions from which we only choose 16 variables. This regional

reanalysis covers the time period from 1995 to August 2019 and provides additional valuable

beneficial information on the observed gusts at the height of 10 m. The cGEV model assumes

generalized extreme value distribution (GEV) where observed gusts are censored above a certain

threshold in order to avoid biases and focus on the extreme winds. Estimation is done by means

of maximum likelihood estimation (MLE). Afterwards, various variable selection methods, such

as lasso, elastic net, ridge regression are implemented and compared to each other. In addition

to these traditional methods, we will also implement the adaptive version of the classic methods

themselves. In short, these variable selection methods are chosen to include the most common

methods and some relatively new ones.

This paper contributes to selecting the most adequate explanatory variables for wind gust

observations by comparing different variable selection methods for the cGEV model. There is a

considerable number of papers comparing several variable selection methods but relatively few

focus on meteorological variables or give an overview of the variable selection methods for GEV

models. This method allows us to investigate and quantify the effects of relevant covariates on

the reliability of the wind speed distribution. When the significant variables are known, one

could focus on obtaining the essential variables when time, space or money are limited.

This paper has the following structure: an overview of relevant topics and literature is given

in Section 2. Section 3 describes the observed hourly wind gusts at the Hamburg Weather Mast

and the COSMO-REA6 dataset with the corresponding data analysis. Next, the framework of

the cGEV model is provided in Section 4 as well as a description of all variable selection methods

and the verification of the post-processing model. Section 5 presents the results. Lastly, the

conclusion and recommendation of this research are discussed in Section 6.

2 Literature Review

In this section, we give an outline of the relevant topics regarding this research. First, we give a

brief summary of known aspects when modelling wind gust observations which give us a better

understanding of handling observed wind gusts. Then, an overview is given about the main

variable selection methods and their enhanced versions.
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2.1 Statistical Wind Distributions

There have been several papers over the years that have investigated the purpose of wind in

different settings, such as in designing any engineering structure [1], consequences of extreme

wind events in urban areas [3] or the financial consequences of risks of high wind speeds [10].

Since the 1930s, wind has been comprehensively investigated and analyzed, and its corre-

sponding probabilistic and statistical parameters have been thoroughly identified. [1] is one of

the first papers handling wind gusts in which they generally describe the wind pressure data

followed by a summary about wind pressure against a tall building. Since then, many papers

have been published about deriving wind distributions depending on the wind direction, angle,

speed or pressure.

In 1962, the first statistical concepts of wind engineering were introduced in [11] where they

concluded that wind angle, speed, and pressure tend to follow a Gaussian process. However,

[23] suggested that a non-Gaussian distribution might be more suitable for wind pressure when

deriving its statistical distribution. In addition to that, they believed that the wind pressure

data were not symmetric and tended to be skewed which was also shown in [41].

Compared to wind angle and wind pressure, wind speed is the most important factor in

wind modelling since wind speed has been widely used in various fields, such as in the selection

of suitable wind turbines [55], utilization of wind energy [45] or measuring high wind speeds

in tropical cyclones [42]. In such applications, one common detail is that higher and larger

variations in wind speed lead to very serious and often unfavourable results. Strong wind speeds

may lead to the deactivation of wind farms along with huge financial losses or severe outcomes

and material damages after a big tropical cyclone. As for the wind farms, a steady wind speed is

required in order to maintain a stable electricity network and hence limited wind speed variation

is preferred as well. Therefore, wind speed analysis and modelling are among the most important

aspects of wind engineering as there are more risks involved in strong wind speeds than in the

angle of the wind or strong wind pressures.

A similar conclusion can be drawn for wind speed, indicating that a Gaussian distribution

seems to be unfitting due to the skewed data. The most common statistical distribution used

for modelling wind speed is the Weibull distribution as it gives the best fit to the wind speed

distribution compared to other distributions [28, 48, 50]. The most chosen estimation methods

for the Weibull distribution are the maximum likelihood estimation, methods of moments and

the least-squares methods.

However, even though the Weibull distribution is widely used among researchers, [7] con-

cluded that the Weibull distribution is not always the most appropriate distribution to identify
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the characteristics of wind speed in every scenario, e.g. in the case of a high rate of null wind

speed. Other studies show that the Gumbel distribution might be reasonable to choose over

the Weibull distribution as the Gumbel distribution estimates winds speed more accurately at

the tail of the distribution and the lower levels [33] or conclude that the Gumbel distribution is

more reliable to use to model extreme wind speeds than the Weibull distribution [30].

Another promising statistical wind speed distribution is the generalized extreme value dis-

tribution shown in [40] where they compared the Weibull method to the methods based on the

extreme value theory. They concluded that using the Weibull method leads to incorrect esti-

mates of the tails of the wind speed distributions and that the extreme value methods avoid

these problems. Similarly, [14] developed and compared seven approaches, such as the gamma,

log-normal and generalized extreme value distribution to derive a probabilistic analysis for Ger-

man wind gusts. Among the given distributions, they revealed that the generalized extreme

value distribution is the most suitable to estimate the statistical distribution of wind speed as

it is the most reliable and theoretically consistent.

The generalized extreme value distribution (GEV) is the underlying extreme value distribu-

tion of the Block Maxima (BM) approach which is one of the main methods to model extreme

events in the Extreme Value Theory (EVT). The BM approach divides the data into blocks of

equal length and selects the maximum in each block. Then, the GEV distribution is fitted to

the sample consisting of the maximum value of all blocks. The corresponding parameters of the

GEV distribution are the location parameter µ, scale parameters σ > 0 and shape parameter ξ.

The most common method to estimate these parameters is the maximum likelihood estimation

providing stable estimates. The GEV distribution combines three different extreme value dis-

tributions into a generalized distribution; the Gumbel, Fréchet and reverse Weibull distribution

also known as type I, II and III extreme value distributions depending on the value of ξ. This

correspond with ξ = 0, ξ > 0 and ξ < 0 respectively. Based on this, the shape parameter

ξ strongly influences the weight of the tail of the GEV distribution and decides whether the

distribution has an upper or a lower bound.

We opt for the generalized extreme value distribution in this research to derive the statistical

distribution of the extreme wind speeds. We refer to [9] for more specification and details about

the EVT.

2.2 Variable Selection for Wind Covariates

Wind speed prediction methods generally use univariate wind speed observations based on his-

toric data where limited information is used for wind speed modelling and predicting. Hence,
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we assume that wind speed prediction can be further improved if more information about the

corresponding observations is added to the model for better and more accurate forecasts.

As a solution, an alternative approach is proposed by introducing covariates into the param-

eters of the wind speed distribution as suggested in [29]. Several papers have been studying how

to incorporate covariates into the model for better accuracy [6] or to improve the goodness-of-fit

of models [37]. These covariates usually contain additional valuable information, such as trends,

physical characteristics, cycles etc. Incorporation of information has been done before in differ-

ent fields and distributions, for example in [12] using a polynomial function on annual maximum

precipitation data in the GEV distribution or wind speed modelling in eastern Canada in [36].

One potential data source for additional valuable information are reanalysis datasets. Re-

analysis data are widely used in a variety of domains due to their reliability in containing detailed

information about historic weather conditions [5]. Hence, reanalysis data are appropriate to use

as covariates for meteorological and climate forecasting, such as done for wind speed modelling

in [49]. The COSMO-REA6 data set was used as covariates which provided a diagnostic of

observed wind gusts in Germany. Similar, [53] concluded that an introducing a covariate for

heavy rainfall improves the modelling of extreme precipitation. Models including additional

information are often called non-stationary models. Therefore, adding covariates to the model

will improve the model performance to obtain more accurate and reliable forecasts.

Since reanalysis data consists of precise atmospheric variables, there is a strong correlation

between these meteorological variables and the wind gust values. Therefore, we use this as input

to improve the performance of the prediction models. However, having too many irrelevant

variables affects the performance of the model negatively in terms of longer computation time

and the expensive costs of data acquisition. Besides, the other advantage of using variables

selection methods is to reduce the complexity of the prediction models without affecting the

accuracy to maintain a parsimonious model. Hence, the purpose of variable selection is to

increase the model prediction by identifying and selecting the most important and influential

variables for the final simpler model.

Variable selection has been employed in many applications, such as for clinical predictive

modelling in the medical field [47], bankruptcy forecasts in finance [51] or clustering marketing

segmentation [32]. Traditional approaches for variable selection, such as forward and backward

stepwise selection using p-values, AIC and BIC have been commonly used in general due to their

simplicity. However, the traditional methods disregard the multi-collinearity problem among

variables and are more likely to yield poor performance.

An alternative to the classic approaches is using modern variable selection methods, such as
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methods based on machine learning algorithms or hybrid methods to overcome the challenges

of multi-collinearity and overfitting. The interest in modern variable selection methods as a

solution to address the challenges of the traditional approaches has been steadily increasing over

the years. One of the most popular choices for variable selection is the least absolute shrinkage

selection operator (lasso) [52]. Within the renewable energy literature, the lasso has often been

used as it is known as a simple algorithm, yet gives great results, and is frequently able to

outperform the standard approaches for variable selection. In addition to that, the lasso is

applicable in different aspects of the renewable energy sector. For example, it has the highest

increase in performance for solar radiation forecasting [18], is used for modelling electricity

prices [57] and showed the best performance in precipitation occurrence [17]. Since then, many

extensions of the lasso have been used and some of them show promising results, such as elastic

net [59], group lasso [16], Bayesian lasso [38], adaptive lasso [58], etc. [35] compares ridge

regression with the lasso and its extensions and concludes that all lasso-related methods had

relatively high prediction accuracies compared to the ridge regression using simulated breeding

values in a genome.

Nonetheless, the above-mentioned methods are proposed to address the challenges of the

lasso but there is no dominant approach under all conditions that is better than the others

since each method has its own specific strengths and weaknesses, and the model performance

is highly data-dependent [13]. Despite lasso being a popular and reliable method for variable

selection, there are very few papers about the variable selection available in the GEV model. For

example, [34] proposed a method for variable selection in the GEV model based on the Akaike

Information Criterion for wave height data. Similarly, other papers have shown that the most

important predictors for the GEV distribution are found using machine learning algorithms, such

as the fused lasso for the annual maximum precipitations [24], random forests for the annual

streamflow data [54], or lasso to select the most valuable wind predictors [49]. To the best of our

knowledge, there have been no papers available which give an overview of the variable selection

methods in the GEV model, and especially in the GEV model for wind gusts data. Hence, the

focus of this research is to incorporate the wind covariates into the cGEV model to derive a

distribution for the hourly wind gusts using linear combinations. The interfering variables are

removed with lasso-type methods, such as the elastic net, adaptive lasso, adaptive elastic net

and the lasso itself, and the results are compared with the classic ridge regression.
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3 Data

The data used in this paper consists of two parts: the hourly wind gust observations in Germany

and the COSMO-REA6 dataset which is the reanalysis dataset from Europe. The variables in

the COSMO-REA6 dataset are used as covariates, to determine how the covariates influence the

expected speed of the wind gusts. We describe the characteristics and data analysis for each

dataset as well as the data availability of the datasets.

3.1 Hamburg Weather Mast

The hourly wind gusts are measured at the Hamburg Weather Mast in Germany, where the

mast is operated by the Meteorological Institute at the University of Hamburg since 1967. The

mast is located in the Billwerder district and the geographical location of the mast is 53 ° 31

’09.0’ ’N and 10 ° 06’ 10.3 ” E, and 53 ° 31 ’11.7’ ’N and 10 ° 06 ’18.5’ ’O at the highest and

lowest height respectively. Five different height levels measure wind gusts at heights of 10, 50,

110, 175 and 250m. The raw wind data are obtained and the average of the wind data is taken

every 3 seconds. Then, these values are used to calculate the hourly wind gusts by selecting the

maximum value over these average observations per hour. The data is collected from 1 January

2004 until 31 December 2014, amounting to a total of 96432 observations for every height level.

The descriptive statistics of the hourly observed gust observations are presented in Table 1 at

different height levels. Values denoted as 99999 are unknown values and are therefore considered

missing values. All wind gusts are noted in meters per seconds.

Table 1. Descriptive statistics of the observed hourly gust observations measured at the Hamburg

Weather Mast from 1 January until 31 December 2014.

Descriptive statistics Minimum Maximum Mean Median Standard Deviation Observations

10M 0.390 28.070 6.122 5.790 3.1139 93025

50M 0.530 33.210 7.969 7.400 3.8168 95700

110M 0.460 35.980 9.143 8.650 4.0127 93167

175M 0.450 38.930 10.078 9.690 4.3390 92300

250M 0.410 40.580 10.850 10.540 4.7152 89106

Table 1 shows the descriptive statistics of the wind gusts, such as the minimum, maximum,

mean, median, standard deviation and the total number of observations. The minimum value

of the observed gust observations is fairly similar among the heights whereas this is not the

case for the maximum value. The maximum value is increasing for every larger height level,

as are the mean, median and standard deviation. This indicates that stronger wind gusts are
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more likely to appear at a higher height and that wind gusts at higher height levels are more

likely to deviate than at lower height levels. Based on the given graphs and differing mean and

median, we conclude that the distribution of the observed wind gusts at each height level is

lightly skewed. Lastly, we omit the missing values and show the final number of observations in

the last column of Table 1. As previously mentioned, more observations are missing for higher

heights implying that wind gusts are not always present at all height levels. Graphs of wind gust

at 10 m and 50 m throughout the years are shown in Figure 1. For both height levels, boxplots

for every hour and every month are shown in Figure 2 and Figure 3. The remaining graphs and

boxplots at other height levels are given in Appendix A.

Figure 1. Observed wind gusts from 1 January 2004 until 31 December 2014 at 10 m (left) and 50 m

(right).

We see in Figure 1 that seasonality is strongly present in the graphs at 10 m and 50 m and

this effect can also be found in Appendix A at other height levels. The higher peaks mostly

resemble the stronger wind gusts in the winter, as the top ten strongest wind gusts appear in

the winter. This information is consistent with Figure 2 and Figure 3. The strongest wind that

was observed occurred on 18 January 2007 when the wind speed was 25.05, 33.21, 35.98, 38.93

and 40.58 for 10 m, 50 m, 110 m, 175 m and 250 m respectively. This extreme wind event was

caused by the windstorm Kyrill and the fastest recorded wind speeds in Germany are mainly

caused by storms or cyclones, which was evident at all height levels.
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Figure 2. Boxplots of hourly (left) and montly (right) wind gusts at 10 m.

Figure 3. Boxplots of hourly (left) and monthly (right) observed wind gusts at 50M.

In Figure 2 and Figure 3 (left), the box plots for the hourly observed wind gusts are shown

at heights of 10 m and 50 m. The median of the wind gusts is the largest around noon and

in the afternoon and the lowest in the night and the early morning. This indicates that wind

at noon is usually stronger than at nighttime. This pattern is apparent at 10 m and becomes

less visible and wavy at higher heights (see Appendix A). Therefore, wind becomes more stable

during the day at higher height levels. Moreover, outliers of wind gusts around noon usually

have a smaller range than those at other hours. This applies to all height levels except for a

height of 50 m at midnight, suggesting that wind gusts are faster and steadier at noon than in

the late afternoon.

As for monthly wind gusts, they seem to be quite stable over the year where the wind becomes

weaker during summer and stronger during winter. This is evident at all height levels but more

apparent at higher height levels. The same pattern is visible in terms of outliers where more

extreme wind gusts appear in the winter season than in the summer season. From this analysis,

we conclude that in general stronger wind gusts appear in the winter in Germany. Therefore,
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more wind energy becomes available during the winter season than in the summer season due

to the higher probability of stronger wind speeds in the winter months.

3.2 COSMO-REA6 Regional Reanalysis

The COSMO-REA6 reanalysis is developed at the Hans-Ertel-Centre for Weather Research of

Deutscher Wetterdienst (DWD) for Europe [2]. The COSMO-REA6 dataset was released to over-

come the limitations of the former reanalysis to provide more improved variables for renewable

energy-related applications. As previously stated, reanalysis data are obtained by implement-

ing data assimilation into an NWP model. The NWP forecast model used for obtaining the

COSMO-REA6 dataset is called the COnsortium for Small-Scale MOdelling limited-area model

(COSMO-LAM). Based on this information, the COSMO-REA6 dataset yields worthwhile in-

formation as diagnostics on the observed wind gusts at the Hamburg Weather Mast.

The COSMO-REA6 regional reanalysis covers a period from 1995 until August 2019 but

we only use the necessary data observed from 1 January 2004 until 31 December 2011 for this

research. There is a total of approximately 150 different variables containing 2D and 3D vari-

ables. For the purpose of this research, 16 variables are preselected beforehand which might be

valuable and potential covariates for the observed wind gusts. Hence, we use the COSMO-REA6

to provide us with diagnostics of the gust observations from the Hamburg Weather Mast. The

following variables are considered from the COSMO-REA6 reanalysis as covariates: VMAX 10M

(the wind gust diagnostic at 10 m), TWATER (total water content), T 2M (atmospheric tem-

perature at 2m). Some variables are obtained by transforming the data, such as taking the

difference between variables (LI ; lifted index, dtCAPE; tendency in convective available po-

tential energy, Vh SHEAR; vertical shear of horizontal wind between 6 and 1 km, dtP ; surface

pressure tendency), the mean or standard deviation of the vertical and horizontal wind speed at

700 hPa denoted as V h 700 and W 700 respectively or the variance V ARtVMAX 10M . Lastly,

other variables are retrieved by applying principal component analysis (PCA) on the wind series

over 11 years (V h EOF1 and V h EOF2) or by including the annual cycle which is represented

by a linear combination of the sine and cosine function (AC COS and AC SIN). A summary

and a more detailed description of the preselected covariates are shown in Table 2.
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Table 2. Summary and description of preselected covariates from the COSMO-REA6 reanalysis from

[49].

Acronyms Variable Description Unit

VMAX 10M Wind gust diagnostic at 10 m Grid value Meters per second

VARt VMAX 10M Temporal variance of VMAX 10M Variance of five consecutive (±2h) grid values Meters per second

Vh EOF1
Barotropic mode of absolute horizontal

wind at lowest layers

Principal component of first eigenvector of covariance matrix from

wind time series (11 years) at lowest 300m (six layers)

Vh EOF2
Barotropic mode of absolute horizontal

wind at lowest layers

Principal component of second eigenvector of covariance matrix from

wind time series (11 years) at lowest 300m (six layers)

Meanh Vh 700
Mean absolute horizontal wind at

700 hPa
Mean of 25 mast-surrounding grid values at layer 23 Meters per second

SDh Vh 700
Standard deviation of aboslute horizontal

wind at 700 hPa
Standard deviation of 25 mast-surrounding grid values at layer 23 Meters per second

Meanh W 700 Mean vertical wind at 700 hPa Mean of 25 mast-surrounding grid values at layer 23 Meters per second

SDh W 700
Standard deviation of vertical wind at

700 hPa
Standard deviation Meters per second

dtP Surface pressure tendency
Mean difference between current and previous surface pressure

from mast-surrounding grid values
Millibars

LI Lifted index
Difference between the temperature at 500 hPa (layer 18) and the

temperature of an adiabatically lifted surface air parcel
Celsius.

TWATER Water content Water content of the mast-including grid column m3

dtCAPE Convective Available Potential Energy tendency
Difference between current and previous CAPE of the mast-

including grid column
Joules per kilogram of air

Vh SHEAR Horizontal wind shear
Difference between absolute horizontal wind in 6 km (layer 17) and

1 km (layer 30)
Meters per second

T 2M Temperature at 2 m Grid value Celcius

AC COS Annual cosine cycle Cosine oscillation with 1-year period

AC SIN Annual cosine cycle Sine oscillation with 1-year period

Table 2 shows 16 potential covariates for the wind gusts observations from the Hamburg

Weather Mast. Three of the variables are directly taken from the COSMO-REA6 (textitV-

MAX 10M, TWATER and T 2M ) and the other 13 variables are obtained through feature

engineering. Descriptive statistics of the preselected covariates are shown in Table 3. We apply

the Jarque-Bera test for each covariate to check whether the covariates follow a normal dis-

tribution. The null hypothesis for all covariates are rejected indicating that the covariates are

not normally distributed. Moreover, a matrix showing the correlation between the covariates

is displayed in Figure 4. There is minimal correlation present in the covariates except for the

variables directly taken from the COSMO-REA6 dataset. Other variables that seem to have a

higher correlation with other variables are LI and AC COS.

We presume the gust diagnostic variable VMAX 10M to be the most explanatory and in-

formative among the covariates. It corresponds to the maximum turbulent and convective wind

gust diagnostic at 10 m. This variable intends to estimate the potential and the maximum speed

of a gust near a surface. We examine the differences between the wind gusts observed at the

Hamburg Weather Mast and the wind diagnostic from the COSMO-REA6 reanalysis in Figure 5

using a graph and a histogram.
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Figure 4. Correlation matrix of the covariatios from the COSMO-REA6 reanalysis.

Table 3. Descriptive statistics of the high-resolutional COSMO-REA6 reanalysis from 1 January until

31 December 2014.

Descriptive statistics Minimum Maximum Mean Median Standard Deviation Observations

VMAX 10M 0.3282 27.7230 7.1487 6.7036 3.3954 96378

VARt VMAX 10M 0.000 53.9022 1.7202 0.7807 2.6787 96398

Vh EOF1 -42.0210 15.8885 0.0000 0.1927 7.2043 93456

Vh EOF2 -5.5141 9.1749 0.0000 -0.0252 1.8454 93456

Meanh Vh 700 0.2386 49.6046 11.8841 11.0229 6.5520 93456

SDh Vh 700 0.0206 5.4667 0.4300 0.3587 0.2999 93456

Meanh W 700 -0.6876 1.1303 0.0003 -0.0022 0.0371 93456

SDh W 700 0.0014 1.0863 0.0294 0.0227 0.0284 93456

dtP -406.9631 403.1225 0.0058 0.4275 47.4581 96366

LI -23.376 38.507 7.317 6.776 7.9018 93450

TWATER 1.135 56.680 16.339 15.166 7.9301 96377

dtCAPE 0.000 1476.557 15.574 0 64.44102 96378

Vh SHEAR -19.2289 51.6371 6.8084 5.9730 8.5512 93456

T 2M 251.2 315.9 283.7 283.5 8.8252 59853

AC COS -1.0000 1.0000 0.0000 0.0000 0.7071 96432

AC SIN -1.0000 1.0000 0.0000 0.0000 0.7071 96432

The histogram and the graph of the differences between the observed wind gusts at 10 m and

the variable VMAX 10M are shown in Figure 5. The mean and the standard deviation of the

differences are -1.0259 and 1.7962 respectively. This indicates that there is a small negative bias

as the COSMO-REA6 reanalysis overestimates the maximum wind gust diagnostic compared to
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the observed wind gusts from the Hamburg Weather Mast. A similar conclusion can be drawn

for the wind gusts in the summer months. The largest differences often appear in the summer

months and therefore, we assume that the wind gusts are more stable in the winter months

than in the summer months. Hence, the variable V AR 10M overemphasizes the strengths of

the wind gusts and this often happens for the gusts in the summer months.

Figure 5. Histogram and graph of the differences between the observed wind gusts at the Hamburg

Weather Mast and the COSMO-REA6 VMAX 10M.

4 Methodology

In this section, we first explain the model for the observed wind gusts at the Hamburg Weather

Mast based on the extreme value theory. Then, we demonstrate how the covariates obtained

from the COSMO-REA6 reanalysis are incorporated into the cGEV model. The objective of

this paper is to compare several variable selection methods in order to provide the optimal

covariates for the observed wind gusts in Germany. Therefore, the chosen variable selection

methods will be thoroughly described, i.e. lasso, elastic net and their adaptive version and the

ridge regression. Lastly, a brief overview of several approaches to measure the performance of a

variable selection method will be given. All implementation for the parameter estimation as well

as for the variable selection methods is done in R software. The code for all variable selection

methods and implementation is available on Github.

4.1 Censored Generalized Extreme Value Model

The model used in this research is the post-processing method for hourly wind gusts described

in [49]. First, we denote the hourly gust observations as Y (z, t) where the wind gust depends

on the height level z and time t of the day for modelling. To model the wind gust observations,
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we choose the generalized extreme value model and censor the wind gusts to focus more on the

extreme wind events, and to avoid biases due to the non-asymptotic behaviour. The general

idea of the censored generalized extreme value (cGEV) model is to censor Y (z, t) if it is below

a certain threshold c and to Y (z, t) otherwise, summarized as

Y (z, t) =


c if Y (z, t) < c,

Y (z, t) if Y (z, t) ≥ c,
(1)

where Y (z, t) is the hourly wind gust at height z ∈ {10, 50, 110, 175, 250} and time t = 1, . . . , 96432.

Since the observed wind gusts represent the maximum values over the averaged observations for

every hour, the block maxima approach seems to be the most suitable in this case. For the

block maxima approach, the generalized extreme distribution (GEV) is the most appropriate

underlying distribution relying on the Fisher–Tippett–Gnedenko theorem. For more elaboration

or details about the extreme value theory and the GEV distribution, we refer to [9]. Thus, the

asymptotic cumulative density function (cdf) of the GEV distribution is given by

G(Y (z, t);µ(z, t), σ(z, t), ξ) =


exp
(
− [1 + ξ(Y (z,t)−µ(z,t)

σ(z,t) )]
− 1
ξ

)
if ξ 6= 0

exp
(
− exp[−(Y (z,t)−µ(z,t)

σ(z,t) )]
)

if ξ = 0,
(2)

where µ(z, t) ∈ (−∞,∞), σ(z, t) ∈ (0,∞) and ξ ∈ (−∞,∞) on {Y (z, t) : 1 + ξ(Y (z, t) −

µ(z, t))/σ(z, t) > 0}. The parameters Y (z, t), µ(z, t), σ(z, t) and ξ represent the hourly wind

gusts, location, scale and shape parameters respectively. In a similar way as Y (z, t), the location

and scale parameter µ(z, t) and σ(z, t) rely on height z and time t. More information is given later

given when we describe the non-stationary behaviour of the model. Based on previous literature,

we choose the Gumbel distribution fixing the shape parameter ξ = 0 to model the extreme wind

events. There are two reasons for this decision. First, the Gumbel distribution has no upper or

lower limit as opposed to the Fréchet or Weibull distribution. Predictive probability for future

wind gusts above or below these limits will be zero which leads to bad forecasting. Secondly,

increasing the number of parameters often leads to more uncertainties during the maximum

likelihood estimation especially when estimating the shape parameter ξ in a non-stationary

setting. By fixing the shape parameter ξ = 0, it stabilizes the optimization routines. Thus given

the reasons mentioned above, G(Y (z, t);µ(z, t), σ(z, t)) = exp
(
− exp[−(Y (z,t)−µ(z,t)

σ(z,t) )]
)

denotes

the cdf of the hourly wind gusts in this case.

We attempt to explain the non-stationary behaviour of the cGEV model through covariates.

Based on previous studies, the most common approach is a linear combination because of its

straightforwardness and direct interpretation. Therefore, we assume a linear relationship be-

tween the observed wind gusts and the covariates and incorporate this additional information

15



into the model. In other words, the non-stationary behaviour is defined as linear combinations of

the wind covariates into the cGEV parameters. In this model, we assume the covariates C(t) are

identical at every height level for time t, to focus more on the impact of the covariates through-

out all variable selection methods. These linear relationships between the wind covariates and

the cGEV parameters are shown in the following equations:

µ(z, t) = µ0(z) +
L∑
l=1

µl(z)Cl(t), (3)

= µ0 +

L∑
l=1

µlCl(t), (4)

= µ(t), (5)

and

σ(z, t) = exp
(
σ0(z) +

L∑
l=1

σl(z)Cl(t)
)
, (6)

= exp
(
σ0 +

L∑
l=1

σlCl(t)
)
, (7)

= σ(t), (8)

where Y (z, t) denotes the hourly wind gusts varying in height and time, Cl(t) the lth covariate

which only varies in time, L the total number of covariates and the constant parameters µ0 and

σ0. The exponential function is required to guarantee a positive σ(t) for all time t.

The parameters of the CGEV model are obtained using a maximum likelihood estimation

(MLE) because this method can incorporate the wind covariates into the CGEV parameters

efficiently. For the MLE, we require the asymptotic probability density function (pdf) of the

GEV distribution for maximisation and the pdf is defined as

g(Y (z, t);µ(t), σ(t), ξ) =
1

σ(t)
t(Y (z, t))ξ+1e−t(Y (z,t)), (9)

where

t(Y (z, t)) =


1 + ξ(Y (z,t)−µ(t)

σ(t) )]
− 1
ξ if ξ 6= 0,

exp[−(Y (z,t)−µ(t)
σ(t) )] if ξ = 0.

(10)

As mentioned, we assume that ξ = 0 for better predictive probabilities and stabilization

routines such that t(Y (z, t) = exp
[
−
(
Y (z,t)−µ(t)

σ(t)

)]
. We derive from Equation 9 the log-likelihood

function for maximisation which is given by

`(µ, σ, ξ|Y ) = −
∑
z∈Z

T∑
t=0

(
log σ(t) + (ξ + 1)

(Y (z, t)− µ(t)

σ(t)

)
+ exp

(Y (z, t)− µ(t)

σ(t)

))
, (11)

`(µ, σ|Y ) = −
∑
z∈Z

T∑
t=0

(
log σ(t) +

(Y (z, t)− µ(t)

σ(t)

)
+ exp

(Y (z, t)− µ(t)

(t)

))
, (12)
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where µ(t) and σ(t) are the linear combinations with wind covariates of the location and scale pa-

rameter respectively at time t for t = 1, . . . , 96432 and the wind gusts Y (z, t) for height z and time

t. In order to maximise Equation 11, we choose the iterative Boyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm.

4.2 Overview of Variable Selection Methods

Given Table 3, there is currently a total of 16 variables in the COSMO-REA6 reanalysis which

gives us additional information about the hourly wind gusts. We use in this research a combi-

nation of classic methods and their adaptive versions for comparison in which a penalty term is

added to the likelihood function, such as the classic ridge regression, the least absolute shrinkage

and selection operator (lasso), elastic net and the adaptive version of the lasso and elastic net

methods. These variable selection methods are chosen given their prevalence in the economic

and renewable energy literature. The adaptive ridge regression will not be used in this research

as there is limited previous literature showing the advantage of adaptive ridge regression over

the lasso or elastic net. An overview of the aforementioned methods is given below with the

structure and characteristics of each method. For more details about the classic variable se-

lection methods, we refer to [19]. Lastly, the penalty terms irrespectively of the number of

hyperparameters in all variable selection, do not include the constant parameters µ0 and σ0.

4.2.1 Ridge Regression

The first variable selection method is the ridge regression proposed by [22] with an L2 penalty

term on the coefficients defined. The ridge regression estimator is given in the following function:

`ridge(µ, σ;Y ) = `(µ, σ|Y )− λ2n||β||22, (13)

β =

µ
σ

 , ||β||22 =
P∑
p=1

β2j , (14)

where µ and σ are the estimates of the wind covariates in the linear relationships between the

covariates and Y (z, t) is the hourly wind gust for all height z at time t. n denotes the total

observations for all heights, λ2 is the penalty squared loss term given the unrestricted log-

likelihood value `(µ, σ|Y ) and P is the total covariates. The L2 penalty reduces the estimates

toward zero, but never exactly zero. Because of that reason, ridge regression has been criticized

for not being capable to perform variable selection but it remains a relatively safe method for

selecting the optimal variables when the variables are highly correlated.
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4.2.2 Lasso

Another shrinkage method is the least absolute shrinkage and selection operator (LASSO) pro-

posed in [52]. This method uses an L1 penalty term λ1 also known as the lasso regularization

parameter. The following lasso criterion is maximized:

`lasso(µ, σ|Y ) = `(µ, σ|Y )− λ1n||β||1, (15)

β =

µ
σ

 , ||β||1 =
P∑
p=1

|βj |, (16)

where l(µ, σ|Y ) is the log-likelihood value with corresponding estimates for the wind covariates

µ and σ, λ2 is the regularization term, n is the total number of observations and P is the total

number of covariates. The penalty term in the lasso is more severe than the penalty term in the

ridge regression as the lasso regularization term allows insignificant variables to shrink to zero.

Because of this aspect, the lasso is one of the easiest models to interpret and estimate.

Furthermore, the regularization terms λ1 and λ2 in the ridge regression and the lasso control

how strict the penalization is and handle the sparsity of the solution. The larger the penalty

term λ1 or λ2 is, the more variables are forced to be close to zero or exactly zero. Both ridge

regression (Equation 13) and lasso (Equation 15) criteria can be simplified to Equation 11 if λ1

and λ2 is equal to zero.

4.2.3 Elastic Net

The next variable selection method is the elastic net (EN) described in [59], where two reg-

ularization parameters λ1 and λ2 are included. Elastic net is proposed to improve the ridge

regression and lasso via a combined penalty term by adding both L1 and L2 penalization. The

purpose of the first penalty L1 is to perform automatic variable selection whilst the second

penalty L2 is to improve prediction and handling of the possible collinearity. The elastic net

criterion for maximisation is defined as follows

`EN (µ, σ|Y ) = `(µ, σ|Y )− λ1n||β1|| − λ2n||β||22, (17)

β =

µ
σ

 , ||β||1 =
P∑
p=1

|βj |, ||β||22 =
P∑
p=1

β2j , (18)

where λ1 and λ2 denote the penalty terms for the L1 and L2 penalization, respectively, µ and σ

denote the wind covariates estimates, `(µ, σ|Y ) is the standard log-likelihood value given µ and

σ, and P is the total number of wind covariates. Since the elastic net includes both L1 and L2

penalization, Equation 17 can be simplified to either the ridge regression of the lasso depending
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on the value for λ1 and λ2. We define α = λ2
λ1+λ2

and if α is set to 0, the elastic net becomes the

ridge regression. If α is close to one, the elastic net is almost identical to the lasso. The elastic

net seems to significantly improve the prediction accuracy if the covariates are highly correlated.

To further improve the prediction performance of the model, we multiply the estimates of the

elastic net by (1 + λ2
n ).

4.2.4 Adaptive Lasso

The adaptive lasso presented in [58] is developed to overcome the drawbacks of the regular

lasso. First is the lack of oracle property for the lasso, indicating that the lasso does not

correctly identify the true model if the true underlying model is given in advance. By achieving

the oracle properties of an estimator, the zero parameters will be exactly estimated at zero

with probabilities converging to one. As a result, the lasso is in general not variable selection

consistent. The second drawback is that the lasso becomes unstable with high-dimensional data

and this could result in biased and inconsistent estimates for larger coefficients as well. Hence,

the adaptive lasso is proposed as an improved method of the regular lasso including the oracle

properties and is given by

`alasso(µ, σ|Y ) = `(µ, σ|Y )− λ1n||ωβ||1, (19)

β =

µ
σ

 , ||ωβ||1 =
P∑
p=1

ωj |βj |, (20)

where µ and σ are vectors of estimates of the wind covariates for the location and scale parameter

respectively, λ1 is the penalty term, n is the total number of observations of all heights, P is the

total number of covariates, and ω is a vector containing the adaptive data-driven weights where

β holds all µ and σ. The weights vector ω is defined as

ω = (|β̂lassoj |)−γ , (21)

where βlasso are the initial estimates which are yielded from the regular lasso and a corresponding

positive constant γ.

4.2.5 Adaptive Elastic Net

Similar to the lasso, the elastic net does have a few key shortcomings: (1) the lack of oracle prop-

erty where the zero parameters should be exactly zero with probability tending to one, and (2)

instability with high-dimensional data. Therefore, the adaptive elastic net estimator described

in [60] does satisfy the oracle properties and selects the relevant parameters while simultaneously
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taking the possible high correlations between variables into account. The adaptive elastic net

estimator is obtained by:

`aEN (µ, σ|Y ) = `(µ, σ|Y )− λ2n||β||22 − λ1n||ωβ||1, (22)

β =

µ
σ

 , |β||22 =
P∑
p=1

β2j , ||ωβ||1 =
P∑
p=1

ωj |βj |, (23)

where µ and σ are the estimates of the wind covariates for the hourly wind gusts, λ1 and λ2 are

the penalty terms for the L1 and L2 penalization, n is the total number of observations, P is the

total number of covariates, ω is a vector with the data-driven weights, similar to the weights in

the adaptive lasso. Equation 22 shows us that the adaptive elastic net is a mixture of the elastic

net and the adaptive lasso. The stability of the method is enhanced by the adaptive lasso while

the highly correlated variables are handled by the elastic net at the same time. Furthermore,

the data-driven weights ω are constructed by

ωj = (|βENj |)−γ , (24)

where βEN are the initial estimates obtained from the elastic net and a positive constant γ.

4.3 Performance Metrics

The variable selection methods will be evaluated using various performance measures. The most

appropriate measures for non-stationary model evaluation are comparing the Akaike information

criterion (AIC) and the Bayesian information criterion (BIC) of the models. Both estimates are

used for model selection and the formulas for the AIC and BIC value of a model are given below:

AIC = −2`(µ̂, σ̂;Y ) + 2P, (25)

BIC = −2`(µ̂, σ̂;Y ) + Plog(n), (26)

where `(µ̂, σ̂;Y ) is the maximized log-likelihood value, µ̂ and σ̂ are vectors of estimates of wind

covariates, Y denotes the hourly wind gusts for all heights, n is total number of observations

and P is the total number of covariates. The AIC determines the efficiency of the models

and focuses more on the trade-off between the goodness-of-fit and the simplicity of the model,

aiming to select the model with the optimal prediction performance. On the other hand, BIC

aims to identify the model that is the closest to the true sparse model if the true estimates are

in the candidate list. Moreover, the penalization for a free parameter is more severe for the BIC

compared to the AIC. The most efficient model has either the lowest AIC or lowest BIC values,

and we aim to have these values as low as possible when tuning the hyperparameters in the

cross-validation procedure.
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In addition to these information criteria, we use proper scoring rules for model verification

for all variable selection methods as they assess the quality of the probabilistic forecast. We use

the Continuous Ranked Probability Score (CRPS) because the CRPS is reasonably robust and

is not devaluated by certain bad forecasts. The instantaneous classic CRPS is defined as

SCRPS

(
F, y

)
=

∫ ∞
∞

[
F (t)−H(t− y)

]2
dt, (27)

where F is the predictive distribution with observation y and the well-known Heaviside step

function H(t − y). Formulations of Equation 27 can be derived for other classic distributions

and the formulation of the CRPS for the GEV distribution is described in [15]. Again, we

recall the cdf GGEVξ=0
= exp

(
− exp[−(Y (z,t)−µ(t)

σ(t) )]
)

and use this in the following expression to

determine the CRPS of the cGEV as:

SCRPS

(
GGEVξ=0

, Y (z, t)
)

= µ(t)−Y (z, t)+σ(t)
[
C− log 2

]
−2σ(t)Ei

(
log GGEVξ=0

(y)
)
, (28)

where GGEVξ=0
is the cdf of the GEV distribution, Y (z, t) denotes the hourly wind gusts at height

z at time t, µ(t) and σ(t) are the linear combinations with wind covariates for the location

and scale parameters respectively at time t, and the Euler-Mascheroni constant C ≈ 0.5772.

Furthermore, Ei(x) is the exponential integral and is defined as
∫ x
−∞

et

t dt.

A similar conclusion can be drawn for the CRPS as for the AIC and BIC where a lower

value for CRPS is preferable. We use the cGEV without covariates and constant parameters

as our reference probabilistic forecast and baseline performance. Then, we measure for each

variable selection method the percentage improvement from the baseline model. We divide the

data into a training sample and a validation sample. The training sample is used to obtain the

estimates of a given method. Then, the estimates are used to evaluate the predictive forecasts

of the validation sample. In other words, the CRPS is chosen as the performance measure to

determine the method that is able to provide the most accurate forecast.

4.3.1 Cross-validation procedure:

Cross-validation for the hyperparameters is required to ensure the validity of models since the

choice of the hyperparameters affects the model performance strongly. For every variable selec-

tion method, at least one hyperparameter needs to be tuned for the penalty term. For example

with a single hyperparameter, an increase in λ leads to a stronger penalization and fewer vari-

ables will be selected as a result. In case of two or more hyperparameters, λ1 and λ2 describe the

preference between the L1 and L2 penalty and we denote this ratio as α = λ2
λ1+λ2

. The higher

α is, the higher the preference is for the L2 penalization. To choose the optimal value for the

hyperparameters in a variable selection method, a range of values is used and the one with the
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best performance measure is chosen. We repeat this process for each variable selection method

and choose the CRPS as the performance criterion.

5 Results

In this section, the results for all variable selection methods are presented and evaluated. Five

different methods (ridge, lasso, elastic net, adaptive lasso and adaptive elastic net) are compared

to the model without covariates denoted as the baseline model, and the model including all

covariates without penalization denoted as the standard model. We use the AIC and BIC

values, and the CRPS as performance measures to determine the best model.

First, we need to establish the threshold for censoring the wind gusts for the cGEV model.

We choose the 50% quantile of the observation for each height level. The results of censoring

are given in Table 4, showing the threshold per height level and the total number of censored

observations.

Table 4. Censored observations for each height level.

Censored data 10M 50M 110M 175M 250M

Threshold in meters per second 5.79 7.40 8.65 9.69 10.54

Total number observations 93025 95700 93167 92300 89106

Total censored observations 46453 47769 46564 46108 44547

Table 5, Table 6 and Table 7 display the final coefficients and standard errors obtained from

the baseline model, standard model and all variable selection methods, such as ridge regression,

lasso, elastic net, adaptive lasso and adaptive elastic net. Significant wind covariates that

resisted the penalization in the respective method are shown in bold. Lastly, the performance

measures of the variable selection methods, the corresponding values for the hyperparameters

and additional information are summarized in Table 8.

Table 5. Final estimates of the baseline model with only constant parameters.

Baseline model with constant parameters

Coefficient S.E. Likelihood AIC BIC

µ 8.6151 0.0055
-531,363.0 1,062,732 1,062,752

σ 2.4125 0.0011
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Table 6. Final estimates and corresponding standard errors of the standard model and the variable

selection methods ridge regression, lasso and elastic net.

Variable selection method

Standard model Ridge Lasso Elastic net

Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E.

µ0 8.8337 0.0051 8.5496 0.0053 8.51058 0.00581 8.54811 0.00537

µVMAX 10M 0.6365 0.0152 0.3181 0.0038 0.40181 0.00874 0.32791 0.00397

µV ARtVMAX 10M -0.0100 0.0054 0.0256 0.0033 0.00002 0.00023 0.00788 0.00339

µV h EOF1 -0.5246 0.0139 -0.3030 0.0037 -0.24316 0.00836 -0.30904 0.00387

µV h EOF2 -0.2142 0.0084 -0.1007 0.0034 -0.00028 0.00025 -0.08698 0.00358

µMeanhV h 700 0.3670 0.0076 0.1844 0.0036 0.00083 0.00030 0.17556 0.00377

µSDhV h 700 -0.0339 0.0049 -0.0044 0.0032 0.00004 0.00023 -0.00018 0.00083

µMeanhW 700 -0.0303 0.0053 -0.0015 0.0033 0.00004 0.00023 0.00011 0.00081

µSDhW 700 0.0214 0.0061 0.0361 0.0034 0.00012 0.00024 0.01774 0.00345

µdtP 0.1717 0.0053 0.0581 0.0033 0.00035 0.00026 0.04508 0.00346

µLI -0.0697 0.0071 -0.0135 0.0035 0.00004 0.00023 -0.00025 0.00085

µTWATER -0.1277 0.0076 -0.0443 0.0035 -0.00023 0.00025 -0.03323 0.00356

µdtCAPE -0.0363 0.0047 -0.0035 0.0031 0.00000 0.00023 -0.00013 0.00081

µV h SHEAR -0.1028 0.0060 -0.0503 0.0033 -0.00009 0.00024 -0.03078 0.00345

µT 2M -0.1584 0.0097 -0.0185 0.0036 -0.00016 0.00024 -0.00504 0.00352

µAC COS -0.1414 0.0082 0.0146 0.0036 0.00011 0.00024 0.00095 0.00108

µAC SIN -0.0161 0.0055 0.0254 0.0032 0.00025 0.00025 0.01450 0.00325

σ0 0.7366 0.0016 0.7573 0.0017 0.77042 0.00173 0.75829 0.00170

σVMAX 10M 0.0636 0.0053 0.0800 0.0028 0.03665 0.00301 0.07347 0.00291

σV ARtVMAX 10M 0.0193 0.0018 0.0143 0.0016 0.00066 0.00028 0.01022 0.00159

σV h EOF1 -0.1201 0.0048 -0.1223 0.0026 -0.16493 0.00308 -0.13049 0.00273

σV h EOF2 0.0305 0.0028 0.0170 0.0020 0.00008 0.00024 0.01291 0.00199

σMeanhV h 700 0.0978 0.0027 0.0908 0.0021 0.05062 0.00204 0.08631 0.00214

σSDhV h 700 -0.0033 0.0017 -0.0030 0.0016 0.00001 0.00023 0.00006 0.00073

σMeanhW 700 -0.0098 0.0018 -0.0093 0.0016 -0.00002 0.00023 -0.00487 0.00161

σSDhW 700 0.0114 0.0020 0.0126 0.0018 0.00040 0.00026 0.00489 0.00172

σdtP 0.0327 0.0017 0.0336 0.0016 0.00086 0.00030 0.03141 0.00160

σLI -0.0331 0.0026 -0.0198 0.0021 -0.00038 0.00026 -0.01142 0.00209

σTWATER -0.0147 0.0027 -0.0114 0.0022 -0.00012 0.00024 -0.00270 0.00215

σdtCAPE -0.0041 0.0018 -0.0035 0.0016 0.00010 0.00024 -0.00010 0.00074

σV h SHEAR -0.0182 0.0021 -0.0146 0.0018 0.00004 0.00023 -0.00855 0.00179

σT 2M -0.0477 0.0037 -0.0284 0.0026 -0.00023 0.00024 -0.01743 0.00239

σAC COS -0.0268 0.0029 -0.0071 0.0022 0.00018 0.00024 -0.00043 0.00085

σAC SIN -0.0148 0.0020 -0.0039 0.0017 0.00000 0.00023 -0.00064 0.00085
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Table 7. Final estimates and corresponding standard errors of the adaptive lasso and the adaptive

elastic net.

Variable selection method

Adaptive lasso Adaptive elastic net

Coefficient S.E. Coefficient S.E.

µ0 8.55294 0.00569 8.55959 0.00543

µVMAX 10M 0.46200 0.00862 0.36708 0.00465

µV ARtVMAX 10M 0.00002 0.00017 0.00000 0.00043

µV h EOF1 -0.26230 0.00837 -0.32405 0.00454

µV h EOF2 -0.00018 0.00019 -0.04668 0.00398

µMeanhV h 700 0.00050 0.00022 0.14110 0.00420

µSDhV h 700 0.00000 0.00016 -0.00007 0.00042

µMeanhW 700 0.00000 0.00015 0.00003 0.00041

µSDhW 700 0.00007 0.00018 0.00035 0.00047

µdtP 0.00015 0.00018 0.00094 0.00059

µLI 0.00004 0.00017 0.00009 0.00043

µTWATER -0.00018 0.00019 -0.00073 0.00053

µdtCAPE -0.00005 0.00017 -0.00003 0.00041

µV h SHEAR -0.00001 0.00017 -0.00042 0.00048

µT 2M -0.00014 0.00018 -0.00049 0.00049

µAC COS 0.00012 0.00018 0.00034 0.00046

µAC SIN 0.00012 0.00018 0.00060 0.00051

σ0 0.76652 0.00171 0.76016 0.00170

σVMAX 10M 0.01029 0.00295 0.05282 0.00258

σV ARtVMAX 10M 0.00044 0.00021 0.00329 0.00152

σV h EOF1 -0.18798 0.00305 -0.15341 0.00255

σV h EOF2 -0.00010 0.00018 0.00060 0.00050

σMeanhV h 700 0.04417 0.00203 0.07902 0.00193

σSDhV h 700 0.00003 0.00015 -0.00007 0.00041

σMeanhW 700 -0.00004 0.00017 -0.00043 0.00046

σSDhW 700 0.00032 0.00020 0.00056 0.00048

σdtP 0.00052 0.00022 0.02229 0.00158

σLI -0.00033 0.00020 -0.00076 0.00052

σTWATER 0.00001 0.00015 -0.00022 0.00043

σdtCAPE 0.00018 0.00018 0.00006 0.00041

σV h SHEAR 0.00002 0.00016 -0.00041 0.00046

σT 2M -0.00002 0.00017 -0.00068 0.00051

σAC COS 0.00006 0.00017 -0.00001 0.00041

σAC SIN -0.00003 0.00017 -0.00007 0.00041
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The computation time for each method was approximately one hour given the values of

the hyperparameter(s). The duration of the corresponding cross-validation procedure depended

on the number of hyperparameters, where methods like the ridge regression and lasso had a

shorter cross-validation procedure than the adaptive elastic net. The cross-validation procedure

for one hyperparameter took approximately one day to find the minimum value for the CRPS

improvement. For the elastic net and the adaptive lasso, the cross-validation procedure took

around four days to find the optimal value. The longest cross-validation procedure was for the

adaptive elastic net which took around six days for three hyperparameters.

5.1 Interpretation of the Covariates

The number of selected variables is 30, 10, 23, 10 and 11 for the ridge regression, lasso, elastic,

adaptive lasso and adaptive elastic net respectively. First, we discuss the covariates that are

selected in all methods. Based on Table 6 and Table 7, the majority of the wind covariates

except for “V ARt VMAX 10M” for the location parameter µ and “SDh V h 700” for the

scale parameter µ are significant in the standard model. The most informative wind covariates

for the location parameter µ are the wind gust diagnostic “VMAX 10M”, “Vh EOF1” and

the mean horizontal wind at 700 hPa “Meanh V h 700” across all variable selection methods.

“VMAX 10M” seems, as expected, to have the largest positive coefficient which has the most

impact on the wind gusts statistics as it includes additional information about the maximum

wind gust near a surface at 10 m. It indicates what the maximum wind gust is, such that

stronger winds are more likely to appear if “VMAX 10M” is large. Similarly, the coefficient for

“Meanh V h 700”, the averaged absolute horizontal, is positive where a higher mean indicates

an increase in wind speed as well. The second-largest covariate is the “Vh EOF1”, which is the

barotropic mode that captures most of the vertical variability of the wind velocity, and has a

negative coefficient. This suggests that stronger wind fluctuations correspond to stronger wind

gusts.

The impact of the chosen covariates is generally weaker for σ and more covariates are selected

for σ than for µ across all methods, since σ measures the variability of the cGEV model, and

is therefore, more sensitive to changes. For the scale parameter σ, the most informative covari-

ates are also “VMAX 10M”, “Vh EOF1”, “Meanh V h 700”, “V ARt VMAX 10M” and “dtP”

where the last two covariates are not included in µ in all methods. We already presumed that

“V ARt VMAX 10M” would be positive and selected for σ. A larger “V ARt VMAX 10M” en-

sures that the variance of the cGEV estimates increases significantly, and is a positive coefficient

in all methods. The role of “dtP” is to measure the surface pressure tendency at which a positive
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coefficient indicates a larger difference in surface pressure, such as when a cold front is pass-

ing causing stronger gusty wind. This corresponds to the data analysis of the COSMO-REA6

dataset, where stronger irregular wind gusts are more likely to appear in the winter months.

Based on this analysis, we conclude that parameters associated with stronger wind gusts lead

to increased estimates in µ and σ.

Out of all methods, most of the covariates in the ridge regression resisted the L2 penalization

whereas the lasso and the adaptive lasso both only selected ten covariates. This confirms that

the ridge regression is not able to properly perform variable selection, which is mentioned in Sec-

tion 4. The coefficients and the standard errors of the insignificant covariates are extremely close

to zero in the lasso-type methods compared to the standard errors of the irrelevant covariates

in the ridge regression due to the severe lasso regularization. The lasso and the adaptive lasso

both select the same wind covariates with different coefficients. This is because the adaptive

lasso incorporates a data-driven weighted term for each covariate unlike the constant penalty

term in the lasso.

The elastic net is a combination of the ridge regression and lasso with two regularization

parameters λ1 and λ2. It performs well in selecting the important correlated covariates from

the L2 penalization part while simultaneously keeping the coefficients and standard errors of

the unnecessary covariates as low as possible due to lasso penalization. The same results can be

found for the adaptive elastic net with the penalty terms λ1 including the data-driven weights

of the adaptive lasso and λ2. In terms of the number of selected covariates, the adaptive elastic

net selects significantly fewer covariates which implies that the value of the hyperparameter for

the L2 penalization is larger for the adaptive elastic net.

5.2 Evaluation Results

Table 8 presents the results, such as the maximized log-likelihood value, the AIC and BIC

value, the CRPS improvement with respect to the baseline model, the corresponding value(s) of

hyperparameter(s) and the number of selected wind covariates for each method. As mentioned

before, the CRPS is obtained as the percentage improvement to the baseline model using the

coefficients in Table 5. We aim to have a CRPS, AIC and BIC value of a given method as low

as possible.
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Table 8. Performance measures of all variable selection methods.

Variable selection method

Standard model Ridge Lasso Elastic net Adaptive lasso Adaptive elastic net

Likelihood -488,607.2 -501,864.63 -515,359.698 -503,358.108 -514,275.076 -505,841.742

AIC 977,278.3 1,003,789 1,030,739 1,006,762 1,028,570 1,011,705

BIC 977,607.2 1,004,098 1,030,842 1,006,999 1,028,673 1,011,819

CRPS with respect to

the baseline model
-0.40076 -0.78577 -0.78637 -0.78847 -0.78984 -0.77437

λ1 0.086 0.07 0.072 0.024

λ2 0.12 0.106 0.067

γ 0.088 0.013

Number of selected

wind covariates
32 30 10 23 10 11

First, it is observed in Table 8 that including wind covariates into the model clearly yields

better CRPS across all variable selection methods by at least 4 percentage points. In addition to

that, all AIC and BIC values are significantly lower than the AIC and BIC value of the baseline

model. Hence, this indicates that introducing additional information about the wind gusts into

the model has a beneficial effect on the quality of the forecasts. It also increases the efficiency

of the model while staying close to the true sparse model, as opposed to the baseline model.

Furthermore, all variable selection methods seem to perform slightly better than the standard

model except for the adaptive elastic net with respect to the CRPS.

Given Table 8, it shows that the adaptive lasso outperforms the other variable selection

methods in terms of the CRPS. Regarding the number of significant covariates, the adaptive

lasso also selects the fewest covariates to include in the model. However, it is lacking in terms of

efficiency as it has the highest value of AIC and BIC among the methods. With regard to the AIC

and BIC values, we observe that models with the lowest AIC and BIC values select a higher

number of wind covariates. Still, we conclude that the adaptive lasso is the best performing

method as it has the best CRPS with particularly fewer covariates.

We discussed earlier in Section 4 that a single hyperparameter controls the severity of the

penalization. Table 8 shows that the hyperparameter has the value of 0.12 and 0.086 for the

ridge regression and lasso respectively. Even though the hyperparameter for the ridge regression

is larger, the lasso is still better capable of selecting relatively fewer covariates and yielding

a better CRPS improvement than the ridge regression. In the case of two hyperparameters,

α is approximately 60.23% and 73.63% for the elastic net and the adaptive elastic net respec-

tively, emphasizing the importance of the L2 penalization and thus, the significance of correlated

covariates.
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One of the most informative covariates is “Vh EOF1”, which is the barotropic wind mode.

The interpretation of “Vh EOF1” is that stronger wind gusts have more fluctuations and more

variability in height. Generally, the wind gusts are not constant at each height level. For each

height level, one may have to take a separate approach to modelling. To further investigate the

vertical variability of the wind gusts and to observe the differences in the quality of forecasting,

we perform the variable selection methods for each height level separately. For this purpose, we

divide the validation sample into three categories: (1) the whole validation sample, (2) the top

5% of the strongest wind in the validation sample and (3) the validation sample without the

top 5% strongest wind, to observe the differences with and without the stronger wind events.

In other words, we distinguish the wind variability for each height level and determine the

performance of the variable selection methods depending on the sample size and extreme wind

gusts. We summarise the results of the wind variability in Table 9.

Table 9. CRPS improvement with respect to the baseline model obtained from all variable selection

method per height level and different validation sample.

Variable selection method

Standard model Ridge Lasso Elastic net Adaptive lasso Adaptive elastic net

Whole sample

10M 0.1211 -0.0157 -0.0308 -0.0153 -0.0165 -0.0104

50M 0.2236 0.0306 -0.0008 0.0275 0.0155 0.0285

110M 0.2800 0.0714 0.0354 0.0689 0.0488 0.0712

175M 0.3074 0.1617 0.1193 0.1560 0.1236 0.1526

250M 0.2737 0.1982 0.1669 0.1952 0.1645 0.1911

Sample without top 5%

10M 0.1273 -0.0163 -0.0343 -0.0179 -0.0181 -0.0139

50M 0.2194 0.0271 -0.0010 0.0246 0.0172 0.0285

110M 0.3254 0.0958 0.0531 0.0924 0.0692 0.0942

175M 0.3458 0.1780 0.1330 0.1743 0.1385 0.1717

250M 0.2774 0.2005 0.1630 0.1965 0.1594 0.1896

Top 5% strongest wind gusts

10M -0.4565 -0.3481 -0.3030 -0.3458 -0.3334 -0.3437

50M -0.5400 -0.3669 -0.2936 -0.3608 -0.3117 -0.3557

110M -0.5169 -0.3521 -0.2805 -0.3472 -0.2961 -0.3440

175M -0.4585 -0.3147 -0.2471 -0.3096 -0.2596 -0.3062

250M -0.4347 -0.3025 -0.2354 -0.2973 -0.2465 -0.2933

Table 9 shows that the CRPS values depend on the choice of the variable selection method,

the validation sample size and the height level. Also, the CRPS decreases as the height level

increases in general. Adding more wind covariates to the model is particularly beneficial to the

lower height levels. As for the whole validation sample, we observe that the baseline model with

constant parameters is the best choice, except for the sample at 10 m, in all variable selection

methods in terms of the CRPS. Among all methods, the lasso and the adaptive lasso seem to

outperform the other methods by having the best CRPS improvements at each height level.
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The results of the whole validation and the validation sample without the strongest winds are

almost identical, and a similar conclusion can be drawn for the validation sample without the

strongest wind gusts. The baseline model provides better and more accurate forecasts than

the ones including the wind covariates except for observations at 10 m where there is a slight

improvement in CRPS of approximately 1-3% for all methods.

For the top 5% of strongest wind, all variable selection methods including the standard model

outperform the baseline model by at least 23 percentage points. The biggest improvement of the

CRPS occurs when all wind covariates are included in the model, at all height levels shown in

the standard model. Yet, the standard model gives the worst forecasts for the whole sample and

the validation sample without the strongest wind events. The more wind covariates are selected,

the larger the improvement is in the CRPS for all height levels in all methods. Two things are

notable in Table 9 for the sample with extreme wind gusts. First, the results of the adaptive

elastic net are slightly worse than the results of the ridge regression and the elastic net but the

adaptive elastic net selects significantly fewer wind covariates. If one wants to obtain similar

results with less computation time and a smaller number of selected covariates, the adaptive

elastic net might be the appropriate method. Secondly, the selected covariates are the same for

the lasso and the adaptive lasso, as we mentioned before. The results show, however, that the

CRPS for the adaptive lasso is clearly better due to the individual data-driven weights. In this

case, the adaptive lasso might be the optimal solution over the lasso. Following these results, we

conclude that the adaptive lasso and the adaptive elastic net are the best performing methods

in terms of CRPS with respect to the validation sample size. They provide the lowest CRPS in

the sample size of the strongest wind gusts as well as having one of the best CRPS for the other

sample sizes. However, the adaptive lasso has already proven to provide the best results overall

in Table 8, significantly better results than the adaptive elastic net. Therefore, we conclude in

both scenarios that the adaptive lasso is the best performing method.

6 Conclusion

This research focuses on comparing various state-of-the-art variable selection methods for the

censored generalized extreme value (cGEV) model, in order to find the most informative covari-

ates, which have a significant impact on the wind gust statistics in Germany. Also, it provides

an overview of the variable selection methods for non-stationary GEV models. The cGEV model

is based on a generalized extreme value distribution with censoring. The threshold for censor-

ing is at the 50% quantile of the observations at each height level and the Gumbel-type GEV

distribution is used in the cGEV model. For this research, two different datasets have been
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used: (1) the wind gusts observed at the Hamburg Weather Mast used to derive the wind gusts

statistics and (2) the COSMO-REA6 reanalysis utilized as a proxy for the wind characteristics.

The wind characteristics are incorporated into the location and scale parameter using a linear

combination. In this research, five different regularization variable selection methods are used,

which are a combination of common methods and relatively new ones. The five variable se-

lection methods are ridge regression, lasso, elastic net, adaptive lasso and adaptive elastic net.

Estimates of the methods are obtained using a maximum likelihood estimation and the variable

selection methods are evaluated in terms of AIC and BIC values, and the CRPS for comparison

purposes.

The results of this research reveal that the most informative covariates are the wind gust

diagnostic at 10 m “VMAX 10M” and its variance “V ARt VMAX 10M”, the barotropic mode

“Vh EOF1”, the mean of the horizontal wind speed at 700 pHa “Meanh V h 700”, and the

surface pressure tendency “dtP”, which were selected by all variable selection methods. Among

the variable selection methods, the adaptive lasso is the best performing method with a CRPS

improvement of 7.8984% for the whole validation sample. The CRPS of the adaptive lasso is

better than the CRPS of the lasso, in which the same ten wind covariates are selected due to the

individual data-driven weights in the adaptive lasso. Furthermore, this result is slightly better

than the second-best CRPS improvement, which is 7.8847% of the elastic net with significant

fewer variables for the adaptive lasso.

We further investigate the wind variability across all height levels. The results reveal that

adding wind covariates to the model is particularly valuable for wind gusts at 10 m. Furthermore,

it also shows that the CRPS is improved by at least 23 percentage points if the wind covariates

are included for the top 5% strongest wind forecasts. Based on the results, the adaptive lasso

performs well overall, for the daily wind gusts and the top 5% strongest wind gusts at each

height level in terms of CRPS.

7 Limitations and Future Research

We recommend five areas in which this research could be further improved on. First, it should

be noted that the hyperparameters for all variable selection methods are obtained through a

cross-validation procedure with a step size of 0.001. To further refine this research, one should

consider a cross-validated grid-search and the validation technique k-fold for finer results.

Second, five variable selection methods are chosen for comparison in this research where

two methods are adaptive. One suggestion is to investigate other variable selection methods,

for example, other lasso-extensions methods, such as the weighted lasso, group lasso, bayesian
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lasso, etc. or variable selection using neural network models [8].

Third, we assume a linear relationship between the wind covariates and the cGEV parameters

in this research. It would be interesting to explore this relationship further by considering other

types of functions, for example, using a conditional density network (CDN) based on a neural

network [4].

Fourth, the results of this research are obtained by presuming that the values of the wind

covariates are equal at every height level. It was also revealed that adding covariates was not

always beneficial at each height level. Therefore, the cGEV model could be further improved

by incorporating different height levels of the wind gusts to determine the influence of the wind

covariates per height level, allowing for more flexibility.

Lastly, the GEV distribution was used to model wind gusts. Other variations of the GEV

distribution could be further explored, for example, the Burr-Generalized Extreme Value mixture

distribution [26] and the wind covariates could be included using a linear combination.
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A Data analysis of observed wind gusts at the Hamburg Weather

Mast

Figure 6. Observed wind gusts from 1 January 2004 until 31 December 2014 at 110M (left) and 175M

(right).

Figure 7. Observed wind gusts from 1 January until 31 December 2014 at 250M.

Figure 8. Boxplots of hourly (left) and monthly (right) observed wind gusts at 110M.
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Figure 9. Boxplots of hourly (left) and monthly (right) observed wind gusts at 175M.

Figure 10. Boxplots of hourly (left) and monthly (right) observed wind gusts at 250M.
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