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Abstract

In the era of mass customization of products and services the menu choiceboard offerings are

becoming more prevalent across different industries. Consequently, methods for analyzing such

menu-based choices which allow to learn about the customer preferences and produce market

forecasts are gaining more focus among the researchers and practitioners.

In this study, we explore and compare the properties of different Logit Menu-Based Conjoint

modelling configurations employing holdout tasks. The data are gathered utilizing menu tasks

of high complexity to better mimic the real-life menu situations. We consider three underlying

models: decompositional Serial-Cross Effects (SCE), single-model combinatorial Exhaustive Al-

ternatives (EA) and Modular (MOD), a combinatorial approach incorporating cross-price effects

between menu subsections. The price sensitivity is captured assuming product dependency by

Alternative-Specific effects and in a novel application of the Generic effects formulation, which

assumes that price sensitivity is invariant of the menu item. We also vary the main price effect

form to be represented by a linear or a non-linear function. Parameters of applied model ar-

rangements are estimated by the Aggregate Logit, the Hierarchical Bayes and the Hierarchical

Bayes with trimming. We compare the models by means of predictive performance measures

utilizing holdout tasks: Mean Absolute Error (MAE) and hit rate as well as goodness of data fit

and computational time.

The findings are translated into recommendations aiding future researchers and practitioners

in the appropriate modelling choices in analyzing MBC datasets. In general, less complicated

methods seem to work best for analyzing the highly complex menu situations.
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1 Introduction

In recent years, more and more companies began to offer the opportunity to customize products

and services according to unique preferences and needs of their customers. The shift from mass

production economy to one driven by mass customization is largely attributed to the development of

the Internet and other advances in information technology which fundamentally changed the market

conditions (Liechty et al., 2001). Companies’ operations became more flexible, and consumers could

now access information on the competition more easily and compare offers across the whole market

without additional effort. Importantly, customization transformed the role of customers in the

market, who ceased being a passive member, but began to play an active role in co-creating value

(Liechty et al., 2001).

The change in consumers’ decision-making process provided the companies with an unprece-

dented market opportunity, as marketers strongly believe that tailored products are more appealing

to the customers, who are willing to pay extra for this possibility. Mass customization is also

beneficial for the producers’ operations. It allows to eliminate the problem of unloading unwanted

goods at non-optimal prices or introducing a product failure into the market, which in both cases

translates to a low- or no-profit strategy (Cohen and Liechty, 2007). The attractiveness of build-

your-own products comes not only from the possibility to adjust the product prior to the purchase

decision, but also from providing a superior value in comparison to ready off-the-shelf products by

meeting the individual expectations of each consumer (Liechty et al., 2001). For these reasons the

suppliers’ focus shifted from creating optimal preassembled products to identifying the demanded

product features and their levels. Moreover, it became crucial to understand how consumers want to

customize the offer, which customers are interested in such possibility and to recognize the premium

they are willing to pay for it.

In order to make such personalization feasible, companies are designing their products and

services in a modular structure which reflects the customers’ multi-choice decisions made for the

available functionalities or add-on items. The offered portfolio is presented in a menu form show-

casing items, features, components, prices or even delivery options, as well as bundles of products

offered at discount prices when purchased together. Examples of such build-your-own choices can

be found in almost all industries, starting with the food industry where fast-food joints are offering

menus involving choices a la carte of all products, as well as bundles like extra-value meals, from

which the customers can construct their preferred meals. Mass customization is also present in
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telecom, banking and insurance industries offering a range of services that can be adjusted to exact

needs of a business or an individual customer (Orme (2020), Neuerburg et al. (2021), Ben-Akiva

and Gershenfeld (1998)). Many high-technology suppliers, such as automotive and computer man-

ufacturers quickly adapted this modular sales approach as their products comprise of hundreds of

components, which determine their performance and price. Dell was one of the first companies that

implemented such a supply model. Magretta (1998) describe how giving the customers a direct

access to an on-line purchasing choiceboard, detailed information about the different configuration

and possibility of customization became one of the main drivers that led Dell to reinvent the per-

sonal computer commerce and position themselves as a market leader. They also emphasize the

connection towards the brand that customers feel when being involved in the design process of their

product, which positively influences the market share.

The unique aspect of menu-based sales is that the choices made by the consumer are interrelated

and made at the same occasion. Wind and Mahajan (1997) are the first to recognize the importance

of analyzing products and services as a bundle of features rather then a set of independent char-

acteristics. They emphasize the need for research methods that would not only aid the design of

customized products, but also provide guidelines for improving the preassembled products offered

to consumers not willing to pay the premium for a tailored product.

Conjoint analysis is a multi-attribute utility-measurement approach popular in marketing re-

search first applied by Green and Rao (1971). It works on the assumption that humans make

decisions by evaluating the overall desirability of a complex product or service, regarded as a func-

tion of the values of the product characteristics. Through experimentally designed questionnaires

the respondents are asked to evaluate different product profiles consisting of multiple conjoined at-

tributes. This decompositional preference technique allows researchers to investigate the trade-offs

between different levels of product features and estimate people’s preferences for these characteris-

tics. According to Orme (2020), the most popular conjoint method to date is Choice-Based Conjoint

(CBC), highly regarded by practitioners as it closely mimics buyer decision process in competitive

contexts. Respondents choose out of a set of products that vary in features and their levels sim-

ulating different market conditions. The main advantage of such set up is revealing preferences

and price sensitivities while taking into account the intangible forces in the market. However, it

comes short with insights and reliable forecasts in the context of customizable products and ser-

vices. Menu-Based Conjoint (MBC) is an extension of CBC, with a purpose of simulating the

build-your-own purchase decision through multiple selection experiments. The choice alternatives
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are not mutually exclusive and lead to multivariate outcomes. Moreover, MBC incorporates the

idea of bundling products at a discount price when purchased together which is a popular strategy

that enables the supplier to increase the probability of more products being chosen, thus boosting

their profit. Bakken and Bond (2004) recognize the benefits from the consumers perspective as well,

for whom introducing bundles reduces the cognitive burden of making complicated choices.

As mass customization progresses, and the possibilities of personalizing purchased products

and services become more complex, there is an increasing interest in designing and analyzing the

MBC questionnaires. The modeling approaches proposed by Ben-Akiva and Gershenfeld (1998) and

Liechty et al. (2001) became the cornerstone of the methodology. Followed by Cohen and Liechty

(2007), who presents a comparative study of three different approaches to menu-choice modeling.

Neuerburg et al. (2021) emphasize the research gap in the properties of various modeling approaches,

such as the model behaviour and predictive performance under different study and data settings,

and suggest that increasing number of practitioner-based studies, for instance Orme (2011), Orme

(2020), Cordella et al. (2012), Dippold-Tausendpfund and Neuerburg (2018), stresses the need for

academic guidance in the model selection process. One of the reasons hindering academic research

is the high cost of data acquisition through questionnaires designed specifically for MBC studies.

In this study we aim to quantitatively explore the properties of Logit-based methods used for

MBC analysis that are most applied in the market research practice. By varying aspects of the

applied MBC modelling techniques we seek to identify how different configurations influence not

only the predictive performance of considered approaches, but also goodness of fit to the data or

parameter estimation time. The comparative study is performed on a high complexity menu, which

accurately represents real-life menu situations present in the market. We consider three underlying

models and test different parameter formulations, which are investigated for the linear and non-

linear functional forms of the price effect. Moreover, the parameter estimation is performed by three

techniques. Applying different performance measures allows to produce guidelines for the model

selection process in a wider context, not limited only to forecasting accuracy. We formulate our

insights as advantages and disadvantages of the modeling approaches to aid future researchers and

practitioners in composing the most appropriate approach according to the aim of their analysis

and chosen performance indicators.

The paper proceeds as follows. In Section 2 we discuss the relevant literature. Section 3

introduces and characterizes a menu-based dataset gathered for the purpose of this study. Section 4

outlines the applied methodology and performance measures. Section 5 includes a discussion of the
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obtained results. Finally, the recommendations and suggestions for future research are presented in

Section 6.
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2 Literature

The emergence of conjoint theory in marketing literature can be attributed to Green and Rao

(1971), who utilized the conjoint measurement, a way of capturing the joint effects of two or more

variables proposed by mathematical psychologists Luce and Tukey (1964), in quantifying complex

purchase decisions and estimating preferences based on rank-ordered data. The method had been

quickly rising in popularity among researchers, especially after the conditional logit for analyzing

discrete choice behavior (McFadden, 1973) was introduced. Conceptualizing the choice analysis led

to fundamental changes in conjoint studies - instead of using full-factorial designs where respon-

dents ranked concepts according to their preferences, the industry transitioned to questionnaires

presenting a set of products out of which respondents pick the one they would purchase. This ap-

proach was established as CBC, which introduced competitive context and allowed to incorporate a

’None’ alternative, thus more closely mimicking the purchase process. The results were analyzed at

the population level without considering individual preferences until the 1990s, when Hierarchical

Bayes (HB) estimation permitted analysis on both the group- and individual-level.

MBC was introduced as an extension of the CBC methodology to empower reliable analysis of

customized products. From researchers’ perspective the menu-choice presents serious challenges.

Firstly, the number of outcomes drastically increases with the number of options in each task (Ka-

makura and Kwak, 2020). Secondly, the model should incorporate bundles of products offered at a

discount price. Finally, the interrelated nature of demand for individual items due to substitutabil-

ity or complementarity and the income effect has to be addressed. Ben-Akiva and Gershenfeld

(1998) are the first to conceptualize an analytical approach for multi-choice experiments in a mar-

keting application, emphasizing the need for a more realistic framing of choice tasks in order to

minimize different types of response biases. They propose a two-level nested logit where they treat

each choice alternative as a combination of selected items, resulting in 2J possible outcomes for a

menu with J items - approach later named as the Exhaustive Alternatives (EA) (Orme, 2011). The

underlying assumption is that the respondent makes a trade-off between combinations considering

all possible outcomes of the menu situation. In the upper level they obtain probability of a buy or

no-buy decision, whereas the lower level represents the conditional probability of a particular feature

combination, given a decision to buy. Ben-Akiva and Gershenfeld (1998) show that the specification

is appropriate to menus including both a la carte products and bundles with a discount price.

Liechty et al. (2001) propose an alternative method employing a Bayesian approach with multi-
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variate Probit (MVP) model, where the probability of choice is a function of intrinsic attractiveness,

feature-specific effects and cross-effects of other features’ characteristics. An advantage of the MVP

specification is that it is more theoretically complete, as it allows to model correlations capturing

cross-dependencies across the menu items. The model uses random effects formulation to accommo-

date customer heterogeneity in feature attractiveness and allows for real-world constraints in menu

choices. Moreover, they include the first comparative study of underlying MBC methods. Building

on the utility specification of Ben-Akiva and Gershenfeld (1998) they formulate a random-effects

multinomial probit (MNP) model and test the predictive performance of MNP and two versions

of MVP – with and without correlations between feature-specific utilities. The obtained empirical

results suggest that MVP is the superior method quadrupling the hit rate of MNP and including the

correlation structure slightly improves the predictive performance. However, a serious drawback of

this study is low complexity of the menu task, which includes only six features rendering 64 potential

outcomes, a number further reduced to only 20 portfolios after imposing menu constraints.

Cohen and Liechty (2007) discuss the results of the same study in a less technical manner,

additionally describing a method that translates the menu-choice into a series of binary models

that address a choice of each item separately. However, they do not analyze this technique arguing

that the model would yield biased estimates, as it does not incorporate the interdependent nature

of multiple choices. Nevertheless, Orme (2011) proposes a Serial Cross-Effects (SCE) model, an

extension of the idea of Cohen and Liechty (2007), by interconnecting binary models via the cross-

effects terms. The simplicity of this model translates into its high flexibility. It has an ability to

tackle situations with more than just two mutually exclusive outcomes but first and foremost it

can be used to break down very complex models and simplify their estimation. On the other hand,

Orme (2011) emphasize that when applying this approach building many separate models can be

inconvenient and prone to errors. Pruning the model of any non-significant effects or imposing

utility constraints are the recommended solutions. Another disadvantage is that the technique

does not formally recognize combinatorial outcomes, which can be detrimental to individual-level

predictions.

In the same publication Orme (2011) carry out a comparative study on the predictive ability

of three models: EA, SCE and a two-stage model (Bakken and Bond, 2004). The last method

assumes that the choice of a la carte items is only made if all bundles are first rejected and is

only appropriate for menu situations with such a prohibition. For each approach, estimation was

performed by Aggregate Logit, Latent Class and HB (with and without covariates). The model fit

6



and predictive power were measured by R-squared and Mean Absolute Error (MAE) using holdout

tasks. Although, all methods performed very well estimation with aggregated logit surprisingly

showed the best results. Orme (2011) found that SCE did slightly worse than EA and two-stage

models. They recognized that this result might be different if the menu choice had no constraints,

because SCE did not incorporate the logical exclusions in menu outcomes. In line with other

research and expectations, incorporating covariates in HB estimation did not significantly improve

the predictive accuracy.

The majority of research around MBC focuses on Logit-based methods, due to their popularity

among practitioners, owing to a very convenient property of having a closed-form expression for its

likelihood. As mentioned above, Liechty et al. (2001) are the first to propose a probit model as an

alternative. Neuerburg (2015) compare the performance of Independent MNL (Cohen and Liechty,

2007), SCE and a multivariate multinomial Probit (MVMNP). The Probit-based method allows to

obtain estimates in a single complex model and thus identify substitutive and complementary effects

through correlations of error terms. To make the comparison comprehensive, they test the models

on multiple synthetic datasets with varying characteristics, like menu complexity, and measure

the predictive performance employing both combinatorial and item hit rate, where the former

represents predictions of choice patterns. The results clearly show the Probit model to be inferior

to Logit-based methods in terms of accuracy and computation time, giving support to the popular

Logit-based techniques. One of the shortcomings of the study is rather low complexity of tested

menu situations, where the most complex case translates to only 60 million possible combinations.

Neuerburg et al. (2021) further extends this research by incorporating an EA model into the analysis

and employing model fit and reservation price recoverability to better characterize the properties of

the models. They discover that the attempt to model menu choices in a single overall model of high

complexity does not improve the quality of predictions. The study also shown that the differences

in hit rates between small (n=100) and large sample sizes (n=500) are rather small, which has

important implications for applicability.

Some researchers’ consider variations of the popular methods. Cordella et al. (2012) aim to

address the main pitfalls of the EA and SCE models by employing a mixed approach named Choice

Set Sampling (CSS) model. Firstly, in order to reduce the choice set of all possible combinatorial

outcomes they implement Importance Sampling of Alternatives. Secondly, they complement the

combinatorial model with binary logit tasks, where the choice of each feature for every respondent

is modeled as a function of its own price effect only. The aim is to identify the potential individual
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price barriers for each feature regardless of other effects. Comparison of the performance of CSS

and SCE provided further evidence, that conceptually simpler methods are superior, as the latter

outperformed the former in all holdout tasks. Cordella et al. (2012) also pointed out that this

conclusion is further supported both by the computational power and the time needed to construct

the CSS.

Pfaff (2021) analyze three different models, with variations, aiming to identify the best predictive

model using two datasets gathered using different menu designs. The simple design allows choice

between individual items as well as bundles including some of them. The menu vs a la carte

design incorporates a base product which can be customized by adding either individual items

or predefined bundles. For the analysis, they implement a Probit-based SCE and a Logit-based

EA, each as an aggregate model and random effects model. For the EA, they tackle the issue of

large number of possible outcomes by limiting the number of considered combinations to a subset,

which is constructed in two ways: including only 40 most frequently chosen combinations, and

by utilizing the Stratified Importance Sampling (SIS). For the latter, the outcome space is split

into disjoint strata based on the number of items in a combination, from which a fixed number of

alternatives is drawn with equal probabilities. Additionally, building on the work of Liechty et al.

(2001) on MVP, they propose an aggregate Multivariate Choice (MVC) model in which the latent

utilities of all items are considered separately but are allowed to be correlated, thus capturing the

interdependencies between menu items. In total they compare seven different specifications on two

datasets and find that best predictive performance is obtained for EA with SIS, closely followed

by MVC and aggregate SCE. However, the differences in performance between above models are

marginal and there is not enough evidence to support one of them as superior. Pfaff (2021) discuss

how each of those three methods might be considered the best depending on the aim of the study,

preferred performance measures or underlying behavioural model. They point out that MVC is

more informative then SCE, but only for menus with small number of items and the former is much

more computationally demanding. On the other hand SCE does not account for choice restrictions,

unlike the other two models. Such observations on model characteristics are what we aim to explore

in depth and on a wider scope in this study.

Considering the growing importance and popularity of conjoint methods, especially MBC, it

is important to mention the fundamental publications among the practitioner community. Orme

(2020) and Orme and Chrzan (2017)) provide the guidelines which are the foundations for the

commercial application of conjoint analysis. In a comprehensible read they cover the underlying
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theory, the full scope of different conjoint techniques, questionnaire designs, estimation methods

with their pitfalls and best practices on how to avoid them. Orme (2019) extend this work to

cover in detail MBC analysis. Although, the aim is to guide a researcher from designing the

experiment and preparing the data files all the way to creating a market simulator for predictions

using Sawtooth Software, the manual extensively discusses previous research on the topic as well

as the most important findings. An important contribution is systemizing the distinction between

Generic and Alternative-Specific effects formulations, where the former simplifies the sensitivity to

price changes to be constant among menu items.

From the presented literature two main techniques for MBC emerge: EA which allows to model

menu choices in a combinatorial manner and SCE which deconstructs the extensive choiceboard

tasks into a series of binary models. We found a lot of evidence that more complex modeling

approaches are inferior to these simpler concepts. The same conclusion holds when comparing

Logit- and Probit-based models in most conditions, although the latter offers more theoretical

coverage. As stated previously, MBC is not well analyzed and most of the comparative studies

aim to find one universally superior method for predicting consumer choices (Orme (2011), Pfaff

(2021)). However, recent research on generated synthetic data (Neuerburg et al., 2021) suggests

that each approach has different properties, thus their performance depends on characteristics of

the data, extensiveness of the questionnaire, underlying modeling assumptions, and the purpose

of the study. In this paper, we aim to further explore such properties by varying the underlying

MBC models, parameter formulations, linearity assumption on the functional form of the price

effect and estimation techniques, thus comparing 28 configurations. We focus on investigating

how these arrangements affect various performance measures and translate our observations into

advantages and disadvantages, which can be used as guidelines for constructing MBC models in the

future. We contribute to the literature by incorporating the Modular (MOD) model, an intermediate

case combining the SCE and the EA, into our comparative analysis. Additionally, we use the

Generic effects formulation for the own-price effects in a novel application assuming respondent-

specific product-invariant price sensitivity across all combinations and submodels. Finally, the data

is gathered utilizing a high complexity menu tasks allowing over 590 quintillion possible choice

combinations, as the majority of comparative studies found in the academic literature is based

on much simpler menu situations. This is done not only to more closely mimic menu situations

encountered in the real marketplace but also to make our insights equally useful to academic scholars

and practitioners.
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3 Data

For the analysis we use a dataset gathered in the first quarter of 2022 in the Netherlands uti-

lizing a dedicated experimentally designed Menu-Based Choice questionnaire. The sample includes

respondents aged between 16 and 75 years old. We excluded professionals in fields such as market

research, advertising and most importantly restaurant business, as they could have disproportional

knowledge about the industry, thus not being an accurate representative of the general consumer

population. Lastly, in order to not inflate the choice share of the None alternative, we preclude

from participating people who declared to never visit the restaurant in question.

Each respondent was presented with 12 choice tasks in a form of a restaurant menu, which com-

prised of the same 69 products. We explicitly asked respondents to compose a meal for themselves

and we limited their choices to a single piece per product. We treat a stand-alone product e.g.

Sandwich1, the value meal including this product, MealS1, and enlarged value meal, LargeMealS1,

as three separate products. Analogously, the same foods offered in different sizes are also treated

as different items e.g Drink1 1, Drink1 2 and Drink1 3.

The design includes three price points per product. The second price point is the base value,

determined from the market prices offered by the restaurant in question in 2021. The first and

third price points are calculated as 90% and 110% of the base case, rounded to e0.05 to accurately

mimic the price format of the restaurant. All price points for all menu items have been presented

in Table 7 in the Appendix, with large meals prices presented as additional costs added on top of

to the standard size meal.

The majority of the respondents are presented with 9 random tasks and 3 holdout tasks: the

first with all products offered at minimum price, second at base price and third at the maximum.

Only the data from the 9 random tasks is used for the estimation. Every fifth respondent was

assigned to the holdout sample, in which each respondent filled 12 fixed tasks. This out-of-sample

data is used to obtain the out-of-sample predictive performance measures of the analysed models.

The raw dataset consists of 2160 respondents who completed all 12 tasks. We clean the in-

sample and holdout data separately employing two rules. Firstly, we flag and discard the speeders

- respondents who perform the conjoint questionnaire in an extraordinary short amount of time,

thus assumed not to pay sufficient attention to the trade-offs between presented attributes (Orme,

2020). As a threshold we take 40% of the median of the time spent on the questionnaire across

all respondents within a sample. Secondly, we discard respondents who did not select any of the

10



products in 75% of the presented tasks. For both samples we clean out approximately 10% of

the respondents and are left with 1937 respondents: 1542 in-sample and 395 out-of-sample. This

translates into 23,244 choice tasks in total.

Product Frequency Choice share Product Frequency Choice share

Saus1 4365 18.78% Dessert6 314 1.35%

Side1 1 2902 12.48% MealSalad2 298 1.28%

Side1 2 2259 9.72% LargeMealS1 295 1.27%

Snack1 2230 9.59% MealSalad1 283 1.22%

Snack2 2190 9.42% LargeMealF1 2 251 1.08%

Drink1 1 1917 8.25% LargeMealS11 231 0.99%

MealS3 1818 7.82% LargeMealS2 231 0.99%

Kids’Meal 1731 7.45% LargeMealS6 193 0.83%

Dessert3 1677 7.21% LargeMealS7 155 0.67%

Sandwich3 1632 7.02% LargeMealS9 153 0.66%

Table 1: Most and least chosen products.

We perform the preliminary investigation of the data employing the Counting Analysis, focusing

on the frequencies of individual product choices, as well as the most commonly constructed combi-

nations. Table 1 presents the most and the least popular items in the menu. In each choice task 2.52

products were chosen on average and all items were chosen by at least 150 respondents. As could

be expected, the majority of the top products are side orders and small products which most likely

are chosen in combination with other items. Although Saus1 was chosen by approximately every

fifth respondent obtaining the highest choice share, it is worth noting that Side1 1 and Side1 2 are

the same product offered in two different sizes - small and medium respectively, which makes Side1

the most popular food choice. The most popular meal option is the MealS3, containing Sandwich3

also present among the top 10, which leads to a conclusion that it is the favorite among larger menu

items. Interestingly, the majority of the least popular products are large value meals indicating

that most of the consumers decide not to enlarge their meal options.

Figure 1 presents the product frequencies aggregated based on subsections of the menu, a sep-

aration used in one of the modelling approaches utilized in our analysis. Sandwiches accumulate

most of the chosen products, however the sum of choices captured by two value meal categories,

Meals1 and Meals2, is still greater suggesting that most of the consumers prefer making use of the

preconfigured rather than composing their meals from individual items. These three subsections are
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also the ones which include the largest number of products per category, as can be seen in Table 10

in the Appendix. As anticipated, the category with the lowest choice frequency is the Kids’Meal,

which seems logical because the surveyed respondents were all above 16 years old and because this

subsection includes only a single menu item.

Figure 1: Choice frequencies aggregated by menu subsections.

Subsequently, we investigate the combinations of products chosen in individual tasks. We focus

on analyzing the counts of the 50 most popular out of 6,735 different combinations configured by

the respondents. The frequencies for the top ten combinations are presented in Table 2, which

translates to only 15.69% of all choices. Unsurprisingly, the highest choice share is obtained for the

None, a combination in which the respondent did not choose any of the menu items. One of the

explanations could be that this alternative is usually chosen when the cost of the preferred meal of

the respondent exceeds the amount they are willing to spend. Additionally, Orme and Chrzan (2017)

suggest that the frequency of None choices is positively affected by the task difficulty, which in our

case translates to menu complexity. The remaining nine combinations include only a single menu

item, which suggests that the majority of respondents is satisfied with ordering a single menu item.

The MealS3 combination is the second most popular, with the other two configurations containing

Sandwich3 -based products also present among the most popular choices. It is also interesting to look

into multi-product combinations. Among the 50 most chosen combinations only three contained

more than one product, with the leading configuration positioned only at the 25th place. Table 3
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showcases, that two of these combinations include a value meal complimented with a side Saus1.

The remaining composition comprises of two smaller products, which might be an approach taken

by some consumers that omit purchasing value meals, but are still unfulfilled with selecting just a

single item.

Combination Frequency Choice share

None 999 4.30%

MealS3 518 2.23%

MealS4 346 1.49%

Kids’Meal 330 1.42%

LargeMealS3 293 1.26%

Sandwich3 246 1.06%

MealS8 244 1.05%

Snack4 232 1.00%

Snack2 223 0.96%

Snack1 216 0.93%

Table 2: Top ten most chosen product combi-
nations.

Combination Frequency Choice share

MealS3 Saus1 102 0.44%

Snack2 Snack3 72 0.31%

MealS4 Saus1 53 0.23%

Table 3: Multi-product combinations present
among the 50 most chosen.

Figure 2: Frequency of number of products
chosen per task

Figure 3: Frequency of the amount in e
spent per task

Besides the choice frequencies, we analyze other information contained in the data. Firstly, we

observe the number of products chosen in each task, presented in Figure 2. as mentioned before, on

average 2.52 products were picked per task. The minimum number of items selected in a single task

was zero and the maximum was 38 menu items. In line with the above results, single item choices
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were the most popular. The majority of respondents chose up to 5 products per task. The choices

above nine items seem unrealistic as we explicitly asked the respondents to compose a meal only

for themselves, however they only total to 1.38% of all tasks. Secondly, we use a similar approach

to investigate the amount of money spent in each task, visualized in Figure 3. The average meal

cost was e11.12. The minimum spending was e0 and the maximum was e140, which again is a

quite unrealistic. However, it can be seen that the majority of respondents aimed to spend around

e10 per meal, with orders worth approximately e8 being the most popular.

In the subsequent section we discuss methods used to model the in-sample choice data, as well

as the simulation process allowing us to make predictions about the product choice shares and

the individual choices of respondents. The holdout sample will be used to validate the predictive

performance of these approaches.
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4 Methodology

This chapter considers the methods utilized to analyze the gathered data and is separated into

four subsections. Firstly, in Section 4.1 we introduce the multinomial logit (MNL), which is the

cornerstone of all presented modelling approaches. Secondly, in Section 4.2 we discuss the analyzed

models for conceptualizing MBC situations. Next, Section 4.3 presents two estimation methods: the

Aggregated Logit and the Hierarchical Bayes. The final Section 4.4 showcases different performance

measurements, used to obtain the predictive performance and to uncover the properties of different

techniques.

4.1 Multinomial Logit

Conjoint analysis is a method exploring tradeoffs in the decision behavior and thus needs an

appropriate statistical model able to capture these effects. Consider a choice situation, where an

individual assigns a latent utility uik to category k based on perceived properties of Xi, a 1×(P +1)

matrix of the intercept and explanatory variables measuring the observed difference of attributes

between category k and a base category (in conjoint task usually none alternative). Moreover, we

assume that this latent utility is formulated as a function of Xi and is linear in parameters:

uik = αk + βk1xi1 + . . .+ βkPxiP + εik. (1)

We define the discrete choice yi as a random variable Yi, which can take K discrete values and

assume the multivariate Bernoulli distribution, which implies the choice probability of category k

as P[Yi = k] = πk, k = 1, . . . ,K, with π1 + π2 + . . .+ πK = 1 (Franses and Paap, 2001).

Assuming that the error terms of latent utilities εik are identically independently distributed

and follow an extreme value distribution allows us to utilize the Multinomial Logit model, first

proposed by McFadden (1973):

P(Yi = k | Xi) =
exp(uik)∑K
l=1 exp(uil)

. (2)

As the category probabilities have to sum to 1, a base category needs to be assigned by restricting

its parameters to zero for identification purposes. The choice for the base category does not change

the effect of explanatory variables on choice, however typically βK = 0 (Franses and Paap, 2001).

For K = 2 the model reduces to a binomial Logit.
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4.2 Models

In this section we introduce three main underlying modelling approaches based on the Multi-

nomial Logit theorem. We separately discuss each of the techniques in detail and describe how we

formulate their different variations.

4.2.1 Serial-Cross Effects

The SCE approach converts the menu situation into a series of binary choice models, which pre-

dict the likelihood of different products being selected or not. To account for the inter-dependencies

between menu items, the separate models are interconnected through the cross-effect terms. We

construct a Binomial Logit model for each menu choice, which is made by the consumer when the

difference between the preference for the considered product and the base case is positive, thus the

dependent variable yitj depends on the continuous latent utility. This rule is quantified by

Yitj =


1, if uitj > 0

0, if uitj ≤ 0,

(3)

where Yitj denotes the decision of respondent i = 1, . . . , N , in menu task t = 1, . . . , T , to select item

j = 1, . . . , J . Following from (2), the probability of such choice is modeled by

P(Yitj = 1) =
exp(uitj)

1 + exp(uitj)
. (4)

For the SCE model the latent utility, uitj , is based on the intrinsic desirability, price of the prod-

uct, Pitj , as well as prices of different products in the menu, Pitl. We consider utility specifications

which differ on the linearity assumption, thus formulation of the own-effects.

Under linearity, we have the Alternative-Specific effects, which follow from the belief that re-

spondents price sensitivity changes from one product to another:

uitj = αij + βijPitj +

J∑
l=2

βiljPitl + εitj . (5)

Individual inherent attraction is denoted by αij , βij is the individual sensitivity to the price of

product j and βilj represents the individual cross-price effect of product l on product j. The

Gumbel distributed error term is denoted by εitj .
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We also consider a non-linear (part-worth) functional form for the own-price effect, which may

arise due to respondents having some psychological thresholds not complying to linear effects of

price (Orme, 2019). If this is true, the linear formulation may smooth away important insights or

hinder the accuracy. The aim is to independently estimate the utility at each discrete price point

using W − 1 effects for a W -level independent variable. In this case the reference level is set to the

first level of the attribute. For w = 1, . . . ,W price points we have Alternative-Specific effects:

uitj = αij +
W∑
w=1

βijwPitjI[Pitj = w] +
J∑

l=2

βiljPitl + εitj , (6)

where I is an indicator function which takes value of 1 when considered price takes the value

corresponding to the w price point.

When applying the SCE approach a crucial step is to prune the model. Applying (5) or (6)

in their full specification, although theoretically complete, would incorporate J − 1 cross-effects,

which could lead to potential overfitting as well as an enormous number of parameters to estimate,

especially for very complex MBC tasks. Additionally, inclusion of insignificant variables, which

usually constitute to 75% of all cross-effects, is often detrimental to predictive ability of new scenarios

(Orme, 2019). Different variable selection methods were studied by Dippold-Tausendpfund and

Neuerburg (2018), who found that χ2-test performs well under different data scenarios, better than

more advanced methods they considered. Under null hyphotesis we test if two variables, a dependent

choice variable and a explanatory price variable, are independent. The significance level is chosen

at 5%, thus all independent variables with a corresponding p-value larger then this threshold can

be discarded from the model. Otherwise, we have statistical evidence supporting the significance of

the given cross-effect.

4.2.2 Exhaustive Alternatives

The EA approach allows to analyze the menu situation in a single model by assuming that

the respondent considers all possible ways that this choice task can be completed and selects the

one corresponding to the highest latent utility. In this context, the discrete choice alternatives

are different combinations of menu items with an associated total price. Thus, for a menu task

with J items there are 2J possible configurations of the products. The biggest advantage of the

EA approach is that it formally recognizes and predicts combinatorial outcomes from menu tasks,

making it a more complete model of consumer choices.
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For this model we have a categorical response variable Yit, which denotes the configuration of

menu items chosen by respondent i = 1, . . . , N , in menu task t = 1, . . . , T . Yit can take any value

k corresponding to the combination ck from the set of possible item combinations C = c1, . . . , cK

where K = 2J . The choice probability stems from (2), resulting in

P(Yit = k) =
exp(uitk)∑K
l=1 exp(uitl)

, (7)

where the restricted base case is the combination including none of the menu items (’None’ alter-

native). In order to obtain the probability of item j being chosen in task t, the probability shares

across the combinations including product j need to be summed.

P(Yitj = 1) =

K∑
k=1

P(Yit = k)I
[
j ∈ ck

]
, (8)

where the indicator function I takes the value of 1 only for combinations containing product j.

For the EA model, the utility uitk is modeled by the intrinsic attractiveness of combination ck,

αik, and prices of items included in the combination, Pitj where j ∈ ck. We consider different utility

specifications, varying them on the linearity assumption and parametrization of the own-price effect.

For the linear case, the utility for a particular combination of menu items under Alternative-

Specific effects takes the form

uitk = αik +
∑
j∈ck

βijPitj + εitk. (9)

Here, price sensitivity differs between the products and is denoted by βij and the error term following

the extreme value distribution by εitk.

Analogously as for the SCE, we also allow for a non-linear functional form, which for the

Alternative-Specific effects case with w = 1, . . . ,W price points is denoted by

uitk = αik +
∑
j∈ck

W∑
w=1

βijwPitjI[Pitj = w] + εitk. (10)

The second parameter form is the Generic effects, where we generalize (9) assuming that the

sensitivity to price changes is unrelated to the product: βij = βi (Orme, 2019). In order to capture

this effect across all combinations and prevent the number of estimated parameters from exploding

(especially for the non-linear case and the MOD approach) we employ piecewise price coding (Orme

and Chrzan, 2017). This approach allows to approximate non-linear function by a flexible function
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consisting of linear segments, which are defined based on intervals predetermined by the researcher.

Firstly, the continuous price variable is recoded to S variables, which is the number of slopes utilized

in the function. This is denoted by

Pitjs =


0, if Pitj ≤ zs

1− zs+1−Pitj

zs+1−zs
, if zs < Pitj ≤ zs+1,

1, if Pitj > zs+1,

(11)

where s = 1, . . . , S stands for the particular slope variable with its interval limited by cut points

zs and zs+1. For the first and last variable the smallest and largest cut points respectively are also

end points for the function. The choice of the exact number and value of the cut points is arbitrary,

thus quite challenging. However, ideally they should capture the consumers’ psychological price

thresholds and other points for which there is a significant change in the preference slope. It

is important to keep in mind to include enough price points in each interval to ensure that the

estimation of all parameters is feasible. Also, the cut points should not overlap and they should not

be defined to close to one another.

For our linear version of Generic effects we do not define any cut points which translates to

recoding all independent price variables into a single variable, S = 1. To approximate the non-

linear case well we decide to incorporate S = 24 segments into our piecewise function. The utility

function for both cases is denoted by

uitk = αik +
S∑

s=1

βis
∑
j∈ck

Pitjs + εitk, (12)

where βis is the individual product-invariant price sensitivity in price segment s.

As suggested by Orme (2011), the EA approach works well in practice when the number of

possible ways in which the respondents can complete the menu task is relatively small – up to

36 combinations (Orme, 2019). This conclusion is also coherent from the theoretical perspective,

as it would be unreasonable to assume that the respondent can accurately consider hundreds of

possibilities giving equal attention to each choice. For a large number of possible outcomes the

model can become sparse at the individual level, leading to overfitting. To resolve this issue, we

restrict subset C to include only most chosen combinations of the products based on the preliminary

Counting Analysis. The threshold separating combinations included and excluded from the model
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is defined based on the cumulative distribution of the information held among all combinations.

The aim is to obtain a balance between model complexity and the percentage of all choices made

represented by included combinations. In order to reduce the size of the problem, Orme (2011)

postulates to discard from the model all combinations which were never chosen by respondents as

a preliminary step. This is equivalent to assuming that these have a likelihood of choice equal to

zero. The inability to model all possibilities combined with lack of clear guidelines for selecting the

most appropriate subset C is one of the biggest disadvantages of the EA approach.

4.2.3 Modular

Finally, we employ the Modular (MOD) model approach, where we combine the SCE and the

EA models. We divide the menu task into separate smaller EA models in which we consider

combinations of items within a specified subsection, however in order to address inter-dependencies

of the menu choices we also include cross-effects in the latent utility estimation. Although this

approach is not theoretically as complete as the EA, it offers a compromise between disintegration

into binary models and a single model, resolving the concern of model becoming overly complex

and the risk of overfitting.

We collapse binary outcomes for every product into M dependent variables representing all

feasible combinations of items in each menu subsection. Following from (7), we obtain m = 1, . . . ,M

MNL submodels with Cm = cm1, . . . , cmK feasible combinations in each module.

The latent utility for respondent i = 1, . . . , N is modeled by the inherent desirability of com-

bination cmk, represented by αimk, prices of items included in the considered combination Pitj for

j ∈ cmk and prices of products belonging to other modules Pitl for l ∈ cm′k, m
′ ̸= m.

Firstly, under assumption of linearity we consider the Alternative-Specific effects for both the

price effects within the module, as well as for the cross-price effects.

uitmk = αimk +
∑

j∈cmk

βijPitj +

J/j∈cmk∑
l=1

βilkPitl + εitmk, (13)

where βij is the price sensitivity of product j belonging to the considered module m, βilk is the cross-

price effect of product l belonging to subsectionm′ ̸= m on combination cmk and εitmk represents the

error term. For the part-worth approach we adjust the own-price effect in the utility specification

analogously to (6) and (10).

Secondly, for the Generic effects case we utilize the piecewise price function similarly as for
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the EA. The price of the considered combination is recoded into S variables, however we keep the

cross-price effects of products from different modules in the Alternative-Specific form:

uitmk = αimk +
S∑

s=1

βis
∑

j∈cmk

Pitjs +

J/j∈cmk∑
l=1

βilkPitl + εitmk, (14)

where βis is the individual product-invariant price sensitivity in price segment s, and βilk is the

cross-price effect of product l belonging to subsection m′ ̸= m on combination cmk. For the linear

case S = 1 and under non-linear assumption we employ S = 24 price intervals.

Similarly to SCE the models need to be pruned of all the insignificant cross-effects to avoid the

risk of overfitting.

The separation of the menu items into smaller subsections is performed as suggested by Orme

(2019). We separate the items based on logical sections of the menu task. An example of this

would be dividing a fast food restaurant menu task into segments including sandwiches, side dishes,

desserts, drinks and value meals. We represent each of these modules by a single EA submodel.

4.3 Estimation methods

For every model specification presented in Section 4.2 we obtain the estimates of the model

parameters by employing each estimation method presented in this chapter.

4.3.1 Aggregated Logit

The first estimation method, the Aggregated Logit, aims to obtain a vector of pooled utilities

that yields the best fit to the data. The technique treats all responses across tasks and individuals

as homogeneous - as if coming from a single respondent. In the context of conjoint analysis, the

method has proven robust and flexible and allows for results which deliver excellent population-level

predictions. However, due to heterogeneity typically present among respondents it provides low fit

to the data, with McFadden’s ρ2 ≤ 0.25 (Orme and Chrzan, 2017). In practice, the estimation of

model parameters with the Aggregated Logit takes substantially less time than with the HB and

delivers statistical tests for model pruning and selecting the most appropriate functional form of

independent variables. For this reasons, a common practice is to estimate the Aggregated Logit to

specify the most appropriate model before obtaining the results on individual-level with HB.

Model parameters are estimated utilizing the Maximum Likelihood (MLE) method. For our
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models we have the likelihood function

L(β | X, y) =
N∏
i=1

T∏
t=1

K∏
k=1

P(Yit = k | Xit)
I[yit=k], (15)

where β represents model parameters. The logarithm of the likelihood function is

l(β | X, y) =
N∑
i=1

T∑
i=t

K∑
k=1

I[yit = k] log P(Yit = k | Xit). (16)

For the SCE model (15) takes the f The MLE is the parameter value β̂ corresponding to the

maximum of the log-likelihood function over the parameter space, which can be obtained by solving

the first-order derivative. However, because the log-likelihood function is nonlinear this solution

cannot be obtained analytically (Franses and Paap, 2001).

We employ the Newton-Raphson optimization algorithm, a gradient search procedure which

iteratively seeks the first-order condition for a maximum. We obtain the estimates by iterating over

βh = βh−1 −H(βh−1)
−1G(βh−1), (17)

where h is the current iteration, G(β) is the gradient (first-order derivative of the log-likelihood

function) and H(β) is the Hessian matrix (the second-order derivative if the log-likelihood function).

Because the log-likelihood is globally concave, the algorithm will converge to the global optimum

for any starting values. We set initial β = 0. The obtained estimator β̂ is asymptotically normally

distributed β̂ ∼ N(β, (−H(β̂)−1) (Franses and Paap, 2001). For conjoint studies, the algorithm

usually converges within six iterations.

4.3.2 Hierarchical Bayes

The second estimation technique we consider is the Hierarchical Bayes, which allows to obtain

the estimates at the individual-level, thus capturing heterogeneity in consumer preferences. Unlike

in the classical methods, where we assume a particular model with specified parameters and analyze

the consistency of the data with those assumptions (probability distribution of the data), Bayesian

theorem treats data as given and assumes a certain model which parameters are the unknown

quantity. This approach allows to regard parameters as random variables and assigning them

probability distributions.
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Bayesian estimators utilize the information contained in the data, y, with a prior belief con-

cerning the parameter distribution before seeing the data, π(β). By updating the prior distribution

with the information from the data we obtain the posterior distribution of β:

π(β | X, y) ∝ l(β | X, y) π(β), (18)

where π(·) denotes a prior, π(· | X, y) the posterior density function of parameters and l(·) is

the log-likelihood function given in (16). It is important to note, that both the form and the

hyperparameters of the prior can have a major impact on determining the posterior distribution,

however this influence diminishes as the sample size increases (Greenberg, 2013, p. 17).

For our application, we have a two level model. At the upper level, we assume that i-th respon-

dent’s part-worths, βi, come from a multivariate normal distribution with population parameters,

mean vector γ and covariance matrix D. At the lower level, given respondent’s part-worths, we

obtain the probability of choosing particular alternatives which is assumed to come from a MNL

model. Formally, we have

upper model: βi|γ,D ∼ N(γ,D),

lower model: P(Yit = k | Xi, βi) =
exp(uitk)∑K
l=1 exp(uitl)

.
(19)

The hierarchical structure of the model comes from two stages of priors, where the first-stage

prior, π(β) = π(β|γ,D), is proper and parameterized by second-stage priors, π(γ) and π(D), which

are conjugate for a multivariate normal distribution. The posterior results for the three parameters

are obtained through a simulation algorithm - an iterative process known as Gibbs sampling, sum-

marized in (20). First, given present values of βi and D we draw γ from a multivariate normal with

population parameters. Secondly, given current βi and the updated γ, we draw D from the Inverted

Wishart distribution. Using the updated parameters from previous steps, βi is drawn employing

the Metropolis Hastings algorithm, in which betas are updated in consecutive iterations based on

the previous value, providing better fit to the data until convergence.

1. p(γh+1 | βi,h, Dh) π(γ) ∼ N(β̄, 1
ND)

2. p(Dh+1 | γh+1, βih) π(D) ∼ IW (ν,Λγ)

3. p(βi,h+1 | γh+1, Dh+1) Metropolis Hastings Algorithm,

(20)
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where h represents the iteration, β̄ is the population average, N is the number of respondents, ν =

N+(P +1) are degrees of freedom and Λγ is a positive definite (P +1) dimensional matrix obtained

by incorporating the prior information with the current estimates of γ and βi (Alvarez et al. (2014),

Sawtooth Software (2021)). As suggested by Orme and Chrzan (2017), we choose the following

initial values for the parameters in the Gibbs sampler: βi,0 = 0, γ0 = 0, D0 = IP+1 = diag(1, . . . , 1).

Drawing the part worth utilities for each respondent is done through the Metropolis Hastings

algorithm. We begin with the current estimate of individual’s part worths, β
(m)
i , and generate a

candidate estimate, β∗, by drawing a random vector d from a jumping distribution, in our case a

normal with mean zero and covariance matrix proportional to D. This distribution determines the

size of the random jump from β
(m)
i to β∗ = β(m) + d. This candidate is accepted or rejected with

a certain probability δ depending on whether it improves the estimate, which is determined based

on the ratio of posterior probabilities of two estimates β
(m)
i and β∗, given the current values of α,

D and the data. In case of rejection, the estimate from the previous iteration is used. Rigorously,

the algorithm proceeds as follows:

Step 1. Specify the starting value β
(0)
i = 0 and set m = 0.

Step 2. Simulate β∗
i from:

Set β
(m+1)
i = β∗

i with probability δ.

Set β
(m+1)
i = β

(m)
i with probability 1− δ,

where δ = min

(
f(β∗

i | γ,D)
∏K

k=1 P(Yit = k | Xi, β
∗
i )

f(β
(m)
i | γ,D)

∏K
k=1 P(Yit = k | Xi, β

(m)
i )

, 1

)
,

and f(βi | γ,D) = exp(−1

2
(βi − γ)′D−1(βi − γ)).

Step 3. Set m = m+ 1, and go to step 2.

(21)

γ, D are the current draws from (20), f(βi | γ,D) is the relative density of the distribution of βi

serving as a prior in the Bayesian updating, and the probability of an alternative k is calculated

according to the Logit model in (19) (Gelman et al., 1995). To ensure convergence, we allow

the algorithm to run through m∗ burn-in iterations from which the results are not saved or used.

Afterwards, we assume that the process has converged and we can use the simulated part worths

from subsequent iterations (m ≥ m∗) as a sample from the distribution of βi. Based on these

sampled draws we calculate the posterior mean, β̂i, which is later used to calculate the choice

probability.
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Determining the appropriate burn-in sample size, m∗, is not straightforward as there are no

universal theorems to indicate how large should it be. Usually this value is set to several hundred

or thousands iterations. As suggested by (Greenberg, 2013, p. 107), we opt to investigate the trace,

a plot of the sampled values, and asses if for the iterations around the chosen m∗ show variation

around a central value. If this is the case we assume that the process has converged.

We consider two approaches towards obtaining the draws. Firstly, we simply save the required

number of draws for iterations after convergence. Secondly, following suggestion of Orme (2019)

we employ draws trimming by incorporating a skip factor which allows to compensate for the

consecutive draws of βi not being independent, thus capturing the parameter distribution more

completely. The dependence among draws can be detrimental to the precision of inference performed

on these draws (Sawtooth Software, 2021). For a skip factor of q we save and use only the draws

from every q-th iteration.

4.4 Performance Measures

After obtaining the parameter estimates we transform them into predictions by inserting ob-

tained β̂i (β̂i = β̂ for the Aggregated Logit) into (2), thus calculating the choice probability of

each combination. Because we aim to produce the predictions on menu item level we transform the

combinatorial predictions into product choice probabilities by summing the forecasted shares across

the combinations containing the product in question, as showcased in (8). For the binary models we

input the estimated parameters into (4), thus directly obtaining the probabilities on the item level.

We denote the probability of product j being chosen in task t by respondent i by ŷitj = P( ˆYitj = 1).

To asses the predictive validity of different models we employ two most popular measures used

for conjoint methods: Mean Absolute Error (MAE) for out-of-sample predictions and the hit rate

for in-sample validity.

4.4.1 Mean Absolute Error

The MAE allows to compare the ability of a particular model to reproduce the observed choice

shares on an aggregate level. The measure is calculated as a arithmetic average of absolute errors:

MAE =

∑N
i=1

∑T
t=1

∑J
j=1 |ŷitj − yitj |

N × T × J
, (22)
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where ŷitj is the predicted choice probability and yitj is the observed choice share. The main

advantage of the MAE is that it weights all of the errors on an equal scale, which means that the

outliers will not be additionally penalized. Thus, it allows to evenly measure the model’s predictive

performance. We aim to minimize the MAE, as it indicates higher predictive validity on an aggregate

level.

We approach the MAE results in three ways. Besides reporting the overall model score we

also obtain the metric for subsections of the menu items. Firstly, based on the Counting Analysis

we divide the products into three groups based on their frequency of choice. The first group will

contain the most often chosen items (a third of all items) and the third group will contain the rarest

choices. We aim to explore if there are differences between the models’ performances depending on

the frequency buckets. Secondly, we apply the same separation of the menu into modules as we use

for the MOD approach and obtain the MAE for each individual subsection. Such decomposition

might provide additional insights into the behaviour of different configurations depending on the

characteristics of menu items.

4.4.2 Hit rate

The hit rate is a measure of the predictive ability of conjoint methods to predict individual

responses to holdout tasks. To prevent determining a hard threshold for defining and recording

hits, we average the predicted choice shares for products chosen in the holdout tasks:

H =

∑N
i=1

∑Th
t=1

∑J
j=1 I[Yitj = 1]ŷitj

N × Th × J I[Yitj = 1]
× 100, H ∈ [0; 100], (23)

where Th denotes the holdout tasks and ŷitj is the obtained choice probability. This specification

allows to better capture the accuracy of the model without being influenced by arbitrary cut-off

values chosen by the researcher.

High value of the hit rate indicates high predictive validity. We consider the overall individ-

ual level hit rate calculated based on the item choices (Neuerburg et al. (2021), Orme (2020)),

followed by a hit rate obtained only based on tasks where more than five products were selected

simultaneously. This will allow to explore possible differences in predictive power between choices

incorporating less products which make up the majority of cases, as presented in Figure 2, and

purchases including many items.
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4.4.3 Average number of products estimated

Comparing the average number of menu items that the models predict to be chosen in every task

allows to reveal if the technique over- or underestimates the results. To obtain this value we simply

aggregate the predicted individual choice shares for all products in a single task. Subsequently,

these scores are averaged across all respondents and holdout tasks. This is denoted by:

ANP =

∑N
i=1

∑Th
t=1

∑J
j=1 ŷitj

N × Th × J
. (24)

If the reported value is higher than the average number of products per tasks calculated from

the data we conclude that the model overestimates. If this value is lower we are dealing with

underestimation.

4.4.4 Estimation time

An important aspect of investigating the advantages and disadvantages of different methods is

to compare the average computational time. It is important to note that the estimation time may

vary between the computational units.

4.4.5 Data fit

We also compare the different models by analyzing the goodness of fit to the data. We employ

McFadden’s ρ2, also called Percent Certainty, which is a pseudo R-squared measure. It captures

how much better the solution is than for the null log-likelihood expected by chance, in comparison

to a perfect solution with the log-likelihood equal to zero. The null corresponds to an uninformative

vector of zero utilities. Percent Certainty is calculated by the equation

ρ2 =
l(β̂ | X, y)− l(βNULL | X, y)

−l(βNULL | X, y)
. (25)

An advantage of McFadden’s ρ2 is its straightforward interpretation which does not depend

on the number of alternatives in a choice task, as opposed to root likelihood (RLH), a popular

alternative for measuring fit to the data (Orme and Chrzan, 2017).
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5 Results

We estimate and compare the performance of 28 models utilizing three variants of the Sawtooth

Software. For the Alternative-Specific effects models we employ Sawtooth Software Menu-Based

Choice software version 1.1.1. Because our formulation of the Generic effects is a novel approach it is

not supported by the existing MBC solution, thus we utilize the Sawtooth Software CBC/HB System

version 5.5.5 for the HB estimations and the Sawtooth Software Latent Class Module version 4.7.0

for the Aggregated Logits. For the HB estimations we use 20000 burn-in iterations, as suggested

for MBC models by Orme (2019), and 200 draws saved after convergence. Thus, we perform 20200

iterations for the HB without the skip factor and 40000 for the estimations including the skip factor

which is set to 100. The estimations are performed using hardware utilizing a Intel Core i5-4440

3.10GHz processor with four cores and 16GB RAM.

For every model investigated, the utility estimation is followed by construction of a market

simulator, which allows to calculate the product choice share conditional on the menu item prices,

as described in Section 4.4. We obtain product choice share predictions for the out-of-sample data,

as well as the individual choice predictions for the in-sample holdout tasks.

5.1 Model implementation

Serial-Cross Effects

For the SCE approach we consider a linear and non-linear version, each estimated with three

different estimation methods which translates to six models in total. We implement the approach by

specifying 69 binary models, one for every menu item. As described in Section 4.2.1, for each product

choice we investigate which of the 68 cross-price effects are significant and should be included in

the model by performing the χ2-test at 5% significance level. On average 12 variables are found to

be significant, with the most extensive model for Side1 2 including 24 and the most pruned having

only 5 cross-prices affect the choice of LargeMealS1.

Exhaustive Alternatives

We implement the EA approach with two different effects formulations, Alternative-Specific and

Generic, both under the assumption of linearity and non-linearity estimated with three methods.

Thus, we obtain 12 different configurations for this method.

The preliminary investigation of the data, detailed in Section 3, uncovers there are 6,735 observed
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combinatorial choices across our sample, out of 269 (≃ 590 quintillion) possible combinations. In

order to identify the combinations to be included in the modelling, we plot the cumulative sum of

choice information captured by combinations ordered from most to least frequent, which is presented

in Figure 4. Looking at the distribution, the point where the plot begins to flatten, corresponding

to 55% of the cumulative sum, would be the preferred cut-off for the combinations to be included

under the criterion of retaining information. However, by selecting this level we would obtain a

model of unreasonably high complexity including 422 combinations, which exceeds the suggested

number of combinations by more than a tenfold (Orme, 2019). We opt to include 128 combinations

translating to 42% of the information being captured by the model, which is visualized in Figure

4 by a vertical line. This cut-off value seems to provide much better balance between the model

complexity and encapsulated information. The included combinations comprise of the None, 68

individual product choices, with Drink2 2 being the only product excluded, 42 choices including

two menu items, 11 including three items and six four-product combinations.

Figure 4: Cumulative distribution of information captured by combinations present in the data.
The horizontal line marks the chosen cut-off value.

For the Generic effects formulation we perform an additional step where we recode all the inde-

pendent price variables utilizing piecewise coding in order to capture the price sensitivity invariant

of the products within a particular combination. Under linearity no cut points are included, thus

we obtain one slope with end points at 0 and 10.55, the latter being the highest value among the

products’ price points. For the combinations including multiple items we aggregate the recoded
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product prices. For the non-linear case we have 24 slopes with the same end points and 22 cut

points presented in Table 9 in the Appendix. Such specification allows to capture the utility by a

flexible function without inflating the number of parameters and to avoid overfitting for price points

with low occurrence.

Modular

Analogously to the EA, we consider the MOD models with Alternative-Specific and Generic

effects, in a linear and non-linear version. The Alternative-Specific models are estimated with three

methods, where each module is estimated separately. Due to practical limitations we estimate the

Generic formulations only with the Aggregated Logit and HB without the skip factor.

Menu

subsection

Number of

combinations

Cumulative sum of

information captured

Average number of

cross-price effects

Snacks 4 97% 15.3

Fingerfood 6 98% 10.3

Sandwiches 13 95% 9.6

Meals1 13 96% 9.6

Meals2 17 94% 9

Kids’Meal 2 100% 12

Sides 5 96% 16

Sauses 3 100% 18.3

Drinks 9 96% 12.5

Desserts 7 97% 8.4

Table 4: Characteristics of the menu modules.

Firstly, we assign menu items to 10 modules. The separation is done based on logical subsection

(Orme, 2019) and best practices from previous studies conducted by SKIM. The largest module,

Meals2, includes 16 products and the smallest captures only a single item, Kids’Meal. The detailed

allocation of products is presented in Table 10 in the Appendix. In contrast to the EA, the MOD

approach has the ability to capture much more choice information within the subsection models.

Table 4 presents the cumulative sum of information retained by each module, which aggregates

to 96.9% for the complete MOD model. For most of the subsections the combinations included

represent the None and all or some of the individual item choices - 10 products in total were

not incorporated to any of the combinations. There are only two combinations comprising of two
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products which are incorporated in Meals1 and Sauses modules.

Subsequently, we incorporate the cross-price effects between products from different modules.

Again, we perform the variable selections employing the the χ2-test at 5% significance level. On

average the choice of each of the 59 products (captured by the combinatorial choices) is affected by

10.8 products’ prices. The average number of cross-effects in each module are reported in Table 4.

For the the Generic effects version we recode the independent price variables in the same way as

for the EA models. However, in order to capture the price sensitivity independent of the product

the estimation for the 10 submodels has to be performed simultaneously. To make this possible, we

merge the designs for all modules into a single overall design, which makes the estimation of these

models computationally demanding. Because of the size of the design matrix the HB estimation

incorporating a skip factor cannot be performed as the CBC/HB System is unable to save the

sampled draws, thus we implement the HB without trimming.

5.2 Results

As mentioned earlier, in order to compare and characterize different modelling configurations

we investigate in-sample validity, out-of-sample validity and various model characteristics.

5.2.1 Out-of-sample validity

The MAE results obtained based on the holdout sample predictions are presented in Table 5 for

all 28 considered model configurations.

Altogether, the SCE approach offers the most predictive power, with the linear Alternative-

Specific SCE estimated with HB without the skip factor obtaining the lowest MAE of 1.29%. Once

more, there is evidence supporting the simpler disintegrative approach as superior for modelling

menus with high complexity.

The EA models predict with the highest absolute error, which is not surprising considering

the models make use of only 42% of the choice information from the data. This is inline with

the existing research, which suggests EA models perform rather poorly for more complex MBC

problems. Unlike for other underlying approaches, the Aggregated Logit estimations for Alternative-

Specific effects EA perform similarly or better than the same models calculated employing HB. We

cannot investigate if the same is true for the Generic formulation, as both Logit estimations failed

terribly in the first iteration of the process. For the linear case we obtain a negative Percent

Certainty of -18.1%, presented in Table 6, whereas under non-linearity the calculation stopped
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without performing any iterations reporting data fit of 100%. We did not identify a clear reason for

these failures.

The MOD models redeem the combinatorial modelling approach. We can see that in combi-

nation with HB estimations they predict with a substantially better accuracy than the EA, with

MAEs approaching the levels captured for the better performing SCE. As mentioned before, in

our implementation the MOD includes only two multi-product combinations across 10 submod-

els, which could be one of the reasons behind this difference. We expect that this performance

might change for menus of lower complexity, which would allow to incorporate more combinations

of several items. However, we can conclude that the idea of separating the modelling into smaller

submodels definitely works in practice. Interestingly, for the MOD we observe the biggest difference

in the accuracy comparing the estimations employing the Aggregated Logit and HB. The former

produces predictions only slightly better than the EA counterparts with a MAE of 2.4%.

Comparison of the HB estimation with and without the skip factor leads to a very interesting

finding. The results across all models consistently show that employing the skip factor impairs their

predictive accuracy. This is contrary to what is suggested in the literature, where employing the

skip is a way to correct for the dependency among draws and making the inference more precise.

Additionally, the skip HB requires much more iterations to be performed, thus is heavier for the

hardware and expected to be more time consuming.

Next, we investigate the influence of the effects formulation on the predictive ability of the

models. It can be seen that the EA configurations incorporating the Generic effects improve the

accuracy of predictions in all of cases. For these models the assumption of item-invariant price

sensitivity allows to regain some precision, reducing the MAE by approximately 0.2%. On the

other hand, for the MOD the Alternative-Specific effects are superior for the majority of models.

The non-linear Generic MOD Logit achieves the highest overall MAE of 2.72%. We suspect that

the reason is rooted in the 24 piecewise variables capturing the price sensitivity. However, the most

surprising result is captured for the Aggregate Logit version of the linear Generic MOD. Not only

is this the best performing Logit estimation and the most accurate MOD configuration but also

the offered improvement halves the MAE when compared to the Alternative-Specific equivalent

reaching MAE of 1.43%.
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Capturing the own-effect with a non-linear formulation does not seem to offer any substantial

advantage for any of the configurations. Although it could be expected that the more flexible

specification would produce more accurate projections, this observation can be explained by the

fact that we consider only three price points per product which seems to work well with the linear

assumption.

Capturing the MAE for separate frequency buckets does not seem to offer any additional insights

for comparing the performance of different model configurations. In principal the MAE increases

with the product frequencies.

Figure 5: Choice frequencies aggregated by menu subsections relative to the number of products
included in each module.

We also analyze how well the models behave for different menu subsections. Firstly, consistently

across all underlying models we obtain greater MAEs for modules incorporating add-on products:

Snacks, Sides and Sauses. Following the disparity of the metric between the frequency buckets we

investigate product frequencies in Figure 1 in order to explain this phenomenon, but no apparent

dependency is found. Subsequently, we explore the module frequencies relative to its size and

visualize them in Figure 5. The modules in question are characterized by a high relative frequency.

Thus, we conclude that the MAE of the MBC models increases with the relative frequency and this

effect is more severe for the combinatorial models. Additionally, Table 5 showcases an interesting

pattern for these subsection, where the Aggregated Logit configurations perform better than the

HB estimations.
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Separate module MAEs also allow us to consider the drivers of the improvement offered by the

Generic effects. Analyzing the differences between the linear MOD Logit results it appears that

the greatest performance gain is attributed to Sandwiches and Meals1, subsections with highest

frequencies. The improvement of EA configurations can be accredited to the Kids’Meal module, for

which the absolute error decreases across all HB models by approximately 1.4%. On the other hand,

the MAE for the worse performing nonlinear MOD Logit is inflated due to two subsections: the

prediction errors obtained for Sauses are much higher than for the linear case or the Alternative-

Specific effects reaching a similar level as for the EA approach, however the main factor is the score

for the Kids’Menu rising to 12.24%, a magnitude unlike any other MAE reported in this study.

For the non-linear MOD HB without the skip we observe that the overall MAE is enlarged by the

Sauses score of 9.93% exceeding any other result for this module. Interestingly, unlike for the Logit

estimation the Kids’Menu MAE is reported at a low level.

5.2.2 In-sample validity

The results in Table 6 capture the models’ hit rate, allowing to asses the predictive performance

for individual respondent choices within the sample.

Looking at the results, it is apparent that the Aggregated Logit estimation offers no predictive

power for producing this type of projections, which is in line with our expectation as the method

assumes equal utilities across all respondents.

In general, the values obtained for the HB estimations vary around 30% of correctly predicted

choices, which is in line with the negative relationship found between the hit rate and menu com-

plexity (Neuerburg, 2015). For the overall hit rate the best performing model is the non-linear SCE

estimated without the skip factor, reporting 33.94% of the forecasted item choices to be true.

Considering the underlying models, the SCE is superior to both combinatorial approaches and,

similarly to the MAE results, the MOD offers a considerable improvement over the EA. Unlike for

the out-of-sample measures, employing the estimation with the skip factor increases the predictive

accuracy for the EA and the MOD. The SCE benefits from correcting for the dependency of the

draws, however the improvement is marginal.

For the EA models the Generic effects formulation boosts the hit rate by 3.5% on average, which

is a considerable improvement. The same cannot be said for the MOD models. Although the Logit

models report higher hit rates, their overall level is drastically low. For the HB estimations the

metrics are much lower than for the Alternative-Specific effects and even the Generic EA versions
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estimated with the same approach. Furthermore, we can see that the non-linear own-effects formu-

lation slightly increases the reported metrics across the majority of configurations estimated with

HB. The only exception is the Generic effects MOD.

Hit Rate

Model Effects Linearity
Estimation

method
Overall

Above 5

products

Avg. number

of products

estimated

Avg.

percent

certainty

Adjusted

estimation

time (sec)

Share of

choice

information

used

Avg.

number of

parameters

SCE Alt Spec

Linear

Logit 6.629% 6.572% 3.05 78.0% 1.0 100.0% 14

HB 33.884% 35.618% 1.97 88.2% 194.0 100.0% 14

noskip HB 33.910% 35.736% 2.05 87.9% 195.5 100.0% 14

Non-linear

Logit 6.604% 6.545% 3.02 78.0% 3.0 100.0% 15

HB 33.859% 35.524% 1.94 88.2% 598.3 100.0% 15

noskip HB 33.937% 35.667% 2.03 87.6% 106.5 100.0% 15

EA

Alt Spec

Linear

Logit 2.726% 2.464% 1.11 12.2% 7560.0 42.0% 195

HB 28.128% 5.053% 1.04 68.1% 78268.0 42.0% 195

noskip HB 24.254% 4.839% 1.09 67.6% 39562.0 42.0% 195

Non-linear

Logit 2.719% 2.451% 1.10 12.2% 18360.0 42.0% 263

HB 28.435% 5.575% 1.04 69.6% 93846.0 42.0% 263

noskip HB 24.710% 4.309% 1.10 68.9% 100417.0 42.0% 263

Generic

Linear

Logit - - - -18.1% 25.0 42.0% 129

HB 31.842% 6.284% 1.22 63.9% 52759.0 42.0% 129

noskip HB 27.853% 4.977% 1.25 63.1% 22888.0 42.0% 129

Non-linear

Logit - - - 100.0% 54.0 42.0% 152

HB 32.336% 5.972% 1.16 65.0% 63749.0 42.0% 152

noskip HB 27.994% 5.351% 1.18 64.7% 32511.0 42.0% 152

MOD

Alt Spec

Linear

Logit 4.017% 4.495% 1.42 41.5% 14.0 96.9% 47.9

HB 32.435% 24.426% 1.67 77.8% 2311.1 96.9% 47.9

noskip HB 31.967% 24.200% 1.81 77.7% 1590.6 96.9% 47.9

Non-linear

Logit 4.008% 4.485% 1.41 41.5% 21.6 96.9% 53.8

HB 32.525% 24.331% 1.66 77.9% 1778.2 96.9% 53.8

noskip HB 32.051% 24.316% 1.81 78.0% 1926.6 96.9% 53.8

Generic

Linear
Logit 5.410% 5.400% 2.18 54.1% 2498.0 96.9% 421

noskip HB 26.845% 22.102% 2.47 74.4% 718027.0 96.9% 421

Non-linear
Logit 4.182% 4.957% 1.52 46.5% 715.0 96.9% 444

noskip HB 26.811% 22.370% 2.48 74.8% 765300.0 96.9% 444

Table 6: Models’ characteristics and performance measures.

The second version of the hit rate is calculated only across the tasks in which respondents chose

more than 5 products. It can be seen that the EA approach fails completely because the largest

combinations included in the modelling incorporate only four menu items. The MOD obtains
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much better results but we still observe a significant decrease of from the overall hit rate. For the

Alternative-Specific effects the score differs by approximately 8%, which is double the difference

reported for the Generic effects. The decompositional SCE method not only once again proves to

be superior but also obtains greater accuracy in predicting choices involving many products.

5.2.3 Other characteristics

Finally, we also analyze characteristics other than the formal validation measures, anticipating

they might offer some additional insights into the behaviour of different configurations. They

are showcased in Table 6, with the average value reported for approaches comprising of multiple

separately estimated models.

Percent certainty

The goodness of fit seems to be closely related to the predictive accuracy. The best performing

SCE approach is also characterized by the highest McFadden’s ρ2, achieving 82% for both linear

and non-linear versions computed by HB without the skip factor. As expected, the lowest scores

are obtained for the EA.

The conclusions concerning varied modelling aspects follow the patterns described in the previous

sections. The Aggregated Logit estimations do not fit the data well with the only exception being

the SCE models, which partially explains reasonable predictive performance of these configurations.

As mentioned before, for the Generic versions of the EA the estimations fail completely reporting

very strange levels of Percent Certainty. We find evidence that applying the skip factor for the HB

improves the goodness of fit, however once again the difference is minor of approximately 0.5%. The

linearity assumption does not have significant influence on McFadden’s ρ2 for the SCE, however for

the combinatorial models we see that the non-linear case fits the data better which is in line with

our expectations. Irregular behaviour is observed for the MOD with Generic effects where the linear

version offers much better fit. Also, the difference between the two configurations is substantial,

whereas for all other approaches results are comparable despite the own-effects functional form.

The Generic effects formulation lowers the data fit for the HB estimations for both EA and MOD

when compared to their Alternative-Specific counterparts. On the other hand, Generic effects seem

to better the Percent Certainty obtained for the Aggregated Logit MOD. However, it should be

emphasized that for the MOD the number of parameters, also reported in Table 6, explodes when

the two effects formulations are contrasted, which might be the driver of the observed improvement
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for the Logit estimations.

Setting the models’ MAE side by side the Percent Certainty levels allows to investigate if there

is any indication of overfitting for any of the configurations, which would be anticipated for very

good data fit accompanied by extremely poor out-of-sample predictions. Luckily, we do not observe

this situation for any of the tested models.

Average number of products estimated

We aggregate the predicted choice shares across all menu items for the in-sample holdout tasks

and compare it to the average number of products actually chosen equalling to 2.52 products per

task. This simple method provides some insight to asses if a particular model suffers from over- or

underestimation.

The majority of the modelling configurations underestimate the number of chosen products,

besides two SCE models both estimated with the Aggregated Logit which overestimate the number

of selections. This explains the increased individual item prediction accuracy for choices above 5

products reported for these two configurations. In general, we observe that the greater the deviation

from the observed average the worse the models predict. Thus, the most underestimating approach

is clearly the EA, which predicts only one product being chosen per task. Unsurprisingly, the SCE

approach is the most reliable for the Alternative-Specific effects in spite the estimation method.

However, the predictions closest to the observed value are obtained for the Generic effects MOD

estimated with HB, the better non-linear anticipating 2.48 products selected on average. We accredit

such precise score to the exceptionally large number of parameters when contrasted with the other

models.

Estimation time

The last property we discuss is connected to the practical side of the modelling, which is the

computational time. In Table 6 we report the adjusted estimation time in seconds. We correct for

the fact that for the models comprising of multiple submodels the software can perform up to four

simulations at once, thus for these instances we divide the total time by four.

It is apparent, that the Aggregated Logit trade-offs the predictive power for the calculation

speed as the convergence happens considerably faster than for the HBs, often taking only few

seconds. The quickest model is the linear Alternative-Specific SCE, which produces results in a

single second and still retains a reasonable level of predictive power for the out-of-sample product
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share. Estimations with HB take considerably slower, however in general they produce lower MAEs

and most importantly they allow to some degree predict the item choices on an individual level.

The slowest method, the non-linear Generic effects MOD HB without the skip factor, took 765,300

seconds to estimate which translates to 212 hours and 35 minutes.

We observe substantial differences between three underlying models compared based on the

Alternative-Specific effects formulation. The amount of time required to obtain the estimates for

the EA seems unreasonably high and impractical, especially when its performance is also taken into

account. Although, the SCE estimations are much faster than for the MOD, they both seem to offer

a fair balance between the predictive power and computational feasibility for the Alternative-Specific

formulation. We cannot draw explicit conclusions about the Generic effects. This formulation is an

experimental approach for which the implementation process can be further tested and optimized.

We applied the method with the Sawtooth Software which was not designed for such applications

hence the lengthy estimation time due to large number of parameters in the design matrix for the

MOD. Notably, for the EA HB estimations performed significantly faster under the Generic effects

formulation than its Alternative-Specific equivalent.

Interestingly, the reported results uncover some inconsistencies with our expectations concerning

the time difference between the HB estimations with and without the skip factor. The former

requires 19,800 iterations more than the latter for the chosen skip of 100. Thus, we logically assume

that performing almost twice as many repetitions would consistently prolong the convergence time

regardless of the model configuration. In Table 6 we identify that in three out of eight cases the HB

without the skip took longer to estimate that the more independent version of the sampler. This

is very odd and we did not find any apparent reason for such situation. One of the reasons could

be a momentary issue with the hardware or the software. Similarly, we see that in three out of

13 instances (where the failed estimations are discarded) the linear model is more time consuming

than its non-linear equivalent, which is counterintuitive as the latter contains more parameters to

be estimated and therefore more computationally demanding. The only similarities between these

pairs is that in two of them the reported goodness of fit to the data is higher for the linear case

than for the non-linear, in the third both Percent certainties are nearly equal.

39



6 Conclusions

In time when product customization becomes more prevalent on the market and the menu-based

sales become the predominant strategy for many industries the ability to understand and choose

the most appropriate modelling approach is more essential then ever. In this research we compare

multiple modelling arrangements with an aim to reveal their advantages and disadvantages and

formulate useful recommendations for the modelling choices.

We employ three different underlying models for the MBC analysis. The SCE approach de-

composies the menu situation into a series of binary choice models interconnected with product

cross-price effects. The combinatorial EA captures the choices in a single model considering all

possible choices and the MOD separates the menu into modules, each analyzed by separate EA

submodel and incorporating cross-price effects of products belonging to other menu subsections.

Each model is tested with a linear and non-linear functional form of the main price-effect. For the

combinatorial models two assumptions about price sensitivity are investigated, product dependent

and item invariant versions. Finally, we estimate the proposed model configurations with three

estimation techniques including the Aggregated Logit and the HB with and without the skip factor.

The modelling configurations are examined by the means of in-sample and out-of-sample predictive

performance, the goodness of fit to the data and estimations time. In order to obtain the accuracy

measures we incorporate holdout respondents and holdout tasks for the estimation sample during

the data gathering process.

We also introduce an innovative application of the Generic effects formulation build on the idea

of Orme (2019), where we assume that the price sensitivity is invariant of the product in question.

Additionally, as the customizable products and services are becoming more complex and most of

the existing MBC literature tackles simplified menus, we perform the analysis on a dataset based

on a real-life menu of very high complexity gathered for the purpose of this study. It includes

69 products, which translates to approximately 590 quintillion combinations. This is done so our

research can contribute not only to academic literature but also to be meaningful for practical

applications.

6.1 Recommendations

Considering the above results, we formulate recommendations about the performance and be-

haviour of tested configurations and their varying components. It should be emphasized that our
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reasoning is based strictly on a high complexity menu example and we do not believe there ex-

ists single best technique for MBC modelling, but rather that the methods should be chosen and

adjusted depending on the data, characteristics of menu tasks and aim of the analysis.

Firstly, in line with existing research we find evidence that the simpler decompositional SCE

method performed the best both for the in-sample and out-of-sample validity measures as well as

achieved the best goodness of fit to the data. Importantly, in the majority of tasks only a single

item was chosen which might have been advantageous for this technique, when compared with the

combinatorial models as most of the combinations also incorporated a single product. For this reason

we consider the performance of the MOD models (estimated with HB) very reasonable, especially

that the underlying approach is different and more theoretically complete by allowing to account for

multiple choices to be made simultaneously. Because of this characteristic, we expect that for less

complex models and for menu situations in which respondents typically choose more than a single

item this approach might deem preferable and more insightful. Both techniques require to identify

the cross-price effects influencing the choice of particular menu items, which provides additional

understanding of consumers’ decision-making process and seems to better the forecast quality. For

research aiming to make in-sample item predictions on respondent level the SCE proved to be the

model of choice not only because of the highest hit rate scores but also because it is the only model

for which this accuracy improves for multi-product choices.

Secondly, we find that the EA approach in the current implementation is completely unreliable.

The configurations take extremely long to estimate and produce the worst predictions of the three

underlying models tested. Additionally, considering the practical application only a limited part of

the gathered data is used for producing the projections which not only is the reason behind the poor

model performance but also is inefficient when data acquisition costs are taken into account. The

main advantage of the EA is that it simulates the decision process of the consumers who compare all

viable options, which can be useful for determining products to be included and offered as bundles.

However, for such complex menu situations the assumption that the respondents would consider

all the possible 590 quintillion combinations is completely unrealistic. It is worth mentioning that

Pfaff (2021) discovers an alternative way of constructing the combination subset, which significantly

improved the predictive performance of the EA approach, thus the technique should not be discarded

but rather further investigated.

Thirdly, we trial the Generic effects formulation across multiple models which has never been

done before. Although the assumption of product-invariant price sensitivity seems improbable it
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turns out it works well for the combinatorial EA models, when put together with the HB, improving

the predictive performance for both observed measures. We strongly discourage implementations of

the Generic EA with the Aggregated Logit. Analyzing the average number of products estimated it

can be seen that the underestimation for Generic models is lower than for the Alternative-Specific

counterparts for both the EA and MOD, however for the latter approach the predictive accuracy

is worse for the HB configurations. We do not suggest utilizing this specification for MOD HB

estimations without the skip factor. However, for the Generic linear MOD estimated with the

Aggregated Logit the reported predictions are not only superior to Alternative-Specific effects but

are the best scores reported for any of the models employing this estimation method. This is a

promising result which we recommend to be further investigated.

The main advantage of the Aggregate Logit estimation is the considerably shorter computational

time when compared to HB. As mentioned before, for the majority of specifications this decrease

comes from giving up some of the predictive power and goodness of fit to the data. We find that

for the SCE models this technique performs relatively well when producing out-of-sample product

share predictions. However, the HB results for the SCE are available after only few minutes with

much more accurate out-of-sample forecasts and some ability to predict on the individual level. On

the other hand, for the linear Generic MOD the Aggregated Logit performs very well and the time

gain equals to dozens of hours, thus we find it very practical for this application. We also uncover

that the Aggregated Logit allows to obtain similar or lower MAE for product subsections with high

relative frequency despite the underlying model. It is unclear if this dependency is generalizable,

but it might mean that Aggregated Logit could be a preferable estimation method for enormous

datasets. Unfortunately, in practice acquiring this amount of choice data is highly infeasible.

For the more accurate HB technique we consider two versions - with and without a skip factor,

and make a very unexpected discovery. Opposite to what is suggested in the literature, the correction

for dependency between draws does not prevent from precision loss, but rather impairs the accuracy

of out-of-sample predictions. Additionally, for most configurations the estimation is much faster as

it requires less iterations to be performed. Thus, we would not suggest implementing the skip factor

unless the focus is on in-sample predictions measured with the hit rate for which the skip proves

advantageous.

We do not discover any apparent advantages for using the non-linear own-effects functional form,

except a marginal improvement in the hit rate scores. For the out-of-sample predictions the linear

case performs much better across all models and for the majority of configurations the estimation
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was considerably faster. Thus, we suggest employing the linear functional form for the price of

menu items when three or less price points are investigated. It should be noted, that we expect

this conclusion might change for studies including more price points per product and the non-linear

models may prove to be more appropriate for such applications.

Finally, we formulate some remarks concerning the model comparison. Percent Certainty seems

to be related to the models’ predictive power and can be used as a preliminary indicator of its

performance, however it is imperative to keep in mind that the scores also depend on other modelling

choices. Based on reported values we observe that the configurations which obtained goodness of

fit of 75% or higher where the models which were predicting reasonably well. We also found that

analyzing the MAE for different frequency buckets did not provide any additional insight into model

behaviour, thus we suggest not to employ this approach. On the other hand, the investigation of

the MAE for menu subsections proved useful and allowed us to uncover the relationship between

MAE and the relative frequency.

6.2 Limitations and future research

During our research we encountered a number of limitations. The investigated application of

Generic effects for the EA model failed for the Aggregated Logit estimation for reasons we did

not identify. The MOD version required to merge the design matrix externally which limited its

size, thus restricting the number of combinations incorporated in the submodels. Consequently, the

Alternative-Specific MOD had to be adjusted for a fair comparison of performance between these

two assumptions.

We recommend extending our research to cover a wider scope of configurations and make the

comparison more thorough. The Generic effects SCE models can be investigated, as well as the

Substitute-Specific effects formulation. The latter is an idea of a novel intermediate case based on

the strong substitutes determined using Counting Analysis, which assumes that the price sensitivity

does change between products, but is equal among substitutes. We denote this by βij = βiSub where

j ∈ Sub, a set of substitutes.

Furthermore, we encourage incorporating different approaches to constructing the modules for

the MOD approach. One of the approaches could be based on groups of products which are strong

complements. The intuition is that if there are strong complements to a product the respondent

is determined to choose, he will consider all the possible choices which include that product and

might increase his preference. We would represent such a situation by a single EA submodel.
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The non-linear version of the models could be tested for more price points than three in order

to discover if there exists a threshold above which the linear case becomes inferior.

We strongly endorse a closer comparison of the SCE and MOD models and exploring if incorpo-

rating more combinations in the submodels would further improve the MOD predictive performance.

The behaviour of this model could be also tested with the Stratified Importance Sampling proposed

by Pfaff (2021) for the EA, possibly for both the Alternative-Specific and Generic effects.

Finally, the drawn conclusions are based on a single MBC dataset, thus we would find it rea-

sonable to investigate if our insights are also consistent for other high complexity menu situations

and if the type of industry represented by the menu may change the characteristics of consumers’

choices.
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7 Appendix

Product Price 1 Price 2 Price 3 Product Price 1 Price 2 Price 3

1 Snack1 1.45 1.60 1.75 36 LargeMealS7 0.65 0.70 0.75

2 Snack2 1.15 1.30 1.45 37 MealS8 8.65 9.60 10.55

3 Snack3 1.35 1.50 1.65 38 LargeMealS8 0.65 0.70 0.75

4 Fingerfood1 1 2.00 2.25 2.50 39 MealS9 8.35 9.30 10.25

5 Fingerfood1 2 3.15 3.50 3.85 40 LargeMealS9 0.65 0.70 0.75

6 Snack4 2.50 2.80 3.10 41 MealS10 8.65 9.60 10.55

7 Sandwich1 3.50 3.90 4.30 42 LargeMealS10 0.65 0.70 0.75

8 Sandwich2 3.95 4.40 4.85 43 MealS11 7.05 7.85 8.65

9 Sandwich3 3.95 4.40 4.85 44 LargeMealS11 0.65 0.70 0.75

10 Sandwich4 3.95 4.40 4.85 45 Salad1 4.95 5.50 6.05

11 Sandwich5 3.95 4.40 4.85 46 MealSalad1 7.45 8.30 9.15

12 Fingerfood1 3 6.70 7.45 8.20 47 Salad2 4.95 5.50 6.05

13 Sandwich6 4.70 5.20 5.70 48 MealSalad2 7.75 8.60 9.45

14 Sandwich7 5.35 5.95 6.55 49 Kids’Meal 4.05 4.50 4.95

15 Sandwich8 5.75 6.40 7.05 50 Drink1 1 2.05 2.30 2.55

16 Sandwich9 5.35 5.95 6.55 51 Drink1 2 2.45 2.70 2.95

17 Sandwich10 5.60 6.20 6.80 52 Drink1 3 2.75 3.05 3.35

18 Fingerfood2 1 3.80 4.20 4.60 53 Drink2 1 1.60 1.75 1.95

19 Fingerfood2 2 5.75 6.40 7.05 54 Drink2 2 2.00 2.20 2.40

20 Sandwich11 4.15 4.60 5.05 55 Drink3 2.25 2.50 2.75

21 MealS1 7.15 7.95 8.75 56 Drink4 2.25 2.50 2.75

22 LargeMealS1 0.65 0.70 0.75 57 Dessert1 3.25 3.60 3.95

23 MealS3 7.15 7.95 8.75 58 Dessert2 3.05 3.40 3.75

24 LargeMealS3 0.65 0.70 0.75 59 Drink5 2.50 2.75 3.00

25 MealS4 7.15 7.95 8.75 60 Dessert3 2.90 3.25 3.60

26 LargeMealS4 0.65 0.70 0.75 61 Dessert4 2.15 2.40 2.65

27 MealS5 7.15 7.95 8.75 62 Dessert5 1.35 1.50 1.65

28 LargeMealS5 0.65 0.70 0.75 63 Dessert6 3.60 4.00 4.40

29 MealF1 2 7.15 7.95 8.75 64 Saus1 0.60 0.65 0.70

30 LargeMealF1 2 0.65 0.70 0.75 65 Saus2 0.60 0.65 0.70

31 MealS2 7.15 7.95 8.75 66 Side1 1 2.05 2.30 2.55

32 LargeMealS2 0.65 0.70 0.75 67 Side1 2 2.45 2.70 2.95

33 MealS6 7.75 8.60 9.45 68 Side1 3 2.75 3.05 3.35

34 LargeMealS6 0.65 0.70 0.75 69 Side2 2.45 2.70 2.95

35 MealS7 8.35 9.30 10.25

Table 7: All menu items with their corresponding price points (in e).
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Product Price 1 Price 2 Price 3 Total Choice share

1 Snack1 807 741 682 2230 9.59%

2 Snack2 785 688 717 2190 9.42%

3 Snack3 555 562 479 1596 6.87%

4 Fingerfood1 1 579 509 543 1631 7.02%

5 Fingerfood1 2 436 397 401 1234 5.31%

6 Snack4 586 533 487 1606 6.91%

7 Sandwich1 268 276 240 784 3.37%

8 Sandwich2 157 157 165 479 2.06%

9 Sandwich3 621 499 512 1632 7.02%

10 Sandwich4 446 392 377 1215 5.23%

11 Sandwich5 310 269 282 861 3.70%

12 Fingerfood1 3 463 402 399 1264 5.44%

13 Sandwich6 217 221 191 629 2.71%

14 Sandwich7 126 135 110 371 1.60%

15 Sandwich8 209 197 158 564 2.43%

16 Sandwich9 127 139 123 389 1.67%

17 Sandwich10 214 206 197 617 2.65%

18 Fingerfood2 1 128 112 111 351 1.51%

19 Fingerfood2 2 180 171 151 502 2.16%

20 Sandwich11 185 190 177 552 2.37%

21 MealS1 217 209 216 642 2.76%

22 LargeMealS1 98 105 92 295 1.27%

23 MealS3 656 617 545 1818 7.82%

24 LargeMealS3 344 355 349 1048 4.51%

25 MealS4 434 412 409 1255 5.40%

26 LargeMealS4 181 194 164 539 2.32%

27 MealS5 275 260 226 761 3.27%

28 LargeMealS5 116 129 113 358 1.54%

29 MealF1 2 200 197 194 591 2.54%

30 LargeMealF1 2 95 77 79 251 1.08%

31 MealS2 178 187 167 532 2.29%
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32 LargeMealS2 74 78 79 231 0.99%

33 MealS6 204 167 159 530 2.28%

34 LargeMealS6 57 76 60 193 0.83%

35 MealS7 138 112 111 361 1.55%

36 LargeMealS7 54 53 48 155 0.67%

37 MealS8 285 259 203 747 3.21%

38 LargeMealS8 123 114 122 359 1.54%

39 MealS9 135 130 128 393 1.69%

40 LargeMealS9 53 46 54 153 0.66%

41 MealS10 261 240 221 722 3.11%

42 LargeMealS10 144 144 128 416 1.79%

43 MealS11 169 163 139 471 2.03%

44 LargeMealS11 76 84 71 231 0.99%

45 Salad1 155 161 159 475 2.04%

46 MealSalad1 97 84 102 283 1.22%

47 Salad2 195 199 180 574 2.47%

48 MealSalad2 106 101 91 298 1.28%

49 Kids’Meal 617 580 534 1731 7.45%

50 Drink1 1 681 613 623 1917 8.25%

51 Drink1 2 451 408 396 1255 5.40%

52 Drink1 3 221 180 199 600 2.58%

53 Drink2 1 349 347 322 1018 4.38%

54 Drink2 2 127 95 93 315 1.36%

55 Drink3 193 216 204 613 2.64%

56 Drink4 146 150 144 440 1.89%

57 Dessert1 359 311 319 989 4.25%

58 Dessert2 227 245 258 730 3.14%

59 Drink5 264 254 237 755 3.25%

60 Dessert3 604 533 540 1677 7.21%

61 Dessert4 390 401 355 1146 4.93%

62 Dessert5 219 236 191 646 2.78%

63 Dessert6 110 103 101 314 1.35%

64 Saus1 1491 1466 1408 4365 18.78%
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65 Saus2 288 253 262 803 3.45%

66 Side1 1 946 987 969 2902 12.48%

67 Side1 2 773 762 724 2259 9.72%

68 Side1 3 597 527 469 1593 6.85%

69 Side2 224 264 254 742 3.19%

Table 8: Product frequencies and choice shares

slope1 slope2 slope3 slope4 slope5 slope6 slope7 slope8

End 0.65 0.7 0.75 1.5 1.95 2.4 2.9 3

Start 0.6 0.65 0.7 1.15 1.5 2 2.4 2.9

slope9 slope10 slope11 slope12 slope13 slope14 slope15 slope16

End 3.4 3.9 4 4.4 4.95 5.5 5.95 6.4

Start 3 3.4 3.9 4 4.4 4.95 5.5 5.95

slope17 slope18 slope19 slope20 slope21 slope22 slope23 slope24

End 6.8 7.05 7.95 8.2 8.75 9.15 9.6 10.55

Start 6.4 6.8 7.05 7.95 8.2 8.75 9.15 9.6

Table 9: Piecewise price coding cut points for the non-linear case.
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Snacks Fingerfood Sandwiches Meals1 Meals2 Kids’Meal Sides Sauses Drinks Desserts

1 Snack1 Fingerfood1 1 Snack4 MealS3 MealS1 Kids’Meal Side1 1 Saus1 Drink1 1 Dessert1

2 Snack2 Fingerfood1 2 Sandwich1 LargeMealS3 LargeMealS1 Side1 2 Saus2 Drink1 2 Dessert2

3 Snack3 Fingerfood1 3 Sandwich2 MealS4 MealS5 Side1 3 Drink1 3 Dessert3

4 Fingerfood2 1 Sandwich3 LargeMealS4 LargeMealS5 Side2 Drink2 1 Dessert4

5 Fingerfood2 2 Sandwich4 MealS6 MealF1 2 Drink2 2 Dessert5

6 Sandwich5 LargeMealS6 LargeMealF1 2 Drink3 Dessert6

7 Sandwich6 MealS8 MealS2 Drink4

8 Sandwich7 LargeMealS8 LargeMealS2 Drink5

9 Sandwich8 MealS10 MealS7

10 Sandwich9 LargeMealS10 LargeMealS7

11 Sandwich10 Salad1 MealS9

12 Sandwich11 MealSalad1 LargeMealS9

13 MealS11

14 LargeMealS11

15 Salad2

16 MealSalad2

Table 10: Menu items separated into subsections.
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