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Abstract

In this paper we test for structural breaks in the parameters of the KNW model using a

SupLR test, and we compare the fit of the current two-factor KNW model with a three-factor

KNW model. We find that there is evidence of a structural break in the sample between January

1999 and May 2021, which occurs in October 2008 in three of the four tested model specifications,

coinciding with the ECB’s introduction of the fixed rate full allotment policy. The remaining

model specification finds a break in September 2008, which can be seen as one of the critical

months in the financial crisis, with e.g., the bankruptcy of Lehman Brothers. Furthermore, we

find that the three-factor specification of the KNW model shows a better fit, when using the

AIC and BIC. When using the sample after October 2008, we find that this result is not affected

by the structural break in 2008. Lastly, we observe the implications of scenarios generated from

the estimated parameters and find that zero coupon bond rates are lower after the break in all

model specifications, when compared to their full sample scenarios.
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1 Introduction

Dutch pension funds are required by law to periodically perform an achievability test (Haal-

baarheidstoets in Dutch) such that the funds can assess whether their current investment policies

align with their ambitions in their pension returns over the full horizon in which participants

are allowed to receive their returns. The introduction of this test has led pension funds to make

their risk attitude concrete (Lever, 2019), making this beneficial for both the pension fund and

the fund participant. To do this test, the Dutch Central bank (DNB) quarterly generates 10000

scenarios of 60 years ahead for term structures, stock returns, and price inflation. These values

are generated using an adaptation of the KNW model, which was introduced by Koijen et al.

(2010). In this paper we research whether the parameters of this model are subject to structural

breaks and whether the addition of a third factor would improve model fit.

The KNW model is a Gaussian affine model extending Brennan and Xia (2002) to include

time-varying bond risk premia. Brennan and Xia (2002) extend the two-factor affine term

structure model to include the stock price. Affine term structure models (ATSMs) have a rich

existing literature behind them, starting at Vasicek (1977), who devised a one factor term struc-

ture model, using the short rate as factor. This is followed by Cox et al. (1985), allowing for a

varying volatility, which depends on the value of the factor. Then Duffie and Kan (1996) and Dai

and Singleton (2000) generalized the affine term structure model to allow for multidimensional

factors.

The literature on the KNW model has been evolving steadily after its conception, starting

with Draper (2014), which shows the derivation of the discretized KNW model and adds cal-

ibration to the model. Muns (2015) continues in this line by refining the calibration methods

from Draper (2014) and derives closed-form expressions for the term structure, long-term ex-

pectations, and covariances. Bouwman and Lord (2016) extend the scope of the KNW model

by deriving closed-form formulas for interest rate swaps, swaptions, inflation-linked swaps, and

equity options in the context of the KNW model. Pelsser (2019) adds to the literature of the

KNW model by rewriting the model into the form of a standard Kalman Filter, which allows for

the construction of confidence intervals around the parameters. We find significant structural

breaks in September and October of 2008, depending on model specification. Also, we find that

the three-factor model shows a better fit, using the AIC and BIC, even when we only estimate

the model after the break.

This paper finds academic relevance in adding to the literature of estimating the KNW

model, and of detecting structural breaks in the Kalman Filter and term structure models.

Social relevance is found in testing and offering an alternative approach to calculate the

parameters of the KNW model, which indirectly can lead to alternatives in the scenarios of the

achievability test, which could potentially affect pension investment allocations. For example,

since January of 2021 DNB has adjusted the parameters manually to ensure that the longer
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term bond rates did not seem realistic anymore, as too high rates were found to be simulated1.

We explore whether a structural break would have an effect on this.

In Section 2 of the paper we will put the problem in theoretical perspective, after which we

describe the data used in this paper in Section 3. Sections 4 and 5 will describe the methodology

and the extensions of the paper, followed by Section 6, which covers the found results. We

conclude the paper with the discussion in Section 7.

1https://www.dnb.nl/voor-de-sector/open-boek-toezicht-sectoren/pensioenfondsen/haalbaarheidstoets/uitvoering-

en-normen/scenarioset-haalbaarheidstoets-pensioenfondsen/

3



2 Theoretical Framework

In this section we treat the theoretical framework of the problem. First we discuss structural

changes in zero coupon bond rates, where we find that monetary policy changes might lead to

these structural changes. Therefore, we continue with a summary of the non-standard measures

that the ECB have taken. Then we discuss how to detect structural breaks and conclude with

a short history of the three-factor affine term structure models and how it links to the KNW

model.

2.1 Structural changes in the term structure

Changes in the term structure and its causes have been studied widely using different techniques.

Here we show a few cases. Hansen (2003) developed a statistical model to detect structural

changes in vector error correction models (VECM) and applied this technique to monthly U.S.

zero coupon bond yields from 1970 to 1995, with maturities varying from 1 to 84 months. This

method provided statistical evidence of structural changes in September of 1972 and in October

of 1982, which coincides with policy changes of the Federal Reserve.

Marçal and Pereira (2014) applied the methodology of Hansen (2003) to Brazilian zero

coupon bonds, with maturity up to 3 years, between 1996 and 2011. The authors find a structural

break in 2003, where risk premiums for these bonds decreased sharply. However, according to

the authors this did not point to any policy changes coinciding with the break.

Andreasen et al. (2019) find Chow statistics exceeding the 95% critical value in the US

bond yields from 1990 to 2018, using a Gaussian shadow rate models. The peaks of the Chow

statistics differ for different bond maturities: For 3-, 5-, 7- and 10-year maturities this peaked in

respectively 2003, 2008, 2009, and 2010. The peak in 2003 could be explained by recovery after

the recession in the early 2000s, while the other peaks could be explained by the aftermath of

the financial crisis of 2007. Furthermore, the authors find that the time-series dynamics of the

pricing factors change once bond rates are near the Zero Lower Bound (ZLB). After the crisis of

2007, they also find that when the short rate is further from the ZLB, the bond risk premiums

will behave as before the break in the financial crisis.

Lemke and Vladu (2016) critique the use of ATSMs in the cases that the yield curve nears

the Zero Lower Bound, since the rates in ATSMs are able to become very negative, due to the

Gaussian nature of the model. Furthermore, the authors find in the cases that when short rates

are reaching the ZLB, these short rates will stick to the ZLB for a while, showing very low

volatility. Therefore, the authors propose to use a shadow rate term structure model (SRTSM),

which does not allow the short term rate to fall below the ZLB. Lastly, in their data set from 1999

to June 2015, the authors detect a shift in the effective lower bound in August 2014, where the

lower bound shifts from 1 basis point to -11 basis points, which is attributed to an unexpected

ECB rate cut.
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2.2 Non-standard measures in monetary policy by the ECB

We see in the literature above that changes in term structure may be affected by changes in

monetary policy. Hence, we summarize the non-standard measures that ECB has taken in the

aftermath of the financial crisis of 2007 (European Central Bank, 2021).

The first measure was taken in October 2008 to ensure the liquidity of banks and the con-

tinuity of financial markets, as lack of liquidity in interbank markets had occurred. To prevent

market failure, the ECB provided unlimited credit to banks at a fixed interest rate against ad-

equate collateral and financial soundness of the bank (fixed full-rate allotment). Additionally,

the range of eligible assets which could be used as collateral for the fixed full-rate allotment had

been expanded, when compared to other refinancing operations.

This was followed by a phase in which the ECB faced the challenge of a sovereign debt

crisis, which the ECB tried to mitigate this by addressing the malfunctioning of markets and

the differences in financing conditions of households and businesses between different euro area

countries. In May 2010, the ECB purchased debt securities. This was followed by the Very Long

Term Refinancing Operations in December 2011. The nonstandard measures in this phase were

concluded by the Outright Monetary Transactions in September 2012.

In the third and final phase in the wake of the financial crisis of 2007, the ECB had to mitigate

the risks of a credit crunch and deflation. This was done by taking multiple nonstandard

measures. The ECB started to apply forward guidance in July 2013, which entails that the

ECB communicates the evolution of its policy and what events would trigger changes in policy

stances. In June 2014, the interest rates were lowered to negative levels. This fell together with

the introduction of Targeted Longer-Term Refinancing Operations (TLTROs), which provided

long-term financing to credit institutions. Three series of TLTROs were launched, the first being

in June 2014, the second in March 2016, and the third in March 2019. These measures were

followed by the Asset Purchase Programmes between October 2014 and December 2018, which

were introduced with the intention to lower the interest rate term structure and to aid price

stability.

2.3 Structural breaks

The literature regarding structural breaks in time series is quite extensive and can be split in two

parts: Firstly, the testing for the existence of a structural break and secondly, the determining

of the amount of breaks in a time series. We treat the literature regarding the finding of a single

structural break in Section 5.1 together with its methodology. In the determining of the amount

of breaks there are two main approaches: The joint (simultaneous) approach in which all breaks

are estimated at the same time, and the sequential approach in which breaks are estimated one

by one. Bai and Perron (2003) introduced an efficient algorithm which computes the amount of

breaks and its break points in linear models using a joint approach. This paper has been crucial

due to the exponential scaling of computer time in the number of breaks that are tested for,

making this approach feasible for linear models. The sequential approach has been introduced by
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both Bai and Perron (1998) and Chong (1995). In the KNW model, we would use the sequential

approach, due to the non-linearity of the problem. Non-linear problems, to our knowledge, do

not yet have an efficient algorithm similar to Bai and Perron (2003) for linear models, which

would then be costly in terms of computation time. Furthermore, the sequential model is robust

to misspecification of the number of breaks, which is shown by Bai (1997). However, in this

paper we only test for a single break for reasons which we discuss in Section 6.

2.4 Three-factor ATSM

Litterman and Scheinkman (1991) propose the three-factor approach in ATSMs to hedge U.S.

government bonds, where the three factors are interpreted as level, steepness, and curvature

of the yield curve. The authors note that, over their data set of weekly observations from

January 1984 to June 1988, the likelihood-ratio test does not provide any evidence against their

three-factor model. Furthermore, they find that for excess returns of zero coupon rates, with

maturities varying from 6 months to 18 years, the three-factor model can explain at least 96%

of the variation. This finding has led ATSMs to be estimated with three factors in, for example,

Dai and Singleton (2000) and Duffee (2002).

Brennan and Xia (2002) opted for an approach with two factors, since this, on average,

would lead to 96% of explained variation in term structures, using the results from Litterman

and Scheinkman (1991). This has led to the KNW model being specified with two factors as

well, as this model extended Brennan and Xia (2002). However, to our knowledge, the KNW

model has not yet been estimated with three factors.
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3 Data

We require three types of time series to be able to perform the analysis: a stock index, a price

index, and bond indices at different maturities. We use a similar approach as Pelsser (2019) and

Dijsselbloem et al. (2019) by estimating the model using monthly data.

We use monthly data from January 1999 until May 2021. We retrieve data from the MSCI

World euro index (MSWRLDE) for the stock price index and Refinitiv three month swap interest

rates at 1-10, 12, 15, 20, 25, 30 years maturity for The Netherlands (ICNLG1Y for the 1

year rate) from Datastream. We use bootstrapping to derive zero coupon bond rates from

the interest rate swaps. This procedure is described in Appendix A. We obtain the price

indices from the Euro area seasonally adjusted Harmonised Indices of Consumer Prices (HICP)

(ICP.M.U2.Y.000000.3.INX) from the ECB.

Figure 1: Natural logarithm of the HICP and MSWRLDE indices.

In the Figures 1 and 2 we show the bootstrapped Zero Coupon Bond rates and the log

price and stock indices. For brevity we only show the bond maturities that are used in the

estimations. We can see that the log stock index moved somewhat cyclically until December

2008, after which it shows an increasing trend. In contrast, bond rates seem to decline after

December 2008. Furthermore, the log price index seems to increase fairly constantly.

We see these findings confirmed in Table 1, where we find the descriptive statistics of the

first difference of the data. One interesting detail is the higher standard deviation of longer

bond maturities. This could partly be caused due to the greater average decrease of bonds with

longer maturities.
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Figure 2: Zero Coupon Bond rates at different maturities.

Mean Standard deviation

∆ ln(Price Index) 1.360 1.792

∆ ln(Stock Index) 3.410 44.5

∆yt(1) -0.140 1.632

∆yt(5) -0.147 1.886

∆yt(10) -0.158 1.815

∆yt(15) -0.164 1.869

∆yt(20) -0.169 1.884

∆yt(30) -0.178 1.896

Table 1: Summary statistics of the first-differenced series (×1000).
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4 Methodology

In this section we will treat the KNW model, we will explain how the Kalman Filter is applied

to estimate this model, and we will explain how the parameters in this Kalman Filter are

estimated. This section mainly follows the approach described in Pelsser (2019), however also

draws elements from Muns (2015).

4.1 KNW model

The KNW model is an arbitrage-free and complete model, used to forecast the price index

Πt, stock index St, and bond indices yt(τ), where τ denotes the maturity time of the bond.

These processes are driven by instantaneous nominal interest rate rt and instantaneous expected

inflation πt, which are affinely affected by k unobserved factors Xt:

dXt = −KXtdt+ dW̃ P
t (1)

πt = δ0π + δ′1πXt (2)

rt = δ0r + δ′1rXt (3)

where K is a k × k matrix which ensures that the process X is mean reverting, W̃ P
t contains

the first k elements from W P
t ∈ Rk+2, which is a white noise term under physical measure

P, where the first k elements can be interpreted as uncertainty in each factor, element k + 1

can be interpreted as uncertainty about the unexpected inflation, and element k + 2 can be

interpreted as uncertainty about the stock return. The δ’s are the parameters fitting Xt to rt

and πt respectively to define an affine model.

We observe the price index and the stock index, these are assumed to follow a geometric

Brownian motion. This implies that Πt and St satisfy the following equations:

dΠt = πtΠtdt+ Πtσ
′
ΠdW

P
t (4)

dSt = (rt + ηS)Stdt+ Stσ
′
SdW

P
t , (5)

where ηS denotes the stock risk premium, and both σ’s denote a k × 1 vector containing their

respective volatilities with respect to each element in the noise term.

The bond market is constructed using an affine term structure model. The fundamental

theorem of asset pricing (e.g., Delbaen and Schachermayer, 1994) states that this market is

arbitrage-free when there exists a risk neutral probability measure Q, distinct from physical

measure P, where the price processes of traded assets are martingales. Pelsser (2019) opts for

using the nominal money-market account Mt as the numéraire, where a unit would be equal to

1 currency unit being invested in a risk-free money-market account which receives the risk-free

interest rate.

M0 = 1, dMt = rtMtdt ⇐⇒ Mt = exp

(∫ t

0
rsds

)
(6)
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Since Mt is traded with a strictly positive price, this asset can be used as a numéraire. Then we

can define the change of probability measure from P to Q via the Radon-Nikodym derivative,

which is a strictly positive P-martingale Rt:

dRt = −Rtλ′tdW P
t , (7)

where λt is k + 2 dimensional vector, which ensures that Rt is a true martingale. Then we can

retrieve probability measure Q using dQt = RtdPt, where we can apply Girsanov’s theorem in

which dW P
t +λtdt is a standard Brownian motion under probability measure Q (Girsanov, 1960),

since probability measure Q is defined via the Radon-Nikodym derivative. This implies that the

drift term λtdt disappears due to the change of probability measure. However, the model is still

affine when the following holds:

λt = λ0 + Λ1Xt, (8)

where λ0 is a constant k + 2 vector and Λ1 is a constant (k + 2) × k matrix. These can be

interpreted as the state price deflator.

Now we can derive the bond prices. Under Q we enforce no-arbitrage, thus all asset prices

divided by Mt are martingales. In the case of a discount bond, we can derive the relative price:

exp(−τyt(τ))

Mt
= EQ

[
1

Mt+τ

∣∣∣∣F] =⇒ exp(−τyt(τ)) = EQ
[
exp(−

∫ t+τ

t
rsds)

∣∣∣∣F] . (9)

In the first part of the equation we use the assumption that the price of a discount bond at

maturity must be equal to one. Now we can evaluate the expectation by using a (k + 1)-

dimensional Ornstein-Uhlenbeck process (Xt, it), where it :=
∫ t

0 rsds =⇒ dit = rtdt = (δ0r +

δ′1rXt)dt. Under Q we can write the dynamics of (Xt, it) as

d

(
Xt

it

)
=

[(
−λ0

δ0r

)
+

(
−(K + Λ̃1) 0

δ′1r 0

)(
Xt

it

)]
dt+

(
Ik

01×k

)
dWQ

t , (10)

where Λ̃1 is the upper k×k submatrix of Λ1. Since this is a vector-OU process, we can derive the

multivariate Gaussian distribution from this process, how this can be done is shown in Appendix

C. Then the price of a discount bond

Dt(τ) = EQ
t [exp(−(it+τ − it))] = exp(−A(τ)−B(τ)′Xt), (11)

where

B(τ) = (K + Λ̃1)′−1(Ik − exp(−(K + Λ̃1)′τ)δ1r, (12)

A(τ) =

∫ t

0
δ0r − λ′0B(s)− B(s)′B(s)

2
ds. (13)

Since the parameters are assumed to be constant in this model, A(τ) and B(τ) only depend on

the maturity τ and Dt(τ) only depends on τ and Xt. Now we can return to (9) and define the

zero-coupon rate:

yt(τ) =
lnDt(τ)

−τ
=
A(τ)

τ
+
B(τ)′

τ
Xt, (14)

in which we can confirm that the zero coupon rate is affine in the factors.
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We then move on to construct the stock market. Due to no-arbitrage, St
Mt

is a martingale

under Q with dynamics

d
St
Mt

= (ηS − σ′S(λ0 + Λ1Xt))
St
Mt

dt+
St
Mt

σ′SdW
Q
t . (15)

The second term on the right hand side has mean 0 due to the Brownian motion, this means

that the first term should also have mean 0 for the process to be a martingale, which leads to

the following restrictions on λ0 and Λ1 under Q:

σ′Sλ0 = ηS , σ′SΛ1 = 0. (16)

However, since we use the P-dynamics of St and Πt in our estimation of the KNW model, the

restrictions in (16) are not required (Pelsser, 2019).

4.2 Kalman Filter in the KNW model

We augment the state vector such that X̃t = (X ′t, ln Πt, lnSt)
′. This allows us to combine (4),

(5), and (14), where its dynamics under measure P are

dX̃t =




01×k

δ0π − 1
2σ
′
ΠσΠ

δ0r + ηS − 1
2σ
′
SσS

+


−K 0k×2

δ′1π 01×2

δ′1r 01×2




Xt

ln Πt

lnSt


 dt+


[Ik0k×2]

σ′Π

σ′S

 dW P
t . (17)

This system of equations can be written in the form dX̃t = (a+AX̃t)dt+ CdWt, which can be

interpreted as a Ornstein-Uhlenbeck process. After deriving the transition density, which can

be found in Appendix C, we can write the system in VAR(1) form as

X̃t = φ+ ΦX̃t−∆t + εt V ar[εt] = Q, (18)

where

φ =

∫ ∆t

0
exp(Au)adu, Φ := exp(A∆t), Q :=

∫ ∆t

0
exp(Au)CC ′ exp(A′u). (19)

We define the measurement equation of the Kalman Filter as follows:

ỹt =


yt

ln Πt

lnSt

 = a+BX̃t + ηt V ar[ηt] = H, (20)

where yt is a vector containing the zero bond coupon rates with different maturities, coefficients

a and B are defined in (21) and ηt is an i.i.d. multivariate normal noise term with mean 0 and

variance H, defined in (22).

a :=



A(τ1)/τ1

...

A(τm)/τm

0

0


B :=



B(τ1)/τ1 0 0
...

...
...

B(τm)/τm 0 0

01×k 1 0

01×k 0 1


, (21)
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where B(τ) = (K + Λ1)′(I − exp(−(K + Λ1)′ ∗ τ))δ1r and A(τ) =
∫ τ

0 B(s)ds. Here we follow

the approach of Muns (2015), which has derived a closed form solution for A(τ) and B(τ),

exploiting the fact that this market model does not reward taking unexpected inflation risk.

These equations can be found in Appendix B.

For H, we assume that there exists no error in the observation of the price and stock indices,

leading to the two bottom rows to be zero rows. Furthermore, we assume that there is no

cross-correlation in the errors of the bond yields across different maturities, however variances

of different maturities are allowed to vary.

H :=

(
diag(h2

m) 0m×2

02×m 02×2

)
. (22)

Combining (18) and (20) leads us to the following distribution, which can be estimated via a

Kalman Filter:

f

((
X̃t

ỹt

)∣∣∣∣∣ X̃t−∆t

)
∼ N

((
φ+ ΦX̃t−∆t

a+B(φ+ ΦX̃t−∆t)

)
;

(
Q QB′

BQ BQB′ +H

))
. (23)

We do not observe the state X̃t−∆t exactly. However, the Kalman Filter allows us to find an

estimated state, X̂t−∆t, of which we can construct the conditional distribution:

f(X̃t|X̂t−∆t) ∼ N(φ+ ΦX̂t−∆t;Pt|t−∆t), Pt|t−∆t := ΦPt−∆tΦ
′ +Q, (24)

where Pt|t−∆t is the conditional variance, based on the information set at t−∆t (It−∆t).

This allows us to rewrite (23) into:

f

((
X̃t

ỹt

)∣∣∣∣∣ X̂t−∆t

)
∼ N

((
φ+ ΦX̂t−∆t

a+B(φ+ ΦX̂t−∆t)

)
;

(
Pt|t−∆t Pt|t−∆tB

′

BPt|t−∆t Vt

))
, (25)

where Vt := BPt|t−∆tB
′+H. We observe ỹt at time t, this allows us to compute the conditional

distribution of X̃t, given ỹt−∆t and X̂t−∆t, using:

f(X̃t|ỹt, X̂t−∆t) ∼ N(φ+ ΦX̂t−∆t +Ktut;Pt), (26)

where

ut := ỹt − (a+B(φ+ ΦX̂t−∆t)), (27)

Kt := Pt−∆tB
′V −1
t , (28)

Pt := Pt|t−∆t − Pt|t−∆tB
′V −1
t BPt|t−∆t = (I −KtB)Pt|t−∆t, (29)

where ut can be interpreted as a regression error. Kt is introduced for ease of notation and is the

Kalman Gain, this can be seen as the increase in efficiency by knowing ỹt. Pt is the conditional

variance, when ỹt is known. From the multivariate normal distribution given ỹt, we can derive

the conditional expectation:

X̂t := E[X̃t|ỹt, X̂t−∆t] = φ+ ΦX̂t−∆t +Ktut. (30)

This completes the calculation of the current time step of the Kalman filter, now we are able to

iterate forward over all t in the data, as long as we have a starting point for the state variable

X and the parameters. This will be treated in the next subsection.
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4.3 Parameter estimation

From (25) we can deduce

f(ỹt|X̂t−∆t) ∼ N(a+B(φ+ ΦX̂t−∆t);Vt), (31)

this implies

ln(Lt) = −d
2

ln(2π)− 1

2
ln(|Vt|)−

1

2
u′tV

−1
t ut, (32)

where d is the amount of dimensions in the multivariate normal, which in this case is equal to

m+ 2.

To solve this system however, we require an initialization of the Kalman Filter for X̂0 and

P0. This can be done in multiple ways, however in our paper we will apply two methods of

initialization, following Pelsser (2019), which uses the diffuse prior and the stationary prior.

The diffuse prior sets initial conditional variance P0 = I(k+2)×(k+2) and initial state X̂0 =

0k×1. Using this approach requires us to delete the first two observations to account for two

non-stationary variables in X̃, being ln(Πt) and ln(St). Thus we need to minimize the sum of

the negative log-likelihoods using the parameters

θ = arg min
θ

T∑
t=3

− ln(Lt). (33)

This approach does require some caution, as Pelsser (2019) retrieved non-stationary results in

this case, which would be undesirable in practice. This has led us to penalizing non-positive

and non-real eigenvalues of M = (K + Λ̃1)′ in the likelihood function by giving those outcomes

a high and positive value in the calculation of the negative log-likelihood, ensuring that this

parameter set is not selected.

The stationary prior assumes that we can observe the non-stationary variables ln(Πt) and

ln(St) without measurement error. Then we can set X̂0 = (E[X∞]′, ln(Π0), ln(S0))′ and P0 :=(
V ar[X∞] 0k×2

02×k 02×2

)
, where E[X∞] and V ar[X∞] are respectively the unconditional mean and

variance of X, subscript 0 is in this case the first observation after removing the first two

observations to account for the two non-stationary variables. The unconditional mean of X is

0k×1 by construction, while the unconditional variance of X is defined as

vec(V ar[X∞]) = (Ik2 −K ⊗K)−1vec(Ik), (34)

where⊗ denotes the Kronecker product, and vec(·) denotes the vectorization operator (Lütkepohl,

2005). We will minimize from t = 4 onward, as we do not minimize over the initial state and

drop an extra observation, since that is used as input for the initial state, following Pelsser

(2019). This leads to the following minimization of the negative log-likelihood:

θ = arg min
θ

T∑
t=4

− ln(Lt). (35)

13



5 Extensions

5.1 Structural breaks

We test for structural breaks in the Kalman Filter using a SupLR test, which is an extension

of the likelihood-ratio test where the change point is known and asymptotically follows a chi-

squared distribution (Wilks, 1938). Andrews (1993) proposes the SupW, SupLM and SupLR

tests, which test structural change in a model with a single unknown change point t. We opt

for the SupLR test due to the SupW and SupLM tests being asymptotically equivalent to the

SupLR test under suitable assumptions (Andrews, 1993) and its ease of use, as the log-likelihood

values are already calculated in the Kalman Filter. Andrews (1993) finds that the asymptotic

distributions of these tests are nonstandard, since the change parameter does not exist under the

null hypothesis, and finds an asymptotic null distribution for the null hypothesis. Approxima-

tions of the distributions of the null hypothesis for finite samples are given in, e.g., Diebold and

Chen (1996), which propose approximations based on asymptotics and bootstrapping. When

testing for a structural break, we test null hypothesis H0 : θ1 = θ2 against alternative hypothesis

Ha : θ1 6= θ2, where θ1 is used as the parameter set before the presumed break moment t and θ2

as the parameter set after the presumed break moment t and θ0 is the parameter set estimated

over the full sample.

The SupLR statistic is defined as the supremum over a series of likelihood-ratio statistics:

SupLR = sup
t
LR(t). (36)

The likelihood-ratio statistic is defined in this case as

LR(t) = 2

[
max
θ1

lnL1,...,t(θ1) + max
θ2

lnLt+1,...,T (θ2)−max
θ0

lnL1,...,T (θ0)

]
, (37)

where Lt1,...,t2(θ) =
∑t2

i=t1
Li(θ), see for example Wilks (1938). We can construct quantiles

of the statistic via bootstrapping. We do this by generating samples of the same length of

time series using (25), sampling from the multivariate normal under the null where no breaks

happen, similar to Morley et al. (2011). This allows us to generate SupLR statistics under the

null hypothesis, which allows us to test the statistical significance of the assumed break in the

data.

In practice it is advisable to apply some sort of symmetric trimming of the computation of

test statistics to keep the sizes of the subsamples sufficiently large. In this case we opt for a

symmetric trimming of 30%, leading to 0.3T < t < 0.7T , due to the amount of parameters in the

model that we need to estimate. Furthermore, Diebold and Chen (1996) find that for an AR(1)

model the distribution of the null hypothesis found in Andrews (1993) shows diminishing power

of the test statistic once the location of the break moves to the edge of the sample, motivating

the use of trimming.

In theory, we would apply a sequential approach in the case that we find a structural break. This

entails splitting the sample in two subsamples, one before break period t and one after break
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period t and repeating the approach of finding a break within these subsamples. In practice

however, we see in Section 6 that searching for a second break may lead to practical issues.

5.2 Introduce third factor in X

The Federal reserve in the US uses three factors in their factor models to estimate the zero

coupon bond rate (Kim and Wright, 2005), this also gives us the three factors to interpret as

in Litterman and Scheinkman (1991), i.e., the first, second and third factors can be interpreted

as the level, slope and curvature of the zero coupon curve, respectively, instead of just the level

and the slope in the two-factor model. Furthermore, we can use the goodness of fit measures

to observe whether the addition of the third factor would be desirable. Additionally, we can

observe whether the parameter estimates in a three-factor model would differ significantly from

the results that the DNB and Pelsser (2019) found. Furthermore, we can run simulations in

which we can observe to what extent the increase in factors would lead to a different scenario

set.

To assess whether the goodness of fit increases when introducing the third factor, we can use

the Bayesian and Akaike Information Criteria (BIC and AIC, respectively), devised by Schwarz

(1978) and Akaike (1974) respectively. These information criteria are defined as follows:

BIC = k ln(n)− 2 ln(L), (38)

AIC = 2k − 2 ln(L), (39)

where k is the number of parameters that have to be estimated, n is the amount of observations

in the sample, and ln(L) =
∑

t ln(Lt), where ln(Lt) is the log-likelihood calculated in (32).
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6 Results

In this section we will discuss the results of the paper. Firstly, we will look at the two-factor

case and test for a structural break. Then we will look at the three-factor case and test for

a structural break, after which we compare the two- and three-factor models using the AIC

and BIC. Concluding this section, we will look at the economic relevance of the analysis by

generating scenarios that result from these parameters.

6.1 Two-factor model estimations

As a starting point for the estimations, we use the parameters from DNB in Pelsser (2019).

Then we run constrained optimization (fmincon in MATLAB Optimization Toolbox (2020))

twice, where the second run receives the parameters from the previous optimization, to retrieve

estimated parameters for the diffuse prior. For the stationary prior, we use the estimated

parameters for the diffuse case as an initial value for fmincon. We use this approach due to an

issue with a local minimum if we follow the same procedure as in the diffuse case. The results

from these estimations can be seen in Table 4 in Appendix D. We find seemingly similar values

for both initializations of the prior. However, due to the large amount of parameters it would

be more useful to look into generated scenarios in Section 6.6.

6.2 Testing for a structural break using two factors

We obtain likelihood-ratio statistics by using the parameters from Section 6.1 as the initial

values in the optimization routine. This results in the two parameter sets for the first candidate

break point from 1 to t1, and t1 + 1 to T , where t1 is the first candidate break point equal to the

rounded value of 0.3 ∗ 269 ' 81. From there on, we use the lowest negative likelihood resulting

from the starting parameter sets calculated in Section 6.1 and the parameters of the previous

candidate break point as initial values. Then we repeat this process but reverse the order in

which we perform the calculations i.e., starting from the end of the set of candidate break points

to the beginning of the set of candidate break points. This aids in finding lower values for the

negative log-likelihood. Bootstrapped SupLR statistics are found by generating a series under

the null hypothesis, then we repeat the same procedure as in generating the SupLR values on

the data. However, in this case we only use the parameter set from the previous candidate

break point as initial value for the optimalization to reduce computation time. This process is

repeated 100 times, leading to 100 SupLR statistics.

The obtained LR-statistics are shown in Figure 3. We see that we obtain similar results

in both cases, with both series showing a fairly sharp peak reminiscent of a shark fin, which

is a sign of a strong single break. However, we find our SupLR statistics at different points

in time: In the diffuse case we find a SupLR statistic of 825.04 in October of 2008, while we

find a SupLR statistic of 823.02 in September of 2008. The parameters found until and after

their respective break points are shown in Tables 5 and 6 in Appendix D. In our bootstrapped

simulations we find a 95th percentile has a SupLR statistic of 86.37, with a maximum of 108.30
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in the diffuse case. In the stationary case we find that the 95th percentile of the bootstrapped

SupLR statistics is 70.22, with a maximum of 93.63. The histograms of these bootstrapped

SupLR statistics can be found in Figures 8 and 9 in Appendix E. Thus, we find that we can

reject the null hypotheses for both cases, as both SupLR statistics exceed the critical value of

the distribution of the bootstrapped null hypothesis at the 5% significance level.

Figure 3: Likelihood-ratio statistics of the two-factor model.

Due to issues regarding local minima, we do not show results of a potential second break.

6.3 Three-factor model estimations

To obtain an initial value for the optimization with added parameters, we sample all parameters

from a uniform distribution between twice the value of previously found optimal parameters for

the two-factor case and 0, with extra parameters being filled in such that no complex values

are returned. For the diffuse approach, we sample 50000 times from this uniform distribution,

of which we select the 4 lowest resulting negative log-likelihoods, again discarding the log-

likelihoods with a complex component. These 4 parameter sets are then used as initial values

for our optimization, where we run fmincon with these initial values and run fmincon once again

with the resulting parameter sets of this optimization and then pick the lowest negative log-

likelihood. For the stationary approach, we copy the starting value of the diffuse approach and

run fmincon twice, using the parameters resulting from the first optimization in the second run

of fmincon. The resulting parameters of these estimations can be found in Table 7 in Appendix

D. We will look at the practical implications of these parameter sets in Section 6.6.

6.4 Testing for a structural break using three factors

We calculate LR-statistics following the method described in Section 6.2. The obtained LR-

statistics are shown in Figure 4. We see that we obtain different shapes in the LR-statistics.
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We find in the case of the diffuse prior that there is a build-up towards a certain peak in June

of 2008, which is very quickly followed up by a higher peak which contains the SupLR statistic

of 700.04 in October of 2008, after which we find a fast decrease until December of 2008. The

values of the LR-statistics then increase towards April of 2009 and subsequently seems to decline

rather steadily. By contrast, we see that the LR-statistics in the stationary case shows a sharper

break and a much higher value of the SupLR statistic in October of 2008 with value 1047.63.

The series starts off on a higher level and follows a similar trend as the diffuse case, showing

a small peak in respectively February and March of 2007 in the diffuse and stationary cases.

The LR-statistics also show a similar steep decline after October of 2008 until January of 2009,

followed by a relatively small increase, which then declines steadily. The resulting parameter

sets can be found in Tables 8 and 9 in Appendix D.

We find that both SupLR statistics are statistically significant at the 5% level, since these

statistics exceed the 95th percentile of the bootstrapping under the null with 100 runs in both

cases, being 38.28 and 38.58 for the case with the diffuse and stationary priors respectively. The

histograms of the bootstrapped SupLR statistics can be found in Figures 10 and 11 in Appendix

E. Therefore, we may reject the null hypothesis of having no structural break in the parameters

in the full sample at the 5% significance level.

Figure 4: Likelihood-ratio statistics of the three-factor model.

We will not continue the analysis for further breaks in the three-factor case, due to the

relatively small number of data points per parameter in the two subsamples that arise from

both break points.

6.5 Comparing the two- and three-factor models

We use the Bayesian and Akaike Information Criteria defined in (38) and (39). The two-factor

model contains 29 parameters, while the three-factor model contains 42 parameters, giving us k

for both models. The time series contains 269 observations, this is equal for both models, giving
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us the value for n after this has been corrected for the number of observations that are excluded

in the likelihood function. We can see in Table 2 that we prefer the three-factor model in both

the diffuse and stationary case due to lower AIC and BIC values. Note that it is not desirable

to compare the diffuse and stationary priors across each other due to the exclusion of an extra

data point in the stationary case.

Two-factor model Three-factor model

Diffuse prior Stationary prior Diffuse prior Stationary prior

AIC -24076.88 -23994.82 -24249.28 -24174.68

BIC -23972.85 -23890.90 -24098.62 -24024.01

Table 2: AIC and BIC values for the two- and three-factor model, using the full sample.

Moreover, we show the AIC and BIC values, using the sample after October 2008 with their

respective obtained parameter sets, obtained in Sections 6.2 and 6.4, in Table 3. We once again

see that we would prefer the three-factor models for both priors due to lower values of both

the AIC and BIC. Note that in this case we do not have differing values for n, as we sum the

likelihoods from November 2008 onwards, however as the stationary case needs to exclude an

extra data point, we have given this extra information, which again might not lead to a fair

comparison between the diffuse and stationary priors.

Two-factor model Three-factor model

Diffuse prior Stationary prior Diffuse prior Stationary prior

AIC -13816.04 -13811.26 -13943.25 -14025.40

BIC -13903.54 -13898.76 -14069.98 -14152.12

Table 3: AIC and BIC values for the two- and three-factor model after October 2008.

6.6 Economic relevance of the results

We run a simulation of 10000 runs using each estimated parameter set. This is done using

Equation (25) for a length of 720 months (equal to the 60 years that need to be simulated in

the achievability test by DNB). Below we see the results from the generated scenario sets. To

compare our results, we also include the unrestricted stationary and DNB parameters, found

in Pelsser (2019), where we only include the DNB parameters in the graphs in the main text

for clarity. We omit the diffuse case from Pelsser (2019), because the values for price and stock

index explode due to non-stationary results for X. The mean of the simulated 1-, 10-, 20-, and

30-year ZCB rates are shown together with the log price and stock indices in Figures 5, 6, and

7, where we show the results from the DNB parameters as a reference in each set of figures.

Furthermore, we show the individual means and 5th percentiles of scenarios in Appendix H,

where also the scenarios for the 5-, and 15-year ZCB rates are shown. Note that the scenarios in

the Appendix have been run with a different seed, leading to different outcomes. This is done to
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show the effects of the non-stationarity of X̃, as the eigenvalues of Φ are not guaranteed to lie

within the unit circle under the current assumptions. The eigenvalues of Φ are shown in Tables

12, 13, and 14 in Appendix G.

From Figure 5 we see the mean of the scenarios for the ZCB rates, and the log price and

stock indices, using the parameters estimated on the full sample for both specifications of the

two- and three-factor model. We find that the mean log stock indices show negative values in

both specifications of the two-factor model and that the diffuse case of the two-factor model

shows some non-stationarity, with the ZCB rates drifting upwards. Furthermore, we find that,

on average, the three-factor model specifications show very similar results.

In Figure 6 we see the mean of the scenarios for the ZCB rates, and the log price and stock

indices, using the parameters estimated on both specifications of the two-factor model before

and after the observed break. We observe negative log stock indices, which aligns with the

descriptive statistics before the break, seen in Table 10 of Appendix F. Furthermore, the price

and stock indices after the break are very similar, to the point that this might not be easily

distinguished when looking at the figure. Lastly, we observe that the simulated ZCB rates using

the parameters after the break are lower when compared to the same model specification on

both the full sample and the sample before the break.

In Figure 7 we see a similar figure, now using the parameters estimated on both specifications

of the three-factor model before and after the observed break. We can draw similar observations

as in the two-factor case, where the ZCB rates are lower when using the parameters estimated

after the break. However in this case the we see relatively little similarity in the log price and

stock indices after the break. A peculiar point is that the mean log stock indices from the

parameters estimated before the break are not negative, deviating from the average decrease

that we find in the data.

When looking at these figures overall, we see some slight trending in the two- and three-

factor models in Figure 5. This can be explained by the eigenvalues of Φ, which can be seen in

the tables of Appendix G, which determines whether X̃ is stationary. We also notice that our

estimations always underestimate the price index when compared to the DNB scenario set and

that in cases incorporating the break we also find lower stock indices. In the three-factor model,

we see that the ZCB rates on average shows some form of an inverted yield curve in all cases.

In Appendix H, we see some different values of the models which have non-stationary X̃, this

can be seen clearly in Table 12, where on average the ZCB rates trend downward. Furthermore,

some idea of the volatility of the scenarios can be found when comparing the levels of the 5th

percentiles to the means. However, we will not discuss this to avoid an enumeration of model

specifications with different levels of volatility.
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(a) 1-year Zero Coupon Bond rates (b) 10-year Zero Coupon Bond rates

(c) 20-year Zero Coupon Bond rates (d) 30-year Zero Coupon Bond rates

(e) Log Price Index (f) Log Stock Index

Figure 5: Mean of scenarios from full sample estimations
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(a) 1-year Zero Coupon Bond rates (b) 10-year Zero Coupon Bond rates

(c) 20-year Zero Coupon Bond rates (d) 30-year Zero Coupon Bond rates

(e) Log Price Index (f) Log Stock Index

Figure 6: Mean of scenarios from two-factor split sample estimations
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(a) 1-year Zero Coupon Bond rates (b) 10-year Zero Coupon Bond rates

(c) 20-year Zero Coupon Bond rates (d) 30-year Zero Coupon Bond rates

(e) Log Price Index (f) Log Stock Index

Figure 7: Mean of scenarios from three-factor split sample estimations
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7 Discussion

In this paper we have tested for structural breaks and found an increase in fit in introducing

a third factor in the KNW model using data starting in January 1999 to May 2021. We find

statistical evidence for a structural break in both the two-, and three-factor KNW model for

both specifications of the prior. Moreover, using the parameters maximizing the log-likelihood

on the full sample may give scenarios which on average do not seem to align with the descriptive

statistics. This can be seen in, for example, the negative log stock indices in the two-factor

model. This issue seems to be mitigated by estimating the model using the subsample after

the found break point. Furthermore, we find in the estimations on the full sample that there is

an increase in fit using the three-factor model when compared to the two-factor model, using

the AIC and BIC values resulting from the models. This finding is robust to the found break,

as applying the model parameters estimated after the found break on the data after October

2008 also gives us preference for the three-factor model using the AIC and BIC. Lastly, we find

that the implementation of the breaks give rise to differing scenarios, leading to lower ZCB

rates in the scenarios that use parameters estimated after the break. This could be of practical

use, as the parameters are currently calibrated to give rates that align with their expectations.

However, decreasing the sample size such that the break is excluded may already alleviate the

need of calibration due to the lower found rates after the break.

The timings of the break points are all found in the aftermath of the financial crisis of

2007. Three of the four models indicate breaks in the parameters in October of 2008, while the

remaining model indicates a structural break in September of 2008. The break in October seems

to align with the introduction of fixed-rate full allotment policy by the ECB, while the break

in September can be attributed to that month being one of the critical months in the financial

crisis, where for example Lehman Brothers went bankrupt with severe effects for the financial

sector.

An interesting point of discussion is the economic relevance of the results. We see that there

are many specifications which would fit the data well, however some specifications may give

somewhat unrealistic results, which do not seem to represent the trends found in the data. For

example, we see scenarios in which the stock indices decrease rather heavily, while the stock

market increased on average in the data. This might suggest that the model might give more

weight towards optimizing for the bond rates. It could be interesting for future research to

analyze the sensitivity of the results in the KNW model to the amount of bond maturities that

are included in the Kalman Filter.

Additionally, we find that the eigenvalues of Φ are not forced to be inside the unit circle,

leading to non-stationary X̃. This is likely to not be desirable in practice. Thus, future research

can analyze the effects of constraints on Φ, such that X̃ remains stationary and to what extent

the current non-stationarity affects the scenarios.

Moreover, we find that while there might not be seemingly large differences between parame-

ter sets that these still can give fairly different outcomes in the scenario’s that result from these.
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Therefore, it might be of practical use for DNB to test the sensitivities of the scenarios to each

parameter and explain the implications of a quarterly change in certain parameters to increase

transparency towards pension funds that need to perform these tests.

One setback in the writing of the paper was that the estimation of further breaks in the

three-factor model was not desirable, as many parameters need to be estimated, while having

relatively few data points in the subsample. Future research may attempt to update this when

sufficient data will be available. Another issue we came across was the encounter of local minima

in some cases of the estimation of further breaks in the two-factor model. The parameter set

under the null hypothesis would lead to local minima in the bootstrapping of SupLR statistics.

This led us to omit these results, as this might decrease the clarity of the paper. This issue also

showcases that we find the common challenge of encountering difficulties with estimating no-

arbitrage models. See for example Kim (2007), which found that difficulties in estimation arise

due to the large amount of parameters and the nonlinear relationship between the parameters

and yields.

Lastly, we have not studied the regularity conditions of this problem. This might raise

some issues regarding optimality of the structural break testing in this paper, as Andrews and

Ploberger (1994) have shown that likelihood-ratio tests are not optimal when the regularity

conditions do not hold. In that case a weighted average power criterion can be used, which

is optimal and converges to LM-, Wald- and LR-tests when the regularity conditions hold.

However, to demarcate the problem and have the thesis feasible within the allotted time, we

opted for the SupLR test. This opens the avenue for further research to check the regularity

conditions of this problem and apply the weighted average power criterion if needed.
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A Bootstrapping swaps to zero coupon bonds

To calculate the zero coupon bonds from the interest rate swaps (IRS) collected in Section 3

we use bootstrapping, following Dijsselbloem et al. (2019). Since we obtained the IRS from the

first 10 years, we can apply a direct method to obtain the zero coupon rates for these years. For

the first year we need to solve
1 + r1

1 + z1
= 1, (40)

where r1 and z1 are respectively the swap and zero coupon rates with a one year maturity.

Solving this equation simply leads to z1 = r1, extending this to longer maturities requires us to

solve the following
τ−1∑
t=1

rτ
(1 + zt)t

+
1 + rτ

(1 + zτ )τ
= 1. (41)

The equation arises due to the nature of the IRS cashflows, returning interest rate rτ at each

time period and returning the principal, which we set at 1, at maturity. These cashflows are

discounted at each time period t with the zero coupon rate zt to the power of t to calculate a

net present value of the IRS. Since the principal is set to 1, the net present value of the IRS

should also be set to 1 (the principal) due to no-arbitrage. Solving (41) gives us

zτ =
1 + rτ

1−
∑τ−1

t=1
rτ

(1+zt)t

1
τ

− 1. (42)

Note that this requires zτ−1 and previous to calculate zτ . Since our data set also contains the

12, 15, 20, 25, and 30 year IRS, we cannot use (42) due to the gaps in time. Therefore, we use

the forward rate to help us calculate the zero coupon rates. We define the one year forward rate

as follows:

ft,t+1 =
(1 + zt+1)t+1

(1 + zt)t
− 1. (43)

Then we make the assumption that the one year forward rates between two observed maturities

are constant:

ft,t+1 = ft+1,t+2, ∀t, τ1 ≤ t < τ2, (44)

where we define τ1 and τ2 as two maturities, which are contained in our data set. As the rates

between τ1 and τ2 remain equal, we conclude that fτ1,τ2 . Now it follows that (1 + zτ1+1)τ1+1 =

(1 + zτ1)τ1(1 + fτ1,τ2) and (1 + zτ1+2)τ1+2 = (1 + zτ1)τ1(1 + fτ1,τ2)2, etc. This allows us to rewrite

(42) to

(1 + zτ1)τ1(1 + fτ1,τ2)τ2−τ1 =

 1 + rτ2
1−

∑τ1
t=1

r12
(1+zt)t

−
∑τ2−τ1−1

j=1
rτ2

(1+zτ1 )τ1 (1+f)j

τ2

. (45)

This allows us to calculate 1 + fτ1,τ2 numerically by solving

(1 + zτ1)τ1(1 + fτ1,τ2)τ2−τ1 −

 1 + rτ2
1−

∑τ1
t=1

rτ2
(1+zt)t

−
∑τ2−τ1−1

j=1
rτ2

(1+zτ1 )τ1 (1+f)j

τ2

= 0 (46)

for fτ1,τ2 , which allows us to calculate zt for τ1 < t ≤ τ2, since we can rewrite (44) to (1 + zt)
t =

(1 + zτ1)τ1(1 + fτ1,τ2)t−τ1 .
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B Calculation A(τ) and B(τ)

This appendix shows the analytical solutions to A(τ) and B(τ). The derivation of these solutions

are given in Muns (2015).

A(τ) = a0 + a
(1)
0 τ +

k∑
i=1

ai exp(−λiτ) +
k∑
j=1

aij exp(−(λi + λj)τ)

 (47)

a0 =

k∑
i=1

a(1)
i

λi
+

k∑
j=1

a
(1)
ij

λi + λj

 ai = −
a

(1)
i

λi
aij = −

a
(1)
ij

λi + λj
(48)

a
(1)
0 =

(
1

2
b0 − Λ̃0

)′
b0 − δ0R a

(1)
i =

(
b0 − Λ̃0

)′
bi aij =

1

2
b′ibj (49)

bi =
1

λi
(viv

−1
i )δ1R, i = 1, ..., k (50)

M = VλDλV
−1
λ Vλ = [v1, ..., vk] V −1

λ = [v−1
1 , ..., v−1

k ]′, (51)

where M = (Λ̃1 +K)′.

B(τ) = b0 +
k∑
i=1

bi exp(−λiτ) (52)

C Vector Ornstein-Uhlenbeck process

This appendix is following the approach from Appendix A of Pelsser (2019).

Starting with a system of linear ordinary differential equations (ODE’s):

dy(t)

dt
= Ay(t), (53)

where y(0) = y0 can be a vector of any length. Then (53) can be rewritten as

y(t) = exp(At)y0. (54)

In the case that A can be diagonalised, we can rewrite

exp(At) = V exp(Dt)V −1, (55)

where A = V DV −1, where D is diagonal and V contains the eigenvectors of A. Now we can

differentiate with respect to t, leading to

d exp(At)

dt
=

∞∑
n=1

Anntn−1

n!
= exp(At)A. (56)

This confirms that (54) holds as a solution for (53).

Now we consider the vector-OU process

dYt = (a+AYt)dt+ CdWt, (57)
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where Yt is a d-dimensional stochastic process, a is a constant d-dimensional vector, A is a

constant d×d-dimensional matrix, Wt is a k-dimensional Brownian Motion, and C is a constant

d×k-dimensional matrix. We can use process exp(−At)Yt and Itô’s lemma to derive the answer

for (53), leading us to

d exp(−At)Yt = (−A exp(−At)Yt + exp(−At)(a+AYt)dt+ exp(−At)CdWt

= exp(−At)adt+ exp(−At)CdWt

(58)

Then for T > t the solution of (58) is given by

YT = exp(A(T − t))Yt +

∫ T

t
exp(A(T − u))adu+

∫ T

t
exp(A(T − u))CdWu. (59)

This allows us to derive the conditional distribution:

f(YT |Yt) ∼ N
(

exp(A(T − t)Yt +

∫ T

t
exp(A(T − u))adu;

∫ T

t
exp(A(T − u))CC ′ exp(A′(T − u))du

)
(60)

The terms containing matrix exponentials can be calculated, using the fact that these terms

solve the following ODE’s:

d
∫ τ

0 exp(A(T − u))adu

dt
= a+A

(∫ τ

0
exp(A(T − u))adu

)
, (61)

d exp(A(T − u))CC ′ exp(A′(T − u))du

dt
=A exp(A(T − u))CC ′ exp(A′(T − u))du+

exp(A(T − u))CC ′ exp(A′(T − u))duA′ + CC ′,

(62)

where both equations have initial conditions equal to zero in the vector and matrix form respec-

tively, since in that case the integral goes from zero to zero. The model is time-homogenous i.e.,

the parameters do not change over time, thus we can define τ := T − t to simplify our notation.

However, for small ∆t we can use Euler discretization to approximate the vector-OU process:

Yt+∆t − Yt = (a+AYt)∆t+ C(Wt+∆t −Wt) +O(∆t3/2). (63)

The discretization allows us to bypass the calculation of the matrix exponentials, after which

we can approximate the conditional distribution for small ∆t:

f(Yt+∆t|Yt) ≈ N((I +A∆t)Yt + a∆t;CC ′∆t). (64)
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D Estimated parameters

Diffuse prior Stationary prior

δ0π 1.2539 1.2501

δ1π,1 0.0722 0.0677

δ1π,2 -0.0394 -0.0394

δ0r 3.6602 3.2077

δ1r,1 1.8781 1.8867

δ1r,2 -1.5663 -1.5318

K11 -0.6857 -0.6220

K22 -0.5912 -0.4110

K21 106.6488 105.7645

σΠ,1 -0.0425 -0.0464

σΠ,2 -0.3007 -0.3050

σΠ,3 -1.7162 -1.7159

ηS -7.4642 -7.0942

σS,1 5.6150 4.9107

σS,2 -14.9331 -13.9527

σS,3 -2.7143 -2.6387

σS,4 49.1346 49.1187

λ0,1 -1576.5478 -1523.3475

λ0,2 758.6516 755.0843

Λ̃1,1 148.3994 148.4292

Λ̃1,2 32.4658 30.6260

Λ̃2,1 -212.2957 -216.0061

Λ̃2,2 -15.9361 -15.7957

h1 0.0271 0.0275

h5 0.0023 0.0022

h10 0.0000 0.0000

h15 0.0002 0.0002

h20 0.0000 0.0000

h30 0.0016 0.0016

Full sample log-likelihood 12067.44 12026.41

Log-likelihood until October 2008 5287.70 5246.77

Log-likelihood after October 2008 6779.74 6779.64

Table 4: Estimated parameters (×1000) and corresponding log-likelihoods of the two-factor

model.
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Until break After break

δ0π 1.9113 1.0152

δ1π,1 0.0373 0.0536

δ1π,2 0.0287 -0.0540

δ0r 5.9058 0.0001

δ1r,1 2.7209 1.3450

δ1r,2 -0.8947 -1.3954

K11 0.8516 -1.0470

K22 15.1874 -0.9906

K21 10.0704 39.0191

σΠ,1 -0.1449 0.0646

σΠ,2 -0.2674 -0.4083

σΠ,3 -1.5166 -1.8704

ηS -22.3995 -0.4706

σS,1 11.6639 -2.3787

σS,2 -2.4476 -11.0784

σS,3 7.3431 -5.1614

σS,4 45.3995 47.6475

λ0,1 -2165.2574 -1107.9313

λ0,2 713.6128 787.4767

Λ̃1,1 154.3587 158.1741

Λ̃1,2 69.3955 61.5816

Λ̃2,1 -74.4276 -189.3830

Λ̃2,2 -24.7130 -34.3365

h1 0.0257 0.0317

h5 0.0015 0.0023

h10 0.0000 0.0000

h15 0.0000 0.0002

h20 0.0000 0.0000

h30 0.0002 0.0012

Full sample log-likelihood 8495.30 11610.24

Log-likelihood until October 2008 5499.19 4629.47

Log-likelihood after October 2008 2996.11 6980.77

Table 5: Estimated parameters (×1000) and corresponding log-likelihoods in the two-factor

model before and after the break with a diffuse prior.
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Until break After break

δ0π 2.3563 1.0768

δ1π,1 0.0180 0.0460

δ1π,2 0.0432 -0.0487

δ0r 2.0089 0.0001

δ1r,1 2.5468 1.3893

δ1r,2 -1.3265 -1.3581

K11 4.4181 99.2483

K22 13.3004 17.1775

K21 26.6669 56.0048

σΠ,1 -0.1911 0.0517

σΠ,2 -0.2777 -0.4007

σΠ,3 -1.5239 -1.8682

ηS -30.6398 0.6198

σS,1 12.6222 -8.2539

σS,2 -3.7230 -8.6708

σS,3 9.0745 -5.1874

σS,4 44.4302 47.5254

λ0,1 -1709.7635 -1794.5365

λ0,2 982.4166 1395.9101

Λ̃1,1 149.0715 62.5941

Λ̃1,2 40.6089 65.5438

Λ̃2,1 -119.6867 -211.9599

Λ̃2,2 -17.4417 -57.5418

h1 0.0244 0.0324

h5 0.0014 0.0025

h10 0.0000 0.0000

h15 0.0000 0.0002

h20 0.0000 0.0000

h30 0.0002 0.0013

Full sample log-likelihood 7915.74 11616.82

Log-likelihood until October 2008 5458.74 4638.44

Log-likelihood after October 2008 2457.00 6978.38

Table 6: Estimated parameters (×1000) and corresponding log-likelihoods in the two-factor

model before and after the break with a stationary prior.
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Diffuse prior Stationary prior Diffuse prior Stationary prior

δ0π 1.8984 1.8982 λ0,1 341.1780 341.1756

δ1π,1 -1.2876 -1.3581 λ0,2 3050.0168 3050.0155

δ1π,2 2.4179 2.5549 λ0,3 2455.9721 2455.9751

δ1π,3 -0.0190 -0.0203 Λ̃1,1 -184.0783 -184.0368

δ0r 43.6805 43.6900 Λ̃1,2 -22.6596 -22.6363

δ1r,1 -0.2490 -0.2343 Λ̃2,1 -633.1985 -633.1824

δ1r,2 -0.0808 -0.0823 Λ̃2,2 -1439.5350 -1439.5223

δ1r,3 -1.7549 -1.7686 Λ̃1,3 289.1358 289.1664

K11 0.1998 0.1318 Λ̃2,3 1544.2839 1544.2976

K22 1964.3792 1964.3181 Λ̃3,1 -315.8296 -315.8594

K21 -1020.4152 -1020.2809 Λ̃3,2 -1258.2063 -1258.2215

K31 -763.6775 -763.5055 Λ̃3,3 1197.4008 1197.3701

K32 1469.7013 1469.5991 h1 0.0000 0.0000

K33 -0.7619 -0.7457 h5 0.0022 0.0022

σΠ,1 0.1627 0.2062 h10 0.0004 0.0004

σΠ,2 0.1273 0.0858 h15 0.0000 0.0000

σΠ,3 0.5760 0.5885 h20 0.0004 0.0004

σΠ,4 1.1564 1.1348 h30 0.0046 0.0046

ηS -10.3358 -10.3275 Full sample ln(L) 12166.64 12129.34

σS,1 -9.7307 -9.7401 ln(L) until October 2008 5302.95 5264.75

σS,2 25.5630 25.5631 ln(L) after October 2008 6865.95 6864.44

σS,3 6.9173 6.9123

σS,4 -21.9699 -21.9727

σS,5 35.9459 35.9470

Table 7: Estimated parameters (×1000) and corresponding log-likelihoods of the three-factor

model.
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Until break After break Until break After break

δ0π 2.9484 1.7674 λ0,1 1229.7383 -85.4479

δ1π,1 -0.4321 -1.2895 λ0,2 2326.7648 3855.3947

δ1π,2 0.8790 2.3403 λ0,3 3523.9271 2489.8825

δ1π,3 -0.0547 0.0194 Λ̃1,1 -464.1745 -307.8430

δ0r 21.3453 26.2292 Λ̃1,2 330.1380 -26.5482

δ1r,1 -0.0802 -0.9329 Λ̃2,1 -325.8254 -730.4128

δ1r,2 -0.9937 0.4207 Λ̃2,2 -288.2055 -1085.0208

δ1r,3 -2.8202 -1.2743 Λ̃1,3 622.2274 470.1695

K11 8.4532 0.3382 Λ̃2,3 971.1863 1776.9632

K22 1075.8936 1727.3385 Λ̃3,1 -634.6868 -446.3443

K21 -571.0551 -912.1682 Λ̃3,2 -105.7352 -1262.5367

K31 -601.5277 -834.6769 Λ̃3,3 1403.3460 1511.1807

K32 1135.2567 1584.5133 h1 0.0000 0.0000

K33 8.9335 -0.0096 h5 0.0017 0.0021

σΠ,1 0.0536 0.0008 h10 0.0003 0.0003

σΠ,2 -0.9334 0.3563 h15 0.0000 0.0000

σΠ,3 0.1783 0.6351 h20 0.0002 0.0003

σΠ,4 1.2556 1.0415 h30 0.0011 0.0026

ηS 31.1507 -7.3774 Full sample ln(L) 10850.01 10438.84

σS,1 -13.7476 -16.8398 ln(L) until October 2008 5439.67 3359.42

σS,2 10.5060 29.9903 ln(L) after October 2008 5412.34 7076.99

σS,3 -13.1846 13.1617

σS,4 2.1297 -29.2077

σS,5 47.6948 3.8907

Table 8: Estimated parameters (×1000) and corresponding log-likelihoods in the three-factor

model before and after the break with a diffuse prior.
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Until break After break Until break After break

δ0π 1.0124 1.0744 λ0,1 764.0047 107.3769

δ1π,1 -0.0038 -1.2442 λ0,2 1185.0668 3276.8223

δ1π,2 0.0402 2.0563 λ0,3 1920.0769 1927.6871

δ1π,3 -0.0348 -0.0119 Λ̃1,1 -670.4909 -252.0732

δ0r 56.8349 3.9251 Λ̃1,2 671.9924 -39.5558

δ1r,1 0.3359 -0.2885 Λ̃2,1 -231.0403 -951.9042

δ1r,2 -1.5200 0.3565 Λ̃2,2 -42.9496 -949.4717

δ1r,3 -2.6151 -1.3624 Λ̃1,3 575.1340 258.8472

K11 0.2580 25.6164 Λ̃2,3 646.6484 2075.6138

K22 1143.0140 1528.7990 Λ̃3,1 -1069.9041 -644.0185

K21 -743.7412 -891.1117 Λ̃3,2 1001.9533 -1177.5787

K31 -303.8618 -772.2684 Λ̃3,3 986.1762 1547.4083

K32 468.3076 1375.2360 h1 0.0000 0.0000

K33 3.5396 -1.8104 h5 0.0008 0.0017

σΠ,1 -0.1383 0.1516 h10 0.0001 0.0003

σΠ,2 -0.2351 0.2219 h15 0.0000 0.0000

σΠ,3 0.2506 0.5438 h20 0.0001 0.0002

σΠ,4 1.4304 1.1996 h30 0.0004 0.0016

ηS -16.5922 17.3588 Full sample ln(L) 9171.67 9490.11

σS,1 -8.7509 -11.7820 ln(L) until October 2008 5535.09 2370.57

σS,2 9.2091 35.2618 ln(L) after October 2008 3618.49 7118.06

σS,3 -21.8969 13.5242

σS,4 -4.1092 -23.6864

σS,5 43.8769 10.4715

Table 9: Estimated parameters (×1000) and corresponding log-likelihoods in the three-factor

model before and after the break with a stationary prior.
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E Bootstrapped Histograms

Figure 8: Histogram of bootstrapped SupLR statistics in the two-factor model with diffuse prior.

Figure 9: Histogram of bootstrapped SupLR statistics in the two-factor model with stationary

prior.
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Figure 10: Histogram of bootstrapped SupLR statistics in the three-factor model with diffuse

prior.

Figure 11: Histogram of bootstrapped SupLR statistics in the three-factor model with stationary

prior.
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F Descriptive statistics before and after October 2008

Mean Standard deviation

∆ ln(Price Index) 1.860 1.562

∆ ln(Stock Index) -1.253 45.301

∆yt(1) 0.146 1.876

∆yt(5) 0.081 2.197

∆yt(10) 0.021 1.854

∆yt(15) -0.011 1.741

∆yt(20) -0.041 1.677

∆yt(30) -0.084 1.646

Table 10: Summary statistics of the first-differenced series (×1000) until October 2008.

Mean Standard deviation

∆ ln(Price Index) 0.988 1.562

∆ ln(Stock Index) 7.839 45.301

∆yt(1) -0.301 1.162

∆yt(5) -0.284 1.523

∆yt(10) -0.289 1.780

∆yt(15) -0.281 1.966

∆yt(20) -0.263 2.036

∆yt(30) -0.233 2.067

Table 11: Summary statistics of the first-differenced series (×1000) after October 2008.
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G Eigenvalues of Φ

Diffuse prior Stationary prior Until break (D) After break (D) Until break (S) After break (S)

1 1 1 1 1 1

1 1 1 1 1 1

1.001* 1.000* 0.985 1.001* 0.987 0.983

1.001* 1.001* 0.999 1.001* 0.996 0.906

Table 12: Eigenvalues of Φ in the two-factor model. (S): Stationary prior, (D): Diffuse prior, *:

eigenvalue exceeds 1.

Diffuse prior Stationary prior Until break (D) After break (D) Until break (S) After break (S)

1 1 1 1 1 1

1 1 1 1 1 1

1.001* 1.001* 0.991 1.000* 0.996 1.002*

0.140 0.140 0.341 0.178 0.319 0.217

1.000 1.000 0.992 1.000 1.000 0.975

Table 13: Eigenvalues of Φ in the three-factor model. (S): Stationary prior, (D): Diffuse prior,

*: eigenvalue exceeds 1.

Diffuse prior Stationary prior DNB parameters

1 1 1

1 1 1

0.296 0.298 0.299

1.076 0.961 0.953

Table 14: Eigenvalues of Φ from Pelsser (2019). (*) : eigenvalue exceeds 1
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H Individual mean and 5th percentile of simulated scenarios

(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 12: Two-factor diffuse case
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 13: Two-factor stationary case
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 14: Two-factor diffuse case prior to the first break
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 15: Two-factor diffuse case after the first break
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 16: Two-factor stationary case prior to the first break
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 17: Two-factor stationary case after the first break

44



(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 18: Three-factor diffuse case
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 19: Three-factor stationary case
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 20: Three-factor diffuse case prior to the first break
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 21: Three-factor diffuse case after the first break

48



(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 22: Three-factor stationary case prior to the first break
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 23: Three-factor stationary case after the first break
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 24: DNB parameters from Pelsser (2019)
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(a) Mean of ZCB rates (b) Mean of log price and stock indices

(c) 5th percentile of ZCB rates

(d) 5th percentile of log price and stock

indices

Figure 25: Stationary parameters from Pelsser (2019)
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