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one excluding parameter uncertainty. We no longer find significant welfare gains when we

incorporate parameter uncertainty in the scenario sets.
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1 Introduction

Financial markets are complex and heavily interconnected with the real economy. To better

understand this complex world, mathematical tools have been developed to describe financial

and economical processes. These models can describe the behaviour of stock prices, inflation,

bond prices, etc. given market data. However, they are not limited to only describe economic

processes, but can be extended to generate new data. Generating different economic scenarios

can be useful to price complicated derivatives, research effects of (monetary) policy changes,

or for risk management of financial institutions. These scenarios give possible future paths for

financial markets or economies.

One particular model to describe the economy is the Koijen-Nijman-Werker (KNW) model

(Koijen et al., 2010). Committee Parameters (Langejan et al., 2014) and Dijsselbloem et al.

(2019) advice to use this model to generate economic scenarios for pension funds. This capital

market model describes the dynamics of a stock index, interest rates and inflation. Pension

funds are under strict regulations of central banks. The Dutch Central Bank (DNB) publishes a

scenario set of 10,000 scenarios every quarter that pension funds have to use for their feasibility

tests. The calibration of the KNW-model is performed with new incoming data every quarter.

Draper (2012) and Muns (2015) introduce an adjusted version of the Kalman Filter to cali-

brate the KNW-model. On the other hand, Pelsser (2019) proposes to rewrite the state-space

formulation such that a conventional Kalman filter can be used to estimate the KNW-model.

The economic scenarios extend their functionality beyond feasibility tests. Changes in pen-

sion policies need to be considered very carefully as it affects a large share of the population.

Participation in a pension fund in the Netherlands is often mandatory. The Dutch pension sys-

tem is one of the best in the world1. The system consists of three pillars. The first pillar is the

General Old-Age Pensions Act (AOW), which is a Dutch basic state pension everyone receives.

The second pillar is the company pension that is accumulated during one’s working life, and

usually consists of a share of your wage and a contribution by your employer. Finally, the third

pillar consists of personal savings and insurance products. In the second pillar, employees and

employers pay the contribution into a collective pension fund to which the employer is affiliated.

At the age of 67 the retiree can claim a monthly benefit of the fund.

The research on life cycle investing is extensive. Pension funds play a crucial role in people’s

end-of-period wealth. Bovenberg et al. (2007) provide an extensive survey on life cycle investing

and the role of collective pension funds. Collective investment schemes allow for more flexible

risk sharing. Whereas individual investments can only share risks traded on the financial mar-

1https://www.mercer.com.au/our-thinking/global-pension-index.html
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ket, collective schemes can share the risk across different generations (Boelaars et al., 2015).

Bovenberg et al. (2007) show that one can obtain welfare gains by allowing for age dependent

risk allocation. An important question remains, what is the optimal method to spread out the

investment risks? One method is proposed by Lever and Michelsen (2016), where they share

risk by spreading out shocks across multiple years. This leads to so-called implicit age differen-

tiation. Another method is explicit age differentiation. Chen et al. (2019) provide an extensive

comparison between different age-dependent risk allocations. They consider three different al-

location functions, which all offload most risk on younger generations. Two of the methods are

age dependent and one directly proportional to the built up pension.

Chen et al. (2019) and Darmoutomo et al. (2020) use the KNW-model to generate different

economic scenarios and evaluate the welfare gains of different cohorts. They use the estimated

parameters by the Dutch Central Bank to simulate different paths for the economy and financial

market. However, model parameters come along with parameter uncertainty. Due to the fact

that we cannot observe the real data generating process, but simply samples of this noisy data,

we know that we cannot be certain that the estimates describe the true economy. In this

research we propose to extend Chen et al. (2019) and perform an additional robustness check on

the obtained welfare gains and losses. We will estimate the KNW-model using the framework

of Pelsser (2019) and generate new scenarios while incorporating parameter uncertainty.

The methodology of this thesis will be two-fold. First, we will estimate the KNW-model and

the estimation errors using a Kalman Filter, secondly we will model a pension fund and see how

the welfare gains or losses are affected for different risk allocation strategies by incorporating

parameter uncertainty.

We show that, in line with earlier research, age dependent risk sharing leads to substantial

welfare gains. In accordance with Chen et al. (2019), we find that the 3-2-1 distribution rule

leads to a welfare loss of around 1.79% compared to age independent risk sharing. But the more

flexible methods such as the uniform adjustment in achieve pension and optimisation over the

life cycle lead to significant welfare gains of around 2.59% and 3.08% respectively. However,

when we extend their research and consider parameter uncertainty for the estimated KNW-

model parameters, we find different results. The uniform adjustment in achievable pension

only leads to a welfare gain of around 0.93% and the optimisation over the life cycle leads

to a welfare loss of around 0.46%. Both methods are no longer significantly different from

zero. Also the 3-2-1 distribution rule leads to a welfare loss of around 2.10%. We thus find

that the welfare gains obtained by Chen et al. (2019) are rather arbitrary, and that parameter

uncertainty in the model affects their inference. Including parameter uncertainty in the economic
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scenario generator results in fatter tails. Hence more extreme returns are more likely to happen.

Offloading extra risk on the younger generations could potentially cause a decrease in certainty

equivalent of consumption. Especially when we do not consider the likelihood of big negative

shocks and negative interest rates. Certain cohorts will not sufficiently recover from bad periods

at their retirement age. Thus, policy makers should consider the uncertainty in parameters for

changing their system.

The remainder of this thesis is structured as follows. Section 2 introduces the reader to some

background information about life cycle investing and the role of pension schemes. Section 3

describes the data that is used to calibrate the KNW-model. Section 4 gives a thorough descrip-

tion of the methods used. It describes the details about the KNW-model and the estimation

procedure, how the asset liability management simulations are performed and how welfare is

measured for different risk allocation methods. Section 5 shows the estimation results and ob-

tained welfare gains and losses. Finally, we discuss our results and possible limitations in Section

6 and conclude this thesis in Section 7.

2 Literature

The optimal allocation of an individual’s portfolio over time is often motivated by the life cycle

model introduced by Modigliani (1966). An individual’s capital is build up of human capital as

well as financial capital. Human capital is the discounted earned income during their working

life. For young individuals this value is high. Over time the human capital will decrease as

there is less time left to work. The financial capital slowly increases over one’s life-time until

retirement age and then decreases when their capital is used to keep up the consumption level

during this period.

In life cycle theory it is assumed that human capital grows at a constant rate and is risk-free.

Therefore, an individual can invest part of his financial capital into financial markets to receive

a risk premium. The underlying assumption is that we are willing to expose ourselves to some

extra risk in exchange for higher returns. Merton (1969, 1975) and Samuelson (1975) show that

it is optimal to expose a constant fraction of our wealth to risky assets. When the individual

gets older a larger part of their wealth will consist of financial capital and less of the risk-free

human capital. Therefore to maintain the same risk exposure, it will be beneficial to decrease

the exposure to risky assets.

One critical assumption of these models is that human capital is risk-free and uncorrelated

with equity returns, however in practice this does not always hold. First, an individual can

get promoted, get sick, lose their job, or start their own business. Second, Viceira (2001) and
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Benzoni et al. (2007) show that in fact human capital and equity risk are correlated. This is

because both human capital and equity risk affect the gross domestic product. The correlation

between human capital and the stock market lowers the optimal fraction that should be exposed

to risky assets (Boelaars and Mehlkopf, 2018).

Young people have a larger fraction of their total capital in human capital, they have a longer

horizon to compensate for economic shocks. They can simply work more or less (Bodie et al.,

1992), adapt their future pension benefits or increase their retirement age (Gomes et al., 2008).

Therefore, the hypothesis is that welfare gains can be achieved by exposing young people to

more risk than older people.

In the Netherlands, pension funds play a crucial role in building up a person’s wealth. They

provide participants the opportunity to collectively invest into a fund. The pension scheme has

several benefits, such as providing financial expertise which participants might lack to perform

financial planning and reducing the cost for life cycle planning (Bovenberg and Meijdam, 2001).

Next to this, pension funds enable risk sharing across non-overlapping generations which smooths

out consumption. Bovenberg et al. (2007) provide an extensive survey on life cycle investing

and the role of collective pension funds. However, pension funds deal with a large number of

participants with different characteristics. According to the life cycle theory, younger generations

should be exposed to more risk due to their large human capital, and older generations to less.

Therefore, it is suboptimal for pension funds to have a uniform investment strategy for their

participants. Teulings and De Vries (2006) introduced the idea of generational accounts. All

contributions by one generations are paid into the same account. The benefits would be paid

out using this account to the generation that contributed to the account when they retire.

Consequently, we can have an investment strategy that fits the life cycle of each generation.

In practice, some age-differentiation is already present in the Dutch pension scheme. Shocks

in the financial market are spread out over several years to reduce the effect on changes in

benefits. This results in so-called implicit age-differentiation (Boelaars et al., 2015; Mehlkopf

et al., 2013). Spreading out the shocks also shares the risk with future generations, which

smooths out consumption as well. Lever and Michelsen (2016) shows implicit age-differentiation

can lead to substantial welfare gains. Another methodology is called explicit age-differentiation,

where we no longer make changes to indexation uniformly, but dependent on age. For example,

a pension fund with a lot of old generations will probably take too little risk for the younger

generations and vice versa. Bovenberg et al. (2007) shows that an age-dependent allocation rule

results in substantial welfare gains, compared to a uniform rule. Chen et al. (2019) provide

an extensive comparison between different age-dependent risk allocations. Their first rule is a
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3-2-1 rule, where shocks to young generations are three times as large as to older people, and

two times as large to middle-aged generations. The second allocation rule is that shocks are

allocated uniformly to the achievable pension as introduced by Muns and Werker (2019). The

last method consists of an optimisation method, where the shocks are allocated depending on a

mathematical allocation rule. They find considerable welfare gains for the last two methods.

3 Data

Figure 1: MSCI and HICP data. This figure shows the HICP and MSCI index. The grey areas
denote recessions periods in the Netherlands. The recession periods are based on OECD data. Data can
be retrieved from https://fred.stlouisfed.org/series/NDLREC.

The KNW-model describes inflation, interest rates and equity returns. A description of the

data used by the Dutch Central Bank can be found in the Appendix of Committee Parameters

(2019). We will extend the used data to September 2021. However, some data is unavailable

to us, therefore we only use data from January 2004 until September 2021. This paper will

consider monthly stock price, bond price and inflation data.

• For inflation, we use the Harmonized Index of Consumer Prices (HICP) for the euro area

from the European Central Bank (ECB). The data is obtained from the website of the ECB

(ICP.M.U2.Y.000000.3.INX)2. The data ranges from January 1999 to September 2021 and

consists of 273 observation.

• For the yields, we consider zero coupon rates published by the Dutch Central Bank. The

2https://sdw.ecb.europa.eu/browse.do?node=9691215
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Figure 2: Yield surface. This figure shows yields with maturities ranging from 1 to 60 years over the
period January 2004 – September 2021.

data is obtained from https://www.dnb.nl/statistieken and ranges from December

2001 to September 2021. We got maturities ranging from 1-60 years for the period of

December 2001 to December 2014, and maturities ranging from 1-100 years for the period

of January 2015 to September 2021. Monthly data is only available from January 2004.

• For the stock market, we consider the Morgan Stanley Capital International (MSCI) index

ranging from January 1999 to September 2021. We consider monthly returns. The monthly

returns can be retrieved from Bloomberg.

Figure 1 shows the HICP and MSCI index from January 2004 until September 2021. The

OECD data shows four recession periods during this time period. The HICP index has an

average annual growth of around 1.5 percent. Figure 2 shows the evolution of yields during

the period of January 2004 to September 2021 with maturities ranging from 0 to 60 years. We

observe a declining trend in yields over the years since the financial crisis and the short-term

yields are getting close to zero. The yield characteristics are clearly visible in the last few years.

The curve shows higher yields for higher maturities and lower yields for the shorter maturities.

The data is transformed for estimation purposes. Rather than taking the actual values of

the HICP and MSCI index, we use their log values. We also shift the HICP and MSCI index

such that their first observation is set to zero. We will only take the 1, 5, 10, 15, 20 and 30 years

maturities into consideration.

8
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4 Methodology

This section will introduce all necessary theory and methodology to estimate the KNW-model

and analyse the effect of different risk allocations within a pension fund. The section is two-

fold. First, Sections 4.1 – 4.3 describe the KNW-model and our estimation process. Second,

Sections 4.4 – 4.6 describe how we model the pension fund and measure welfare gains or losses

for different risk allocation methods.

4.1 KNW-model

The Koijen-Nijman-Werker (KNW) model (Koijen et al., 2010) is a two-factor Gaussian affine

model for interest rates and inflation, combined with a generalised Black-Scholes (GBM) model

for stock prices. The dynamics of equity returns, interest rates and inflation are governed by

two state variables X1t and X2t. The process Xt = [X1t, X2t]
′ follows a mean reverting process

around zero and the dynamics of the states are described by the following stochastic differential

equation (SDE)

dXt = −KXtdt+ dW̃ P
t , (1)

where K is a normalised lower triangular 2× 2 matrix to keep the model identifiable (Dai and

Singleton, 2000) and W̃ P
t is a two-dimensional P-Brownian motion, with P denoting the real-

world probability measure. The model describes the instantaneous nominal interest rate (rt)

and the instantaneous expected inflation (πt) as an affine function in state variable Xt:

rt = δ0R + δ′1RXt, (2)

πt = δ0π + δ′1πXt. (3)

The price index (Πt) and stock index (St) evolve as

dΠt

Πt
= πtdt+ σ′

ΠdW
P
t , σΠ ∈ R4 and Π0 = 1, (4)

dSt

St
= (rt + ηS)dt+ σ′

SdW
P
t , σS ∈ R4 and S0 = 1, (5)

with ηS the equity risk premium and dW P
t a 4-dimensional P-Brownian motion. To keep the

model well-identified, we impose σΠ,(4) = 0 as suggested by Chen et al. (2019). Finally, the

nominal stochastic discount factor, ϕN
t , is described as

dϕN
t

ϕn
t

= −rtdt− Λ′
tdW

P
t ,
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with the price of risk at time t, and Λt equal to

Λt = Λ0 + Λ1Xt with Λt,Λ0 ∈ R4 and Λ1 ∈ R4×2. (6)

As we assume that the risk premium is constant, we have σ′
SΛt = ηS . This puts restrictions on

the parameters Λ0 and Λ1. The assumption implies that σ′
SΛ1 = 0 and σ′

SΛ0 = ηS . Another

assumption is that there is no risk premium for unexpected inflation risk, thus Λ0,(3) = 0 and

Λ1,(3) = 0, where Λ1,(3) denotes the third row.

4.1.1 Nominal Interest Rates

Following the derivation of Koijen et al. (2010), the price of a zero-coupon rate bond at time t

with maturity τ is equal to

Pt(τ) = exp (−A(τ)−B(τ)′Xt), (7)

with

B(τ) = (K + Λ1)
′−1(Ik − e−(K+Λ1)′τ )δ1r, (8)

A(τ) =

∫ τ

0
δ0r − λ′

0B(s)− 1

2
B(s)′B(s)ds. (9)

The corresponding yield, yt(τ), is equal to
A(τ)
τ + B(τ)

τ

′
Xt.

4.2 State-Space Formulation of KNW-model

In contrast to Draper (2014) and Muns (2015), who use a non-standard Kalman filter, Pelsser

(2019) proposes to rewrite the KNW-model so that a standard Kalman filter can be used. We

can achieve this by augmenting the state variables Xt. We include the log of the price index

and stock market into our augmented state variable X̃t = (Xt, lnΠt, lnSt). The dynamics of X̃t

are then given by

dX̃t =




01×k

δ0π − 1
2σ

′
Πσπ

δ0R + ηS − 1
2σ

′
SσS


︸ ︷︷ ︸

Θ0

+


−K 0k×2

δ′1π 01×2

δ′1R 01×2


︸ ︷︷ ︸

Θ1


Xt

lnΠt

lnSt


 dt+


[Ik 0k×2]

σ′
Π

σ′
S


︸ ︷︷ ︸

Θ2

dW P
t . (10)

The above stochastic differential equation (SDE) is known as an Ornstein–Uhlenbeck process of

the form dX̃t = (Θ0 +Θ1X̃t)dt+Θ2dW
P
t . For a small time step ∆t, Pelsser (2019) derives the

10



following transition density

X̃t|X̃t−∆t ∼ N (

∫ ∆t

0
eΘ1uΘ0du+ eΘ1∆tX̃t−∆t,

∫ ∆t

0
eΘ1uΘ2Θ

′
2e

Θ′
1udu). (11)

It follows directly from (11) that the VAR(1)-representation of X̃t becomes

X̃t = ϕ+ΦX̃t−∆t + εt, Var(εt) = R, (12)

with vector ϕ =
∫ ∆t
0 eΘ1uΘ0du, matrices Φ = eΘ1∆t and R =

∫ ∆t
0 eΘ1uΘ2Θ

′
2e

Θ′
1udu. This

equation will be referred to as the state equation.

Let yt ∈ Rm be a vector of zero-coupon rates with maturities of τ1, ..., τm. Then, we also

augment the observation variable ỹt = (yt, lnΠt, lnSt). The measurement equation is then

defined as

ỹt =


yt

lnΠt

lnSt

 = a+BX̃t + wt, Var(wt) = Q, (13)

with a ∈ R(m+2) and B ∈ R(m+2)×(k+2) defined as

a =



A(τ1)/τ1
...

A(τm)/τm

0

0


, B =



B(τ1)
′/τ1 0 0

...
...

...

B(τm)′/τm 0 0

01×k 1 0

01×k 0 1


. (14)

The covariance matrix Q ∈ R(m+2)×(m+2) has a particular structure that assumes the errors wt

are independent of X̃t and εt and that lnΠt and lnSt are measured without error. The matrix

has the following structure:

Q :=

diag(q2m) 0

0 0

 . (15)

If we combine (12) and (13) with the assumption that the errors are independent, we get the

following joint distribution

X̃t

ỹt

∣∣∣∣∣X̃t−∆t ∼ N

 ϕ+ΦX̃t−∆t

a+B(ϕ+ΦX̃t−∆t)

 ;

 Q QB′

BQ′ BQB′ +R

 . (16)

However, X̃t−∆t is unknown. Our best estimation of X̃t−∆t is X̂t−∆t. Let Pt−∆t be the covariance

11



matrix of the estimation error X̂t−∆t − X̃t−∆t. The conditional distribution of X̂t|X̂t−∆t is

X̂t|X̂t−∆t ∼ N (ϕ+ΦX̂t−∆t, Pt|t−∆t), (17)

with Pt|t−∆t = ΦPt−∆tΦ
′ +Q. Substituting this in (16) results in

X̃t

ỹt

∣∣∣∣∣X̂t−∆t ∼ N

 ϕ+ΦX̂t−∆t

a+B(ϕ+ΦX̂t−∆t)

 ;

 Pt|t−∆t Pt|t−∆tB
′

BP ′
t|t−∆t Vt

 , (18)

with Vt = BPt|t−∆tB
′ + R. We have all the information to describe the prediction and update

step for the Kalman filter. Prediction is straightforward

X̂t = ϕ+ΦX̂t−∆t, (19)

Pt|t−∆t = ΦPt−∆tΦ
′ +Q. (20)

The update step can be derived from the conditional density function of X̃t|ỹt, X̂t−∆t

X̂t|t = ϕ+ΦX̂t−∆t +Ktut, (21)

Pt = Pt|t−∆t − Pt|t−∆tB
′V −1

t BPt|t−∆t = (I −KtB)Pt|t−∆t, (22)

with Kt = Pt|t−∆tB
′V −1

t and ut = ỹt − (a+B(ϕ+ΦX̂t−∆t)).

We can also use the Kalman smoother to estimate the optimal state given the future. The

smoothed values are computed as follows:

X̃t|T = X̂t|t + PtΦ
′P−1

t+∆t|t(X̂t+∆t|T − X̂t+∆t|t), (23)

P̃t|T = Pt − PtΦ
′P−1

t+∆t|tΦPt. (24)

4.2.1 Discretisation

To overcome the computationally intensive integrals in (12), we derive the discretised parameters

using eigenvalue decomposition on Θ1 = UDU−1 as in Koijen et al. (2010). The relation of the

parameters of the VAR(1) process can be written as

ϕ = UFU−1Θ0, (25)

Φ = U exp(D∆t)U−1, (26)

with F a diagonal matrix with diagonal elements Fii = ∆t α(Dii∆t) and α(x) = (exp(x)−

12



1)/x, and α(0) = 1. The derivation of covariance matrix R is a bit more tedious. We have

R = UV U ′, (27)

where V is a matrix with element

Vij =
[
U−1Θ2Θ

′
2(U

−1)′
]
ij
∆t α([Dii +Djj ]∆t). (28)

4.2.2 Likelihood Function

The likelihood for Kalman filters is straightforward to derive. The joint probability density func-

tion of sequentially dependent observations can be written as f(ỹ1, ..., ỹT |θ) = f(ỹ1)f(ỹ2, ..., ỹT |I1) =

... = f(ỹ1)
∏T

t=2 f(ỹt|It−1), with It all known information at time t. We observe that we can

use the prediction step of the Kalman filter to obtain all the conditional probability density

functions. Therefore, the distribution of f(ỹt|X̂t−∆t) is a multivariate normal distribution as in

(18)

ỹt|X̂t−∆t ∼ N (a+B(ϕ+ΦX̂t−∆t), Vt). (29)

The error, et, corresponding to this prediction is et = ỹt −E(ỹt|X̂t−∆t). We can then iteratively

express the log-likelihood in terms of the prediction errors as in Pelsser (2019)

lnLt = −Tk

2
ln(2π)− 1

2
ln |Vt| −

1

2
u′tV

−1
t ut, (30)

with k the dimension and T the number of observations in the time series. We then max-

imise the complete log-likelihood function w.r.t. model parameters (Ψ) and ignore the constant

−Tk
2 ln(2π), resulting in the following maximisation problem

max
Ψ

lnL =
∑
t

lnLt = −1

2

∑
t

ln |Vt| −
1

2

∑
t

u′tV
−1
t ut. (31)

4.2.3 Prior Initialisation

The Kalman filter requires an initialisation for the initial states and estimation errors. Pelsser

(2019) shows superior results for a stationary initialisation, thus we opt for this option. The

initial states X̂0 are set to (E[X∞], lnΠ0, lnS0) and the initial estimation errors to

P0 :=

Var[X∞] 02×2

02×2 02×2

 . (32)
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The unconditional mean, E[X∞], and variance Var[X∞] of a k-variate VAR(1) process, Xt =

c+A1Xt−1 + εt, are defined as

E[X∞] := (Ik −A1)
−1c, (33)

vec(Var[X∞]) := (Ik −A1 ⊗A1)
−1vec(V ), V = Var(εt). (34)

4.2.4 Restrictions

We follow the imposed restrictions on the KNW-model by the Dutch Parameter Committee

2019 (Dijsselbloem et al., 2019). The committee suggest to restrict the model such that the

ultimate forward rate (UFR), unconditional expected change in inflation, and the unconditional

expected return on the stock market equals predefined values. The continuously compounded

ultimate forward rate is given by

ln(1 + UFR) = lim
τ→∞

A(τ)

τ
= δ0r − λ′

0B∞ − 1

2
B′

∞B∞, B∞ = (K + Λ1)
′−1δ1r. (35)

The unconditional expected change in inflation and return of stocks is given by

ln(1 + rgS) = lim
t→∞

E
[
ln

St+1

St

]
= δ0r + ηs −

1

2
σ′
SσS , (36)

ln(1 + rgΠ) = lim
t→∞

E
[
ln

Πt+1

Πt

]
= δ0π − 1

2
σ′
ΠσΠ. (37)

Commitee Parameters suggest to set the UFR to 2.1%, rgS to 5.6% and rgΠ to 1.9%. This results

in the following constraints:

δ0r = ln(1.021) + λ′
0B∞ +

1

2
B′

∞B∞, (38)

ηS = ln(1.056)− δ0r +
1

2
σ′
SσS , (39)

δ0π = ln(1.019) +
1

2
σ′
ΠσΠ. (40)

The degrees of freedom of the model decrease by three. This model will be referred to as the

restricted KNW-model.

4.3 Parameter Uncertainty

Chen et al. (2019) simulate the economy using point estimates of the KNW-model. We suggest

that the uncertainty of the parameters should be considered when simulating the economy.
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Under regularity assumptions the maximum likelihood estimate (MLE) of the Kalman filter are

consistent and asymptotically normal with a covariance matrix equal to the negative inverse

matrix of the (Fisher) information matrix, FL (Caines, 2018). The assumptions require that

the model is identifiable and the true parameter values are not at the boundary of parameter

space. The information matrix contains the second-order partial derivatives of the log-likelihood

function L w.r.t. all model parameters, thus mathematically3

FL =
∂2 lnL
∂θ2

=


∂2 lnL
∂δr∂δr

. . . ∂2 lnL
∂δr∂h

...
. . .

∂2 lnL
∂h∂δr

. . . ∂2 lnL
∂h∂h


θ=θ̂MLE

, (41)

with θ denoting all model parameters. Let θ̂MLE be the maximum likelihood estimate of the

Kalman filter. We then can draw a new parameter set i by taking draws from the following

distribution θ(i) ∼ N (θ̂MLE , −F−1
L ). We obtain a normally distributed set of parameters around

θ̂MLE with covariance −F−1
L .

One of the issues of sampling from a distribution is that implicit parameters restrictions are

no longer enforced. To make sure our simulations of states are stationary under measure Q, we

omit all draws where the eigenvalues of K or M = K + Λ are non-negative or not real.

Another method to approximate the standard errors is by means of bootstrapping. By

generating new data sets using the initially estimated parameters and re-estimating the model,

we can create a distribution of parameters. However, due to the high number of parameters in

the KNW-model this method is infeasible. Since we have 29 parameters in the KNW-model and

26 parameters in the restricted KNW-model, the number of bootstraps needs to be very large.

This requires too much computation time.

4.4 Pension Fund

Asset liability management (ALM) analysis assess the risk that is taken by a financial institution

through modelling its assets and liabilities. In this section we describe how assets and liabilities

of our pension fund are modelled. The liabilities, Lt, of a pension fund consist of the outstanding

claims of its participants. This includes current claims and discounted future claims. The assets

of the pension fund are denoted by At and are obtained via participant’s contributions and

financial returns on the assets. The financial well-being of a pension fund is described by the

coverage ratio (CR). The ratio describes the ratio of assets to liabilities (At
Lt
). For example, a

3For readability purposes we do not fully write out all subscripts of the parameters, therefore each partial
derivative is a block-matrix.
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coverage ratio of 1 means the pension funds has exactly enough assets to pay for its outstanding

claims. Whenever a pension fund reaches a coverage ratio greater than 1, it can increase the

benefits for its members, and vice versa. Altering the pension benefits is called indexation,

denoted by It. The indexation rules are defined as follows

It =


At

0.9Lt
− 1 if CRt < 90%

At−Lt
(x−1)At+Lt

if 90% ≤ CRt ≤ 120%

At−Lt
(x/2−1)At+Lt

if CRt > 120%.

(42)

Financial shocks do not have to be included in the indexation immediately. To smooth out

financial shocks over time, a spreading factor x is used. It spreads out the financial shocks over

x years. It is set to ten years in our study. If the coverage ratio reaches a value between 90%

and 120%, around 1/10th of the excess/shortage is divided. If the coverage ratio is above 120%,

the indexation is performed twice as quickly, thus 1/5th of the excess is divided. There are

two backstops present in this system. If the coverage ratio drops below 90%, one backstop is

enacted where pension benefits are immediately decreased such that the coverage ratio is set

back to 90%. The second backstop is carried out when the coverage ratio is below a 100% for five

consecutive years. In this case the ratio is set back to 100% with an indexation of It =
At
Lt

− 1.

The indexation for the backstops is spread over a period of 10 years.

The assets of a pension fund are highly dependent on the performance of their investment

portfolio. A fund’s portfolio consists of a mix between stocks and bonds. The return of a fund’s

portfolio depends on their allocation, so

Rt = 1 + x1r
1
t + x2r

2
t + (1− x1 − x2)rt, (43)

with x1 and x2 the percentage invested in stocks and cash-flow matching bonds respectively.

The returns of the stock index is denoted by r1t . r
2
t is the return on the bond portfolio. Finally,

a fraction 1 − x1 − x2 is invested in the instantaneous nominal interest rate (rt). Note that

the fund can borrow money to invest in either stocks or bonds, and therefore the last fraction

1− x1 − x2 can be negative. Given the return on the portfolio the assets develop as

At+1 = Rt+1(At + Inct − Expt), (44)

with Inct the income from contributions of participants and Expt the expenditures related to

paying off claims at time t.
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To find out the exact effect of parameter uncertainty, we simulate the pension fund and

its participants similar to Chen et al. (2019). Every year a single person joins the system and

represents a generation (cohort). We make some assumptions about each agent’s life. An agent

starts working at 25 and retires at 65. During this period (TW ), he contributes 20% of his salary

towards his pension. An agent benefits from its pension for 20 years and passes away at the

age of 85 years. This period is denoted by TP . At the start of each simulation wages are set to

25,000 euros and grow with the price index. The starting value of assets is equal to its liabilities,

thus a CR of 100%.

The pension claims of cohorts j ∈ {t − TW − TP , ..., t − 1} result in cash flows in τ ∈

{max(0, j− t+TW +1), ..., j− t+TW +TP } periods. To keep track of the claims for each cohort

we define a matrix Q. Let Q ∈ R(TW+TP )×(TW+TP ) be a matrix of zeros and ones. Column j

represent whether cohort k = t−j will receive a payment in i−1 periods. Then for each element

qi,j ∈ Q we get

qi,j =


1 if i+ j ∈ {TW + 2, ..., TW + TP + 1}

0 if i+ j /∈ {TW + 2, ..., TW + TP + 1}.

In order to track the pension claims at each time t, we define a matrix Bt ∈ R(TW+TP )×(TW+TP ).

Again, column j represent cohort k = t−j but with the nominal cash flow the cohort will receive

in i−1 years. Thus, each row i represent what the pension fund has to pay in i−1 years to each

cohort. As we deal with future payoffs, we need a discount factor, DFt(τ), to discount future

payoffs. We use the price of a zero-coupon bond with maturity τ as the discount factor. The

liabilities can then be computed as

Lt =
t−1∑

j=t−TW−TP

TW+TP∑
i=1

(DFt(i− 1) qi,t−j (Bt)i,t−j). (45)

4.5 Risk Allocation

To not distribute risk uniformly across different age groups, we make use of an adjustment

factor. The adjustment factor afj,t alters the indexation for age group j at time t. The exact

change in benefits for each cohort j is given by vj,t ∈ RTW+TP , where

vj,t = ιξtafj,t, (46)

with ι ∈ 1(TW+TP ), a vector of ones, and ξt a scaling factor. The relative change in pension

claims that are due in i years is given by the i-th element of vj,t. The scaling factor ξt is chosen
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such that the liabilities scale with the indexation, thus

(1 + It)Lt =
t−1∑

j=t−TW−TP

TW+TP∑
i=1

(DFt(i− 1) qi,t−j(Bt)i,t−j(1 + (vj,t)i)) .

In the following sections, we introduce the three different risk allocations as in Chen et al. (2019).

All three risk allocations allocate more risk to younger generations than older generations. The

exact form of the different adjustment factors are shown in Section 5.3.1. For the base case, no

age-dependent risk allocation is present, and thus has an adjustment factor of one for all ages.

4.5.1 3-2-1 Adjustment Rule

Dillingh et al. (2018) propose an age-dependent allocation rule based on a 3-2-1 adjustment

rule. We assume that people contribute for 40 years to their pension and benefit for 25 years

of the payments. The youngest 30 generations have an adjustment factor of three, the middle

10 generations a factor of two, and all pensioners an adjustment factor of one. The adjustment

factor is defined as follows:

afj,t =


3 if t− j ∈ {1, ..., TW − 10}

2 if t− j ∈ {TW − 9, ..., TW }

1 if t− j ∈ {TW + 1, ..., TW + TP }.

4.5.2 Uniform Adjustment to Achievable Pension

Rather than using age as a proxy for built up pension, we can also directly use the built

up pension. Muns and Werker (2019) suggests to allocate risk by uniformly adjusting to the

achievable pensions. This means that during every moment in their lifetime the adjustment to

their pension is proportional to their built up pension. To describe this mathematically, we define

Wj,t as the built up pension for cohort j at time t and Hj,t as the expected pension claims. The

adjustment factor is computed as a fraction of the built up pension plus the expected pension

claims divided by the built up pension,

afj,t =
Wj,t +Hj,t

Wj,t
. (47)
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The variables Wj,t and Hj,t are computed as follows:

Wj,t =

TW+TP∑
i=1

DFt(i− 1) qi,t−j (Bt)i,t−j , (48)

Hj,t =

TW+j−t−1∑
τ=1

DFt(τ) w̃t+τ , (49)

with DFt(τ) the discount factor for τ years computed at time t. Retirees have no more expected

pension claims (Hj,t = 0), and thus an adjustment factor equal to one. We assume the wages

will grow with the price index, therefore the expected future salary in τ years will be

w̃t+τ = Πt exp
{
τδ0π + δ′1πXt

τ∑
s=1

exp(−sK)
}
. (50)

4.5.3 Optimisation over the Life Cycle

Finally, we present the third adjustment factor. Rather than setting a fixed adjustment factor

or using the built up pension directly, we use a parametric adjustment factor. This gives us the

opportunity to create a flexible adjustment factor. We then optimise both over the parameters

as well as the portfolio allocation x1 and x2. The function has the form as introduced in Chen

et al. (2019) and contains three parameters β1, β2 and β3. The function is defined as

f(k) = exp
{
β1(TW + TP − k) + β2 max{0, TW − k}+ β3 max{0, TW − k}2

}
, (51)

where k represents the number of years a cohort has worked. The adjustment factor is then

defined as af(t−k),t = f(k).

4.6 Measuring Welfare

To quantify welfare gains or losses over age-dependent risk allocation, we need a measure for

welfare. A utility framework is used. People have different preferences for risk and can be either

risk averse, risk neutral or risk seeking. Risk aversion indicates that people feel diminishing

rewards as risk increases and therefore need to be compensated more for taking additional risk.

Risk neutrality means that people are indifferent between risk levels, and risk seeking people

reward additional risk. Measures for absolute and relative risk aversion have been introduced

by Pratt (1964) and Arrow (1965). A common measure in literature is the constant relative risk

aversion (CRRA), with utility function

u(x) =
x1−γ

(1− γ)
(52)
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and γ denotes the risk aversion parameter. In our case, similar to Chen et al. (2019), we will

use a parameter value of γ = 5. This value is widely used in the literature as the standard risk

aversion parameter. The total utility of cohort j, during their pension, in simulation i is equal

to

Uj,i =

j+TW+TP∑
t=j+TW+1

ρt−j−TW−1u

(
(Bt)1,t−j

Πt

)
,

where ρ is a subjective discount rate, set to the steady-state instantaneous interest rate. The

expected utility of cohort j is the average over i = 1, ..., N simulations

Ūj = E(Uj) =
1

N

N∑
i=1

Uj,i. (53)

We can write welfare as the certainty equivalent consumption (CEC) so that the CEC for

cohort j is equal to

CECj =
(
Ūj

1− γ∑TP
t=1 ρ

t

) 1
1−γ

, (54)

which we can rewrite to express utility as a function of CEC:

Ūj =

Tp∑
t=1

ρt u(CECj). (55)

The total welfare (TW ) is a sum of discounted expected utilities starting after the burn-in period

k. Using some rules for power series, we obtain

TW =
∞∑
j=k

ρj Ūj−Tw =
∞∑
j=k

ρj
Tp∑
t=1

ρt u(CECj−TW
)

=
ρk

1− ρ

Tp∑
t=1

ρt u(CEC) =
ρk+1

1− ρ

1− ρTP

1− ρ
u(CEC).

(56)

Due to computational limitations, we only simulate 600 years equivalent to Chen et al. (2019).

Increasing the number of years is not necessary as the effect after 600 years is almost negligible

due to the discount factor ρ. We can rewrite CEC as a function of TW

CEC =

(
TW (1− ρ)2(1− γ)

(1− ρTP )ρk+1

)1/(1−γ)

. (57)

By means of optimisation we can find the optimal investment strategy to maximise total

welfare. We want to find x1 and x2 so that CEC is maximised, thus maxx1,x2 CEC. For the

method described in Section 4.5.3, we also need to optimise over the parameters β = (β1, β2, β3)
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in (51). In this case our problem is defined as

max
x1, x2, β

CEC. (58)

Due to computational limitations we cannot optimise over all the 10,000 scenarios. Therefore,

we only use 1,000 scenarios to find the optimal parameters. Finally, we compute welfare gains

or losses as the percentage change of the CEC of an allocation method over the CEC of the

uniform adjustment rule.

4.6.1 Standard Error

To approximate the distribution of the welfare gains and losses, we use a bootstrap method. We

perform a bootstrap by taking a random sample of size N of the utilities Ui for two different

allocation methods. Both methods take the exact same economies. We compute the average

welfare gain or loss over two using the CEC as in (57). We repeat this bootstrap 10,000 times

to obtain our bootstrap distribution.

4.7 CEC Analysis

To better understand what factors affect welfare, we perform a regression analysis. For each

simulation we take the average CEC across all cohorts and regress the CEC on a set of indepen-

dent variables. We consider the average 10 year bond price, the average short-rate, the standard

deviation of the short-rate, the average stock return and the standard deviation of the stock

return within a simulation. Formally,

CECi = β0 + β1X1i + β2X2i + ...+ βkXki + εi, i ∈ {1, ..., N}, (59)

with Xji the j-th independent variable for simulation i, k the number of independent variables

and N the number of simulations.

5 Results

In this section, we describe the results of parameter estimates of the Kalman filter in Section 5.1.

Thereafter, we present descriptive statistics of the generated scenario sets in 5.2. The results of

the pension fund simulation can be found in Section 5.3.
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Unrestricted Restricted Pelsser (Restricted)

Param. Coefficient S.E. Coefficient S.E. Coefficient S.E.

δ0π 0.0194 0.0000 0.0188 0.0188
δ1π,1 -0.0018 0.0000 -0.0014 0.0000 -0.0023 0.0015
δ1π,2 -0.0009 0.0000 -0.0009 0.0000 0.0003 0.0011

δ0r 0.0212 0.0003 0.0193 0.0211
δ1r,1 -0.0056 0.0000 -0.0054 0.0000 -0.0077 0.0005
δ1r,2 -0.0009 0.0000 -0.0008 0.0000 0.0010 0.0023

K11 0.0312 0.0017 0.0421 0.0047 0.0386 0.0749
K22 1.1056 0.0965 0.4312 0.0651 0.2629 0.1783
K21 0.4493 0.1357 0.4195 0.0314 0.3774 0.2158

σΠ,1 -0.0016 0.0000 -0.0015 0.0000 -0.0007 0.0005
σΠ,2 0.0017 0.0000 0.0009 0.0000 0.0008 0.0004
σΠ,3 0.0061 0.0000 0.0061 0.0000 0.0055 0.0003

σS,1 -0.0431 0.0004 -0.0396 0.0002 -0.0549 0.0104
σS,2 0.0595 0.0004 0.0310 0.0003 0.0044 0.0183
σS,3 0.0056 0.0001 0.0045 0.0001 0.0002 0.0032
σS,4 0.1428 0.0000 0.1436 0.0000 0.1305 0.0064

ηS 0.0629 0.0015 0.0467 0.0434

λ0,1 0.5581 0.0134 0.6244 0.0458 0.6377 0.1675
λ0,2 -0.1284 0.0389 -0.1140 0.0603 -0.0745 0.2054
Λ1,1 0.2593 0.0602 0.2236 0.0069 0.1717 0.0626
Λ1,2 0.8569 0.0098 0.3406 0.0104 0.1875 0.0602
Λ2,1 -0.4419 0.1977 -0.4268 0.0676 -0.3887 0.2485
Λ2,2 -1.0670 0.1252 -0.4154 0.0254 -0.2429 0.1516

h1 0.0000 0.0000 0.0000 0.0000 0.0032 0.0002
h5 0.0014 0.0000 0.0017 0.0000 0.0007 0.0001
h10 0.0005 0.0000 0.0006 0.0000 0.0004 0.0000
h15 0.0001 0.0000 0.0005 0.0000 0.0000 0.0001
h20 0.0008 0.0000 0.0009 0.0000 0.0011 0.0001
h30 0.0024 0.0000 0.0029 0.0000 0.0002 0.0002

log L 9653.35 9508.76 ***
R2 0.9936 0.9955 ***
min.ev(K) 0.0312 0.0421 0.0386
min.ev(M) 0.0156 0.0261 0.0319
Π-return 0.0193 0.0188 ***
S-return 0.0711 0.0545 ***

Table 1: Parameter estimates. This table shows the results of both the unrestricted and restricted
KNW-model estimated with data ranging from January 2004 to September 2021. The most right column
shows the parameters estimated by Pelsser (2019). Note that the data used by us and Pelsser (2019) to
estimate the parameters differ. In the bottom of the table log L denotes the log-likelihood and min.ev
the smallest eigenvalue of a matrix. The *** denotes unavailable or non-relevant data. R2 is based on
the smoothed states by the Kalman smoother.
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5.1 Parameter Estimates

Table 1 shows the estimated parameters of the restricted and unrestricted KNW-model. The

standard errors of the parameters are computed using the second-order derivative of the negative

log-likelihood function w.r.t. each parameter. These values can be found in the diagonal of the

covariance matrix −F−1
L , as described in (41). If we compare the two different models we

notice a lower log-likelihood for the restricted models. This is to be expected as this model has

less freedom in its choice of parameters. The log-likelihood of the restricted model drops by

9653.35− 9508.76 = 144.59. A difference is noticeable in the matrices K and Λ. K22 especially

gets shrunk by a noticeable amount from 1.1056 to 0.4312. The standard errors of the matrix K

also drop noticeably for K22 and K21, indicating a better fit for the K matrix. We observe the

same shrinkage in the matrix Λ, where their absolute values as well as standard errors decrease

notably. The largest parameters in these models get shrunk, which results in larger minimum

eigenvalues. Negative eigenvalues indicate a non-stationary process which means that inflation,

bond prices and stock prices diverge as time increases. Non-negative eigenvalues are beneficial

for economic simulations as they create more realistic economic scenarios. If we follow the model

restrictions of the Dutch Parameter Committee 2019, the equity risk premium goes down from

6.29% to 4.67%. We cannot directly compare the parameter estimates by Pelsser since the data

used for calibration differ. However, we can still observe that the parameters are relatively close

to our estimates. An odd observation is that the standard errors differ a lot. The reason for

this remains unknown and is likely due to different numerical approximation techniques for the

Hessian. It is interesting to compare the estimated stock return and inflation to our data set.

The annual historic stock return in our data set is 6.11%, which falls somewhere in between

the unrestricted and restricted model. The inflation in our data is at 1.58%, which is closer to

estimates of the restricted model.

5.2 Economic Scenarios

This section shows some descriptive statistics of the economic scenario sets. We check how

parameter uncertainty affects the generated scenarios and its descriptive statistics. Table 2 shows

that the first three moments are relatively similar in both scenario sets. However, the fourth

moment, kurtosis, increases for the short-rate and inflation. This means that the distribution

has fatter tails and thus extreme values are more likely to occur. In the following section we

will show how this impacts the welfare changes for different risk allocations.

23



Mean Std. Dev. Skewness Kurtosis

Scenario set 1 (without S.E.)
Stock-index 6.55% 15.35% 0.00 3.00
Short-rate 1.88% 1.86% 0.02 3.01
Inflation 1.87% 0.81% 0.01 3.00

Scenario set 2 (with S.E.)
Stock-index 6.58% 15.46% 0.00 3.03
Short-rate 1.94% 1.79% 0.02 3.44
Inflation 1.87% 0.82% 0.00 3.34

Table 2: Descriptive statistics scenario sets. This table shows the descriptive statistics of the two
scenario sets. We describe the first four moments (mean, standard deviation, skewness and kurtosis).

5.3 Pension Fund Simulation

Table 3 shows the welfare gains of different risk allocation methods in comparison to the base

uniform distribution of risk for both simulations with and without standard errors. We find

results in line with earlier research (Chen et al., 2019; Darmoutomo et al., 2020). For the

simulation without standard errors, the 3-2-1 distribution rule is the only allocation method that

results in a welfare loss in comparison to the benchmark uniform distribution of risk method.

The risk distribution methods of uniform adjustment in achievable pension and optimisation over

Method Welfare Increase (%) S.E. (%)

Simulation without standard errors
3-2-1 distribution rule -1.79∗∗∗ 0.53
Uniform adjustment in achievable pension 2.59∗∗∗ 0.70
Optimisation over the life cycle 3.08∗∗∗ 0.24

Simulation with standard errors
3-2-1 distribution rule -2.10∗∗∗ 0.77
Uniform adjustment in achievable pension 0.93 1.99
Optimisation over the life cycle -0.46 1.74

Table 3: Welfare gains over different risk allocation methods. This table shows increase in
welfare measured by average certainty equivalent in consumption (CEC) over different risk allocation
methods. * denotes significance level at 10%, **, at 5%, and *** at 1%.

the life cycle show an average welfare gain of 2.59% and 3.08% respectively. We find significant

welfare gains at the 1% significance level for all methods. For the simulation with standard

errors the results differ. In this section the 3-2-1 distribution rule and the optimisation over the

life cycle lead to welfare losses compared to the base model of 2.10% and 0.46% respectively.

The uniform adjustment in achievable pension rule gives us an average welfare gain of 0.93%.

Furthermore, we find that not all results are significant anymore at even the 10% significance
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level. Only the 3-2-1 distribution rule’s welfare loss is significant at the 1% significant level.

Method x1 (%) x2 (%)

Simulation without standard errors
Base uniform 48.7 100.0
3-2-1 distribution rule 40.8 100.0
Uniform adjustment in achievable pension 40.5 100.0
Optimisation over the life cycle 48.7 100.0

Simulation with standard errors
Base uniform 47.65 99.95
3-2-1 distribution rule 37.92 100.0
Uniform adjustment in achievable pension 46.55 100.0
Optimisation over the life cycle 55.47 99.09

Table 4: Allocation over different risk allocation methods. This table shows the allocation in
equity (x1) and the interest rate hedges (x2) over different risk allocation methods. The allocations are
obtained using 1000 simulations.

Table 4 shows the allocation into equity (x1) and interest rate hedges (x2). For the simulation

without standard errors, we find relatively similar results for all methods with weights in equity

ranging from 40% to 50%. For the simulation with standard errors included, we observe a

broader range of allocations in equity, ranging from 37% to 55%. In terms of interest rate

hedges both simulations result in a value close to or equal to 100%. For all methods the optimal

strategy is to (almost) hedge all of the interest rate risk. We find that all positions are leveraged

as x1 + x2 > 100%. This means part of the investments is financed by going short in the short

rate. This is expected behaviour as the short rate has been close to zero or even negative in

recent years, making short positions relatively cheap.

5.3.1 Adjustment Factors

Figure 3 shows the adjustment factors for both simulations. When we do not consider the

standard errors in our simulation, we observe a relatively flat adjustment factor curve for the

optimisation over the life cycle. When people join the pension system they have an adjustment

factor of around 3.5 times than that of a retired person. This factor slowly decays to the age of

around 65, where it reaches an adjustment factor of one. The uniform to achievable pension is

much more convex, and has a very high adjustment factor at the start. On the right of Figure 3,

we find a similar shape for the uniform to achievable pension, however the optimisation over the

life cycle shows almost the same steepness as the uniform adjustment in achievable pension. An

interesting observation is the dip for people aged between 40 and 65. It seems that this function

can only obtain this steep exponential decay by going slightly below the adjustment factor one
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Figure 3: Adjustment factors. The figure on the left shows the adjustment factors for the simula-
tion without considering standard errors. The figure on the right shows the adjustment factors for the
simulation with standard errors.

at some cohorts.

5.3.2 Robustness Checks

The results for the robustness checks for both types of simulations are shown in Table 5. The

table shows varying the risk aversion parameters γ of the CRRA utility function. We also

vary the spreading factor x from 1 to 9 years. The risk parameter γ = 3 denotes a lower risk

aversion, and γ = 7 a higher one than the default value of γ = 5. In Panel A, we have the

results for the simulation without standard errors. For γ = 3, we find higher welfare gains for all

methods in comparison to γ = 5. This is as expected as a lower risk aversion leads to higher risk

taken by the pension fund. The potential benefit of efficient risk allocation leads thus to higher

welfare gains. In contrary, a higher risk risk aversion leads to less benefit in utility when risk

is distributed more evenly. Therefore, we find lower welfare gains and even welfare losses. We

also find a positive correlation between the welfare gains and the spreading factor. We observe

that a higher spreading factor results to higher welfare gains. This is conform expectations as

negative economic shocks are spread out over several generations. Due to the non-linearity of

the CRRA function, this leads to smaller negative utilities.

Panel B shows the results for simulation with the standard errors considered. Again, we find

similar results when changing the risk parameter. The lower risk aversion (γ = 3) leads to higher

welfare gains compared to γ = 5. We find a welfare loss for the 3-2-1 distribution rule of −1.99%,

and 9.71% and 18.58% for the uniform adjustment in achievable pension and optimisation over

the life cycle respectively. The welfare gain of the 3-2-1 distribution rule is significant at the 10%

significance level, the uniform adjustment in achievable pension and optimisation over the life
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Method Welfare Gain (%) S.E. (%) x1(%) x2 (%)

Panel A: Simulation without standard errors

3-2-1 distribution rule −1.39∗∗∗ 0.36 78.15 99.92
γ = 3 Unif. adj. in ach. pension 9.42∗∗∗ 0.50 60.39 100.00

Opt. over the life cycle 10.24∗∗∗ 3.66 75.20 100.00

3-2-1 distribution rule −2.84∗∗∗ 0.77 27.58 100.00
γ = 7 Unif. adj. in ach. pension −2.35 1.99 23.74 100.00

Opt. over the life cycle 0.22 1.74 34.25 100.00

x = 1 −1.67∗∗∗ 0.54 46.08 100.00
x = 2 −1.08∗∗ 0.57 44.87 100.00
x = 3 −0.41 0.59 43.50 100.00
x = 4 0.15 0.59 43.31 99.98
x = 5 Unif. adj. in ach. pension 0.58 0.62 42.71 100.00
x = 6 1.02 0.65 42.88 100.00
x = 7 1.39∗∗ 0.66 41.66 100.00
x = 8 1.78∗∗∗ 0.67 41.26 100.00
x = 9 2.17∗∗∗ 0.69 40.89 100.00

Panel B: Simulation with standard errors

3-2-1 distribution rule −1.99∗ 0.38 53.17 99.98
γ = 3 Unif. adj. in ach. pension 9.71∗∗∗ 0.49 68.16 100.0

Opt. over the life cycle 18.58∗∗∗ 0.81 70.01 99.00

3-2-1 distribution rule −4.30∗∗∗ 1.54 32.97 90.39
γ = 7 Unif. adj. in ach. pension −10.09∗∗ 4.36 39.09 99.98

Opt. over the life cycle −6.70∗∗ 3.20 47.78 99.28

x = 1 −0.06 1.66 50.26 100.00
x = 2 −0.25 1.66 51.51 100.00
x = 3 −0.04 1.71 50.87 99.95
x = 4 −0.06 1.79 50.00 100.00
x = 5 Unif. adj. in ach. pension 0.00 1.77 49.66 100.00
x = 6 0.21 1.77 49.16 99.96
x = 7 0.22 1.87 48.25 99.97
x = 8 0.65 1.95 47.56 99.98
x = 9 1.04 1.97 46.17 99.99

Table 5: Robustness checks for welfare gains. This table shows the welfare gains and losses
measured by average certainty equivalent in consumption (CEC) using different risk allocation methods.
The welfare increases are compared against the benchmark allocation, the uniform adjustment rule, in
terms of CEC. For the varying spreading factor, x, the benchmark uniform adjustment rule always has
x = 10, to be able to compare the welfare gains across different values of x. Welfare is measured over
10,000 simulations. Standard errors are obtained via 10,000 bootstrap repetitions. The superscript *
denotes the significance level at 10%, **, at 5%, and *** at 1%.

cycle at the 1% level. Again, similar to Panel A, we find higher welfare losses for γ = 7. We find

that when we take standard errors into account all methods lead to welfare losses. The losses
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range from −4.30% to −10.09% across the different allocation rules. For the different spreading

factors x, we find similar results to the case where we do not take standard errors into account.

However, the welfare losses and gains are closer to zero and none of the values are significantly

different from zero at the 10% significance level.

5.3.3 Effect of Factors

Variable Uniform
distribution

rule

3-2-1
distribution

rule

Unif. adj. in
achiev.
pension

Opt. over
life cycle

Scenario set 1 (without S.E.)
Constant 0.82∗∗∗ 0.87∗∗∗ 0.95∗∗∗ 0.94∗∗∗

Avg. 10Y bond price −0.73∗∗∗ −0.79∗∗∗ −0.86∗∗∗ −0.85∗∗∗

Avg. short-rate −5.42∗∗∗ −6.05∗∗∗ −6.77∗∗∗ −7.15∗∗∗

Std. short-rate −1.84∗∗∗ −2.17∗∗∗ −2.48∗∗∗ −2.45∗∗∗

Avg. stock return 5.53∗∗∗ 6.08∗∗∗ 6.25∗∗∗ 6.97∗∗∗

Std. stock return −1.53∗∗∗ −1.70∗∗∗ −1.73∗∗∗ −1.93∗∗∗

R2 0.3203 0.3133 0.3260 0.3228

Scenario set 2 (with S.E.)
Constant 1.06∗∗∗ 1.10∗∗∗ 1.27∗∗∗ 1.24∗∗∗

Avg. 10Y bond price −1.10∗∗∗ −1.17∗∗∗ −1.35∗∗∗ −1.30∗∗∗

Avg. short-rate −6.35∗∗∗ −6.44∗∗∗ −9.47∗∗∗ −9.49∗∗∗

Std. short-rate −0.19 −0.16 −0.19 −0.46
Avg. stock return 4.74∗∗∗ 4.76∗∗∗ 7.23∗∗∗ 7.59∗∗∗

Std. stock return −1.01∗∗∗ −0.94∗∗∗ −1.51∗∗∗ −1.79∗∗∗

R2 0.3495 0.3491 0.3362 0.3360

Table 6: Regression results. This table report the coefficients of several factor regressed on the
certainty equivalent of consumption. The risk aversion parameter γ is equal to 5 for both scenario
sets. All values are scaled down by 1e-5. *,**, and *** denote the 10%, 5%, and 1% significance level
respectively.

We briefly analyse the effect of certain independent variables on the CEC by means of

regression. Table 6 shows the effect of each variable on CEC. The independent variables are

characteristics of the scenario set. First, the signs of the parameter estimates show that an

increase in the 10-year bond price results in a lower CEC. The same holds for an increase

in average short-rate, standard deviation of the short-rate and an increase in volatility in the

stock market. Only the standard deviation of the short-rate has no significant effect on the

CEC. Another interesting observation is that the magnitude of the parameters increase as the

adjustment factor function gets more flexible. The uniform adjustment in achievable pension and

optimisation over the life cycle are the most flexible functions and have the largest magnitude

in comparison to the other two allocation rules. The 3-2-1 distribution rule however, is fairly
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similar to the uniform distribution rule in terms of magnitude. The results are intuitive. Higher

bond prices heavily effect pension funds liabilities as future payoffs are more expensive. More

volatility causes unstable growth of the assets. Higher stock returns however have a clearly

positive effect on the fund. The difference between the two scenario sets is that the standard

deviation of the shock-rate is significantly different from zero at the 1% level for scenario set 1.

The exact reason for this is unclear, but again the effect is negative. This shows that uncertainty

in the short-rate has a negative effect on the CEC.

6 Discussion

In this section we take a deeper look into the obtained results and discuss the potential problems

and limitations of this research.

First, we discuss the results of the KNW-model estimates. The parameters estimated by the

Kalman filter show similar results to the parameters estimated by Pelsser (2019). By restricting

the UFR, the unconditional expected change in inflation and return, we got improved estimates

for the parameters K and Λ. The question remains whether the restrictions are reasonable. A

yearly inflation growth of close to but under 2% has been the policy by the European Central

Bank for a long period and can be supported by our data. In the unconstrained KNW-model

we find that the risk premium ηS was estimated to be higher. This is supported by the data, as

the index grew a lot in the recent years. However, a slightly lower equity risk premium might

be desirable. The economic data we used does not capture too many recessions, however when

we take a longer horizon into account, average stock index growth has been lower. We can see

the restrictions as a desired or long run equilibrium for the economy. Especially in our case

where the parameters are used to simulate economic scenarios. The same argument can be

made for the UFR. Even though the interest rates are very low at the moment, we do not expect

them to stay low in the long run. Therefore, taking the restricted KNW-model can be a nice

balance between capturing the dynamics of the economy as well as putting a prior on long run

equilibrium values of the economy.

It is impossible to simulate a real world pension fund and population, therefore we work with

a simplified model of reality. Our model does not take the ageing society nor population growth

into account, assumes wages grow perfectly with inflation and assumes perfect liquidity of the

bond market. The effect of a greying population leads to a lower coverage ratio, assuming other

variables stay the same. Further research can perform a stress-test to quantify the effect on

welfare by a greying population. Moreover, we assume that we can perfectly hedge all interest

rate risk by buying cash flow matching bonds. However, in reality bonds and derivatives are not
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widely available for maturities above 30 years. In practice it is also possible to hedge liabilities

with different maturities with different amounts, e.g. hedging short maturities more than long

term or vice versa.

We find that incorporating parameter uncertainty into the economic scenario generator leads

to different inference than excluding parameter uncertainty. We show that multiple factors affect

the CEC. The distribution around inflation and interest rates is more fat-tailed when including

parameter uncertainty. We observe that utilities are the lowest when interest rates are negative.

This causes the discounted future claims (liability) to increase and thus decrease the coverage

ratio. The yield curve is very persistent, thus a generation that builds up their pension during a

low interest rate period ends up with a low utility. The question remains whether the asymptotic

distribution of the parameter estimates is realistic. Parameter uncertainty causes negative rates

to be fairly present in our scenario set. Negative rates are, historically, not as common as

positive rates and are usually used as a monetary policy to stimulate economic growth. It is

probable that extreme negative interest are less likely to happen, especially at longer maturities.

However, negative rates at longer maturities are present in our scenario set. This is likely due

to the data that was used to calibrate the KNW-model. For a majority of our data set short-

term interest are close to zero and even negative. This brings us to a present problem that is

being faced by the Dutch Central Bank and Committee Parameters as well (Gelderman et al.,

2022): the choice of the historical data to calibrate the model. Longer historical data gives us

more information about the possible range of the economy. However, using only more recent

data gives us a more accurate relationship of the current dynamics of the economy. It is up

to Committee Parameters to make a choice in what data to use, but incorporating parameter

uncertainty, nonetheless, allows us to model a wider range of the economy.

Further, the parameters are drawn from a normal distribution with an estimated (asymp-

totic) covariance matrix. The estimation of the covariance matrix requires us to use numerical

computations for the second-order derivative. This might create numerical inconsistencies as the

numerical approximation of the derivatives might not be so accurate for large functions. One

possible method is to solve the derivatives analytically. This can be an interesting approach for

further research and will result in a more accurate covariance matrix.

Another approach is to not opt for the asymptotic distribution of the parameters, but take a

Bayesian approach into account. Bayesian methods give a posterior distribution of the parame-

ters directly. The literature on Bayesian methods for stochastic differential equations is sparse.

Ge (2002) provide some work on Bayesian calibration for stochastic volatility models. Bunnin

et al. (2002) present a Bayesian method for option pricing. Särkkä et al. (2006) provides a more
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broad overview of recursive Bayesian inference on stochastic differential equations. A Bayesian

framework can be useful for the KNW-model as it is currently already working with parameter

restrictions. Prior beliefs can be incorporated in the model to incorporate expert views, by e.g.

policy makers.

7 Conclusion

In this thesis we look at scenario based policy research under parameter uncertainty. Chen et al.

(2019) and Darmoutomo et al. (2020) conduct research to whether age dependent risk allocation

leads to welfare gains. Their research measures this by the certainty equivalent of consumption

for different risk allocation methods. They show that two out of the three allocation rules

led to welfare gains over uniform risk allocation. We question whether the welfare gains are

still present when considering parameter uncertainty. This research is two-fold and consists of a

model calibration part as well as the scenario based policy research under parameter uncertainty.

First, we calibrate the KNW-model on Dutch economic data, consisting of the MSCI index,

HICP index and yields with maturities of 1, 5, 10, 15, 20 and 30 years. There are two different

calibration, one without any restrictions, and one with restrictions recommended by Committee

Parameters (Dijsselbloem et al., 2019). We find similar results for both models, however the

parameters K and Λ show lower absolute values for the restricted calibration. The restricted

KNW-model is chosen to generate the economic scenarios. We compare two economic scenarios

generated by the restricted KNW-model. For one generation standard errors are not taken

into consideration, for the other one we generate economic scenarios based on the asymptotic

distribution of the parameters.

Second, the economic scenarios are used to evaluate the welfare gains of age-dependent risk

sharing for pension funds. We find results in line with Chen et al. (2019), the 3-2-1 distribution

rule leads to a welfare loss of 1.79% and the other two methods uniform adjustment in achievable

pension and optimisation over the life cycle lead to welfare gains of around 2.59% and 3.09%

respectively. However, we find that when we incorporate parameter uncertainty the welfare gains

vanish. The 3-2-1 distribution rule shows a welfare loss and the welfare gains for the other two

levels are no longer statistically different from zero at the 10% significance level. The scenario

set with parameter uncertainty results into scenarios with fatter-tails and a higher percentage

of negative yields.

This research shows that parameter uncertainty plays an important role in scenario based

policy research. If we do not consider parameter uncertainty, the scenario set does not represent

extreme scenarios well enough. Parameter uncertainty should be considered when generating
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economic scenarios. We show this with an example on a policy research by Chen et al. (2019) and

Darmoutomo et al. (2020), but it serves purpose outside the scope of this policy research. We

suggest further research can look into how this affects other research that is based on economic

scenarios. Taking parameter uncertainty into account could lead to more realistic uncertainty

for risk models as well as derivative pricing.
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A Code structure

All code was written in MATLAB and is publicly available on GitHub at https://github.com/

MichaelDarmoutomo/thesis_matlab.

/thesis matlab

data

economy cov.mat

se.mat

se restricted.mat

x opt.mat

x opt restricted.mat

kalman filter

GetParameters.m

KalmanFilter.m

KalmanParameters.m

KalmanSmoother.m

LogLikelihood.m

pension fund

GenerateEconomy.m

GenerateEconomySE.m

PensionFund.m

PensionFundSE.m

toolboxes

main kalman.m

main pension fund.m

pension fund cec.m

pension fund std.m

We will briefly describe the folders and main scripts.

data Folder containing all the data for this thesis.

kalman filter Folder with relevant functions for estimating the Kalman filter.

pension fund Folder with relevant functions to simulate the economies as well as the pension

fund.
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main kalman.m Pipeline script to estimate the KNW-model.

main pension fund.m Pipeline script to run the pension fund modeling.

pension fund cec.m Script to compute the CEC and standard errors over the optimal param-

eters.

pension fund std.m Script to compute the CEC and standard errors over the optimal param-

eters with simulation with standard errors.
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B Scenario sets

This section shows histograms of inflation, short rates and stock returns for two different scenario

sets.

Figure 4: Stock index returns. This figure shows a histogram of the average stock index return for
each simulation. The blue bars show the returns for scenario set where standard errors were incorporated,
and the orange bars show the returns for the simulation based on the point-estimates.

Figure 5: Short rate returns. This figure shows a histogram of the average short rate return for each
simulation. The blue bars show the returns for scenario set where standard errors were incorporated, and
the orange bars show the returns for the simulation based on the point-estimates.
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Figure 6: Change in inflation. This figure shows a histogram of the changes in inflation for each
simulation. The blue bars show the changes for scenario set where standard errors were incorporated,
and the orange bars show the changes for the simulation based on the point-estimates.
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