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Abstract

This study examines how well Environmental (E) ratings can be used to model firms’

emission behaviour in terms of CO2 levels. This is done by first analysing the relation be-

tween E ratings and firms’ CO2 emissions, and after by examining E ratings’ predictability.

For both analyses the data is retrieved from the commercial rating company Refinitiv which

provides Environmental, Social and Governance ratings of over 9,000 companies. The ef-

fect of E ratings on firms’ CO2 emissions is analysed using a pooled OLS regression and

E ratings’ predictability is assessed by applying the machine learning algorithms random

forest, extreme gradient boosting, neural network and support vector regression. Our re-

sults show that E ratings are a driving factor behind firms’ CO2 emissions and that random

forest as well as XGBoost predict them with a low prediction error. Combining both results

imply that E ratings can be used effectively in modelling firms’ future emission behaviour

and therefore, likely reduces prediction error in current models that do not include E rat-

ings. This is beneficial as it allows countries to better forecast firms’ reduction pathways

and adjust regulations accordingly.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University.
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1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) is United Nations’ body that assesses

the science behind climate change and consists of 1,300 independent scientists from all over the

world. In 2018, they concluded that in order to limit global warming at 1.5C°, CO2 emissions

originating from human activity (”anthropogenic CO2 emissions”) have to decline by 45% from

2010 levels and reach net zero by 2050 (Allen et al., 2018), meaning that emission to the atmo-

sphere (”sources”) are offset by removals from the atmosphere (”sinks”). The reason for CO2

emissions being the main driver behind climate change is due to the fact that it is the largest

contributor to radiative forcing which means that there is more energy incoming than the Earth

can absorb and thus heats up the surface (Myhre, Bréon, & Granier, 2018). Besides that, CO2

sticks around in the atmosphere the longest in comparison to other greenhouse gas emissions

(GHG) such as Methane and Nitrous Oxide (Ciais et al., 2014). In specific, Myhre et al. (2018)

show that the radiative forcing of CO2 is 73% and 833% higher than of the second and third

biggest contributors Methane and Nitrous Oxide, respectively. Moreover, Ciais et al. (2014)

show that Methane leaves the atmosphere in a decade and Nitrous Oxide in a century while for

CO2 this is more severe i.e. 40% remains in the atmosphere for 100 years, 20% for 1000 years

and 10% for 10,000 years.

This underlines the seriousness of CO2 emissions and shows that it is the driving force

behind climate change. Due to the growing awareness of global warming and its impact on

the environment, investors have been seeking sustainable investments. As a result, the global

sustainable investments reached a total value of $ 35.3 trillion in 2020 which is 35.9% of the

total assets under management and a 55% increase with respect to 2016 (Global Sustainable

Investment Alliance, 2020). Due to this rising interest, a growing number of commercial rating

companies have been assessing firms on environmental, social and governance (ESG) factors.

These pillars contain numerous scores on underlying criteria such as emissions, equal opportu-

nities and bribery respectively.

The E pillar is the main focus for ”ESG”, ”sustainable” and ”socially responsible” investing

(Boffo & Patalano, 2020). This implies that these ratings are a determining factor in capital

allocation. Next to that, Erragragui (2018) shows that firms’ cost of debt is higher when having

poor ESG ratings and lower when having good scores. This obviously directly affects firms’

profit. Furthermore, Fatemi, Glaum, and Kaiser (2018) find a significant positive relation be-

tween the ratings and firm value, which has various effects on firms including increased share
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value for shareholders. Finally, Chatterji and Toffel (2010) show that firms are likely to improve

their environmental performance more in comparison to firms that obtained a better rating in

the previous year.

ESG ratings’ influence on capital allocation, cost of debt and firm value underline its impor-

tant role in the financial markets. These benefits incentives firms to improve their performance

along the E, S and G axes. For the E pillar, this implies that firms have to improve their en-

vironmental performance including reducing CO2 emissions. This gives the suggesting that E

ratings are a driving factor behind firms’ CO2 emissions. This motivates the first part of this

thesis which analyses this relation by regressing firms’ CO2 emissions on E ratings and other

control variables such as size. If a negative relation is found between E ratings and CO2 emis-

sions then this implies that firms indeed reduce their CO2 emissions to obtain a higher E rating

and thus that E rating is a driving force behind CO2 emissions. The second part of this thesis

analyses the ability of machine learning algorithms to predict E ratings. If such a relation is

found in the first analysis, then this implies that E ratings can be used in modelling firms’ CO2

emissions. However, if it appears that there is much uncertainty in predicting E ratings, then

including them in models that model future CO2 levels of firms induces only extra uncertainty.

Hence, examining the predictability of E ratings becomes very relevant. Furthermore, if both

analyses result in desirable outcomes, i.e. finding a significant relation between E ratings and

firms’ CO2 emissions together with a high predictability, would imply that E ratings can be

incorporated effectively in modelling firms’ future CO2 emissions. As a consequence, reducing

prediction error in models that do not include E ratings in the first place. Improving prediction

error is beneficial as it enables countries to better forecast firms’ emission behaviour and adjust

regulations accordingly. This brings us to the following research question: To what extent can

Environmental ratings be used to model firms’ CO2 emission behaviour?

The data is retrieved from rater Refinitiv which covers over 9,000 companies and provides

the ratings on a continuous scale. The data set contains annual data from 2002 to 2020. The

relation between firms’ CO2 emissions and their E ratings is examined using pooled Ordi-

nary Least Squares and confidence intervals are bootstrapped to account for non-normality and

heteroskedasticity. The predictions are made using random forest (RF), extreme gradient boost-

ing (XGBoost), neural network (NN) and support vector regression (SVR). The hyperparame-

ters are tuned using randomized search and bayesian optimization with 3-fold cross-validation.

In addition, feature selection is employed using recursive feature selection with 6-fold cross-
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validation and is compared with the performance of using the full feature set. The first 15

years of the data set are used for training, the next year for validation and the last two years for

testing to obtain a 70:10:20 split. As performance metrics, root mean squared error (RMSE)

and mean absolute error (MAE) are normalised by dividing by the range of the target variable.

Furthermore, two base models are used to compare the performances with non-machine learn-

ing methods. In particular, this consists of a naive predictor that uses the previous value as

prediction and an inter/extrapolated one.

The regression analysis shows a significant negative relation between the E ratings and

firms’ CO2 emissions with an adjusted R-squared of .985. In particular, a unit increase on a

scale from 1-100 of the E ratings leads to an expected .122% decrease in firms’ CO2 emissions.

The negative relation implies that firms actually adjust their environmental behaviour based

on the obtained E rating and thus that E ratings are indeed a driving force behind firms’ CO2

emissions. This is in line with the findings of Chatterji, Levine, and Toffel (2009).

For the predictions, it is found that random forest followed by XGBoost obtain the best

results in terms of NRSME. Both of these models are found using bayesian optimisation and

feature selection. In particular, these algorithms can predict E ratings with an accuracy of 94.1%

and 96.8% in terms of NRMSE and NMAE respectively. Moreover, these models outperform

the base models i.e. an inter/extrapolated and naive predictor by 1.4% and 2.5% respectively.

Hence, this implies that these algorithms predict E ratings effectively with a low prediction

error.

The remaining parts of this study are organised as follows: Section 2 reviews the relevant

literature, Section 3 details the data description, Section 4 explains the research methodology,

Section 5 discusses the results and Section 6 contains the discussion.

5



2 Literature

This section first provides a brief introduction to ESG ratings in Chapter 2.1. Then it explains

why E ratings are likely a driving force behind firms’ CO2 emissions and discusses related

research in Chapter 2.2. After that, the existing literature is reviewed related to predicting E

ratings in Chapter 2.3. Finally, the implementation of firms’ emission behaviour in current CO2

models is examined in Chapter 2.4.

2.1 Brief introduction to ESG

ESG ratings are scores that represent firms’ performance on environmental, social and gover-

nance issues. This is intended as guidance for investors that want to invest ”responsible” or

”sustainable”. These ratings evolved from Corporate Social Responsibility (CSR) which is the

process of operating a business model that takes the impact on all aspects of society into ac-

count. ESG is built on these principles but in a manner that these practices can be evaluated

numerically using a concrete set of scoring parameters. The ratings are provided by a number

of commercial rating companies (”raters”) and according to ERM, a large sustainability consul-

tancy, 600+ different ESG ratings exist as of 2018 (Wong & Petroy, 2020). While new raters

are emerging, the largest raters are consolidating the raters market. This resulted in the main

players being ”MSCI”, ”Sustainalytics” and ”Refinitiv” covering over 14,000, 12,000 and 9,000

companies respectively (Wong & Petroy, 2020).

The environmental (E), social (S) and governance (G) pillars have many underlying scoring

criteria and together form a composite score. As explained in the introduction, this thesis fo-

cuses on the E pillar. For Refinitiv’s ratings this is further categorised in the following themes:
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Environmental

Emissions
Waste
Biodiversity
Environmental management system

Environmental Innovation
Product innovation
Green revenues, R&D, CapEx

Resource use

Water
Energy
Sustainable packaging
Environmental supply chain

Table 1: Themes within Refinitiv’s Environmental Pillar

These subcategories (right-hand side of the table) obtain a score based on many underlying as-

sessment topics. The full composition of the E pillar is shown in Table 27 in the appendix. The

environmental, innovation and resource use scores are determined by the sum of its subcate-

gories and the final composite E score is constructed by the weighted sum of these subpillars.

The weights applied to each subpillar are based on the relative importance of each individual

industry (Environmental, Social and Governance Scores from Refinitiv, 2021). The next chapter

delves deeper into the consequences of ESG ratings and discusses their likely effect on firms’

environmental behaviour.

2.2 ESG ratings’ influence

The ”Principles of Responsible Investment” was launched by some of the world’s largest insti-

tutional investors and supported by the United Nations in 2006. This set of principles aims to

induce sustainability into the capital markets by incorporating ESG issues into the investment

considerations. Currently, more than 4,600 institutional investors have signed these principles,

representing over $121 trillion in assets under management (Signatory Update, 2021). This

showcases the fast rise of using ESG ratings in the investment decisions and underlines its

effect on capital allocation.

Another implication of ESG ratings is related to the cost of debt. Erragragui (2018) analyses

the relationship between Corporate Social Performance (CSP) and firms’ cost of debt and finds

that firms’ CSP affects firms’ cost of debt. In this analysis, CSP is proxied by ESG ratings and

is provided by rater MSCI, which constructs ratings as binary strength and concern variables.

Erragragui, in particular, finds that environmental concern ratings such as Hazardous Waste,
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Regulatory Problems and Substantial Emissions increase firms’ cost of debt whereas environ-

mental strength ratings such as Pollution Prevention, Recycling and Clean Energy decrease

firms’ cost of debt. For governance strengths, the author finds a similar negative relation.

Also between ESG ratings and firm value, a significant relation is found by Fatemi et al.

(2018). In specific, their results show a positive relation between ESG strengths and firm value

using the same strength and concern variables of MSCI. Likewise, a negative relation is found

between firm value and ESG concerns. Fatemi et al. (2018) further analyse how the amount

of ESG disclosure affects the above-mentioned relations. They find that disclosure weakens

the positive and negative valuation effect in the case of ESG strengths and concerns, respec-

tively. Fatemi et al. (2018) give as a possible explanation that the market perceives disclosure

as an attempt to justify overinvestments in ESG issues in case of strengths and to show their

contributions and developments in improving their ESG weaknesses in case of concerns.

Alongside, Chatterji and Toffel (2010) show that firms that obtained a poor E rating in a

certain year, improve their environmental performance in the next more significantly than firms

that were not rated or initially rated more favourably. In addition, they show that this effect is

prevalent for firms active in industries that are environmentally sensitive or that face the cheapest

improvement opportunities. On the one hand, this implies that firms’ ratings give firms that are

poorly rated the incentive to improve sustainable performance. On the other hand, this means

that firms that were rated initially well have less incentive to do so.

The above-mentioned benefits incentives firms to improve their environmental performance

including CO2 reduction. Hence, this suggests that E ratings could be a driving force of firms’

CO2 emissions. Chatterji et al. (2009) investigate how well E ratings capture historical envi-

ronmental performance and also how well it predicts future performance. The latter is similar

to examining if E ratings are a driving force behind firms’ environmental performance but they

interpret it from a predictability standpoint. This thesis, however, uses the model of Chatterji

et al. (2009) but interprets it not in terms of predictability but as E ratings being a driving force

of environmental performance based on the knowledge of more recent literature as discussed

above. Moreover, Chatterji et al. (2009) use binary ratings of the predecessor of MSCI and

found a significant negative relation between net environmental score (strengths-concerns) and

emissions. Their analysis was conducted in 2009 and is limited to firms in America. Hence,

it is interesting to investigate whether similar relations can be found for firms worldwide using

the latest data and a different rater that provides continuous ratings.
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2.3 Predicting E ratings

This chapter discusses the existing literature regarding the prediction of ESG ratings. First of

all, it is good to note that the research on this topic, especially involving machine learning, is

very limited. The majority of the research regarding ESG ratings examines whether ESG in-

vesting results in higher returns (Antoncic, Bekaert, Rothenberg, & Noguer, 2020) and whether

there is divergence between ratings of different raters (Berg, Koelbel, & Rigobon, 2019; Chat-

terji, Durand, Levine, & Touboul, 2016). As a result of the former, studies investigated the

ability of machine learning algorithms to predict stock performance (De Franco, Geissler, Mar-

got, & Monnier, 2020; Mitsuzuka, Ling, & Ohwada, 2017). As a result of the latter, studies

investigated the ability to construct new ESG measures using machine learning (Svanberg et

al., 2022). However, the field of study in regard to predicting ESG ratings themselves is very

narrow and to our knowledge, the research of Garcia, González-Bueno, Guijarro, and Oliver

(2020) and Krappel, Bogun, and Borth (2021) are the only ones that aim to do so.

Both studies are different to this thesis as the former uses a ”rough set approach” which is

a mathematical tool to discover hidden patterns in data sets (Garcia et al., 2020) and the latter

examines the ability to predict ESG ratings without their previous value. However, both contain

relevant information as the former shows that firm characteristics such as return on assets (ROA)

and earnings per share (EPS) have predictive power in predicting ESG ratings whereas the

latter shows that neural network, XGboost and Catboost are able to predict Refinitiv’s E ratings

with a test R squared of around 50%. Hence, the findings of Garcia et al. (2020) motivate

including firm characteristics in our predictive model and the results of Krappel et al. (2021)

motivate using these algorithms. However, Krappel et al. (2021) use ”fundamental data” that

also includes various non-financial facts that are categorical variables which is why they include

Catboost. Nevertheless in this analysis, the majority of the variables consist of continuous

variables so it is chosen to leave this method out of the analysis. Finally, it is good to note

that Krappel et al. (2021) do not include previous values of ESG ratings which means that

comparing predictive performances is not relevant. Since we have overlapping features, i.e.

firm characteristics, the same target variable and because their used algorithms obtain relatively

good results, these algorithms are taken into consideration.

However, predicting E ratings using their previous value as well as firm characteristics has

not been analysed before. Hence, it becomes relevant to analyse the predictive performance of

this model and whether firm characteristics indeed contribute to the predictions.
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2.4 CO2 models

Thus far, this thesis has been focusing on the emissions of firms specifically. However, it is also

relevant to analyse how this relates to current models that forecast CO2 emissions in general.

This chapter, therefore, examines which current models seem suitable for integrating firms’

emission behaviour and discusses the potential consequences.

Evans and Hausfather (2018) state that the current school of CO2 modelling primarily con-

sists of two sorts of models. The first are ”climate models” which are based on fundamental

physical principles. The second ones are ”integrated assessment models (IAMs)” which analyse

the effect of human development and societal choice on nature. The IAMs integrate modules on

economic growth and on climate, energy and land systems to see how they interact with each

other. Changes in the gross domestic product (GDP), population size and policies are often used

as input to model economic prospects, emission levels, energy pathways and land use (Evans

& Hausfather, 2018). The following example shows how these models work. If the population

grows then food demand rises which could lead to the need for more land use, which in its turn

leads to deforestation, rising prices and higher emissions. Since these IAMs involve modelling

behavioural elements i.e. societal choice, it seems natural to include or integrate the emissions

behaviour of firms. In addition, IAMs’ setup of combining individual modules seems to allow

for easy implementation of firms’ emission behaviour.

Next to that, Evans and Hausfather (2018) mention that the main uncertainty in IAMs is

caused by the difficulty of forecasting changes in socioeconomic behaviour. This affects eco-

nomic activity which has an effect on the amount of CO2 emissions. However, modelling

socioeconomic behaviour might be more difficult than modelling the CO2 emissions of firms.

Of course, these two subjects are related to each other and changes in socioeconomic behaviour

and economic activity affect the polluting levels of firms but it is questionable how directly this

effect translates to firms. Hence, including the CO2 emission behaviour of firms could reduce

the uncertainty in the IAMs.
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3 Data

Both the databases of MSCI and Refinitiv are available to Erasmus students but the former

consists of categorical data while the latter consists of continuous data. It is chosen to use

the continuous database of Refinitiv to capture smaller differences between firms’ ESG ratings.

Moreover, their world market list is used, containing all equities for which ESG data is available.

This section provides definitions of the variables and analyses the data on stationarity, outliers,

distributions and scales. The choice for using certain variables or lags will be explained in the

methodology section. The data analysis concerning the regression part is discussed in Chapter

3.1 and the prediction part in Chapter 3.2.

3.1 Firms’ emission behaviour

The data set used for the regression analysis consists of yearly observations reported during

the period 2002-2020. After removing zeros and NaN, the sample contains 1,729 firms which

equals 14,889 company-year observations. Hence, it is a micro panel with relatively many

time series of short length. In particular, the average length of all time series equals about 9

observations. This is calculated based on the number of times that a firm is used in the analysis.

However in many cases, these observations are separated by missing values which makes the

length of adjacent observations even shorter. Baltagi (2008) states that non-stationarity should

not be a point of concern in such micro-panels. Hence, it is chosen to continue with the analysis

without examining the presence of non-stationary.

CO2 Total CO2 and CO2 equivalents emissions in tonnes
ENV Environmental pillar score
REV Total revenues
INDUS Industry classification

Table 2: Definitions variables regression data set

Table 2 shows the variables within this sample and provides definitions. The definitions for

CO2 and REV are rather straightforward and do not need extra explanations. ENV represents

the Total Environmental Score and this is chosen as E rating variable as it resembles the overall

score of the underlying Emissions, Resource Use and Innovation Scores. For further explanation

about the construction and composition of ENV refer back to the ”Brief introduction to ESG”

chapter.
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The categories of INDUS including their distributions in this data set are provided in Table 3.

Industry Ratio
Industrials .20
Basic materials .14
Consumer discretionary .13
Financials .11
Consumer staples .08
Technology .07
Health Care .06
Energy .06
Real Estate .05
Utilities .05
Telecommunications .04

Table 3: Industry distribution

One can see that firms are fairly well distributed across industries which is beneficial as this

improves the generalization of the regression results for a larger variety of firms.

In this analysis, outliers are defined as observations that lie further than three times the

standard deviation away from the mean. This is based on the ”three sigma rule” (Pukelsheim,

1994) which states that approximately 99.7% of the observations lay within this interval. This

implies that only extreme outliers are removed from the data set and this method is chosen in

order to keep as many observations as possible. This results in removing 151 observations which

is around 1%. Choosing a ”two sigma rule” or ”interquartile range rule” (Vinutha, Poornima, &

Sagar, 2018) results in removing far more observations. Table 4 shows the descriptive statistics

of the resulting data set.

CO2t CO2t−1 ENVt−1 REVt

Mean 1.8E5 1.8E5 62.7 6.8E8
Std 1.1E6 1.0E6 20.8 2.5E9
25% 2.1E2 2.1E2 48.5 5.5E6
50% 1.7E3 1.6E3 65.3 2.4E7
75% 2.1E4 2.0E4 79.5 2.3E8

Table 4: Descriptive statistics

Table 4 shows that all variables except ENVt−1 have a mean that is larger than the 75th per-

centile which implies that these variables have a distribution that is positively skewed. Hence,

these variables are logarithmically transformed in order to normalise the data. Next to that, one
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can see that the scales of these variables differ by a great amount which for comparison reasons,

has to be accounted for. This is done by standardization.

Table 5 is the correlation matrix and shows that CO2t−1 and REVt are relatively high cor-

related. This is understandable as revenue is often related to size and a larger size implies more

CO2 emissions. The other variables are low correlated.

CO2t−1 ENVt−1 REVt

CO2t−1 1.00 .04 .79
ENVt−1 1.00 0.11
REVt 1.00

Table 5: Correlation matrix

3.2 Prediction

The data set used for the predictions also consists of yearly observations reported from 2002-

2020. After removing zeros and NaN, the sample consists of 2,899 firms which equals 22,475

company-year observations. Table 6 shows the variables within the prediction data set and

includes definitions.

ENV Environmental pillar score
PE Price-to-earnings ratio
PtB Price-to-book ratio
EV Enterprise value
ROE Return on equity
ROA Return on assets
DEBT Total debt
EpS Earnings per share
ROI Return on invested capital
GP Gross profit margin
REV Total revenues
INDUS Industry classification
CTRY Country of domicile

Table 6: Prediction data set including definitions

Similar as before, Tables 7 and 8 show that the firms are relatively well distributed across

industries and countries. This is beneficial as it improves generalization, enabling a prediction

model that is compatible with a larger variety of firms.
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Industry ratio
Industrials .23
Consumer discretionary .17
Basic materials .10
Consumer staples .09
Utilities .07
Health Care .06
Technology .06
Real Estate .06
Energy .06
Telecommunications .05
Financials .03

Table 7: Industry distribution

Industry ratio
US .21
JP .16
GB .10
CA .05
FR .05
DE .04
AU .03
CH .03
HK .03
IN .02
Other .30

Table 8: Country distribution

The descriptive statistics for E ratings in particular are shown in Table 9. It is striking to

see that on average firms improved their environmental behaviour as the mean of the E ratings

increased over the years. In addition, the standard deviation decreased over the past 10 years

which indicates that more firms are taking environmental issues seriously and are aiming to

improve their environmental performance.

2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002

Mean 57.0 54.5 50.4 44.3 40.3 37.7 34.3 33.0 32.3 30.5 28.4 24.3 21.1 16.2 11.1 10.1 6.7 3.8 3.4
Std 22.9 23.8 25.3 28.6 29.9 30.5 30.7 31.0 31.1 31.0 30.8 30.1 28.6 25.7 21.5 20.6 16.9 13.0 12.6
25% 40.7 36.9 30.4 20.0 11.0 4.3 34.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50% 59.7 56.7 51.9 46.9 41.5 37.7 31.7 28.3 26.7 22.6 18.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
75% 75.4 73.8 71.1 68.3 66.3 64.3 61.4 60.3 59.0 57.5 55.2 48.1 42.4 29.5 10.6 4.60 0.0 0.0 0.0

Table 9: Descriptive statistics

Figure 1 shows the time series of the firms that obtained an E rating each year during the

full period. This graph indicates that the time series are likely to be heteroskedastic and non-

stationary. The former should not be a problem for machine learning methods as its validation is

based on examining the performance on a test set and not on calculating confidence intervals or

performing statistical tests for which such assumptions are necessary. However, it does advocate

for including a trend variable in the analysis to capture differences over the years. The latter

is further examined using a Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test which is chosen

based on the statement of Fedorová et al. (2016) that it performs relatively well on small data

sets.
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Figure 1: Fully 19-year reported time series

Performing the KPSS test on the E series results in rejecting 45.3% which implies non-

stationary time series. This test is run again on their differences as well as on their logarithmic

differences. The former results in rejecting 8.0% and the latter in 5.6%. Hence, it is chosen to

use logarithmic differences and to remove the non-stationary time series from the data set. This

results in removing 1,194 observations (e.g. 5-year time series contain 4 observations due to

one step ahead predictions) which equals 5.3% of the data set.

Outliers are removed using the same method as before, i.e. based on the three-sigma rule.

This results in removing 931 observations from the total 21,281 which equals 4.4%. Table 10

shows the descriptive statistics of the resulting data set.

∆ENVt+1 ∆ENVt PEt PtBt EVt ROEt ROAt DEBTt EpSt ROIt GPt REVt

Mean .08 .10 24.1 2.9 4.6E8 15.4 6.9 1.6E8 58.0 10.0 36.6 3.9E8
Std .35 .40 30.1 5.9 1.9E9 16.9 5.2 6.4E8 290.1 7.8 21.1 1.5E9
25% -.03 -.04 12.6 1.3 6.5E6 7.4 3.6 1.1E6 1.1 5.1 20.3 3.2E6
50% .02 .02 17.9 2.0 2.5E7 12.9 6.0 5.1E6 3.1 8.5 32.6 1.3E7
75% .13 .15 25.3 3.3 1.9E8 20.4 9.4 3.3E7 23.2 13.6 49.5 1.1E8

Table 10: Descriptive statistics prediction set

It is interesting to see is that many features have a mean that lies outside the 25th and 75th

percentile indicating that these variables have a distribution that is skewed. It is therefore anal-

ysed whether a logarithmic transformation normalises the distributions. This is the case for PEt,

Debtt, REVt and EpSt. Subsequently, it is compared whether these transformations lead to bet-
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ter results which appeared to be the case. Hence, it is chosen to use the transformed variables.

Furthermore, Table 10 shows that the scales of the variables differ greatly which advocates for

scaling the data which is done by applying standardization. In particular, this is done for the

training, validation and test set separately such that no information of the validation and test set

is used for training.

Table 11 shows the correlation matrix of the training set and indicates that most features are

low to moderate correlated. The most correlated features are ROAt with ROIt. This is probably

due to the fact that investments are accounted for on the balance sheet as assets. Hence, return

on assets is very related to return on invested capital. Similarly, REVt is highly correlated with

DEBTt as more funding allows firms to expand more rapidly and grow which is then translated

into more revenue. Similar explanations can be given for the other moderate to high correlated

features: (ROEt & ROIt), (ROEt & ROAt), (EpSt & REVt).

∆ENVt+1 ∆ENVt PEt PtBt EVt ROEt ROAt DEBTt EpSt ROIt GPt REVt TRENDt

∆ENVt+1 1.00 -.13 .02 .01 -.00 .01 .02 -.02 -.04 .02 -.02 -.02 -.08
∆ENVt 1.00 .02 .01 -.01 .02 .04 -.04 -.04 .03 -.01 -.03 -.09
PEt 1.00 .10 -.01 -.01 .00 -.06 -.17 -.00 .07 -.05 .07
PtBt 1.00 -.03 .25 .18 -.10 -.05 .22 .07 -.08 .03
EVt 1.00 -.05 -.04 .41 .37 -.06 -.03 .45 .01
ROEt 1.00 .68 -.15 -.06 .75 .15 -.10 -.05
ROAt 1.00 -.31 -.09 .93 .28 -.18 -.05
DEBTt 1.00 .42 -.35 -.15 .82 .03
EpSt 1.00 -.08 -.08 .56 -.01
ROIt 1.00 .20 -.16 -.08
GPt 1.00 -.28 .05
REVt 1.00 -.01
TRENDt 1.00

Table 11: Correlation matrix training set

However, that is less important for this analysis. What is important to note is that all the

features, except of (ROAt & ROIt) are not close to being perfectly correlated. It gives the idea

that one of these variables could be removed during feature selection. This will be analysed

along with removing other highly correlated features.
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4 Method

4.1 Firms’ emission behaviour

This section (4.1) discusses the methods used in order to analyse the relation between E ratings

and firms’ CO2 emissions. This section is organised as follows: it first explains the setup of the

regression model and after, discusses an additional bootstrapping method.

4.1.1 Regression model

The relation between E ratings and firms’ CO2 emissions is assessed by conducting the follow-

ing regression:

logCO2i,t = β0+β1 logCO2i,t−1+β2ENVi,t−1+β3 logREVi,t+β4INDUSi+β5Trendt+ϵ (1)

Refer back to Chapter 3.1 for definitions of these variables. Also mentioned in that chapter is

that CO2i,t, CO2i,t−1 and REVi,t are skewed and therefore logarithmic transformed. INDUSi is

dummy encoded and the category ”Telecommunications” is left out of the analysis. Trendt is a

trend variable which implies that the year 2003 equals the value 1 and the year 2020 equal the

value 18.

These variables are chosen based on the regression model of Chatterji et al. (2009). Model 1

differs from their model in regard to the variables CO2i,t and ENVi,t−1. To start with the former,

Chatterji et al. (2009) define an environmental performance variable as dependent variable that

includes other indicators next to CO2 emissions such as ”number of violations”. This thesis

chooses to only focus on CO2 emissions in particular as it is the main contributor to climate

change as discussed in the introduction.

Another difference is that they measure emissions as toxic chemicals reported to ”US EPA’s

Toxic Release Inventory” (Chatterji et al., 2009). Moreover, they assume that there is a delay

between this data becoming publicly available and when it is actually reported. They, therefore,

use second-order lags of all independent variables. Their research was conducted in 2009 which

makes this reasoning understandable. However, nowadays firms have to comply with many

reporting regulations and raters are likely to have progressed with their data collecting methods.

Hence, it is assumed that such delays are not an issue anymore. Moreover, in our model the E

ratings are included as first-order lag because it is assumed that firms are able to change their
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CO2 emissions significantly within one year. Next to that, REV i,t is included with the same

time index as the dependent variable has as it is a control variable which is related to the CO2

emissions in year t.

The last difference is related to the E ratings itself. In particular, Chatterji et al. (2009) use

the binary ratings provided by MSCI’s predecessor whereas continuous ones of Refinitiv are

used in this analysis.

4.1.2 Violated assumptions

It appears that not all assumptions such as normality and homogeneity are met. At first thought,

it was analysed whether these assumptions could be met by performing linear transformations.

However, E ratings appeared to be left-skewed and normalising this variable by transformations

implies using squared transformations which makes the interpretation more difficult and be-

comes even more involved when the dependent variable is logarithmic transformed. Therefore,

it is chosen to use bootstrapping to calculate confidence intervals of the regression coefficients.

In specific, this involves bootstrapping random response-predictor pairs and performing ordi-

nary least squares (OLS) to each run. This is done 10,000 times and the regression coefficients

and adjusted R-squared are saved in a new data frame. Next, the 95% confidence intervals are

calculated for all independent variables and the constant as well as for the adjusted R-squared.

This method circumvents the violation of homogeneity and normality assumption as it is shown

that this is asymptotically similar to performing a Huber-White heteroskedasticity correction

and obtaining normally distributed residuals (Cribari-Neto & Zarkos, 1999).
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4.2 Prediction

This section (4.2) discusses all methods related to predicting the E ratings. The E ratings are

provided on a 0-100 scale. This task could be transformed into a classification problem but

it seems more valuable to predict it as numeric values since it is then better able to capture

smaller differences in companies’ ratings. This implies that the task at hand becomes a numeric

prediction problem and since the data includes label variables this is part of supervised learning.

This section contains many chapters and for overview purposes, its layout is not discussed.

4.2.1 Setup

Using the full feature set for making predictions results in the following prediction model:

Target variable ∆ logENVt+1 Differentiated logE ratings

Features

∆ logENVt Differentiated logE ratings
PEt Price-to-earnings ratio
PtBt Price-to-book ratio
EVt Enterprise value
ROEt Return on equity
ROAt Return on assets
DEBTt Total debt
EpSt Earnings per share
ROIt Return on invested capital
GPt Gross profit margin
REVt Total revenues
INDUSt Industry codes
CTRYt Country of domicile
TRENDt Trend variable

Table 12: Prediction model including definitions

A recursive multiple-step forecast is chosen over a direct multiple-step forecast as ratings are

shown to be dependent on their previous rating (Chatterji et al., 2016). Hence, the first lag

of the dependent variable is included in the model. Choosing a direct multiple-step forecast

instead would imply that these dependencies are not correctly modelled. The other features

are chosen as they reflect many firm characteristics such as size (REVt), profitability (EpSt &

(GPt)), management effectiveness (ROEt, ROAt, ROIt), valuation (PEt, PtBt, EVt) and leverage

(DEBTt). The other features are chosen to capture differences between industries, countries and

years.
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The model shown in Table 12 is put in tabular form for all observations. This implies that

each row represents one observation, i.e. the following:

Apple ∆ logENV2020 Features2019
...

∆ logENV2003 Features2002

Amazon ∆ logENV2020 Features2019
...

∆ logENV2015 Features2014
...
...

Table 13: Schematic overview of tabular form of the prediction model

It is chosen to stack all observations like this to obtain a machine learning model that is opti-

mised for all time series and not for each time series individually. This results in a model that

better generalizes and hence, is compatible with a larger variety of inputs.

This further implies that missing values do not affect the full length of a time series as only

two adjacent values are necessary to be used as observation. This means that a time series from

2015 to 2020 with a missing value in 2018 still contains 3 observations, i.e. target years: 2016,

2017, 2020 and feature years: 2015, 2016 and 2019. Due to this limited effect of missing values

on the sample size, it is chosen to handle missing values by excluding them from the data set.

4.2.2 Handling categorical features

CTRYt is transformed into a new variable where countries are grouped together based on their

GHG per $ of GDP which is retrieved from The World Bank (“CO2 emissions”, 2022). In

specific, the countries are categorised into nine groups: Low, Upper Low, Moderate, Upper

Moderate, Average, Upper Average, High, Upper High and Extreme. This is done to lower the

number of categories such that dummy encoding can be applied, i.e. having 54 dummies for

CTRYt alone is not favourable.

The resulting variable as well as INDUSt are dummy encoded. In particular, the categories

”Low” and ”Financials” are left out of the analysis. The trend variable TRENDt consists of

integers ascending to 18, representing the years 2002 to 2019. This is done to capture possible

trends.
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4.2.3 Splitting the data set

The features of the data set are reported from 2002 to 2019 and are used to make predictions

from 2003 to 2020. The first 16 years, i.e. 2002 to 2017, are used as full training set (training

+ validation) and the last 2 years as test set, i.e. 2018 to 2019. The split is made in this way

to satisfy the conventional 80:20 ratio. This results in relatively good results in comparison

with other splits. Moreover, for the train-validation split a 90:10 ratio is used in order to have

an approximate 70:10:20 training, validation and test split respectively. This results in 14,216,

1,789 and 4,345 observations within the training, validation and test set respectively.

4.2.4 Feature selection

For feature selection, recursive feature elimination with cross-validation (RFECV) of Scikit-

Learn (Pedregosa et al., 2011) is applied. For explanation purposes, this algorithm is split

into its two components. The first part contains the ”Recursive feature elimination” (RFE)

which implies that an estimator is fitted using all features and subsequently, that the feature

with the lowest importance is eliminated. Then using the new subset of features, this process

is reiterated. This continues until the minimum number of features is reached, which is a value

you set yourself (3 by default). The second part contains the ”k-fold cross-validation” which

implies that the training set is split into k folds and that every fold is used once as test set

while the training occurs on the other k-1 folds. This results in k individual models and their

performance is averaged to obtain the final performance.

RFECV uses a combination of both. In particular, it uses cross-validation to find the best

number of features. It does this by splitting the training data into k folds and applying RFE

on each fold. The RFE algorithm then selects the best variables when using n, n-1, n-2, ..., 3

number of features (N). Since this is done for each fold, there are now k subsets of best-selected

features for each possible N. This implies that for each N, the estimator is fitted on the k fold and

evaluated on the other k-1 folds using the root mean squared error (RMSE). Hence, this results

in k performances per N. The performances are then averaged across the k folds to obtain a final

score for each N. The N that obtains the highest performance is then selected as best. Finally,

the algorithm applies RFE to the entire training data set but now iterates until optimal N is

reached.

In this thesis, the RFECV algorithm is run with random forest and XGboost as estimator.

During hyperparameter tuning, the performances of the models using the full feature set is
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compared with the selected feature set.

4.2.5 Hyperparameter tuning

The tuning of hyperparameters is done by randomized search and bayesian optimisation using

the RandomizedSearchCV and BayesSearchCV modules of the Scikit-Optimize API respec-

tively. Randomized search takes random combinations of hyperparameters of the parameter

grid. Bergstra and Bengio (2012) show that randomly chosen trials are more efficient than grid-

search. Not only is it less computational expensive but it appears to also to find models that are

as good or better than the ones found with grid-search. In addition, they state that randomized

search can be used as a good baseline against other hyperparameter optimization algorithms.

The objective function in bayesian optimisation for hyperparameter tuning is finding the set

of hyperparameters that minimises the validation metric, which is the RMSE in this case. Fur-

thermore, it uses a surrogate function that aims to reflect the objective function. Then, it samples

more observations close to local minima. Having more observations, the algorithm updates the

surrogate function accordingly. These surrogate functions are reflected by Gaussian processes

and many functions are fitted based on these data points, which have probabilities attached to

them. The bayesian part is that it puts the surrogate functions as probabilistic distributions

which are updated when inserting observations.

The performance of each tested hyperparameter combination is evaluated using k-fold cross-

validation. This improves generalization as the hyperparameter set is selected that performs well

on different subsets of the data set. In this analysis, 3-fold cross-validation is chosen for all ran-

domized and bayesian searches. Furthermore, a wide range of values for each hyperparameter

is used for both the randomized and bayesian search to capture as many different combinations

as possible. The outer values of these ranges are used as limits for the bayesian optimization.

Next to that, it is chosen to test 20 different hyperparameter combinations. This is relatively low

as the total possible combinations for e.g. random forest are 4,800 which means that less than

0.5% of the entire parameter space is assessed. However, it is chosen to value generalisation

over hyperparameters optimization in order to obtain better results when inserting new data. In

addition, these settings already obtain good results and this, therefore, does not advocate for

increasing the number of combinations. On top, the additional computational time that would

be involved makes this choice justifiable.
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4.2.6 Evaluation

The performance of all algorithms and their models with different hyperparameters are com-

pared based on the root mean squared error (RMSE). For hyperparameter tuning the perfor-

mance is calculated only on the training set which means that the validation and test set are

left out of the analysis. After finding the best hyperparameter sets per algorithm, the model is

trained again on the full training set (training + validation set) and tested on the test set.

The RMSE differs from the mean absolute error (MAE) as the RMSE penalises larger pre-

diction errors more than MAE does. This is preferable as this induces milder errors. However,

for the interpretation the MAE is included as well. Both the RMSE and MAE are normalised

(called NRMSE and NMAE) by dividing by the range of the target variable in the training and

test set separately and are multiplied by 100 to obtain percentages. This is done because it

gives a better understanding of whether a certain RMSE or MAE score is good. For example,

a RMSE of .5 when the target variable ranges between 0 and 1000 is much better than when it

ranges between 0 and 100. The construction of the evaluation metrics are explained below.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 and MAE =
1

N

N∑
i=1

|yi − ŷi|

NRMSEtest = RMSE/[ytest] ∗ 100% where [·] = range

(2)

The same concept of equation 2 applies to NMAEtest and for NRMSEtrain, the ytest within

the [·] is substituted by ytrain. Note that ”train” now refers to the full training set (training plus

validation). This is because the final performances are evaluated on the test set while training

on the full training set.

The optimised models are compared with two base models, one is a naive predictor which

sets the predictions equal to the previous value and the other one makes predictions by inter- and

extrapolation. These models are further explained at the end of chapter ”Regression algorithms”

(4.2.8).

4.2.7 SHAP values

After selecting the best performing model, SHapley Additive exPlanations (SHAP) for tree-

based models (Lundberg, Erion, & Lee, 2018)) are used to interpret the effect of the features
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on the target variable. This method computes Shapley values from coalitional game theory

(Shapley, 1953). This method implies that coalitions of features are constructed by adding one

feature at a time, i.e. all possible combinations when having two, three, etc features (F). Then

the SHAP algorithm trains a model using each individual coalition and subsequently makes

predictions. This implies that one can calculate the difference between the predictions using

e.g. two and three features again using all feature combinations for these numbers. Hence,

one can calculate the change in predictions when adding one feature. However, adding a certain

feature to a coalition happens multiple times as all possible combinations of features are used as

coalitions. The total marginal contribution of a feature is therefore constructed as the weighted

sum of all its marginal contributions. These weights are equal to the reciprocal of the number

of possible marginal contributions per F level. By way of example, suppose there are 3 features.

The first coalition contains zero features and the next ones contain one feature. This implies

that the weight is 1/3 as there are three edges from going from zero features to one feature.

Similarly, from one feature to two features there are 6 edges which makes the weight equal to

1/6. The SHAP values of each feature are thus equal to their marginal contribution constructed

as described above.

4.2.8 Regression algorithms

In the coming section, the algorithms are described that are used in this thesis. In particu-

lar, these are random forest (RF), extreme gradient boosting (XGB), neural network (NN) and

support vector regression (SVR), which are all suitable for regression.

Random Forest

A random forest (Breiman, 2001) is an ensemble learning method that is part of the bagging

methods which implies that regression trees are grown in parallel and that there is no interac-

tion between the trees when constructing them. Subsequently, the predictions of each tree are

averaged to obtain a final prediction.

Random forest is known to obtain good results by the default settings. However, a small

performance gain is still achievable by tuning the hyperparameters as shown in (Probst, Wright,

& Boulesteix, 2019). Table 14 shows the tuned hyperparameters of random forest including

definitions, their effect and other important notes. Boehmke and Greenwell (2019) state that the

number of estimators and maximum features often have the largest effect on predictive perfor-
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mance followed by a moderate effect of the others. The tested values of the hyperparameters

are chosen primarily based on the literature of Boehmke and Greenwell (2019); Géron (2019);

Probst et al. (2019). However, the tested range for each hyperparameter is extended if the results

indicate that a performance gain is obtainable, e.g. if there is a relatively large gap between test

and train error. This is also done for the other algorithms.
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Number of estimators [300, 500, 800, 1000]

The number of trees that are grown
before taking averages for predic-
tion

1. A larger value improves performance but takes
more computational time

Maximum features [p
3
,
√
p, p], p = # predictors

The number of randomly drawn
candidate variables which are then
used to make the splits of each tree

1. A small value implies that the trees are split using
only a few predictors and causes the trees to be less
correlated with each other. This trades a small bias
for a lower variance which generally yields a better
performance (Géron, 2019)

2. A lower value could also lead to worse perfor-
mance as suboptimal variables could be chosen when
building the trees (Probst et al., 2019)

Maximum depth [1, 5, 8, 10, 25, 30]

The maximum size of each tree 1. The deeper the tree, the more splits it has and the
better it is able to capture information
2. A too deep tree is likely to induce overfitting
whereas a too shallow tree can lead to underfitting
(Boehmke & Greenwell, 2019)

Minimum samples split [2, 5, 10, 100]

The minimum number of observa-
tions required to split an internal
node

1. Reduces overfitting by controlling the depth of the
trees

Minimum samples leaf [1, 2, 5, 10]

The minimum number of observa-
tions at a terminal node (Probst et
al., 2019)

1. Similarly to minimum samples split, reduces over-
fitting by controlling the tree depth

2. Larger values reduce computational time
(Boehmke & Greenwell, 2019)

Maximum samples [0.25, 0.5, 0.75, 1]

The sampling scheme for growing
each tree

1. The default sample scheme is bootstrapping 100%
of the observations with replacement

2. Decreasing the sample size induces more vari-
ability between the trees and less between-tree cor-
relation which can improve prediction performance
(Boehmke & Greenwell, 2019)

Table 14: Random forest’s tuned hyperparameters; Each single line belongs to a hyperparame-
ter and relative to each line it can be described as follows. Upper left = hyperparameter name,
upper right = tested values, lower left = definition, lower right = it’s effect and other relevant
notes
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EXtreme Gradient Boosting

EXtreme Gradient Boosting (XGBoost) introduced by Chen and Guestrin (2016) is a variant of

gradient boosting of (Friedman, 2001). Boosting implies that the algorithm is run sequentially.

Moreover, it constructs a base tree with a single root node and makes an initial prediction. Then

it constructs another tree from the errors of the previous tree. These errors are minimised by

the gradient descent algorithm and each new tree is scaled by the learning rate to determine its

contribution. This process iterates itself until the errors do not further decline by adding more

trees. Subsequently, the predictions are made using all grown trees but their contribution is now

determined by their individual importance rather than having equal importance as with random

forest.

XGBoost extends this algorithm by adding L1 (Lasso) and L2 (Ridge) regularisation terms,

by using the second-order derivative of the loss function instead of the first and by performing

the computations in parallel. This results in a faster and better performing algorithm. Table 15

shows the tuned hyperparameters for XGBoost and their tested values are chosen based on the

literature of Bengio (2012); Brownlee (2019); Friedman (2001, 2002).
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Number of estimators [5, 20, 60, 100, 150, 180, 200, 250, 300, 350, 400]

The number of decision trees used
in the boosting algorithm

1. In contrary to bagging methods, adding trees
to boosting algorithms does not lead to an ever-
increasing performance gain due to its sequential
structure (Brownlee, 2019). Hence, relatively smaller
values are tested

Learning rate (eta) [0.01, 0.015, 0.025, 0.05, 0.1, 0.15]

A shrinkage parameter applied to
the feature weights after each boost-
ing step

1. A small value results in making fewer corrections
per tree added to the model (Brownlee, 2019) and
hence reduces overfitting

2. The smaller the learning rate, the higher the com-
putational time

Maximum tree depth [1, 3, 5, 7, 15]

The maximum size of the trees 1. Gradient boosting algorithms generally perform
well with trees that have modest depth (Brownlee,
2019). Hence, the relatively smaller tested values

Minimum child weight [1, 3, 5, 7, 10, 15, 20]

The minimum sum of instance
weight needed in a leaf node

1. Reduces overfitting and setting a higher value
means trading a larger bias for a smaller variance

Minimum split gain (gamma) [0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]

The minimum loss reduction re-
quired for a leaf node to be further
partitioned

1. This hyperparameter also helps to reduce overfit-
ting as it controls tree depth

Row sampling (subsample) [0.2, 0.4, 0.6, 0.8, 1.0]

The fraction of observations to be
randomly sampled without replace-
ment before growing each tree

1. It helps reduce overfitting as the trees are then
grown using different subsamples of the training set

Column sampling (colsample) [0.2, 0.4, 0.6, 0.8, 1.0]

The fraction of columns, i.e. fea-
tures, to use for creating each tree

1. Similar effect as row sampling and thus prevents
overfitting

2. Can be done by tree, by split and by node, but only
column sampling by tree is used as it is shown to be
sufficient in many cases (Brownlee, 2019)

Lambda and alpha [0.2, 0.4, 0.6, 0.8, 1.0] [0, 0.1, 1, 10]

L2 and L1 regularization factors on
the weights respectively

1. L2 shrinks the weights towards zero whereas L1
induces sparsity

Table 15: XGBoost’s tuned hyperparameters; Similar structure as before
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Neural Network

An (artificial) neural network can be described as a network of interconnected neurons organised

in layers, i.e. input, hidden and output layers. The neurons in the hidden layers receive the

weighted sum of the output of the neurons in the previous layer and process this via activation

functions to new output for the neurons in the next layer. The output layer processes the output

of the last hidden layer through an output activation function to obtain the final prediction. The

network is trained by minimising a loss function, i.e. MSE for regression, and updates the

weights of the neurons accordingly. Tables 16 & 17 provide a detailed explanation of the tuned

hyperparameters and also gives a better understanding of how a neural network works. Again,

the range of tested values is chosen based on the literature, which in this case are the ones

of Géron (2019); Goodfellow, Bengio, and Courville (2016). A final remark in regard to the

regularization parameters λ and α which target the weights and the activations respectively. It

is chosen to not use these parameters as other forms of regularization, i.e. early stopping and

dropout, are already applied.
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Learning rate [1e-4, 1e-3, 1e-2, 1e-1, 2e-1]

The stepsize of each update
iteration

1. Setting a too large value can lead to overshooting the
minimum of the loss function whereas a too small value can
take up extremely large computational time

Optimizer [Adam, Nadam]

The optimizer that updates
the weights to minimise the
loss function

1. Both Adam (Kingma & Ba, 2014) and Nadam (Dozat,
2016) are adaptive learning algorithms and therefore require
less tuning of the learning rate parameter
2. Nadam involves using Nesterov momentum which is a
form of momentum and heads the optimizer in the right di-
rection and accelerates the training process

Batch Size [64, 256, 512, 1024]

The size of randomly selected
and disjoint subsets of the
training data that go through
the network

1. Mostly affects computational time but also induces a
form of regularization Bengio (2012) and hence improves
generalization. This is because small batches have more
variation from one another such that the convergence rate
and direction are more variable
2. This hyperparameter is very useful within this thesis’
training strategy, i.e. 3-fold cross-validation, since this
strategy can take up large computational time

Number of epochs [10, 50, 100, 200, 400]

The number of times that the
algorithm sees the entire data
set

1. It is very related to batch size, e.g. with a sample size
of 1,000 observations and a batch size of 500, it means that
2 iterations are needed to complete 1 epoch. Hence, setting
a low batch size with a high number of epochs increases
computational time
2. Setting a too high value induces overfitting while a too
low value induces underfitting

Number of hidden layers [1, 2, 3]

The number of layers be-
tween the input and output
layers that contain neurons

1. Goodfellow et al. (2016) mention that with one hidden
layer, the neural network can approximate any function that
is required and is therefore sufficient in most cases

Number of neurons [1, 5, 7, 11, 14, 17, 20, 23, 25, 28, 30]

The number of neurons per
layer that process inputs
through activation functions
into outputs

1. Controls the capacity of the model
2. Larochelle, Bengio, Louradour, and Lamblin (2009)
found in a large comparative study that using the same num-
ber of hidden units for all layers works at least as good as
using an increasing or decreasing size. Therefore, it is cho-
sen to keep the size constant in this analysis

Table 16: Neural network’s tuned hyperparameters part (1/2); Similar structure as before

30



Activation functions [ReLU, ELU]

Functions that define how the
input of nodes as weighted
sum is transformed into out-
put for each neuron in a layer
in the network

1. Rectified linear unit (ReLU) and exponential linear unit
(ELU) are preferred over the sigmoid and hyperbolic tan-
gent as it is not subject to vanishing or exploding gradients
which happens for very small and large inputs Géron (2019)

2. ReLU is subject to another problem that is called ”dying
ReLU” which basically means that some neurons die due to
fact that this activation function outputs zeros for negative
input

3. ELU solves this problem by having negative-valued out-
puts following an exponential function such that the gradi-
ent is nonzero

4. In the output layer, a simple linear activation function
is used as recommended in (Sharma, Sharma, & Athaiya,
2017)

Weights initialization [He uniform, He normal]

The starting point of the opti-
misation process

1. It can prevent the output of the activation functions to ex-
plode or vanish. This can lead to convergence problems as
the gradient of the loss function might then be too small or
too large to flow backwards through the network optimally
(He, Zhang, Ren, & Sun, 2015)

2. ”Kaiming He Initialization” (He et al., 2015) is now the
standard when using ReLU or its variants. It initialises the
weights by taking random numbers from a Gaussian distri-

bution with mean zero and standard deviation of
√

2
n

, where
n is the number of inputs to the node

3. This is compared with ”He uniform” which is similar
to ”He normal” but takes random numbers from a uniform
distribution with limits -l and l, where l =

√
6

fan in and fan in
is equal to the number of input units per layer

Early stopping

Regularization technique that
stops training early when the
validation loss is not decreas-
ing sufficiently

1. It reduces overfitting

2. It stops when the validation loss is not decreasing with
more than 0.01 over 10 epochs

Dropout [0.1, 0.2, 0.3]

Regularization technique
that randomly deletes units
and their connections during
training (Géron, 2019)

1. It reduces overfitting

2. It is placed just after the input layer

Table 17: Neural network’s tuned hyperparameters part (2/2); Similar structure as before
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Support Vector Regression

Support vector regression (SVR) (Cortes & Vapnik, 1995) aims to fit a hyperplane that contains

most data points. It does this by defining an ϵ-insensitive tube that indicates how much error

is tolerated, i.e. how far the observations can lie from the hyperplane without correcting for

them. However, the error with respect to the observations outside of the tube is minimised

while regularizing their importance (hyperparameter C) to reduce model complexity. Another

important feature of SVR is called the ”kernel trick”, this refers to a function that maps linearly

inseparable input to a higher dimensional feature space which leads to linearly separable data.

This together with the explanations of other hyperparameters is further discussed in Table 18.

Again, the tested values of the hyperparameters are chosen based on the literature of Cherkassky

and Ma (2004); Smola and Schölkopf (2004). Furthermore, it is chosen to keep the bias param-

eter ”c” and the degree of the polynomial ”d” equal to the default values 0 and 3 respectively,

as this is shown to obtain good results (Cherkassky & Ma, 2004).

A final remark, it is chosen to reduce the sample size to 2,000 observations when using ran-

domized search in order to improve computational time. This is done by subsampling without

replacement.
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ϵ [1e-3, 1e-2, 1e-1, 1e0]

The width of the ϵ-insensitive tube 1. A larger value of ϵ induces more error but reduces
running time (Smola & Schölkopf, 2004)

2. A larger value implies that fewer support vectors
are used to fit the data which makes the estimates flat-
ter (less complex) (Cherkassky & Ma, 2004)

C [1e-1, 1e0, 1e1, 1e2]

The relative importance measure
that controls the trade-off between
the regularization term and the em-
pirical error (Smola & Schölkopf,
2004)

1. When C is large, the SVR algorithm tends to be
overfitting and lead to high computational time while
a too small value of C can lead to underfitting. Thus, ϵ
and C both control model complexity but in different
ways (Cherkassky & Ma, 2004)

Kernel function [Linear, Polynomial, RBF, Sigmoid]

Function that transforms linearly
inseparable data to separable ones
by mapping the data to a higher di-
mensional space

1. Linear: K(xi, xj) = x′
ixj , with xi, xj being vectors

of the input space

2. Polynomial: K(xi, xj) = (γx′
ixj + c)d

γ = scaling factor explained below
c = bias parameter
d = degree of the polynomial

3. Radial basis function (RBF): K(xi, xj) =
exp(−γ||xi − x′

j||2)
4. Sigmoid: K(xi, xj) = tanh(γx′

ixj + c)

Kernel parameter (γ) [ 1
Var(X)∗p , 1

p
], X = features and p = # predictors

It is a scaling factor that controls
how far the influence of a single
training example reaches. Appli-
cable to all kernel functions except
Linear

1. Choosing a small value induces constraints and
causes the model to not capture the complexity of the
data and setting a value too large can lead to overfit-
ting. Hence, it works as a regularization parameter

Table 18: Support vector regression’s tuned hyperparameters; Similar structure as before
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Naive predictor

The naive predictor that is used as a comparison to the machine learning algorithms can be

described as follows. It simply uses the previous observations as predictions for the next, e.g.

it uses the values of ∆ logENV2019 as predictions for ∆ logENV2020 for all companies. Since

test performances are compared, it simply implies that yt+1,test = ∆ logENVt,test.

Inter/extrapolated predictor

The other base model is a predictor that uses linear inter- and extrapolation for making pre-

dictions. In particular, it uses the values of the pairs (yt+1, ∆ logENVt) in the full training

set (training + validation) to assign y-values to ∆ logENVt in the test set. This procedure is

conducted using the ”scipy.interpolate.interp1d” API of scipy package.
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5 Results

5.1 Firms’ emission behaviour

Table 19 shows that a significant regression equation is found (F(14,14723)=69,210, p =.00),

with an adjusted R-squared of .985. Furthermore, it shows that significant regression coeffi-

cients are found for all variables except some dummy variables.

Dep. variable = logCO2t Adj. R-squared = .985
Df residuals = 14,723 F-statistic = 69,210
Df model = 14 Prob (F-statistic) = .00

βi p-value .025 .975 .025b .975b

Constant .007 .217 -.004 .018 -.003 .017
logCO2t−1 .947 .000 .943 .952 .940 .954
ENVt−1 -.008 .000 -.010 -.006 -.010 -.006
logREVt .046 .000 .041 .050 .039 .053
Trendt -.001 .000 -.002 -.001 -.002 -.001
Basic Materials .042 .000 .030 .053 .030 .053
Consumer Discretionary -.002 .664 -.013 .008 -.011 .007
Consumer Staples .008 .180 -.004 .020 -.002 .018
Energy .035 .000 .022 .050 .022 .050
Financials -.037 .000 -.048 -.026 -.050 -.030
Health Care -.008 .215 -.020 .005 -.020 .002
Industrials .006 .238 -.004 .017 -.003 .015
Real Estate .010 .150 -.003 .023 -.003 .022
Technology .000 .958 -.012 .012 -.009 .010
Utilities .058 .000 .044 .072 .041 .077

Table 19: Regression results

Figure 2 shows a plot of the residuals against the fitted values. It shows that the residuals

are distributed around zero. Furthermore, it indicates that a linear model is appropriate as the

errors seem to be symmetrical around a horizontal line through zero (Date, 2022). It also shows

signs of heteroskedasticity as the residuals are less dispersed at the right-hand side of the plot

in comparison to the left-hand side. Hence, one of the assumptions of OLS is violated.
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Figure 2: Regression residuals

Furthermore, Figure 3 shows a Quantile-Quantile (Q-Q) plot where the red line represents

the expected data distribution if normally distributed. The blue observations represent the dis-

tribution of the residuals, indicating that they are not normally distributed, violating another

assumption of OLS. This is also confirmed by a Jarque-Bera statistic of 1,863,757 which is

highly significant.
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Figure 3: Quantile-Quantile plot

To circumvent these two assumptions of OLS, the confidence intervals of the regression

coefficients are bootstrapped as described in the Method section. These values are shown in
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Table 19 as .025b and .975b, representing the lower and upper bounds of the 95% confidence

intervals. Looking at the tables, one can see that the obtained bootstrapped confidence intervals

are very similar to the confidence intervals obtained from OLS. Hence, it is chosen to continue

with interpreting the regression coefficients derived from performing OLS.

Figure 4 shows the autocorrelation of the residuals at various time lags. The x-axis rep-

resents the lags and the y-axis show the autocorrelation. Every line within the blue rectangle

implies that the found statistic is not significant. Hence, only at the 22nd time lag there is a

significant result. However, Brockwell and Davis (2002) mention that autocorrelation functions

that are close to zero for all non-zero lags indicate that errors are independently distributed,

which is the case. The absence of autocorrelation is also supported by a Durbin-Watson statistic

of 2.018. This test examines if there is autocorrelation in the first lag. A test statistic towards

zero implies positive autocorrelation whereas a test statistic towards 4 implies negative auto-

correlation. However, a test statistic around 2 implies no autocorrelation in this lag (Durbin &

Watson, 1950). Therefore, it seems that the residuals are independently distributed.
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Figure 4: Autocorrelation of the residuals at various time lags

Besides non-normality and heteroskedasticity, the model fulfils the assumptions of linearity

and no autocorrelation in the residuals. However, an adjusted R-squared of .985 is suspiciously

high and raises the question of whether the model is potentially misspecified due to e.g. non-

stationarity. Since CO2 emissions, E ratings and total revenue are all likely to exhibit a trend

it is analysed whether taking differencing or logarithmic differencing leads to sensible results.

However, this led to a drop in the adjusted R-squared to .06. Next to that, Wooldridge (2015)
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mentions that including a trend variable is sufficient to capture trends within individual variables

which is already incorporated in the model. So we conclude that this high adjusted R-squared

is likely not caused by wrongly accounting for trends in the data.

The fact that this analysis uses panel data is only due to the motivation of having more

observations. However, this regression could also be conducted using cross-sectional data in

2020 as this already contain 1,678 observations. The same regression is run using this cross-

sectional data set to assess whether the high adjusted R-squared is caused by other forms of

non-stationarity. This results in similar regression results and an adjusted R-squared of .983.

Since there are no non-stationarity issues in a cross-section and since the adjusted R-squareds

are similar, it is further concluded that the high adjusted R-squared is not generated by non-

stationarity. In addition, the regression outcomes are intuitively understandable and similar to

the results of Chatterji et al. (2009). Considering all these observations, it is concluded that the

model as shown in Table 19 is correctly specified and thus, we proceed with the interpretation

of regression results.

It is good to note that all variables except the dummies are standardized. This means that

for a simplified version of the model it be expressed as follows:

logCO2t − µ(logCO2t)

σ(logCO2t)
= β0 +

ENVt−1 − µ(ENVt−1)

σ(ENVt−1)
β1 + ϵ (3)

Where µ and σ refer to the sample mean and standard deviation respecitvely. In order to inter-

pret the results in original scales, equation 3 can be written as:

logCO2t = µ(logCO2t) + σ(logCO2t)β0 −
σ(logCO2t)µ(ENVt−1) β1

σ(ENVt−1)

+
σ(logCO2t)β1

σ(ENVt−1)
ENVt−1 + σ(logCO2t)ϵ

(4)

So in order to compare the effect of a unit increase of the independent variables on the dependent

variable, the regression coefficients have to be rescaled as shown in equation 4. In particular by:

σ(logCO2t)βj

σ(Xj,(t/t−1))
(5)

Where Xj,(t/t−1) refers to independent variable j in time t or t-1 depending on the independent

variable and βj to its regression coefficient. The regression coefficients of the trend variable and
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the dummy variables remain the same as these are non-standardized. Computing equation 5 for

all the standardized independent variables results in the following betas:

Xj,(t/t−1) σ βj,scaled βj,rescaled

logCO2t−1 3.1 .947 .951
ENVt−1 20.8 -.008 -.001
logREVt 2.5 .046 .057

Table 20: Rescaled regression coefficients

Note that logCO2t to ENVt−1 is log-linear and logCO2t to logCO2t−1 and logREVt is log-

log. Hence, a unit increase in the lagged E rating (on a 1-100 scale) results in a .122% decrease

in total CO2 and equivalent emissions ((exp−.001−1)∗100 = −.122%). This implies that firms

that obtain a higher E rating tend to reduce their CO2 emissions in the following year.

For logCO2t−1, this implies that a one percent increase in CO2 emissions in the current

year leads to a .951% increase in CO2 emissions in the next. This means that bad performers

are likely to continue to perform badly. For the size variable, i.e. firms’ revenue, this implies

that a 1% increase results in a .057% increase in their CO2 emissions. This positive relation is

intuitively comprehensible as growth in size implies e.g. producing more products which leads

to higher CO2 emission levels.

For the trend variables, the regression coefficient is equal to -.001. This implies that on

average, firms’ CO2 emissions decrease every year by -.122%. This decrease is in line with the

global growth in climate actions and regulations over the past years.

Looking at the dummy variables one can see that there are significant results obtained for

the categories Basic Materials, Energy, Financials and Utilities with regression coefficients .042,

.035, -.037 and .058 respectively. Their coefficients are not rescaled as these variables are only

used as control variables. However, it is interesting to briefly discuss their sign. All these

variables except Financials pose a positive sign. This implies the Financial industry emits fewer

CO2 emissions than the Telecom industry whereas the Basic Materials, Energy and Utilities

industries emit more. This is understandable as the last three mentioned industries are more

production heavy industries in comparison to the others.

The significant negative relation between E ratings and CO2 emissions confirms that firms

reduce their CO2 emissions to obtain a higher E rating. Moreover, this proves that E ratings are

a driving factor behind firms’ CO2 emissions. This motivates examining the predictability of E

ratings as the above provides a reason to incorporate E ratings in CO2 models. This is done in
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the following section.

5.2 Prediction

5.2.1 Feature selection

Performing feature selection with RFECV and using a non-tuned XGBoost estimator results in

selecting the following features:

∆ENVt ROIt GPt REVt TRENDt DEBTt ROEt ROAt EVt PEt PtBt EpSt

Table 21: Selected features using RFECV and XGBoost

Using the same algorithm but with random forest and SVR as estimator results in selecting the

full set of features. It is also tested whether using an untrained random forest estimator as feature

selection method leads to better results but this is not the case. The same is done for the feature

importance coefficients of XGBoost but again, this does not lead to better results. Hence, it is

chosen to proceed with fitting the algorithms using the full set of features and compare this with

the selected features as described in Table 21.

5.2.2 Model selection

This chapter shows the best performing hyperparameters using randomized search and bayesian

optimization with and without feature selection, i.e. randomized search with full feature set

(RF), with a subset using feature selection (RS), bayesian optimization with full feature set

(BF) and with a subset (BS). Next to that, the differences between test and training error are

compared across other models, i.e. RF, BF and BS, in order to detect overfitting. Finally,

computational time consisting of training and predicting time for each cross-validated hyper-

parameter combination is presented to compare the models and algorithms on computational

speed. These acronyms and methods of presenting are used for all algorithms.

Base models

As said earlier the algorithms are compared with a naive predictor and a linear inter/extrapolated

predictor. The former obtains a test NRSME and NMAE of 8.377% and 4.400% respectively.

The latter achieves a performance of 7.281% and 4.307% respectively.
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Random Forest

RF RS BF BS

N estimators 1,000 800 848 618
Max features auto .33 .99 .94
Max depth 25 30 30 14
Min samples split 2 10 21 20
Min samples leaf 5 10 9 5
Max samples .5 .5 .49 .33

NMAEtest 3.170 3.287 3.128 3.223
NRMSEtest 5.977 5.937 5.959 5.930
NRMSEtrain 3.899 3.747 4.220 4.445

Computation time 158.1 23.9 84.1 21.5

Table 22: Hyperparameter tuning for random forest with Randomized and Bayesian search
using Full feature set and a Subset respectively (i.e. RF, RS, BF and BS)

Looking at Table 22, one can see that the bayesian optimisation with feature selection resulted

in the best performance with a NRMSEtest of 5.930% and NMAEtest of 3.223%. This means

that this model predicts the E ratings with 94.1% accuracy in terms of NRSME and with 96.8%

in terms of NMAE. In comparison with the naive and inter/extrapolated models, this is a 2.447%

and 1.351% NRMSEtest improvement respectively. NRMSEtrain refers to the performance on

the full training set (training + validation) and one can see that it is 1.485% lower than the one

of the test set. Furthermore, the gap between training-test (”spread”) performance is lowest in

comparison with the other models. This implies that the hyperparameters are relatively very

well optimised.

Table 22 further shows that the best predictive performance is obtained using hyperparam-

eter sets that reduce overfitting the most. This can be seen by comparing the hyperparameter

values of the BS and RS models with those of the others. The BS model uses the lowest num-

ber of estimators, the smallest depth, the second-highest minimum samples split and the lowest

fraction of samples that are used when building the trees. A similar explanation can be given

for the RS model. Using 3-fold cross-validation for hyperparameter tuning implies that the best

hyperparameter combination is selected based on its predictive performance on three subsets

of the training set. This together with the fact that the best models are obtained using strict

overfit-avoiding (OA) settings, implies that there is quite some noise in the training set.

Furthermore, one can see that RFECV does a good job in selecting the best features. In
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particular, this is interesting as it only uses the ∆ENVt, ROIt GPt, REVt and TRENDt next to

the dummy variables.

Next to that, it is striking to see that selecting the best model based on NRMSE or on NMAE

results in different models. The former results in selecting BF whereas the latter in selecting

BS. This means that in absolute terms the BF model performs better but that it is not selected

as it contains more extreme errors.

XGBoost

RF RS BF BS

N estimators 400 400 152 152
Max depth 3 3 4 4
Learning rate .015 .015 .033 .033
Colsample bytree .8 .8 .8 .8
Subsample 1.0 1.0 .83 .83
Gamma 1.0 1.0 .94 .94
Min child weight 7 7 17 17
Reg alpha 10 10 4.6 4.6
Reg lambda .1 .1 53.5 53.5

NMAEtest 3.165 3.192 3.148 3.198
NRMSEtest 5.989 5.978 5.943 5.933
NRMSEtrain 4.648 4.667 4.678 4.668

Computation time 16.9 13.2 6.5 3.9

Table 23: Hyperparameter tuning for XGBoost with Randomized and Bayesian search using
Full feature set and a Subset respectively (i.e. RF, RS, BF and BS)

Table 23 shows that for XGBoost the best model is found using bayesian optimisation and

feature selection with a test and training NRMSE of 5.933% and 4.668% respectively. This

result is very similar to the best model using random forest, i.e. 5.930%. Hence, this model

performs 2.444% and 1.348% better than the base models.

The difference between the test-training NRMSEs of this model is 1.265%, which is together

with the BF model the lowest. Again, the best performances are obtained using relatively the

most strict OA settings, i.e. a lower number of estimators, fraction of subsample and gamma

together with a higher minimum child weight and more regularization by lambda. This supports

the earlier made suggestion that data is noisy.

Next to that, one can see that the RF spread is lower than the best model of random forest,

i.e. 1.485%. This means that the hyperparameters are fairly well-tuned in comparison to the
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random forest models. However, most of the random forest models perform better even though

they are less well-tuned. Hence, random forest is likely more suited for this data set.

Neural Network

RF RS BF BS

N hidden 1 3 2 2
N neurons 5 23 2 28
Learning rate .1 .2 .000 .020
Optimizer adam adam adam adam
Activation relu elu relu elu
Batch size 64 64 947 960
Epochs 50 50 337 303
Dropout .1 .1 .2 .1
Kernel initializer he unif he norm he norm he norm

NMAEtest 3.102 3.097 3.183 3.079
NRMSEtest 5.989 6.029 6.007 6.047
NRMSEtrain 4.791 4.689 4.820 4.683

Computation time 59.5 80.4 44.6 59.1

Table 24: Hyperparameter tuning for neural network with Randomized and Bayesian search
using Full feature set and a Subset respectively (i.e. RF, RS, BF and BS)

From Table 24, one can see that the best model of neural network is found using randomized

search and using the full feature set. In particular, this model achieves a test NRMSE of 5.989%

which is slightly worse than the best models of random forest and XGBoost, i.e. .059% and

.056% respectively. The training-test difference is 1.198% which is smaller than both the best

random forest and XGBoost models. Hence, the hyperparameters are relatively well-tuned.

The best performance is obtained using one hidden layer. This corresponds with the state-

ment of Goodfellow et al. (2016) that a neural network with one hidden layer is able to approx-

imate any function and therefore sufficient in most cases. Next to that, it is interesting to see

that similar results are obtainable using very different values for the learning rate, i.e. RF and

BF models differ .018% in NRMSEtest while using a learning rate of .1 and .0001 respectively.

Perhaps, this indicates that there is a deep minimum in the loss function which is easy to find

and which is hard to overshoot.

43



Support Vector Regression

RF RS BF BS

Kernel rbf rbf rbf rbf
Gamma scale scale auto auto
C 100 100 1.22 1.16
Epsilon .001 .001 .001 .001

NMAEtest 3.121 3.131 3.212 3.324
NRMSEtest 6.197 6.151 6.071 6.078
NRMSEtrain 4.710 4.783 4.725 4.766

Computation time 2.8 1.6 38.4 25

Table 25: Hyperparameter tuning for support vector regression with Randomized and Bayesian
search using Full feature set and a Subset respectively (i.e. RF, RS, BF and BS)

Table 25 shows that the best performance is achieved using bayesian optimisation and using

the full feature set. This leads to a test NRMSE of 6.071% which is .144% worse than the overall

best performing model. Together with the BS model, the spread is the lowest in comparison to

the RF and RS models. The best performing models, i.e. BF and BS, differ mainly from the

other models in regard to C. A lower value for C reduces overfitting, so again best models are

found using strict OA settings.

Also interesting to see is that epsilon is set to the smallest tested value. This implies that the

error margin is very low and that fewer observations fall within the ϵ-insensitive tube. This also

means that more errors outside this tube are penalised for fitting the regression function. This

increases the chance of overfitting. However, this is accounted for by a low value for C.

5.2.3 Best model

NRMSEtest NMAEtest Spread Method Computational time

Random forest 5.930 3.223 1.485 BS 21.5
XGBoost 5.933 3.198 1.265 BS 3.9
Neural network 5.989 3.102 1.198 RF 59.5
SVR 6.071 3.212 1.346 BF 38.4

Table 26: Descriptives of the best models

Looking at Table 26, one can see that random forest obtained the best results closely fol-

lowed by XGBoost. Furthermore, the spread of random forest’s best model is the highest among
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all algorithms. This indicates that the random forest model could be optimised even further.

Hence, it seems that the random forest algorithm is most suitable for this data set.

The reason that the tree-based models, i.e. random forest and XGBoost outperform neural

network might be due to the small data size. The training data consists of 14,216 rows and all

the time series do not contain more than 19 observations. Hence, it might be more difficult for

the neural networks to assign the right weights to the neurons whereas for tree-based models

the weights are binary, i.e. 0 or 1 (Ye, 2020). In addition, the problem at hand is relatively not

that complex with few layers, neurons and features which is why tree-based models are likely

to perform as good or even better than the neural network (Ye, 2020).

In this case, random forest outperforms XGBoost and this is probably due to the difference

in nature of the algorithms i.e. the former uses bagging whereas the latter uses boosting. Bag-

ging aims to decrease variance and reduce overfitting whereas boosting aims to reduce bias.

Hence, this implies that there is quite some noise in the training data and that the test set is quite

different from the training set. The latter makes sense as the test-train split is made based on

the years, i.e. the last two years, and within these years firms can change much.

The noisy data also explains why the SVR algorithm has more difficulty fitting the right

hyperplane to the data and why this model performs less than the other models.
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5.2.4 Interpretation

This chapter interprets the best performing model using the full feature set and assesses whether

similar relations can be found as the ones shown in the existing literature. This is done by

applying the SHAP algorithm as explained in chapter ”SHAP values” (4.2.7). Figure 5 shows

the resulting relative importance of each feature, which is equal to the mean of all SHAP values

of all observations. Figure 6 (a beeswarm boxplot), however, shows the individual SHAP values

of all observations. A blue value represents small values of the respective feature whereas the

red value represents large values. The x-axis shows their impact on the predictions.
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Figure 5: SHAP feature importance
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Figure 6: SHAP plot; blue and red indicate low and high feature values respectively

It is good to note that the best overall performing model is obtained using feature selec-

tion. In particular, the RFECV algorithm removed more than half of the features in question

including DEBTt and EVt. This is unfortunate in regard to interpretation as it does not allow

for analysing the relations between debt and enterprise value with E ratings as discussed in

the literature section. However, the best overall performing model that uses the full feature set

(XGBoost’s BF model) obtains a NRMSEtest of 5.943% which is only .013% higher than the

best performing model. Also, their NRMEs are not statistically different when comparing their

confidence intervals. Hence, it is chosen to report the SHAP values of XGBoost’s BF model.

Looking at Figure 6, one can see that it is unclear to interpret the sign of the relations of

total debt and enterprise value with E ratings. However, Figure 5 shows that these variables

do have a decent feature importance value. Next to that, the fourth most important feature is
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price-to-earnings ratio which represents a firm’s market value relative to its earnings. Hence, it

is very related to firm value. Figure 6 shows a clear positive relation between PE ratio and E

ratings. This implies that firms with a higher PE ratio, i.e. higher valuation perceived by the

market, have a higher E rating. This is in line with the findings of Fatemi et al. (2018), which

find that a higher E rating is associated with a higher firm value.

Another interesting observation is that the lagged dependent variable has negative relation

with the differentiated E ratings implying that firms that achieved a large sustainable improve-

ment in one year are likely to have a smaller change in the next year. This is in line with

the findings of Chatterji and Toffel (2010) that show that firms that are initially rated poorly

are likely to improve their environmental performance relatively more than firms that obtained

good ratings in the beginning.

Finally, Figure 5 shows that the firm characteristics EpSt, PEt and GPt are in the top five of

most important features. This implies that these characteristics indeed have predictive perfor-

mance as suggested by the research of Garcia et al. (2020).
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6 Discussion

6.1 Conclusion

This study analyses environmental ratings’ ability to model firms’ CO2 emissions. This is done

by splitting this research into two parts. The first studies the relation between Environmental

ratings and firms’ CO2 emissions, and the second examines the predictability of these ratings.

The idea of analysing the former relation is cultivated by the findings of previous literature

that high ESG ratings lead to capital inflow, lower cost of debt and higher firm value. Hence,

this incentives firms to improve their environmental performance which includes reducing CO2

emissions. If it appears that firms’ CO2 emission behaviour is indeed driven by its E rating

then it implies that E ratings should be incorporated in models that forecast this behaviour as it

then simply has more explanatory power. However, if the predictability of E ratings appears to

be poor then incorporating E ratings in modelling future CO2 levels induces extra uncertainty

which loses the point of including them in the first place. Hence, this motivates conducting the

second part of this thesis. This further implies that the results of the first part of this thesis stand

or fall with the results of the second part and vice versa.

Regarding the relation between E ratings and firms’ CO2 emissions, this thesis shows that

the former is indeed a driving factor behind the latter. In particular, the regression results show

that a unit increase in E ratings leads to a .122% decrease in firms’ CO2 emissions in the next

year. Regarding E ratings’ predictability, this thesis shows that machine learning algorithms can

effectively predict E ratings with a low uncertainty. In particular, it shows that random forest

and XGBoost tuned with bayesian optimisation and using feature selection predict E ratings

with 94.1% accuracy in terms of NRSME and more significantly, with 96.8% in terms of

NMAE. Moreover, this is a NRMSE improvement of 1.4% and 2.5% in comparison to an

inter/extrapolated predictor and a naive predictor respectively.

Combining the outcomes of both the analyses imply that E ratings can be used effectively

to model firms’ future emission behaviour. This further means that incorporating E ratings

in these models is likely to reduce prediction error. This is beneficial as it helps countries to

better forecast the emission behaviour of firms and adjust regulations accordingly. This thesis

further argues that this lower prediction uncertainty could be translated into lower prediction

uncertainty in other CO2 models when including or incorporating firms’ emission behaviour.

Hence, this study suggests that E ratings should be incorporated in all models that forecast
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firms’ emission behaviour or include/integrate this behaviour.

6.2 Limitations and future research

This thesis is, to our knowledge, the first that analyses the ability of E ratings to model firms’

emission behaviour. Naturally, this comes with limitations which point the way for future re-

search.

This thesis limits itself to ratings provided by one rater. This is caused by the fact that

Erasmus students have access to the binary ratings of MSCI and the continuous ones of Refinitiv,

and because it is chosen to only analyse continuous ratings. This means that these results of the

regression analysis as well as the prediction part only hold for the data provided by this rater. So

for future research, it could be assessed whether similar results can be found using a different

rater and thus if this thesis’ findings apply to multiple raters.

Using the ratings of one rater brings about another limitation which is that the effect of

different ratings on firms’ emission behaviour is not analysed. There might be divergence be-

tween ratings of various raters which raises the question of how this relates to firms’ emission

behaviour. It would be interesting to analyse if firms use one particular rater or a combination

of raters as target for reducing their CO2 emissions. This would have modelling implications

as it could imply that a combination of ratings should be analysed as a predictor.

Next to that, this thesis advises to include E ratings in modelling firms’ emission behaviour

but does not analyse its exact implementation. This implies that exact figures regarding the

possible reduction of prediction uncertainty when including E ratings cannot be given. Hence

for further research, it is interesting to measure this effect.
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Myhre, G., Bréon, F.-M., & Granier, C. (2018). Anthropogenic and natural radiative forcing 2.

Notes.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay,

E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12, 2825–2830.

53

http://www.gsi-alliance.org/wp-content/uploads/2021/08/GSIR-20201.pdf
http://www.gsi-alliance.org/wp-content/uploads/2021/08/GSIR-20201.pdf


Probst, P., Wright, M. N., & Boulesteix, A.-L. (2019). Hyperparameters and tuning strategies

for random forest. Wiley Interdisciplinary Reviews: data mining and knowledge discov-

ery, 9(3), e1301.

Pukelsheim, F. (1994). The three sigma rule. The American Statistician, 48(2), 88–91.

Shapley, L. (1953). Quota solutions op n-person games1. Edited by Emil Artin and Marston

Morse, 343.

Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural networks. towards

data science, 6(12), 310–316.

Signatory update. (2021). Retrieved from https://www.unpri.org/download?ac=

14962

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and

computing, 14(3), 199–222.
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A Appendix

A.1 Tables

Environmental Innovation Resource use

Policy Emissions Environmental Products Resource Reduction Policy
Targets Emissions Eco-Design Products Policy Water Efficiency
Emission Reduction Target Percentage Revenue from Environmental Products Policy Energy Efficiency
Emission Reduction Target Year Percentage of green products Policy Sustainable Packaging
Biodiversity Impact Reduction Total Env R&D / Million in Revenue Policy Environmental Supply Chain
Estimated CO2 Equivalents Emission Total Environmental R&D Expenditures Resource Reduction Targets
CO2 estimation method Noise Reduction Targets Water Efficiency
Total CO2 Emissions / Million in Revenue $ Fleet Fuel Consumption Targets Energy Efficiency
CO2 Equivalent Emissions Total Hybrid Vehicles Environment Management Team
CO2 Equivalent Emissions Direct, Scope 1 Fleet CO2 Emissions Environment Management Training
CO2 Equivalent Emissions Indirect, Scope 2 Environmental Assets Under Mgt Environmental Materials Sourcing
CO2 Equivalent Emissions Indirect, Scope 3 ESG Assets Under Management Toxic Chemicals Reduction
Carbon Offsets/Credits Equator Principles Total Energy Use / Million in Revenue $
Emissions Trading Equator Principles or Env Project Financing Energy Use Total
Cement CO2 Equivalents Emission Environmental Project Financing Energy Purchased Direct
Climate Change Commercial Risks Opportunities Nuclear Energy Produced Direct
Flaring Gases To Revenues USD in million Nuclear Production Indirect Energy Use
Flaring Gases Labeled Wood Percentage Electricity Purchased
Ozone-Depleting Substances Labeled Wood Electricity Produced
NOx and SOx Emissions Reduction Organic Products Initiatives Grid Loss Percentage
NOx Emissions To Revenues USD in million Product Impact Minimization Renewable Energy Use Ratio
NOx Emissions Take-back and Recycling Initiatives Renewable Energy Supply
SOx Emissions To Revenues USD in million Products Recovered to Recycle Total Renewable Energy
SOx Emissions Product Environmental Responsible Use Renewable Energy Purchased
VOC or Particulate Matter Emissions Reduction GMO Products Renewable Energy Produced
VOC Emissions Reduction Agrochemical Products Renewable Energy Use
Particulate Matter Emissions Reduction Agrochemical 5 % Revenue Cement Energy Use
VOC Emissions To Revenues USD in million Animal Testing Coal produced (Raw Material in Tonnes) Total
VOC Emissions Animal Testing Cosmetics Green Buildings
Total Waste / Million in Revenue $ Animal Testing Reduction Total Water Use / Million in Revenue $
Waste Recycled To Total Waste Renewable/Clean Energy Products Water Withdrawal Total
Total Hazardous Waste / Million in Revenue $ Water Technologies Fresh Water Withdrawal Total
Waste Total Sustainable Building Products Water Recycled
Non-Hazardous Waste Real Estate Sustainability Certifications Environmental Supply Chain Management
Waste Recycled Total Fossil Fuel Divestment Policy Environmental Supply Chain Monitoring
Waste Recycling Ratio Env Supply Chain Partnership Termination
Hazardous Waste Land Environmental Impact Reduction
Waste Reduction Initiatives
e-Waste Reduction
Total Water Pollutant Emissions / Million in Revenue $
Water Discharged
Water Pollutant Emissions
ISO 14000 or EMS
EMS Certified Percent
Environmental Restoration Initiatives
Staff Transportation Impact Reduction
Accidental Spills To Revenues USD in million
Accidental Spills
Environmental Expenditures Investments
Environmental Expenditures
Environmental Provisions
Environmental Investments Initiatives
Self-Reported Environmental Fines
Environmental Partnerships
Internal Carbon Pricing
Internal Carbon Price per Tonne
Policy Nuclear Safety

Table 27: Composition Environmental Pillar
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