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List of symbols and abbreviations

∼ a(x) ∼ b(x) as x→ y means limx→y a(x)/b(x) = 1

O of the same asymptotic order

o of strictly smaller asymptotic order

Op bounded in probability with

op converges in probability with

γ extreme value index

ĉn,b beta kernel scedasis estimator

ĉn,h convolution-type kernel scedasis estimator

1A indicator function of set or event A

E expectation

P probability

V variance

b smoothing bandwidth for beta kernel estimator

C integrated scedasis function

c scedasis function

F cumulative distribution function

Fn,i cumulative distribution function of observation i

h smoothing bandwidth for convolution-type kernel estimator

k number of upper order statistics used in extreme value statistics

Kb beta kernel function K1/b+1,1 at the boundary

U left-continuous generalised inverse of (1/(1−F )): the upper tail quantile function

Un,i upper tail quantile function of observation i

Xn,j j-th order statistic

EVT extreme value theory

MDA maximum domain of attraction
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1 Introduction

The impact of the highly improbable, according to best selling author Nassim Nicholas
Taleb, is what we at the individual level, as society, or even as a species should pay
particular attention to (Taleb, 2007). It stresses the importance of protection against
rare but extreme events. For instance, the Dutch government requires that the height of
dikes is such that the probability of a flood in a given year is once in 10,000 (de Haan
and Ferreira, 2006), protecting against a highly improbable but consequential event. In
the context of financial risk management, the regulatory capital for the market risk of
banks is determined in such a way that a loss is not exceeded once in 100 (McNeil et al.,
2015; Nolde and Zhou, 2021). Extreme value theory (EVT) provides a sound framework
for statistical inference on such extremely low probability events in the tail region of a
distribution.

Classical extreme value theory assumes that the observations are independent and
identically distributed (iid). However, this assumption might be violated in many appli-
cations. For example, the observations may be serially correlated or cluster with respect
to their variance, as in many financial time-series. A discussion of such situations is given
by, among others, Leadbetter et al. (1983), Hsing (1991), Kearns and Pagan (1997),
Drees (2000), and a more recent review by McElroy (2016). In general, these studies con-
clude that most classical EVT statistics are still applicable, but the standard asymptotic
statistics can be misleading.

The case of independent but non-identically distributed observations has gained more
attention in recent literature. The probability distributions of extremes can be charac-
terised by a location, scale, and shape parameter. Smith (1989) and Davison and Smith
(1990) model covariates explicitly in the scale and shape parameters of these distribu-
tions, which is a pure parametric approach. However, the shape parameter, referred to
as the extreme value index, is often considered as the most relevant in governing the tail
behavior. This allows for semi-parametric approaches specifically focused on the extreme
value index. Therefore, for instance, Wang and Tsai (2009), Gardes and Girard (2010),
and Goegebeur et al. (2014) propose conditional models to relate the extreme value in-
dex to covariates, whereas de Haan and Zhou (2021) develop a methodology to model a
non-parametric trend in this parameter.

Einmahl et al. (2016) introduce the concept of heteroscedastic extremes to model
non-identically distributed observations. In this semi-parametric framework, the pro-
portionality of the tail distributions of different observations is governed over time by a
deterministic function, called the scedasis function, while the extreme value index remains
fixed. The scedasis function is left unspecified under the assumption that it has support
[0, 1] and integrates to one, which allows it to be interpreted as the relative frequency of
extreme events over time. A uniform scedasis function then resembles classical iid EVT,
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or homoscedastic extremes. For a positive extreme value index, which is for heavy-tailed
distributions, Einmahl et al. (2016) propose estimators for the scedasis function, extreme
value index, and for extreme quantile prediction. They establish the asymptotic behavior
of these statistics and propose tests for the scedasis function and for the stability of the
extreme value index over time. To increase the testing power for specific scedasis trends,
Mefleh et al. (2020) extend the model by specifying parametric densities for the scedasis
function in terms of so-called exceedance times. These exceedance times are shown to
be asymptotically independent of the values of the exceedances, shedding new light on
the results by Einmahl et al. (2016). Further, de Haan et al. (2015) impose a similar tail
proportionality condition, but the corresponding parametric scedasis trend functions are
not restricted to be densities.

To estimate the scedasis function, Einmahl et al. (2016) propose an adaptation of the
non-parametric, standard convolution-type kernel estimator, as discussed, for instance,
in Silverman (1986) and Wand and Jones (1994). Proper estimation of the scedasis
function at the most recent observation, i.e. at its right endpoint, is essential for extreme
quantile prediction. However, standard symmetric convolution-type kernel estimators are
inconsistent in the boundary region for densities with compact support: a problem often
referred to as ’boundary bias’ or ’boundary effects’. Therefore, Einmahl et al. (2016) use
a boundary kernel, as introduced by Jones (1993), in this case.

Chen (1999) suggest using a beta density as kernel function for densities with compact
support. This density estimator is adaptive and asymmetric, as the shape and therefore
the amount of smoothing of its kernel varies over the support without explicit adjustment
of the smoothing bandwidth. Chen (1999) show that this estimator has no boundary bias
problem. Further, because the support of the beta kernel matches that of the density to
be estimated, the effective sample size is larger. Chen (1999) find that this can lead to
smaller finite-sample variance than the convolution-type boundary kernel estimators by
Jones (1993) and by Jones and Foster (1996).

In our research, we propose a beta kernel estimator for the scedasis function in the
heavy-tailed heteroscedastic extremes model. Given the positive characteristics of beta
kernel estimators outlined above, we are interested in its properties for extreme quantile
prediction, both individually and in comparison to the convolution-type boundary kernel
scedasis estimator.

Our asymptotic analysis establishes the asymptotic normality of the beta kernel sceda-
sis estimator at the right boundary point and of the corresponding extreme quantile
prediction under intuitively plausible assumptions. It further suggests an optimal mean
squared error (MSE), balancing bias and variance with respect to the smoothing band-
width parameter of our estimator, which is of larger asymptotic order than that of the
convolution-type boundary kernel estimator. A Monte Carlo simulation study verifies
our asymptotic results. It also shows that our estimator generally does not outperform
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a convolution-type biweight boundary kernel estimator in terms of its optimised MSE
for various sample sizes and data generating processes: the larger effective sample size
does not lead to important finite-sample performance gains. Finally, we apply the beta
and convolution-type kernel scedasis estimators on a sample of financial loss data of the
S&P 500, which Einmahl et al. (2016) argue to be suitable for heteroscedastic extremes,
progressively zooming into the emerging financial crisis of 2008. The results by both
estimators are generally close together and suggest higher extreme quantile predictions
than the traditional homoscedastic model and the empirical estimator.

Our research differs from existing literature in the following ways. Whereas Chen
(1999) derive the asymptotic bias and variance of the beta kernel density estimator, which
are similar to our results, we focus on scedasis estimation solely at the right boundary
point and additionally provide the asymptotic distribution. Further, in contrast to the
convolution-type boundary kernel considered by Einmahl et al. (2016), which has similar
asymptotic results to ours, the beta kernel is non-negative and matches the support
of the scedasis function. Moreover, rather than giving a formal proof, we assume and
give intuitive arguments for asymptotic independence of the scedasis and extreme value
index estimators to establish asymptotic normality of the extreme quantile prediction.
Contrasted to Chen (1999) and Einmahl et al. (2016), we also provide a discussion on
the local optimal bandwidth and convergence. Furthermore, while our simulation design
is similar to Einmahl et al. (2016), it considers a greater variety of sample sizes and
data generating processes to compare the scedasis estimators. Finally, our empirical
application, while considering the same data as Einmahl et al. (2016), additionally focuses
on extreme quantile prediction and on subsamples of the data.

In conclusion, our beta kernel scedasis estimator has clear asymptotic statistical prop-
erties for extreme quantile prediction which are in accordance with existing literature.
While its performance is generally not better than that of the convolution-type boundary
kernel estimator, it is often similar in finite-sample applications. We suggest that re-
search into data-driven selection of the bandwidth parameter and number of upper order
statistics for this non-parametric approach to the heteroscedastic extremes model may
provide further, likely more realistic insights for its potential to applications in practice.

Our report proceeds as follows. We first provide an overview of the existing theory re-
lated to our research, where Section 2 discusses classical EVT, Section 3 the heteroscedas-
tic extremes model, and Section 4 kernel density estimation. While these subjects deserve
extensive studies on their own, our overview may still be more elaborate than strictly nec-
essary. However, we believe that this may provide greater understanding of the subject
matter, which is unfamiliar to many. In Section 5 we introduce our beta kernel scedasis
estimator and its asymptotic properties, together with a discussion on practical issues and
the proofs. Section 6 and 7 present the Monte Carlo simulation and empirical application,
respectively. We end with our concluding remarks in Section 8.
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2 Classical extreme value theory

In this section we discuss classical EVT, in which observations are assumed to be inde-
pendent and identically distributed (iid), and some of the corresponding statistics. It
closely follows Embrechts et al. (2013) and de Haan and Ferreira (2006), to which we
refer for extensive reviews on the subject matter.

2.1 Setup

Consider the n ∈ N iid random variables Xi, for i = 1, . . . , n, with cumulative distribution
function F and right endpoint x∗ := {x ∈ R : F (x) < 1}. These random variables could
for instance, in the context of financial risk management, correspond to losses, and in the
context of water management, to sea levels.

For the sums Sn := X1+ . . .+Xn, when properly centered and normalised, it is known
that the α-stable laws, which include the Gaussian distribution, are the only possible
limiting distributions as n → ∞. Similar to sums of random variables, the maxima
Mn := max(X1, . . . , Xn), when properly centered and normalised, can only have one of
three limiting distributions: the extreme value distributions. For iid random variables it
follows that

P(Mn ≤ x) = P(X1 ≤ x, . . . , Xn ≤ x) = F n(x), for x ∈ R,

where P denotes the probability operator. Then, defining the sequences of constants
cn > 0 and dn ∈ R, for all n, we get

lim
n→∞

P
(
Mn − dn

cn
≤ x

)
= lim

n→∞
F n(cnx+ dn) := H(x), (2.1)

where H is some non-degenerate distribution. When (2.1) holds for some H, F is said
to belong to the maximum domain of attraction (MDA) of H, or F ∈ MDA(H). The
Fisher-Tippett-Gnedenko theorem states that if F ∈ MDA(H), H must be a generalised
extreme value (GEV) distribution with standard distribution function

Hγ(x) :=

exp
(
−(1 + γx)−1/γ

)
if γ 6= 0,

exp
(
− exp(−x)

)
if γ = 0,

(2.2)

where 1 + γx > 0. To include a location parameter µ ∈ R and scale parameter σ > 0,
one could define the three-parameter location-scale family Hγ,µ,σ(x) := Hγ((x− µ)/σ).

The parameter γ is a shape parameter, often called the extreme value index, which
allows to distinguish the three types of extreme value distributions: Gumbel for γ = 0,
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Fréchet for γ > 0, and Weibull for γ < 0. For the Weibull distribution, the right endpoint
x∗ is finite, while for the other two extreme value distributions x∗ = ∞. Further, the
decay of the (right) tail of the Fréchet distribution is much slower than that of the Gumbel
distribution. Therefore, if F belongs to the Fréchet MDA, F is said to be a heavy-tailed
distribution.

The following basic result in EVT gives the essential information on the MDA: F ∈
MDA(Hγ) if and only if there exists some positive scale function a such that

lim
t→∞

U(ty)− U(t)

a(t)
=
yγ − 1

γ
, for y > 0, (2.3)

where

U(y) :=

(
1

1− F

)←
(y) = inf

{
x ∈ R : F (x) ≥ 1− 1

y

}
(2.4)

is the quantile function for the right tail probability p = 1/y and with ← denoting the
left-continuous generalised inverse. This result is important for statistical inference in
EVT and an important contribution from de Haan (1984) and Dekkers and de Haan
(1993).

A different approach in EVT is from the perspective of threshold exceedances rather
than maxima. That is, by considering the distribution of outcomes which exceed a high
level. The corresponding excess distribution over some high threshold u is given by

Fu(x) := P
(
X − u ≤ x|X > u

)
=
F (x+ u)− F (u)

1− F (u)
, (2.5)

for 0 ≤ x < x∗ − u. The Pickands-Balkema-de Haan theorem states, roughly speaking,
that the generalised Pareto distribution (GPD) can be used to model the excess distri-
bution for a high u (Balkema and De Haan, 1974; Pickands III, 1975). The GPD has a
distribution function given by

Gγ,β(x) :=


1−

(
1 +

γx

β

)−1/γ
if γ 6= 0,

1− exp

(
−x
β

)
if γ = 0,

(2.6)

where β > 0 is a scale parameter, and x ≥ 0 if γ ≥ 0 and 0 ≤ x ≤ −β/γ if γ < 0 and
γ a is shape parameter equivalent to that of the GEV distribution in (2.2). That is, γ
in the GPD corresponds to the same parameter as that in the GEV distributions. For
γ > 0, Gγ, β reduces to an ordinary Pareto distribution, for γ = 0 to an exponential
distribution, and for γ < 0 a short-tailed Pareto type II distribution.

In accordance with Einmahl et al. (2016), our focus lies on the Fréchet MDA, with γ >
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0, because of its application to financial data. See, among others, the empirical studies
by Mandelbrot (1967), Koedijk et al. (1990), Jansen and de Vries (1991), and Kearns and
Pagan (1997). Mandelbrot (1967) first noticed that the tails of the distribution of certain
asset returns decay like a power law, which can be related to the Fréchet MDA as follows.
In correspondence with (2.1) and (2.2) but for different choices of the constants cn and
dn, one could write the standard Fréchet distribution as exp

(
−x−α

)
, with α = 1/γ > 0.

Then, following Embrechts et al. (2013), by a Taylor expansion,

1− exp
(
−x−α

)
∼ x−α, as x→∞,

which shows that the right tail of the Fréchet distribution decreases as a power law.
This can be formalised using the definition of slowly and regularly varying functions.

Following Embrechts et al. (2013), a positive function L on (0,∞) is said to be slowly
varying at ∞ if it holds that

lim
t→∞

L(tx)

L(t)
= 1, for x > 0. (2.7)

Similarly, a positive function h on (0,∞) is said to be regularly varying of index α ∈ R
at ∞ if it satisfies

lim
t→∞

h(tx)

h(t)
= xα, for x > 0. (2.8)

Using these definitions, F is heavy-tailed if and only if

1− F (x) = x−1/γL(x), (2.9)

with L slowly varying at ∞. Equivalently, one could characterise the Fréchet MDA by
means of excess probability ratios as

lim
t→∞

P
(
X

t
> x | X > t

)
= lim

t→∞

1− F (tx)

1− F (t)
= x−1/γ, for x > 0, (2.10)

or, in correspondence with (2.3), by

lim
t→∞

U(ty)

U(t)
= yγ, for y > 0. (2.11)

Thus, distributions in the Fréchet MDA have regularly varying tails with a negative index
of variation. This means that the tails decay like a power function with rate α = 1/γ.
The parameter α is therefore often called the tail index of the distribution. An important
property of heavy-tailed variables X is that the population moments E(Xr) <∞ if and
only if α > r, resulting in important implications for standard statistics which rely on
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the existence of population moments of order higher than r. The characteristics of the
Fréchet MDA in (2.9), (2.10), (2.11) turn out to be useful for statistical inference, as the
well-known Hill estimator for γ explained in Section 2.2 results from these.

2.2 Statistics

We now consider statistical methods for inference on extremal events based on a sample of
iid observations X1, . . . , Xn, with the corresponding order statistics Xn,j, for j = 1, . . . , n,
such that Xn,1 ≤ . . . ≤ Xn,n. Estimation is achieved from three perspectives, of which
the first two result in fully parametric estimation, while the last is of semi-parametric
nature. A general assumption is that the observed sample comes from a distribution
which belongs to the MDA of one of the three extreme value distributions, which holds
for essentially all common continuous distributions in statistics (de Haan and Ferreira,
2006; Embrechts et al., 2013; McNeil et al., 2015).

The first perspective is from the n-block maxima Mn = max(X1, . . . , Xn) of an ob-
served sample. The Fisher-Tippett-Gnedenko theory implies that, for sufficiently large n,
one could approximate the true distribution of Mn by the location-scale family of GEV
distributions Hγ,µ,σ as defined in (2.2). Dividing a sample into m disjoint time periods, or
blocks, of the n-block maxima Mn, one could use the observed maxima Mn to fit Hγ,µ,σ.
The division is often natural: for instance, in blocks of one year in the application in
hydrology (Embrechts et al., 2013; McNeil et al., 2015). However, this is not the case
in financial applications (Nolde and Zhou, 2021). The GEV distribution can be fitted
using maximum likelihood estimation and the method of probability-weighted moments.
Typically, n should be large to assure (sufficient) independence of the observed block
maxima, even when the observations Xi are not. A disadvantage of the block maxima
method is that one only retains the m maxima to fit the GEV distribution, leading to a
large loss of potentially useful data. Moreover, one has to decide on the number of blocks
m: something that can greatly influence the quality of the estimators.

The second estimation method is called peaks-over-threshold (POT), which is based
on the perspective and theoretical results of the threshold exceedances (2.5) and (2.6).
This method makes use of the data more efficiently than the block maxima, using all ob-
servations that exceed some high threshold (McNeil et al., 2015). Following the Pickand-
Balkema-de Haan theorem, we can approximate the excess distribution Fu in (2.5) by the
GPD Gγ,β in (2.6) for some sufficiently high threshold u. The model is then estimated
by transforming the observations which exceed u to their corresponding excesses and us-
ing maximum likelihood or probability-weighted moments. Similar to the block maxima
approach, POT requires choosing a proper threshold u.

The last approach to estimate the tail distribution is based on the conditions asso-
ciated with each MDA and is considered mainly for heavy-tailed distributions and in
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Einmahl et al. (2016). Therefore, we continue with a more detailed discussion specific
to this case, in which we are mainly interested in estimating extreme value index γ > 0.
In accordance with (2.9), estimating the tail of the distribution then reduces to a semi-
parametric approach, as the slowly varying function L is not of interest in the model.
This becomes more clear when we move to extreme quantile estimation at the end of this
section. Further, we are only interested in the k upper order statistics of the sample for
estimation purposes. Then the following assumptions are standard in the EVT literature:
for a proper intermediate sequence k := kn,

lim
n→∞

k =∞ and lim
n→∞

k

n
= 0. (2.12)

This essentially says that we need a sufficiently large number of upper order statistics,
but only the ones in the tails.

A well-known and extensively studied estimation method for γ in the Fréchet MDA
is the Hill approach, as introduced by Hill (1975). The Hill estimator, for a k as defined
in (2.12), is given by

γ̂n :=
1

k

k∑
j=1

(
logXn,n−j+1 − logXn,n−k

)
. (2.13)

This estimator is also part of the key results in Einmahl et al. (2016) and therefore
also in our research. Asymptotic normality of the Hill estimator requires the following
second-order conditions. First, in addition to (2.11),

lim
t→∞

U(ty) /U(t)− yγ

A(t)
= yγ

yργ − 1

ργ
, for y > 0, (2.14)

for some function A of constant sign and limt→∞A(t) = 0 and second-order parameter
ρ < 0 governing the rate of convergence. This condition is, however, impossible to check
in practice (Embrechts et al., 2013). Secondly, under assumption (2.12), it must hold
that

lim
n→∞

√
kA

(
n

k

)
= κ ∈ R. (2.15)

Then, following de Haan and Peng (1998), under (2.11), (2.12), (2.14), and (2.15), as
n→∞,

√
k(γ̂n − γ)

d−→ N
(

κ

1− ργ
, γ2
)
. (2.16)

Conditions (2.10) and (2.11), together with (2.12), imply a natural estimator for the
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quantile function in the tail region (2.4). That is, for tail probability p sufficiently small,

Û

(
1

p

)
:= Xn,n−k

(
k

np

)γ̂n
, (2.17)

as introduced by Weissman (1978). Clearly, γ is here the only relevant parameter to
estimate. This extreme quantile estimator plays a central role in our study with its
extension to the heteroscedastic extremes framework.

In all approaches, the quality of the extreme value statistics is subject to proper
selection of a subsample of extreme observations. Generally, it is desirable for an estimator
to have minimal bias and variance, which follows, for instance, from the mean squared
error (MSE) criterion. That is, for the estimator θ̂ of some parameter θ, MSE(θ̂) :=

E((θ̂−θ)2) = (E(θ̂)−θ)2 +V(θ̂), where E and V denote the mean and variance operators,
respectively, decomposing into a (squared) bias and variance term. In extreme value
statistics, a relatively larger subsample trivially leads to less estimation variance, but this
comes at the cost of potentially using observations which may not qualify as extreme,
inducing bias. This represents a typical bias-variance trade-off problem: the subsample
should be selected in such a way that the bias and variance are optimally balanced,
minimising the MSE (or some other relevant criterion).

In the block maxima approach, the bias-variance trade-off is reflected in terms of m: a
relatively larger sample of m n-block maxima leads to lower variance, but may introduce
bias by also including observations which cannot be regarded as maxima. Similarly, in
the POT method and Fréchet MDA conditions approach, respectively, threshold u and
the number of upper order statistics k balance the bias and variance. For example, if k
is too large (i.e. u too low), observations which are not in the tail of the distribution are
considered, resulting in estimation bias. However, if k is too small (i.e. u too high), the
estimation variance tends to be high as there are few observations. This is illustrated
by conditions (2.12) and (2.15) and in result (2.16) for the Hill estimator: for k →
∞ sufficiently slowly we get κ = 0 in (2.15) and therefore an asymptotically unbiased
estimator for γ.

As the MSE is unknown in practice, one needs data-driven methods for proper se-
lection of m, u, and k. Focusing on k, a popular pragmatic solution is by means of a
so-called Hill plot: selecting k as a point, e.g. the midpoint, in the first stable part in
a plot of γ̂n against k, aiming to balance the bias and variance. This can also be done
in a plot of extreme quantile estimates against k, as these are often the most relevant
quantities in an application. These heuristics are often suggested in the literature, for
instance, in Embrechts et al. (2013) and Einmahl et al. (2016), and considered in our
empirical application. Further, various (semi-)automatic approaches are proposed, for
example, in Danielsson and de Vries (1997) and Danielsson et al. (2001).
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3 Heteroscedastic extremes

We now elaborate on the heteroscedastic extremes framework by Einmahl et al. (2016),
where the observations are independent but non-identically distributed. This constitutes
a non-parametric approach to model differences in the tails across observations, similar
to heteroscedasticity in the sense of different variances across observations.

3.1 Setup

Consider the n ∈ N independent but non-identically distributed observations Xi, for time
points i = 1, . . . , n, which follow the various continuous distribution functions Fn,i with
common endpoint x∗. Further, let there be a continuous distribution function F with the
same endpoint and a continuous positive scaling function c : [0, 1]→ (0,∞) such that

lim
x→x∗

1− Fn,i(x)

1− F (x)
= c

(
i

n

)
, (3.1)

uniformly for all n and i. Instead of being tail equivalent, the distributions F and Fn,i
are said to be tail comparable. In case c = 1, the set-up reduces to that of classical EVT
in the iid case described in Section 2, or homoscedastic extremes.

The function c is called the scedasis function, on which Einmahl et al. (2016) impose
that

C(1) :=

∫ 1

0

c(s)ds = 1 (3.2)

and where the function C on [0, 1] is referred to as the integrated scedasis function.
Condition (3.2) assures that c is both uniquely defined and can be interpreted as the
relative frequency of extremes. Mefleh et al. (2020) show that the scedasis function is
asymptotically the probability density function of the relative times in the sample at
which extreme events occur.

Additionally, the distribution function F is assumed to belong to the MDA of a GEV
distribution, such that (2.3) holds. Together with the tail comparability relation in (3.1),
this implies the following MDA condition in the heteroscedastic extremes framework:

lim
t→∞

Un,i(ty)− Un,i(t)
a(t)(c(i/n))γ

=
yγ − 1

γ
, for y > 0. (3.3)

Here, Un,i are quantile functions similar to (2.4), but for Fn,i instead of F . Condition
(3.3) implies that all Fn,i belong to the same MDA with the same extreme value index γ,
which is a key assumption.

As discussed in Section 2 and in accordance with Einmahl et al. (2016), we focus on
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the Fréchet MDA, such that γ > 0 and x∗ = ∞. Then, analogously to condition (2.11),
(3.3) becomes

lim
t→∞

Un,i(ty)

U(t)(c(i/n))γ
= yγ, for y > 0. (3.4)

Combining (2.9) and (3.1) shows that in this case, the scedasis function can also be
thought of as a deterministic functional time trend scaling the extreme events:

1− Fn,i(x) ∼ c

(
i

n

)
L(x)x−1/γ, as x→∞. (3.5)

3.2 Statistics

We now discuss the statistical methods in the heteroscedastic extremes framework and
their asymptotic properties. In general, condition (2.12) on the sequence k = kn is
assumed to hold. Einmahl et al. (2016) suggest to estimate the extreme value index γ by
the Hill estimator (2.13) and pose the standard second-order conditions (2.14) and (2.15),
with κ = 0, for the speed of convergence of (2.11). To estimate the integrated scedasis
function C(s) =

∫ 1

0
c(s)ds, they propose the sequential empirical survival function

Ĉn(s) :=
1

k

[ns]∑
i=1

1{Xi>Xn,n−k}, (3.6)

where 1 denotes the indicator function, which equals one if its argument is true and zero
otherwise. Intuitively, (3.6) is proportional to the number of extreme observations within
the first [ns] observations of the sample. To estimate the scedasis function, Einmahl et al.
(2016) introduce an adaptation of the standard convolution-type kernel density estimator,
which we discuss in Section 4. That is,

ĉn,h(s) :=
1

kh

n∑
i=1

1{Xi>Xn,n−k}K
(
s− i/n
h

)
, (3.7)

where kh → ∞, as n → ∞, and K is a symmetric kernel function as in (4.1), with the
additional condition that K(u) = 0 for |u| > 1. In their simulation and empirical appli-
cation, Einmahl et al. (2016) consider the biweight kernel function (4.2). They further
extend the extreme quantile estimator (2.17) by Weissman (1978) to the heteroscedastic
extremes model:

Ûn,i

(
1

p

)
:= Xn,n−k

(
ĉn,h(i/n)k

np

)γ̂n
. (3.8)

14



Then, when extending the support of c to [0, 1+ ε] for some ε > 0 and including i = n+1

to the limit in tail comparability relation (3.1), they propose

Ûn,n+1

(
1

p

)
:= Xn,n−k

(
ĉn,h(1)k

np

)γ̂n

(3.9)

as an estimator for the extreme quantile of the unobserved random variable Xn+1, that is,
an extreme quantile prediction, which plays a key role in our study. Clearly, (3.9) requires
proper estimation of the scedasis function at the right boundary point, corresponding to
the most recent observation. Therefore,

ĉn,h(1) =
1

kh

n∑
i=1

1{Xi>Xn,n−k}K̃
(

1− i/n
h

)
, (3.10)

where K̃ is the boundary kernel (4.4) to eliminate the bias associated with symmetric
convolution-type kernels at the boundaries of densities with compact support. We discuss
this more thoroughly in Section 4.

Einmahl et al. (2016) provide additional second-order conditions on the speed of
convergence of the tail comparability relation (3.1). That is, for some positive, eventually
decreasing function Ã, with limt→∞ Ã(t) = 0,

sup
n∈N

max
i∈[1,n]

∣∣∣∣∣1− Fn,i(x)

1− F (x)
− c
(
i

n

)∣∣∣∣∣ = O

(
Ã

(
1

1− F (x)

))
, as x→∞, (3.11)

and

lim
n→∞

√
kÃ

(
n

2k

)
→ 0. (3.12)

Further, to assure sufficient smoothness of the scedasis function,

lim
n→∞

√
k sup
|u−v|≤1/n

∣∣c(u)− c(v)
∣∣ = 0. (3.13)

That is, c should be Lipschitz continuous of order at least 1
2
.

Under the assumptions outlined above, Einmahl et al. (2016) prove that, under a
Skorokhod construction, as n→∞,

sup
0≤s≤1

∣∣∣√k(Ĉn(s)− C(s)
)
−B

(
C(s)

)∣∣∣→ 0 almost surely (3.14)

and

√
k(γ̂n − γ)→ γZ almost surely, (3.15)
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where B is a standard Brownian bridge and Z a standard normal random variable inde-
pendent of B. These results mean that, asymptotically, the (integrated) scedasis function
and extreme value index can be estimated independently. Result (2.16) and (3.15), for
κ = 0, are therefore identical: this classical extreme value statistics result remains,
asymptotically, valid. The proofs for these results are based on the sequential tail empir-
ical process (STEP), a normalised sequential empirical distribution function for the tail
region introduced by Einmahl et al. (2016).

In extension to these results, Mefleh et al. (2020) show that the times at which ex-
tremes occur and the size of these extremes are asymptotically independent. The asymp-
totic distribution of these exceedance times Tj, defined such that Xn,n−j+1 = XnTj , has a
density equal to the scedasis function, while the values of the exceedances are asymptot-
ically Pareto distributed.

Further, in addition to the assumptions above, supposing
∣∣c′′(1)

∣∣ <∞,
∫ 1

−1

∣∣K ′′(u)
∣∣ du <

∞ and, as n→∞, the bandwidth h satisfies kh→∞ and k1/5h→ λh ∈ [0,∞), Einmahl
et al. (2016) prove that, as n→∞,

√
kh
(
ĉn,h(1)− c(1)

) d−→ N

(
λ
5/2
h

c′′(1)

2

∫ 1

0

u2K̃(u)du, c(1)

∫ 1

0

K̃2(u)du

)
. (3.16)

This is similar to the results for the standard convolution-type kernel density estimators
discussed in Section 4. For instance, the mean is similar to expression (4.3), if corrected
for boundary effects. As n → ∞, together with result (3.15) and letting the small tail
probability p = pn satisfy np/k → 0 and

√
h log(k/(np)) → βh ∈ [0,∞), they further

show that

√
kh

(
Ûn,n+1(1/p)

Un,n+1(1/p)
− 1

)
d−→ N

λ5/2h

γc′′(1)

2c(1)

∫ 1

0

u2K̃(u)du, γ2

(∫ 1

0
K̃2(u)du

c(1)
+ β2

h

) .

(3.17)

Results (3.16) and (3.17) are the convolution-type kernel estimator counterparts to our
key results given in Section 5.1.

Einmahl et al. (2016) further suggest test statistics for the heteroscedasticity of the
extremes and specific parametric scedasis functions. They also propose statistics to test
whether γ is fixed over the observations, which is a key assumption for the validity of the
model. Last, Mefleh et al. (2020) consider parametric models for the scedasis function in
terms of exceedance times Tj to test for a trend with more power.
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4 Kernel density estimation

Kernel density estimation is a non-parametric approach to estimating the probability den-
sity function f underlying a sample of observationsX1, . . . , Xn. The classical convolution-
type kernel density estimator for f at a point x in its support is

f̂n,h(x) :=
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (4.1)

for some smoothing bandwidth h > 0 such that h→ 0 and nh→∞, as n→∞, and K
a kernel function. The estimator is such that the kernel gives the relative contribution
of each observation Xi to the density estimate at x. Typically, K is a symmetric and
unimodal density function: K ≥ 0,

∫
K(u)du = 1, and K(−u) = K(u). For instance,

Einmahl et al. (2016) consider the biweight, or quartic kernel function

K(u) =
15

16
(1− u2)2, for u ∈ [−1, 1], (4.2)

and K(u) = 0 otherwise, in their scedasis function estimator (3.7). Other examples are
the standard Gaussian, uniform, triangular, and Epanechnikov kernel functions. The
bandwidth h determines the degree of smoothness of the estimator and thus plays a
central role in its bias-variance trade-off: a concept introduced in Section 2.2 in relation
to extreme value statistics. Relatively larger values of h result in a smoother density curve
estimate, and thus in less variance, but higher bias, as observations Xi further away from
x contribute relatively more to f̂n,h(x). We more formally discuss this trade-off by means
of the statistical properties of the beta kernel estimator in (4.8) and (4.9).

When the density to be estimated has compact support, the symmetric convolution-
type kernel estimator is generally inconsistent in the regions near the boundaries, as it
allocates weight outside the theoretical range of the data. We call this ’boundary bias’,
in correspondence with Chen (1999). Along the lines of the discussion in Jones (1993),
but for a density f with support [0, 1], it follows that

E
(
f̂n,h(x)

)
= f(x)

∫ x/h

(x−1)/h
K(u)du − hf ′(x)

∫ x/h

(x−1)/h
uK(u)du

+ h2
f ′′(x)

2

∫ x/h

(x−1)/h
u2K(u)du+ o

(
h2
)
.

(4.3)

Now, for simplicity and in accordance with Jones (1993) and Einmahl et al. (2016), con-
sider a symmetric kernel with support [−1, 1], e.g. (4.2). Then, because

∫ x/h
(x−1)/hK(u)du =

1 only if the limits of integration reduce to the limits of support of the kernel, the esti-
mator is inconsistent in the boundary regions x ∈ [0, h]∪ [1− h, 1]. For instance, specific
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to our discussion for estimation at the right boundary, as n→ 0, we have

E
(
f̂n,h(1)

)
∼ f(1)

∫ 1/h

0

K(u)du− hf ′(1)

∫ 1/h

0

uK(u)du

∼ 1

2
f(1)− hf ′(1)

∫ 1

0

uK(u)du,

implying a bias of −f(1)/2 + O(h). In contrast, the bias is O(h2) in the interior region,
x ∈ (h, 1 − h), leaving the third term of (4.3) as leading, which results in a consistent
estimator.

One of the solutions to this problem is the linear correction generalised jackknife
boundary kernel proposed by Jones (1993). This boundary kernel is also considered by
Einmahl et al. (2016) for the boundary scedasis estimator (3.10) and by Chen (1999) for
comparison to their beta kernel estimator and is therefore central in our study. Specifi-
cally, for a density with compact support [0, 1], the boundary kernel for the upper bound-
ary region x ∈ [1− h, 1] is given by

K̃

(
x−Xi

h

)
:=

∫ 1

(x−1)/h u
2K(u)du− ((x−Xi)/h)

∫ 1

(x−1)/h uK(u)du∫ 1

(x−1)/hK(u)du
∫ 1

(x−1)/h u
2K(u)du−

( ∫ 1

(x−1)/h uK(u)du
)2K(x−Xi

h

)
,

(4.4)

where K is a symmetric kernel as in (4.1) with support [−1, 1]. A similar kernel is
defined for x ∈ [0, h], which can be found explicitly in Jones (1993). This corrected kernel
estimator ensures consistency in the boundary regions, though it has the disadvantage
that it can take on negative values and does not result in unit integral density estimators
(Jones, 1993). Jones and Foster (1996) give a solution to the former problem.

Opposed to a convolution-type kernel estimator, Chen (1999) propose to use a beta
density as a kernel function for estimating densities with compact support. That is, let

Kα,β(u) :=
1

B(α, β)
uα−1(1− u)β−1, for u ∈ [0, 1], (4.5)

denote the beta density function of a Beta(α, β) variable with shape parameters α, β > 0,
where

B(α, β) =
Γ(α + β)

Γ(α)Γ(β)
=

∫ 1

0

tα−1(1− t)β−1dt (4.6)

denotes the beta function with Γ the gamma function. Then, for a density with support
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[0, 1] and a point x in this support, the beta kernel density estimator is

f̂n,b(x) :=
1

n

n∑
i=1

Kx/b+1,(1−x)/b+1(Xi), (4.7)

where b is a smoothing bandwidth parameter such that b → 0 and nb → ∞ as n → ∞.
In symmetric convolution-type kernel estimators, the bandwidth h and value x can be
seen as the scale and location parameters of the kernel density function, respectively.
In contrast, in the beta kernel estimator, b and x control the shape parameters of the
beta density function, such that x is its mode. For a fixed b, the beta kernel then
varies in shape over x, resulting in an adaptive amount of smoothing. Therefore, it is an
asymmetric and adaptive kernel density estimator. Moreover, because the kernel and the
density underlying the data share the same compact support, the estimator allocates no
weight outside the range of the data. Therefore, the beta kernel density estimator has
no boundary bias problem and has a larger effective sample size. Chen (1999) find that
the estimator can have smaller finite-sample variance than the boundary kernel estimator
(4.4) and its successor by Jones and Foster (1996).

Chen (1999) show, as n→∞, assuming x ∈ [0, 1],
∣∣f ′′(x)

∣∣ < 0, and b→ 0, that

E
(
f̂n,b(x)

)
= f(x) + b

(
(1− 2x)f ′(x) +

1

2
x(1− x)f ′′(x)

)
+ o(b) (4.8)

and

V
(
f̂n,b(x)

)
=


1

2n
√
πbx(1− x)

(
f(x) + o(1)

)
if x ∈ (0, 1),

1

2nb

(
f(x) + o(1)

)
if x = 0 or x = 1.

(4.9)

In contrast to (4.3), (4.8) clearly shows that the bias of the estimator is O(b), irrespective
of proximity to a boundary. However, b → 0 should be at a rate slow enough to have
n
√
b→∞ and nb→∞, respectively, for the variances of the interior and the boundaries

in (4.9) to shrink to zero. This presents the typical trade-off between bias and vari-
ance governed by the bandwidth parameter, which is similar for convolution-type kernel
estimators.

We must note that Chen (1999) additionally propose a slightly different estimator
than presented in (4.7), which eliminates the unsatisfactory dependence on f ′(x) in the
bias for the interior region. However, as we are mainly interested in estimation at the
right boundary point of the scedasis function, this estimator is irrelevant in our research
as it merely complicates the expressions and derivations to follow.

Due to the bias-variance trade-off, the choice of the bandwidth is generally considered
as more important for the performance of kernel estimators than the choice of the kernel
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(Chen, 1999). Globally, over their full support, density estimators are typically evaluated
in terms of the mean integrated squared error (MISE). That is, for some estimator f̂n for
density f , MISE(f̂n) =

∫
MSE(f̂n(x))dx, with the MSE as discussed in Section 2.2. The

global optimal bandwidth is then the minimiser of this criterion, balancing the bias and
variance of the estimator over its full support. Both the beta and convolution-type kernel
estimators asymptotically achieve an optimal rate of MISE convergence of O(1/n4/5)

for their global optimal bandwidths h∗ = O(1/n1/5) and b∗ = O(1/n2/5), respectively.
We discuss the local optimal bandwidth and convergence, i.e. in terms of the MSE at
a specific point x, for the kernel estimators specific to scedasis estimation at the right
boundary, in Section 5.2.

Among the many different data-based techniques to select a proper bandwidth, with
respect to the (approximate) MISE, are rule-of-thumb, least-squares and biased cross-
validation, solve-the-equation plug-in, and smoothed bootstrap. For a review, see, among
others, Jones et al. (1996) and, more recently, Heidenreich et al. (2013) and Zambom and
Ronaldo (2013). These are generally specific to convolution-type kernel estimators, as
literature for beta kernel estimators is scarce.

5 The beta kernel scedasis estimator

In this section we discuss the beta kernel estimator for the scedasis function defined
in (3.1). We provide the asymptotic distribution of the estimator at the right boundary
point and of the corresponding extreme quantile prediction, together with a brief analysis
of the local optimal MSE and bandwidth, in Section 5.1. Some practical considerations
with respect to selecting the bandwidth and the number of upper order statistics are
discussed in Section 5.2 and the proofs are in Section 5.3. Generally, the notation is
adopted from the previous sections.

In correspondence with the scedasis estimator (3.7) by Einmahl et al. (2016) and the
beta kernel density estimator (4.7) by Chen (1999), our beta kernel scedasis estimator is

ĉn,b(s) :=
1

k

n∑
i=1

1{Xi>Xn,n−k}Ks/b+1,(1−s)/b+1

(
i

n

)
, (5.1)

for which we assume b → 0 and kb → ∞ as n → ∞. We continue to distinguish this
estimator from (3.7) and (3.10) by the subscript b instead of h, which correspond to their
specific bandwidth parameters. Because of our focus on extreme quantile prediction, we

20



0.0 0.5 1.0

u

0.0

0.5

1.0

1.5

K
b

0.0 0.5 1.0

u

0.0

5.0

10.0

K
b

Figure 5.1: Beta kernel Kb = K1/b+1,1 at the right boundary for bandwidths b = 10 (left) and b = 0.1
(right).

are mainly interested in estimating c(1). The estimator then reduces to

ĉn,b(1) =
1

k

n∑
i=1

1{Xi>Xn,n−k}K1/b+1,1

(
i

n

)

=
1

k

n∑
i=1

1{Xi>Xn,n−k}

(
1

b
+ 1

)(
i

n

)1/b

.

(5.2)

For notational convenience, we denote Kb := K1/b+1,1 in the remainder of this section.
Note that in case b → ∞, Kb reduces to a standard uniform kernel, and in case b → 0,
to a degenerate distribution concentrated at its right boundary, which is demonstrated
in Figure 5.1. Further, the extreme quantile estimator (3.8) and prediction (3.9) extend
in a trivial way to the beta scedasis estimator by replacing ĉn,h by ĉn,b, In particular,

Ûn,n+1

(
1

p

)
:= Xn,n−k

(
ĉn,b(1) k

np

)γ̂n

. (5.3)

5.1 Asymptotic theory

We first provide a theorem on the asymptotic distribution of ĉn,b(1). It is in close corre-
spondence with result (3.16) for the boundary kernel estimator by Einmahl et al. (2016)
and with results (4.8) and (4.9) by Chen (1999). However, in contrast to Einmahl et al.
(2016), the beta kernel scedasis estimator is non-negative and matches the compact sup-
port of the scedasis function and we explicitly prove normality via the Lindeberg-Feller
theorem. Moreover, opposed to Chen (1999), we focus solely on the kernel estimator at
the right boundary point and establish its asymptotic distribution.

Theorem 1. Let the scedasis function be as defined in (3.1) and satisfy (3.2) and
∣∣c′(1)

∣∣ <
∞. Further, let ĉn,b(1) be the beta kernel scedasis estimator (5.2) for c(1). Assume that
the conditions in (2.12), (3.11), (3.12), and (3.13) hold and that b → 0, kb → ∞, and
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k1/3b→ λb ∈ [0,∞) as n→∞. Then, as n→∞,

√
kb
(
ĉn,b(1)− c(1)

) d−→ N
(
−λ3/2b c′(1),

1

2
c(1)

)
.

Proof. See Section 5.3

We further present a theorem on the asymptotic distribution of the extreme quantile
prediction based on the beta kernel scedasis estimator. This is is similar to result (3.17)
by Einmahl et al. (2016), but explicitly in terms of our beta kernel scedasis estimator
and under the additional assumption of asymptotic independence of ĉn,b(1) and γ̂n.

Theorem 2. Adopt the assumptions and definitions in Theorem 1. Additionally, let the
scedasis function be defined on [0, 1 + ε] for some ε > 0 and assume (3.11) holds with
i = n + 1 included. Further, let γ̂n be the estimator (2.13) for γ, which we assume is
asymptotically independent of ĉn,b(1), and assume that conditions (2.14) and (2.15) for
κ = 0 hold. Let Ûn,n+1(1/p) be the extreme quantile prediction (5.3). Then, as n → ∞,
for p = pn such that np/k → 0 and

√
b log(k/(np))→ βb ∈ [0,∞),

√
kb

(
Ûn,n+1(1/p)

Un,n+1(1/p)
− 1

)
d−→ N

(
−λ3/2b

γc′(1)

c(1)
, γ2
(

1

2c(1)
+ β2

b

))
.

Proof. See Section 5.3

The additional assumptions (2.14) and (2.15) are necessary for result (3.15) on the
normality of the Hill estimator. Further, we need the asymptotic independence of γ̂n
and ĉn,b(1) to establish their joint normality. This is something we do not formally prove
and cannot directly extend from the proof by Einmahl et al. (2016). In contrast to their
boundary kernel, the beta kernel always has support over the full range of the data, inde-
pendent of the choice of its bandwidth parameter. However, as b→ 0, ĉn,b(1) increasingly
concentrates on observations close to the right endpoint, as shown in Figure 5.1. As γ̂n
is based on the full sample, we argue intuitively that their dependence becomes asymp-
totically negligible. Further, Mefleh et al. (2020) prove asymptotic independence of the
exceedance times and corresponding exceedance values, which are, respectively, associ-
ated with the estimation of c and γ. A more elaborate discussion on the independence
assumption can be found in Appendix A.2.

The biases of the estimators are O(b), implying that there is no boundary bias prob-
lem. However, as they include −c′(1), there is a tendency to underestimate increasing
scedasis at the boundary in finite-sample applications. This is potentially worrisome in
the application to risk management, as it would lead to extreme quantile predictions
which are too low in times of increasingly more extremes. Zhang and Karunamuni (2010)
even suggest that if the so-called shoulder condition c′(1) = 0 is not satisfied, the beta
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kernel estimator has a severe boundary problem. For comparison, the convolution-type
boundary kernel estimator (3.10) tends to underestimate peaks as its bias depends on
c′′(1). The variances are similar to the results by Einmahl et al. (2016): as b→ 0, setting
h = 1 and replacing the boundary kernel by Kb gives the same results.

There is a typical bias-variance trade-off governed implicitly in λb by the bandwidth
parameter, as discussed in Section 4. Therefore, we briefly discuss the asymptotically
optimal properties in terms of the MSE. Theorem 1 implies, as n→∞,

MSE
(
ĉn,b(1)

)
:=
[
E
(
ĉn,b(1)

)
− c(1)

]2
+ V

(
ĉn,b(1)

)
∼ b2

(
c′(1)

)2
+

1

2kb
c(1).

(5.4)

Following straightforward minimisation of (5.4) with respect to b, the local optimal band-
width choice, i.e. at the boundary point, is

b∗ :=

(
c(1)

4k(c′(1))2

)1/3

= O

(
1

k1/3

)
. (5.5)

Combining (5.4) and (5.5) gives, as n→∞,

MSE
(
ĉn,b∗(1)

)
∼ 1

k2/3

[(
c(1)c′(1)

)2/3( 1

42/3
+

43/2

2

)]
= O

(
1

k2/3

)
. (5.6)

Similarly, following (3.16), it can be shown that the local optimal bandwidth of the
convolution-type boundary kernel estimator is h∗ = O(1/k1/5), with an optimal MSE of
O(1/k4/5) as n → ∞. Therefore, in terms of k, the convergence of the optimal MSE of
the beta kernel scedasis estimator at the boundary is slower than that of the convolution-
type estimator and that of its own global MISE counterpart as discussed in Section 4.
However, Chen (1999) highlight the potential finite-sample advantages of a beta kernel
estimator, which we examine in our simulation study in Section 6.

5.2 Practical considerations

We briefly discuss some practical considerations for selection of the bandwidth and the
number of upper order statistics in kernel scedasis estimation in general.

Most of the existing literature on kernel estimation discuss data-driven methods for
global bandwidth selection. In the same light, we derive a simple cross-validation cri-
terion for global bandwidth selection for the convolution-type kernel scedasis estimator
(3.7), which can be found in Appendix A.1. This traditional criterion has no explicit
extension to a beta kernel and would require numerical integration. In agreement with
existing literature, for instance, Jones et al. (1996), we find that the criterion results
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in bandwidths which are too small. That is, the resulting scedasis estimates have too
much variation, both objectively in preliminary simulation results and subjectively in
application to our financial loss data. Standard rule-of-thumb bandwidths are neither
appropriate, as the scedasis functions may deviate substantially from a Gaussian density.
More generally, as becomes apparent in our empirical application, the scedasis function
may often substantially differ from standard density functions. Therefore, we believe that
familiar global bandwidth selection methods are often not satisfactory for scedasis esti-
mation. However, local bandwidth selection requires additional complicated bandwidth
choices (Jones et al., 1996), for instance, for the second-order derivative estimator in the
solve-the-equation plug-in method by Thombs and Sheather (1992).

To narrow the scope of our study, we leave the subject of data-driven bandwidth
selection methods for kernel scedasis estimation to future research. We consider pragmatic
solutions in our simulation and application, for instance, by taking only the optimal
order of the bandwidths into consideration. That is, as discussed in Section 5.1, b∗ =

O(1/k1/3) = O((h∗)5/3) at the boundary and b∗ = O(1/k2/5) = O((h∗)2) globally.
Further, the optimal bandwidth of the kernel scedasis estimator depends on k. Vice

versa, the extreme quantile prediction, which depends on the bandwidth choice via the
scedasis estimator, is an important consideration in selecting k. Therefore, the selection
of the bandwidths and k are interconnected. However, results (3.14) and (3.15) imply that
estimating the extreme value index and the scedasis can be done independently of each
other. Therefore, we consider a sequential approach: first determining k, as discussed
in Section 2.2, by a Hill plot rather than a quantile plot, and subsequently selecting the
bandwidth.

5.3 Proofs

Proof of Theorem 1

Let tn := (n/k)(1− F (Xn,n−k)) and Z denote a standard normal random variable. Then
Einmahl et al. (2016) prove that, under a Skorokhod construction, as n→∞,∣∣∣√k(tn − 1) + Z

∣∣∣→ 0 almost surely.

Almost sure convergence implies convergence in probability, such that, as n→∞,

P
(∣∣∣√k(tn − 1) + Z

∣∣∣ > ε

)
→ 0, for all ε > 0,

or, equivalently,
√
k(tn− 1) +Z = op(1). Because Z is a random variable independent of

n, it follows that it is by definition bounded in probability of order 1: Z = Op(1). Thus,√
k(tn − 1) + Z =

√
k(tn − 1) + Op(1) = op(1). Then, following van der Vaart (2000),
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using the properties that Op(1) + op(1) = Op(1) and that op implies Op, it must hold that√
k(tn − 1) = Op(1). Now define the intermediate sequence δ := δn such that δ → 0 as

n→∞. Then, δ
√
k(tn − 1) = Op(δ) = op(1), as n→∞:

P
(
δ
√
k|tn − 1| > ε

)
→ 0, for all ε > 0

Equivalently,

P
(
δ
√
k|tn − 1| ≤ 1

)
= P

(
t− ≤ tn ≤ t+

)
→ 1, (5.7)

where we let t± := 1 ± 1/(δ
√
k). Einmahl et al. (2016) use δ = h1/4, in terms of the

bandwidth of boundary kernel scedasis estimator (3.10), but (5.7) would also hold for
δ =
√
b, as long as δ → 0 as n→∞. Now, because

U

(
n

ktn

)
= U

(
1

1− F
(
Xn,n−k

)) = Xn,n−k,

we define, in correspondence with (5.2),

c̃n,b(u) :=
1

k

n∑
i=1

1{
Xi>U(n/(ku))

}Kb

(
i

n

)
, (5.8)

such that ĉn,b(1) = c̃n,b(tn) almost surely and, in case (5.7) happens,

c̃n,b
(
t−
)
≤ c̃n,b(tn) ≤ c̃n,b

(
t+
)
. (5.9)

Note that, in contrast to the proof in Einmahl et al. (2016), who make a distinction
between the negative and positive parts of the boundary kernel, the beta kernel is always
non-negative. Thus, we have to prove that, as n→∞,

√
kb
(
c̃n,b
(
t±
)
− c(1)

) d−→ N
(
−λ3/2c′(1),

1

2
c(1)

)
, (5.10)

in order to prove the main theorem.
We first need the following proposition.

Proposition 1. Under the assumptions stated in Theorem 1, as n→∞,

E
(
c̃n,b
(
t±
))

= c(1)− bc′(1) + o

(
1√
kb

)
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and

V
(
c̃n,b
(
t±
))

=
1

2kb
c(1) + o

(
1

kb

)
.

Proof. To prove Proposition 1, we need two lemmas, which are slight adaptations of
proofs by Chen (2000).

Lemma 1. Let T1 = T1/b+1,1 and T2 = T2/b+1,1 be Beta(1/b + 1, 1) and Beta(2/b +

1, 1) random variables, respectively. Then, as b → 0, their means and variances are,
respectively,

E(T1) = E(T2) = 1− b+O(b2) and V(T1) = V(T2) = O(b2).

Proof. The mean and variance of beta random variable T ∼ Beta(α, β) are

E(T ) =
α

α + β
and V(T ) =

αβ

(α + β)2(α + β + 1)
,

respectively. Therefore,

µ1(b) = E(T1) =
1 + b

1 + 2b
, µ2(b) = E(T2) =

2 + b

2 + 2b
,

σ2
1(b) = V(T1) =

1/b+ 1

(1/b+ 2)2(1/b+ 3)
, and σ2

2(b) = V(T2) =
2/b+ 1

(2/b+ 2)2(2/b+ 3)
.

Then by considering a second-order Taylor expansion around 0, as b→ 0 by assumption,
we can write

µ1(b) = µ2(b) = 1− b+O(b2) and σ2
1(b) = σ2

2(b) = O(b2),

which proves the lemma.

Lemma 2. Let T1 = T1/b+1,1 and T2 = T2/b+1,1 be Beta(1/b + 1, 1) and Beta(2/b + 1, 1)

random variables, respectively, and let c be a continuous function with
∣∣c′′(1)

∣∣ <∞. Then,
as b→ 0,

E
(
c(T1)

)
= E

(
c(T2)

)
= c(1)− bc′(1) + o(b).

Proof. Using a second order Taylor expansion around 1, following the proof by Chen

26



(2000), we can write

c(T1) = c(1) + c′(1)(T1 − 1) +
1

2
c′′(1)(T1 − 1)2 + r(T1 − 1),

where r denotes the remainder of the expansion. Then by taking the expectation on both
sides and using Lemma 1,

E
(
c(T1)

)
= c(1) + c′(1)E(T1 − 1) +

1

2
c′′(1)E

(
(T1 − 1)2

)
+ E

(
r(T1 − 1)

)
= c(1)− bc′(1) +

1

2
c′′(1)V(T1 − b) + E

(
r(T1 − 1)

)
= c(1)− bc′(1) + o(b).

For a proof for the convergence of the remainder term E
(
r(T1 − 1)

)
we refer to Chen

(2000). Because, following Lemma 1, in the limit the first two moments of both T1 and
T2 are equivalent, it follows that E

(
c(T1)

)
= E

(
c(T2)

)
, which concludes the proof of this

lemma.

We can now continue with the proof of Proposition 1. We start with the expectation.
Note that c̃n,b

(
t±
)
is a sum of random variables which are non-identically distributed.

This fact, combined with the second-order condition (3.11), gives, as n→∞,

E
(
c̃n,b
(
t±
))

=
1

k

n∑
i=1

Kb

(
i

n

)
E
(
1{

Xi>U(n/(kt±))
})

= t±
1

n

n∑
i=1

Kb

(
i

n

)[
c

(
i

n

)
+O

(
Ã

(
n

kt±

))]
,

(5.11)

because condition (3.11) implies that for all n ∈ N and all i = 1, . . . , n, as n→∞,

E
(
1{

Xi>U(n/(kt±))
}) = P

(
Xi > U

(
n

kt±

))

= 1− Fn,i

(
U

(
n

kt±

))

=
kt±

n

[
c

(
i

n

)
+O

(
Ã

(
n

kt±

))]
.

(5.12)

Using the definition and the corresponding error of the right Riemann sum approximation
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to an integral together with Lemma 2, we get, as n→∞,

1

n

n∑
i=1

c

(
i

n

)
Kb

(
i

n

)
=

∫ 1

0

c(u)Kb(u)du+O

(
1

n

)
= E

(
c
(
T1/b+1,1

))
+O

(
1

n

)
= c(1)− bc′(1) + o(b) +O

(
1

n

)
,

(5.13)

where T1/b+1,1 is a Beta(1/b+ 1, 1) variable. Similarly, as n→∞,

1

n

n∑
i=1

Kb

(
i

n

)
=

∫ 1

0

Kb(u)du+O

(
1

n

)
= 1 +O

(
1

n

)
.

(5.14)

Combining (5.11), (5.13), and (5.14), then gives, as n→∞,

E
(
ĉn,b
(
t±
))

= t±

[
c(1)− b′c(1) + o(b) +O

(
1

n

)

+ O

(
Ã

(
n

kt±

))(
1 +O

(
1

n

))]
.

(5.15)

Now note that, as n→∞, kb→∞ and n/k →∞ together imply o(b) +O(1/n) = o(b).
Further, as we assume that k1/3b → λb ∈ [0,∞) = O(1), we have

√
kbo(b) = o(λ

3/2
b ) =

o(1), or, equivalently, o(b) = o(1/
√
kb). Condition (3.12) implies Ã(n/(kt±)) = o(1/

√
kb),

because, as n→∞,

√
kbÃ

(
n

kt±

)
≤
√
kbÃ

(
n

2k

)
≤
√
kÃ

(
n

2k

)
→ 0.

Lastly, t± = 1± 1/(δ
√
k) = 1± o(1/

√
kb) if we choose δ such that

√
b/δ → 0. Therefore,

(5.15) reduces to the expression in the proposition, which completes this part of the proof.
We now continue with the variance. Similar to (5.11), using (5.12) together with

V(1A) = P(A) (1 − P(A)) and the independence of the random variables, we get, as
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n→∞,

V
(
c̃n,b
(
t±
))

=
1

k2

n∑
i=1

K2
b

(
i

n

)
V
(
1{

Xi>U(n/(kt±))
})

=
t±

k

1

n

n∑
i=1

K2
b

(
i

n

)[
c

(
i

n

)
+O

(
Ã

(
n

kt±

))]

− (t±)2

n

1

n

n∑
i=1

K2
b

(
i

n

)[
c

(
i

n

)
+O

(
Ã

(
n

kt±

))]2
.

(5.16)

Again, using the definition and the corresponding error of the right Riemann sum ap-
proximation to an integral, together with Lemma 2 and the properties of the beta density
function in (4.5), we get, as n→∞,

1

n

n∑
i=1

c

(
i

n

)
K2
b

(
i

n

)
=

∫ 1

0

c(u)K2
b (u)du+O

(
1

n

)
=
B(2/b+ 1, 1)

B2(1/b+ 1, 1)
E
(
c
(
T2/b+1,1

))
+O

(
1

n

)
=

1

b

(
1

2
+O

(
b2
))(

c(1)− bc′(1) + o(b)

)
+O

(
1

n

)
=

1

2b
c(1) +O(1) ,

(5.17)

where B denotes the beta function as defined in (4.6) and where T2/b+1,1 is a Beta(2/b+

1, 1) variable. This follows from the fact that, for a Beta(α, β) variable with density
function Kα,β as defined in (4.5),

K2
α,β(x) =

1

B2(α, β)
x(2α−1)−1(1− x)(2β−1)−1

=
B(2α− 1, 2β − 1)

B2(α, β)
K2α−1,2β−1(x),

and, by the definition of the beta function in (4.6) and a Taylor expansion around b = 0,

B(2/b+ 1, 1)

B2(1/b+ 1, 1)
=

b/(b+ 2)

b2/(b+ 1)2
=

1

b

(
1

2
+O

(
b2
))

.
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Additionally, this implies, as n→∞,

1

n

n∑
i=1

K2
b

(
i

n

)
=

∫ 1

0

K2
b (u)du+O

(
1

n

)
=

1

b

(
1

2
+O

(
b2
))

+O

(
1

n

)
=

1

2b
+O(b) .

(5.18)

Combining (5.17) and (5.18) gives for the first term of (5.16), as n→∞,

V
(
c̃n,b
(
t±
))

=
t±

k

[
1

2b
c(1) +O(1) +O

(
Ã

(
n

kt±

))(
1

2b
+O(b)

)]
. (5.19)

By the same arguments as for the mean, t±/k = 1/k ± o(1/(k
√
kb)) and o(1/(k

√
kb)) =

o(1/k) = o(1/(kb)), such that (5.19) reduces to the expression in the proposition. For
the second term in (5.16), Lemma 2 can be extended to c2 in a straightforward manner,
which gives an expression of the same order: c2(1) = O(1). Combined with (5.17) and
(5.18) and because (t±)2/n = O(1/n), it can be shown that the second term in (5.16) is
O(1/(nb)) = o(1/(kb)), which completes the proof for Proposition 1.

Now, given Proposition 1, we use the Lindeberg-Feller theorem, which allows for inde-
pendent but non-identically distributed random variables, to prove asymptotic normality
of c̃n,b

(
t±
)
. First, let

Yi :=
1

k

[
1{

Xi>U(n/(kt±))
}Kb

(
i

n

)
− E

(
1{

Xi>U(n/(kt±))
}Kb

(
i

n

))]

=
1

k
Kb

(
i

n

)[
1{

Xi>U(n/(kt±))
} − P

(
Xi > U

(
n

kt±

))]

:=
1

k
Kb

(
i

n

)
Zi

(5.20)

and

s2n :=
n∑
i=1

V(Yi)

=
1

k2

n∑
i=1

K2
b

(
i

n

)
V
(
1{

Xi>U(n/(kt±))
})

= V
(
c̃n,b
(
t±
))
,

(5.21)

of which the latter follows directly from (5.16). Then, following van der Vaart (2000),
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among others, the Lindeberg-Feller condition for sequences assures that
∑n

i=1 Yi/sn
d−→

N (0, 1) if for every ω > 0, as n→∞,

Ln :=
1

s2n

n∑
i=1

E
(
Y 2
i 1{|Yi|≥ωsn}

)
→ 0. (5.22)

This condition essentially imposes that each of the individual variances of the indepen-
dent, but possibly non-identically distributed variables, however large, is sufficiently small
compared to the total variance. Combining (5.20) and (5.22) gives

Ln =
n∑
i=1

(
Kb

(
i/n
)

ksn

)2

E
(
Z2
i 1

{
|Zi|≥ωksn/Kb(i/n)

})
:=

n∑
i=1

I−2n,iE
(
Z2
i 1{|Zi|≥ωIn,i}

)
:=

n∑
i=1

J1,n,iJ2,n,i.

Clearly, |Zi| ≤ 1, implying J2,n,i → 0 whenever ωIn,i > 1, which is always satisfied if
In,i → ∞. Similarly, J1,n.i → 0 when In,i → ∞. Therefore, we need In,i → ∞ as a
sufficient condition for Ln → 0 as n→∞. Using Proposition 1 for sn, we get

In,i ∼
√
c(1)/2√

b/kKb(i/n)
,

where, following (5.2), the denominator is√
b

k
Kb

(
i

n

)
=

√
b

k

(
1

b
+ 1

)(
i

n

)1/b

=

(
1√
kb

+

√
b

k

)(
i

n

)1/b

:= M1M2,n,i.

It holds that M2,n,i ∈ (0, 1] and, as n → ∞, M1 → 0 because kb → ∞ by assumption.
Therefore, M1M2,n,i → 0. Together with the assumption that c is positive and bounded
on [0, 1], In,i → ∞ for every n, i, and the Lindeberg-Feller condition is satisfied. Using
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(5.20) and (5.21), this implies that, as n→∞, for some λb such that k1/3b→ λb ∈ [0,∞),

∑n
i=1 Yi
sn

=
c̃n,b
(
t±
)
− E

(
c̃n,b
(
t±
))√

V
(
c̃n,b(t±)

)
∼
c̃n,b
(
t±
)
− c(1) + bc′(1)√
c(1)/2kb

=

√
kb
(
c̃n,b
(
t±
)
− c(1)

)
−
(
− λ3/2b c′(1)

)√
c(1)/2

,

convergences in distribution to a standard normal variable, which is equivalent to (5.10).
Expressions (5.7), (5.9), and (5.10) together prove Theorem 1.

�

Proof of Theorem 2

For this proof, we assume asymptotic independence of ĉn,b(1) and γ̂n. For some intuitive
arguments why the dependence between these estimators may become negligible, we refer
to Appendix A.2.

Now, let

θ := (c(1), γ)ᵀ, Tn := (ĉn,b(1) , γ̂n)ᵀ, and µ :=
(
− λ3/2c′(1), 0

)ᵀ (5.23)

be 2× 1 row vectors, with ᵀ denoting their transpose, and

Σ := diag
(

1

2
c(1), bγ2

)
(5.24)

be a 2× 2 diagonal matrix. Then, under the assumption of asymptotic independence of
ĉn,b(1) and γ̂n and using result (3.15) and Theorem 1, it holds that, as n→∞,

√
kb(Tn − θ)

d−→ N (µ,Σ) , (5.25)

where in this case N denotes a bivariate normal distribution. Then, following van der
Vaart (2000), among others, the delta method assures that, for a function φ : R2 7→ R
defined on a subset of R2 and differentiable at θ, with ∇φ denoting its gradient, and the
random vector Tn taking values in the domain of φ,

√
kb(φ(Tn)− φ(θ))

d−→ N
(
∇φ(θ)ᵀµ,∇φ(θ)ᵀΣ∇φ(θ)

)
. (5.26)
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Here N is a univariate normal distribution. Now let

φ(θ) :=

(
kc(1)

np

)γ
,

such that

∂φ

∂c(1)
= φ(θ)

γ

c(1)
,

∂φ

∂γ
= φ(θ) log

(
kc(1)

np

)
,

and ∇φ = (∂φ/(∂c(1)), ∂φ/(∂γ))ᵀ. Then it follows that

∇φ(θ)ᵀµ = φ(θ)

(
− λ3/2γc

′(1)

c(1)

)
(5.27)

and

∇φ(θ)ᵀΣ∇φ(θ) = φ2(θ)γ2

(
1

2c(1)
+ b log

(
kc(1)

np

)2
)
. (5.28)

Further,

b log

(
kc(1)

np

)2

= b

(
log

(
k

np

)2

+ 2 log

(
k

np

)
log c(1) + log

(
c(1)

)2)→ β2
b ,

as n→∞. Note that, following the extreme quantile prediction (5.3),

φ(Tn)

φ(θ)
=
Ûn,n+1(1/p)

Xn,n−kφ(θ)
. (5.29)

Thus, we have to prove that Xn,n−kφ(θ) converges to Un,n+1(1/p). Letting tn = (n/k)(1−
F (Xn,n−k)), as (5.7) implies tn = 1 + op(1/

√
kb), and using the continuous mapping

theorem and condition (3.4), we get, as n→∞,

Un,n+1

(
1

p

)
∼ U

(
n

ktn

)(
ktnc(1)

np

)γ

= Xn,n−kφ(θ) + op

(
1√
kb

)
.

Note that this is also a consequence of result A.8 in Einmahl et al. (2016), which implies
that Xn,n−k/U(n/k) = U(n/(ktn))/U(n/k) = 1+op(1/

√
kb). In combination with (5.26),

(5.27), (5.28), (5.29), this proves Theorem 2.
�
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6 Monte Carlo simulation

We continue with a Monte Carlo simulation study on extreme quantile prediction in the
heteroscedastic extremes framework for both our beta kernel scedasis estimator and the
convolution-type biweight boundary kernel estimator considered in Einmahl et al. (2016).
The goal of this simulation study is to verify our derived asymptotic results and compare
the two estimators for a variety of sample sizes and data generating processes.

For an overview of the programs and functions implemented for our simulation, we
refer to Appendix A.6.

6.1 Data generating processes

We consider six data-generating processes (DGPs) in the heavy-tailed case of the het-
eroscedastic extremes framework. Each independent observation i = 1, . . . , n follows a
scaled Fréchet distribution with cdf

F
(d)
n,i = exp

−( x

cd(i/n)

)−1 , for x > 0, (6.1)

where cd, for d = 1, . . . , 6, denotes the scedasis function corresponding to each of the
following six DGPs.

- DGP 1: c1(s) = 1, is the iid or homoscedastic extremes case.

- DGP 2: c2(s) = 0.5 + s, is a linear trend in the relative frequency of extremes.

- DGP 3: c3(s) = 0.5 + 2s, for s ∈ [0, 0.5], and c3(s) = 2.5− 2s, for s ∈ (0.5, 1], is a
symmetric pike.

- DGP 4: c4(s) = 0.8, for s ∈ [0, 0.4] ∪ [0.6, 1], c4(s) = −7.2 + 20s, for s ∈ (0.4, 0.5],
and c4(s) = 12.8− 20s, for s ∈ (0.5, 0.6], is a symmetric pike with a flat start and
end.

- DGP 5: c5(s) = 0.5 + 0.5 exp(s) /(e − 1), such that c′(s)/c′′(s) = 1, is gradually
exponentially increasing.

- DGP6: c6(s) = 0.5 + 5 exp(10s) /(exp(10) − 1), such that c′(s)/c′′(s) = 10, is
abruptly exponentially increasing.

The first four DGPs are identical to those in Einmahl et al. (2016). Recall that proper
estimation of c(1) is important for extreme quantile prediction, which clearly follows from
(3.9) and (5.3). Thus, we consider the additional DGPs, 5 and 6, which are mixtures
of the log-linear model in Mefleh et al. (2020), for two reasons. First, DGPs 1 through
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Table 6.1: Relevant characteristics of
the scedasis functions at their right
boundary point for each DGP.

DGP c(1) c′(1) c′′(1)

1 1.000 0.000 0.000
2 1.500 0.500 0.000
3 0.500 −2.000 0.000
4 0.800 0.000 0.000
5 1.291 0.791 0.791
6 5.500 50.002 500.023

4 have scedasis functions with zero second order derivatives. This is unrealistic in an
application and makes it unfair to compare the beta kernel with the convolution-type
boundary kernel estimator, which have biases depending on the first and second order
derivatives, respectively. The exponential form of the scedasis functions of DGP 5 and
6 makes it easy to compare this part of the bias of both estimators. Second, in risk
management, especially from a perspective of regulation and prudence, it is important
that the estimators perform well in periods with relatively higher occurrences of extremes.
The additional scedasis functions reflect this by their exponential increase: gradually in
DGP 5 and more abruptly in DGP 6. An overview of relevant characteristics of each of
the scedasis functions at their right boundary point is shown in Table 6.1 and a plot of
each can be found in Figure A.1 in Appendix A.3.

Using the inverse cdf method and (6.1), the observations for each simulation replica-
tion r can be generated by

X
(d,r)
i = cd(i/n) log

(
−W (r)

i

)−1
,

where W (r)
i are iid standard uniform (pseudo)random variables. The theoretical extreme

quantile at time n+ 1 is equal to

U
(d)
n,n+1

(
1

p

)
= U (d)

n,n

(
1

p

)
= cd(1) log

(
1

1− p

)−1
,

which we use to evaluate the outcomes of the predictions.

6.2 Methodology

We simulate 1000 samples of sizes n = 5000, 1250, 625 and take k = 400, 100, 50 for each
n, respectively, for each of the six DGPs. This follows the set-up in Einmahl et al. (2016),
who consider n = 5000 and take k = 400, but with additional smaller sample sizes. In
each replication, we make extreme quantile predictions Ûn,n+1 following (5.3) and (3.9) for
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p = 0.02, using both the beta kernel estimator (5.2) and the convolution-type boundary
kernel estimator (4.4) with biweight kernel (4.2), respectively. We use the Hill estimator
(2.13) to estimate the extreme value index. Note that, theoretically, we need k/n → 0

for the asymptotic properties of the estimators to hold, but we keep this ratio constant
for simplicity. Moreover, since the data are very heavy-tailed, as γ = 1, the regularly
varying behaviour of the tail of the distribution is attained for relatively low values of x
and thus higher values of k suffice (Embrechts et al., 2013).

To verify our asymptotic results, we follow Einmahl et al. (2016) with n = 5000 and
k = 400 and by using the fixed, non-optimised bandwidth h = 0.1 for the biweight
boundary kernel estimator. In correspondence with our discussion in Section 5.2, we set
b = h5/3 ≈ 0.022 for the beta kernel estimator. Moreover, to examine the asymptotic
normality, we consider the additional sample size n = 50000, with k = 4000, and scale
the fixed bandwidths according to their local optimal counterparts, i.e. h = O(1/k1/5)

and b = O(1/k1/3).
As suggested in Section 4, comparison of the beta and convolution-type boundary

kernel estimators is meaningless without proper bandwidth selection due to the corre-
sponding bias-variance trade-off. Preliminary research suggests that explicitly following
asymptotic optimal bandwidth expressions and our cross-validation criterion both lead
to inferior results. The former may be due to the complexity of the boundary bias of the
symmetric convolution-type kernel. As finding data-driven (local) optimal bandwidths is
not the goal of our research, we select approximately optimal bandwidths by minimising
the simulation sample MSE. That is, we perform our simulation study over a grid of 200
logarithmically spaced bandwidths such that b ∈ [0.01k−1/3, 1000k−1/3] for the beta and
h ∈ [0.01k−1/5, 1000k−1/5] for the biweight boundary kernel estimator, respectively, and
consider the results corresponding to the bandwidths which lead to minimal simulation
sample MSE.

We calculate and report the bias, standard deviation (SD), and root mean squared
error (RMSE) of Ûn,n+1(1/p)/Un,n+1(1/p)−1, both as obtained by the simulation sample
and by following the theoretical asymptotic values in correspondence with Theorem 2
and result (3.17). For the results corresponding to the fixed, non-optimised bandwidths,
we set

√
b log(k/(np)) → βb = 0 and

√
h log(k/(np)) → βh = 0, following the set-up in

Einmahl et al. (2016). However, in our optimised bandwidth case, because the selected
bandwidths may become large in some instances, we choose not to neglect this term.

6.3 Results

Table 6.2 shows the results for the fixed, non-optimised bandwidths with n = 5000 and
k = 400, i.e. the set-up in Einmahl et al. (2016). The simulation statistics generally agree
with their theoretical asymptotic counterparts, which are reported in parentheses, and
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Table 6.2: Simulation results for the one-step ahead predictions with
n = 5000, k = 400, p = 0.02, and the fixed, non-optimised bandwidths
h = 0.1, and b ≈ 0.022. The theoretical asymptotic results are shown
in parentheses. Note that these results are mainly for verification of
the asymptotic results and not for comparison between the estimators.

Beta Biweight boundary

DGP Bias SD RMSE Bias SD RMSE

1
-0.005 0.246 0.246 -0.007 0.347 0.347
(0.000) (0.241) (0.241) (0.000) (0.358) (0.358)

2 -0.025 0.207 0.208 -0.013 0.287 0.287
(-0.007) (0.197) (0.197) (0.000) (0.292) (0.292)

3 0.088 0.342 0.353 0.007 0.491 0.491
(0.086) (0.341) (0.351) (0.000) (0.506) (0.506)

4 0.005 0.273 0.273 0.003 0.392 0.392
(0.000) (0.269) (0.269) (0.000) (0.400) (0.400)

5 -0.020 0.219 0.220 -0.009 0.307 0.307
(-0.013) (0.212) (0.212) (-0.000) (0.315) (0.315)

6
-0.208 0.140 0.251 -0.101 0.181 0.207
(-0.196) (0.103) (0.221) (-0.040) (0.152) (0.158)

the results for the biweight boundary kernel estimator are in correspondence with those
in Einmahl et al. (2016). As expected, the beta kernel estimator has a nonzero bias for
the DGPs with nonzero c′(1) and the convolution-type boundary kernel estimator shows a
clear nonzero bias for DGP 6, in which c′′(1) ≈ 500. The quantile-quantile plots in Figure
A.2 in Appendix A.4 verify the asymptotic normality of our beta kernel estimator, though
the convergence seems rather slow. Following the Jargque-Bera test for normality, at a
1% significance level, the estimator attains normality for n = 50000 for all DGPs except
DGP 3. However, for n = 5000, the corresponding p-values are virtually zero and are
therefore not shown, indicating significant deviations from a normal distribution.

Table 6.3 shows the results when optimising over the grid of bandwidths to compare
the two estimators. Our beta kernel scedasis estimator performs best in terms of the
RMSE, though by small margins, for n = 5000 in DGP 1 and for n = 625 in DGPs 1, 2,
and 5. The larger effective sample size does not seem to lead to substantial performance
gains relative to the biweight boundary kernel estimator. While the variance is slightly
lower in some instances for the smaller samples, which is conform the findings of Chen
(1999), this is generally outweighed in the RMSE by a larger bias. The beta kernel
estimator underperforms for the symmetric scedasis functions in DGPs 3 and 4, where its
simulation and theoretical statistics are often multiples of that of the biweight boundary
kernel estimator. There is also no clear advantage for the beta kernel estimator during
a period of an exponentially increasing frequency of extremes: while c′′(1)/c′(1) = 10 in
DGP 6, the bias of the biweight boundary kernel estimator is always relatively smaller.
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Table 6.3: Simulation results of the one-step ahead predictions for the optimised bandwidths
and p = 0.02. The theoretical asymptotic values are shown in parentheses. These results allow
for comparison between the estimators.

Beta Biweight boundary

DGP n Bias SD RMSE b Bias SD RMSE h

1

5000
0.000 0.084 0.084*

135.721
0.016 0.087 0.088

4.171(0.000) (0.069) (0.069) (0.000) (0.089) (0.089)

1250 0.002 0.178 0.178 215.443 -0.012 0.175 0.176*
4.367(0.000) (0.139) (0.139) (0.000) (0.176) (0.176)

625 0.014 0.249 0.249*
271.442 0.023 0.254 0.255 4.217(0.000) (0.196) (0.196) (0.000) (0.250) (0.250)

2

5000 -0.067 0.117 0.135 0.110 0.001 0.103 0.103*
2.208(-0.037) (0.111) (0.117) (0.000) (0.093) (0.093)

1250 -0.096 0.214 0.235 0.196 0.006 0.221 0.221*
2.181(-0.065) (0.190) (0.201) (0.000) (0.187) (0.187)

625 -0.099 0.282 0.299*
0.278 0.007 0.301 0.300 2.365(-0.093) (0.250) (0.266) (0.000) (0.259) (0.259)

3

5000 0.166 0.255 0.305 0.044 -0.014 0.060 0.062*
10.527(0.175) (0.249) (0.304) (0.000) (0.085) (0.085)

1250 0.254 0.432 0.501 0.073 -0.007 0.124 0.124*
10.401(0.294) (0.394) (0.492) (0.000) (0.170) (0.170)

625 0.361 0.562 0.668 0.104 -0.027 0.165 0.167*
10.642(0.416) (0.481) (0.635) (0.000) (0.240) (0.240)

4

5000 0.037 0.121 0.126 0.165 -0.003 0.075 0.075*
5.903(0.000) (0.119) (0.119) (0.000) (0.087) (0.087)

1250 0.080 0.235 0.248 0.248 0.005 0.159 0.159*
5.832(0.000) (0.211) (0.211) (0.000) (0.174) (0.174)

625 0.133 0.326 0.352 0.312 -0.005 0.216 0.216*
5.967(0.000) (0.280) (0.280) (0.000) (0.245) (0.245)

5

5000 -0.067 0.109 0.128 0.147 0.007 0.096 0.096*
2.782(-0.090) (0.107) (0.140) (-0.210) (0.091) (0.229)

1250 -0.095 0.200 0.222 0.278 -0.009 0.200 0.200*
2.913(-0.170) (0.182) (0.249) (-0.230) (0.181) (0.293)

625 -0.104 0.255 0.276*
0.441 0.024 0.287 0.288 2.813(-0.270) (0.237) (0.359) (-0.215) (0.258) (0.336)

6

5000 -0.120 0.193 0.227 0.007 -0.102 0.180 0.206*
0.103(-0.062) (0.195) (0.205) (-0.043) (0.166) (0.171)

1250 -0.119 0.380 0.398 0.015 -0.101 0.352 0.366*
0.181(-0.132) (0.286) (0.315) (-0.132) (0.266) (0.297)

625
-0.070 0.554 0.558

0.021
-0.052 0.543 0.545*

0.221(-0.187) (0.356) (0.402) (-0.196) (0.350) (0.401)
* Performing best in terms of RMSE for specific DGP and sample size.
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The results in Table 6.3 for the standard deviation and RMSE also clearly agree
with the theoretical asymptotic order of convergence,

√
k. Ignoring the influence of the

bandwidth, the standard deviation increases approximately by a factor of
√

4 = 2 and√
2 ≈ 1.414 as k decreases with the sample size n from 400 to 100 and 100 to 50,

respectively. Further, as expected, the difference between the theoretical and simulation
statistics becomes larger as the sample size decreases. Note that the asymptotic statistics
are based on b, h → 0. However, the selected bandwidths are often not small, which is
an explanation for deviations between the theory and the simulation results, especially
for the largest sample size.

The selected approximately optimal bandwidths for the beta kernel estimator are
generally also in close accordance with the theory, increasing as the sample size decreases
with a factor corresponding to result (5.5). However, this is not true for the instances
where c′(1) = 0, and similarly for the biweight boundary kernel estimator when c′′(1) = 0.
In these cases, the theory implies asymptotically optimal bandwidths b∗, h∗ →∞, which
results in unexpected bandwidth choices.

7 Empirical application

We now demonstrate the heteroscedastic extremes statistics, in particular the beta kernel
scedasis estimator, on a financial data set. Note that in the field of finance, an extreme
quantile of the loss distribution is generally called the Value-at-Risk (VaR), such that
U(1/p) = VaR1−p. Therefore, we essentially make VaR predictions for the first day of
2008 with Ûn,n+1. The goal of this empirical application is not to showcase a complete
methodological framework, but to guide one through the steps to use the heteroscedastic
extremes model with the knowledge we have now.

For an overview of the programs and functions implemented for our application, we
refer to Appendix A.6.

7.1 Data

We consider the 20-years daily log-losses from the S&P 500 index from 1988 until 2007,
which is identical to the data set and period consider by Einmahl et al. (2016). Excluding
non-trading days, this results in 5043 observations, of which 2350 are losses. This period
does not cover observations related to the black Monday crash on October 19th, 1987,
and the Global Financial Crisis in 2008, but includes the crash of the dot-com-bubble
between 2000 and 2002 and other sharp market fluctuations. Additionally, we consider
the 4-years subsample of 2004 until 2007 and 1-year subsample of 2007, which have 1006
and 251 observations, respectively. Some relevant summary statistics can be found in
Table 7.1(a). The statistics are given for the log-losses in percentages.
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The heteroscedastic extremes model is valid for this data, specifically for the full sam-
ple period, for the following reasons. Jansen and de Vries (1991) and Kearns and Pagan
(1997), among many others, find that losses of financial equity have heavy-tailed distribu-
tions. With this empirical finding, reflecting assumption (2.11), together with condition
(3.1), Einmahl et al. (2016) find no significant evidence that the extreme value index varies
over time. These constitute two important assumptions with respect to the heteroscedas-
tic extremes framework. Additionally, Einmahl et al. (2016) find strong evidence that
the scedasis function varies over time, meaning that the heteroscedastic extremes model
is relevant. Therefore, following their conclusion, the frequency of extremes changes over
time while their size remains the same. Einmahl et al. (2016) further show robustness by
replicating these results with weekly observations, suggesting the absence of significant
serial dependence. To shorten our discussion, because testing is no important part of
our research as a whole, and as the other two sample periods are subsamples of what is
discussed above, we assume that the conditions for the heteroscedastic extremes model
are met for the subperiods as well.

7.2 Methodology

For each of the three sample periods, we estimate the scedasis and extreme quantile
predictions functions. We consider both the beta kernel estimator (5.1) and convolution-
type biweight kernel estimator (3.7) with (4.2), for which in the latter case we use the
boundary kernel (4.4) in the boundary regions. For the extreme value index, we use
the Hill estimator (2.13). For further comparison, we also consider the homoscedastic
extreme quantile estimator (2.17) and the empirical quantile function.

As suggested in Section 5.2, we choose the bandwidth and number of upper order
statistics sequentially, selecting k in the Hill plot as approximately the middle of the
first stable part and the bandwidth in relation to k. As we leave data-driven bandwidth
selection for scedasis estimation to future research, we set h = 0.1 as the global and
local bandwidth of the biweight kernel estimator for the full sample period, directly
following Einmahl et al. (2016). As discussed in Section 5.2, we adjust this bandwidth
for the subsamples and the beta kernel estimator in correspondence to their local and
global optimal orders. That is, for the convolution-type boundary kernel estimator, h =

O(1/k1/5), both globally and locally. Then, for the beta kernel estimator, we set b = h5/3

and b = h2 for the local and global scedasis estimates, respectively. We emphasise that
these bandwidth choices are not optimal and so neither are our results.

7.3 Results

Table 7.1(b) gives an overview of the relevant extreme value statistics for each sample
period. The Hill plots corresponding to the choice of k can be found in Appendix A.5,
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Table 7.1: Summary statistics, extreme value statistics, and extreme
quantile predictions for the S&P 500 log-losses, in percentages, for the
three sample periods.

1988-2007 2004-2007 2007

(a) Summary statistics
n 5043 1006 251
Losses 2350 448 114
Mean -0.035 -0.028 -0.014
Median -0.052 -0.073 -0.081
Maximum 7.113 3.534 3.534

(b) Extreme value statistics
k 180 32 25
γ̂n 0.298 0.291 0.367
Xn,n−k 1.806 1.445 1.369

Beta ĉn,b(1) 1.682 3.905 2.194
b 0.022 0.038 0.042

Boundary
ĉn,b(1) 2.471 4.252 2.236
h 0.100 0.141 0.148

(c) Extreme quantile predictions
Ûn,n+1(1/p)

Beta p = 0.05 1.907 1.883 2.355
p = 0.01 3.078 3.007 4.253

Boundary p = 0.05 2.138 1.930 2.371
p = 0.01 3.451 3.083 4.283

Homoscedastic p = 0.05 1.633 1.267 1.764
p = 0.01 2.637 2.024 3.187

Empirical
p = 0.05 1.592 1.304 1.829
p = 0.01 2.627 2.187 2.978

giving the interested reader an opportunity to judge for him- or herself. The extreme
value index estimates γ̂n for the 20- and 4-years periods lie around 0.3, which is in line
with some examples in the literature, for instance, Nolde and Zhou (2021). For the 1-
year 2007 period, the estimate is substantially larger, suggesting infinite variance data
as α = 1/γ < 3 as explained in Section 2.1. However, repeating Section 7.1, we assume
γ does not vary significantly between the subsamples. Further, for the 2007 subperiod,
we choose k = 25, which is a substantially larger share of the upper-order statistics than
for the other samples and close to the 32 chosen for the 2004-2007 subperiod. However,
heavier-tailed data, as implied by the larger γ̂n, attains tail behaviour for lower upper-
order statistics.

Figure 7.1 shows the global estimates of the scedasis function. For the full sample
period 1988-2007 (a), these are similar to those in Einmahl et al. (2016). There clearly
is an increased frequency of extremes during the dot-com-bubble around the year 2000,
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Figure 7.1: Estimated scedasis functions for both the beta kernel and convolution-type biweight (bound-
ary) kernel estimator for the S&P 500 log-losses over the 20-years period 1988-2007 (top), 4-years period
2004-2007 (middle), and 1-year period 2007 (bottom).

which starts to decrease after the burst around 2002, and an increase in the scedasis in
2007, which corresponds to the start of the financial crisis of 2008. Visually, the boundary
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region appears similar to the sixth DGP in our simulation study. The scedasis function
estimates for the subsample 2004-2007 (b) show a similar large increase in 2007, which
indicate that most of the extreme losses occur in 2007. This explains the proximity of the
choices of k between the 2004-2007 and 2007 subsamples. For the 1-year subperiod 2007
(c) there is a rough positive trend with local fluctuations. The beta and convolution-
type kernel estimates generally agree globally. However, the boundary kernel results in
negative scedasis estimates in the left boundary region in Figure 7.1(c), which highlights
a potential drawback of this estimator.

Table 7.1(b) further presents the c(1) estimates. For the 1988-2007 sample period,
the beta kernel estimate of approximately 1.7 is substantially lower than that of the
biweight boundary kernel of about 2.5. This may be a result of the downward bias of
the beta kernel estimator, as the scedasis slope is large in this region. The c(1) estimates
of both kernel estimators are close together for the other two subsample periods. The
relative frequency of extremes is about four times larger than the baseline homoscedastic
case at the end of the 2004-2007 subsample period. For the 1-year 2007 subsample, in
which the financial crisis of 2008 has already started, the estimates suggest a scedasis of
approximately 2 at the end of 2007.

Condition (3.4) and the estimators (3.9) and (5.3) imply that higher scedasis results
in higher extreme quantiles, which is reflected by the estimated extreme quantile predic-
tions in Figure 7.2 and Table 7.1(c). The estimates corresponding to the heteroscedastic
extremes model, for both the beta and boundary kernel estimators, lie above those of the
static homoscedastic and empirical estimators for all sample periods, suggesting higher
VaR predictions than the homoscedastic model. The richness of our considered data
set also allows us to highlight the accuracy of the tail estimates of the iid EVT model
in the static case, as the homoscedastic extreme quantile estimates closely follow their
empirical counterparts in the upper 5% and 5-10% region for the two largest samples
and the smallest sample, respectively. However, whereas the heteroscedastic extremes
model estimators capture the emerging crisis in the extreme quantile predictions in every
sample, the other estimators do this only marginally for the 1-year 2007 subperiod.

Due to the smaller sample size, only the 25 upper-order statistics are considered for the
extreme value statistics corresponding to the 1-year 2007 subsample. A recurring subject
in our research, this presents a typical bias-variance trade-off. Though the smaller sample
size may lead to relatively more uncertainty (i.e. higher variance) in the statistical results,
zooming into 2007 may better reflect the characteristics of the distribution underlying
the losses during the emerging financial crisis (i.e. lower bias). But, based on our results,
we find that the heteroscedastic extremes model is also better at capturing changes in
economic environment than the two traditional approaches. We note, however, that
this comes at the cost of other uncertainties, such as the selection of proper bandwidth
parameters.
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(a) 20-Years period 1988-2007.
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(b) 4-Years period 2004-2007.
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(c) 1-Year period 2007.

Figure 7.2: Estimated one-step ahead extreme quantile prediction functions for the beta kernel and
convolution-type biweight boundary kernel heteroscedastic extremes estimators and the homoscedastic
(iid EVT) and empirical estimators for the first trading day of 2008 using the S&P 500 log-losses over the
20-years period 1988-2007 (top), 4-years period 2004-2007 (middle), and 1-year period 2007 (bottom).
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8 Conclusion

In this research, we propose a non-parametric beta kernel scedasis estimator for the heavy-
tailed heteroscedastic extremes model. In contrast to traditional convolution-type kernel
estimators, its compact support matches that of the scedasis function, leading to a larger
effective sample size, and it has no boundary bias problem. Therefore, we are interested
in its properties for extreme quantile prediction, individually and in comparison to a
convolution-type boundary kernel scedasis estimator.

We establish the asymptotic normality of our beta kernel scedasis estimator at the
right boundary point and, under the assumption of asymptotic independence of the sceda-
sis and extreme value estimator, of the corresponding extreme quantile prediction. We
further find that its local optimal MSE convergence is of larger asymptotic order than that
of the convolution-type estimator. Our asymptotic results are verified by a simulation
study, but the beta kernel estimator generally does not outperform a convolution-type
boundary kernel counterpart in terms of MSE in a variety of sample sizes and data gen-
erating processes. This suggest that the larger effective sample size does not lead to
meaningful finite-sample performance increases. In our empirical application to S&P
500 loss data, zooming into the emerging financial crisis of 2008, both heteroscedastic
extremes estimators are generally in close correspondence and suggest higher extreme
quantile predictions than traditional extreme value and empirical statistics.

We conclude that our beta kernel scedasis estimator has clear asymptotic statistical
properties for extreme quantile prediction, which are in agreement with existing literature.
Its performance is generally not better than that of the convolution-type boundary kernel
estimator, though it is often similar in finite sample applications. Therefore, we think it
is potentially useful in practice.

A few comments are in order. First, we pragmatically consider (approximately) op-
timal bandwidths in the simulation study and use fixed, non-optimal bandwidths in the
empirical application. However, a solid methodology for data-driven bandwidth selection
for kernel scedasis estimation, deserving a study on its own, may facilitate a more realistic
comparison of the estimators in practice. Second, as the problems of selecting the band-
width and the number of upper order statics are interconnected, insight in simultaneous
selection may provide better strategies than our sequential approach. Moreover, data-
driven selection methods may allow the heteroscedastic extremes model to be formally
compared to existing approaches for extreme quantile prediction in practical applications.
Finally, while our asymptotic results are verified by a simulation study, a formal proof for
the asymptotic independence of the beta kernel scedasis and extreme value estimators, if
possible, may strengthen the basis of our theory.
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A Appendix

A.1 Cross-validation criterion

The following discussion about the cross-validation criterion in kernel estimation is quite
general. We refer to Jones et al. (1996) for a review on more bandwidth selection methods.

The integrated squared error for a scedasis estimator ĉ is

ISE(ĉ) :=

∫ 1

0

(
ĉ(s)− c(s)

)2
ds

=

∫ 1

0

ĉ2(s)ds− 2

∫ 1

0

ĉ(s)c(s)ds+

∫ 1

0

c(s)ds.

(A.1)

For a kernel scedasis estimator, minimisation of this expression with respect to the band-
width parameter gives the well-known cross-validation (CV) criterion. Because, tradi-
tionally, this requires the convolution of the kernel function with itself, we derive the CV
criterion for the symmetric convolution-type kernel estimator (3.7). A similar criterion
for a beta kernel estimator would require numerical integration to estimate the first term
of (A.1).

The last term of (A.1) does not involve the estimator and can therefore be ignored.
For the first term, using the variable transformation u = (s− i/n)/h, we can write∫ 1

0

ĉ2n,h(s)ds =
1

k2h

n∑
i=1

n∑
j=1

1{Xi,Xj>Xn,n−k}
1

h

∫ 1

0

K

(
s− i/n
h

)
K

(
s− j/n

h

)
ds

:=
1

k2h

n∑
i=1

n∑
j=1

1{Xi,Xj>Xn,n−k}K ?K

(
i/n− j/n

h

)
,

(A.2)

where K ? K denotes the convolution of the kernel function with itself. For the second
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term in (A.1),∫ 1

0

ĉn,h(s)c(s)ds = E
(
ĉn,h(s)

)
≈ 1

k

n∑
i=1

1{Xi>Xn,n−k}ĉn,h,−i(i/n)

:=
1

k2h

n∑
i=1

n∑
j 6=i

1{Xi,Xj>Xn,n−k}K
(
i/n− j/n

h

)
,

(A.3)

where ĉn,h,−i is the leave-one-out estimator, linking this criterion to cross-validation. Note
that ĉn,h,−i has a varying number of nonzero terms, which is either k or (k − 1), but
we have chosen k in (A.3) as its divider for simplicity. The CV criterion is then the
sum of expressions (A.3) and (A.2), of which minimisation with respect to h gives some
approximation to the optimal bandwidth.

Hall and Marron (1991) show that spurious local minima of the CV criterion tend
to occur at too small values of the bandwidth rather than at larger ones, which is why
Jones et al. (1996) suggest choosing the largest local minimiser of the CV criterion as
the bandwidth h. As mentioned in Section 5, 6, and 7, this criterion does not result in
satisfactory scedasis estimates, which is why no further results are shown.

A.2 Asymptotic independence assumption for Theorem 2

We briefly discuss the (in)dependence of the scedasis and extreme value estimators. In
Theorem 2, we assume that ĉn,b(1) and γ̂n are asymptotically independent. We have no
formal proof for this, but provide an intuitive argument.

In contrast to our beta kernel scedasis estimator, the estimator (3.10) by Einmahl et al.
(2016) has a (boundary) kernel such that K(u) = 0 for |u| > 1. This means that, given its
bandwidth h, all terms of the estimator equal zero in case i < (1− h)n, such that all the
corresponding observations receive no weight. Now consider estimator γ̂∗(0,1−h], which is γ̂n
based on only the first n(1−h) observations. This estimator is clearly asymptotically (note
that ĉn,h(1) contains Xn,n−k) independent of ĉn,h(1). Einmahl et al. (2016) prove that
that γ̂∗(0,1−h] − γ̂n = op(1/

√
k), such that ĉn,h(1) and γ̂n are asymptotically independent.

Our estimator gives nonzero weight to all observations in the sample, as the beta
kernel matches the compact support of the scedasis function. Therefore, the proof by
Einmahl et al. (2016) cannot be directly extended to our case. However, an intuitive
argument why the dependence between ĉn,b(1) and γ̂n becomes asymptotically negligible
is as follows. The kernel Kb(u) = (1/b + 1)u1/b increasingly concentrates on the right
endpoint u = 1 as b → 0, which can be seen in Figure 5.1. This implicates that the
observations further away from the last observation, Xn, receive increasingly less (though
nonzero) weight in ĉn,b(1). More formally, consider some constant h ∈ (0, 1), omitting
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the trivial cases h = 0, 1, such that we can write, in correspondence with (5.8),

c̃n,b
(
t±
)

=
1

k

[(1−h)n]∑
i=1

1{
Xi>U(n/(kt±))

}Kb

(
i

n

)
+

1

k

n∑
i=[(1−h)n]+1

1{
Xi>U(n/(kt±))

}Kb

(
i

n

)
.

(A.4)

Clearly, the second term is independent of γ̂∗(0,1−h]. For asymptotic independence, we
would need the first term to go to zero as n → ∞. We argue, heuristically, that it
becomes asymptotically negligible.

Lastly, as mentioned in Section 3.1, Mefleh et al. (2020) prove asymptotic indepen-
dence of the exceedance times and corresponding exceedance values, where the former is
associated with estimation of c, and the latter of γ. This provides another argument for
the asymptotic independence.
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A.3 Simulation scedasis function plots
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Figure A.1: Scedasis functions corresponding to each of the six DGPs in the simulation study in Section
6 .

52



A.4 Simulation quantile-quantile plots
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Figure A.2: Quantile-quantile plots for the one-step ahead predictions against normal quantiles for
the fixed, non-optimised bandwidths corresponding to each of the six DGPs in the simulation study in
Section 6. The p-values of the Jarque-Bera test for normality for n = 50000 are given below each figure.
Those for n = 5000 are all virtually zero.
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A.5 Empirical application Hill plots
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Figure A.3: Hill plots for the S&P 500 log-losses over the 20-years period 1988-2007 (top), 4-years
period 2004-2007 (middle), and 1-year period 2007 (bottom), for the empirical application in Section 7.
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A.6 MATLAB programs and functions

Here we give an overview of the programs and functions implemented in MATLAB,
version R2020b. The (main) programs are

- simulation_replication.m: results for the Monte Carlo simulation in Section 6, Table
6.2 and Figure A.2 for the fixed, non-optimised bandwidth parameters, and for
Table 6.1 and Figure A.1 for the theoretical scedasis functions. This program calls
the functions c_dgp.m, BetaKSE.m, and BiweightKSE.m.

- simulation_optimisation.m: results for the Monte Carlo simulation in Section 6,
Table 6.3 for the optimised bandwidth parameters. This program calls the functions
c_dgp.m, BetaKSE.m, and BiweightKSE.m.

- application.m: results for the empirical application in Section 7, Table 7.1 and
Figure 7.1, 7.2, and A.5. This program calls the functions BetaKSE.m and Bi-
weightKSE.m.

- Kb_plots.m: plots the beta kernel at the boundary for a small and a large band-
width for Figure 5.1.

The functions are

- c_dgp.m: theoretical scedasis for each DGP.

- BetaKSE.m: beta kernel scedasis estimator.

- BiweightKSE.m: convolution-type biweight (boundary) kernel scedasis estimator.

- CV_BiweightKSE.m: cross-validation criterion corresponding to (A.2) and (A.3)
for the convolution-type biweight kernel scedasis estimator, used in preliminary
research by means of simulation and application.
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