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Abstract

This research investigates a non stationary EVT approach, applied to market risk. The excess

probability and the conditional excess distribution are modelled by covariates, using a LASSO for

regularization. In addition, the excess probability is modelled by a Markov switching model. I

test different model setups with a traditional backtest and a comparative backtest. While most

comparative tests are statistically inconclusive, the results suggest that the non stationary EVT

approach as it is defined in this study is a promising extension of stationary EVT. Also, there is

a significant difference in performance when the market is in a calm state. The VIX is a crucial

covariate that captures market uncertainty and volatility. A benchmark GARCH approach and

the Markov switching model confirm the importance of modelling market uncertainty. One con-

figuration of the non stationary EVT approach could serve as a more stable alternative for the

GARCH-based model, which is favorable from a practitioner’s point of view.
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1 Introduction

Financial markets have received significant attention from researchers for many decades. Since

‘Black Monday’ in 1987, market crashes are also studied in detail because of the impact of such

events. The risk of a market crash falls under market risk, which is one of the main drivers of

risk for financial institutions. Large market losses apply pressure on financial institutions, which

sometimes causes them to fail. As a result, stock market crises are often accompanied with an

economic downturn, including budget cuts, lost jobs and pensions, etc. Hence, severe stock market

losses are outcomes that touch upon the lives of all kinds of people, including the average Joe.

However, they also seem to be inherent to the way our society and economic policies are structured.

Therefore, it is important to be well prepared when a crisis hits. At the same time, institutions

should not be too conservative in their decisions, since this implies a waste of resources.

Risk management focuses on balancing the risks of highly unfavorable outcomes while using

resources efficiently. To do so, the key is to have an accurate understanding of what the risks are. In

the case of market risk, this entails that researchers try to estimate the probability that outcomes in

the right tail of the loss distribution materialize. Based on those estimates, financial institutions save

capital to overcome market downturns. This is not only important for the health and endurance of

the institution itself; it is also mandatory. Regulators verify if financial institutions abide regulatory

capital requirements and if the model they use for estimating market risk is adequate.

This research focuses on using extreme value theory (EVT) to study market risk. I investigate

whether current EVT methods for assessing market risk can be improved by using non stationary

models, which would imply better estimates of the risk with all its benefits. Using the peak-over-

threshold (POT) method, the probability that a high loss occurs is split into the probability that

a loss exceeds some threshold and the probability that certain losses above that threshold are ob-

served, given that the threshold is exceeded. I refer to the first probability as the excess probability

(or probability of exceedance). The second probability is characterized by the conditional excess

distribution. Together, they are used to estimate the distribution of high losses. Gencay and Selcuk

(2004) use the POT method in the context of market risk. Both the excess probability and the

conditional excess distribution are assumed to be static in their research. Hambuckers et al. (2018a)

model the parameters of the conditional excess distribution with covariates, applying regularization

in the process. However, their area of application is operational risk.

This study adds to the current literature in two ways. Firstly, I extend the non stationary
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approach of Hambuckers et al. (2018a) to market risk by using covariates to estimate the parameters

of the conditional excess distribution. Second, I estimate the excess probability using covariates via

a logistic model and a Markov switching model. Together, the approach is a non stationary version

of the standard EVT method for estimating market risk (e.g. in Gencay and Selcuk (2004)), hence

the name ‘non stationary EVT’. This approach reveals the role that covariates play in estimating

market risk. In addition, the information that those covariates hold is used to possibly improve the

estimates of the likelihood of high losses. To the best of my knowledge, non stationary EVT has

not been applied to market risk at this point. I apply the analysis to U.S. stock market and use 48

covariates of various kinds, with data spanning from August 2001 to October 2021.

The extensions that non stationary EVT adds are tested using combinations of stationary and

non stationary models, such that the impact of each extension isolated. Furthermore, additional

models that use extensions for both the excess probability and the conditional excess distribution

are estimated to examine performance when they are combined. For the test procedure, I use

the methodology in Nolde and Ziegel (2017). Their test compares methods, such that it can be

determined if one approach significantly outperforms another.

The results imply that all EVT approaches are adequate risk measurement procedure. In

addition, the comparative backtests show that there is no significant difference in performance

between the models, except when a subset of the test data is used that is considered to be generated

in a calm state of the market. In this subcase, the GARCH and two non stationary EVT models

perform the best. Even though the differences are not significant in most of the tests, the non

stationary EVT approach shows promise over the stationary EVT model. The VIX is a crucial

covariate that captures market uncertainty and volatility. Including the VIX results in similar

results to the GARCH approach in McNeil and Frey (2000), which models market volatility in a

different manner. The model that use a Markov switching model for the excess probability and a

stationary conditional excess distribution shows good performance in the comparative tests, while

being relatively stable in comparison to the other well performing models. Hence, it could serve as

a more practical alternative for the GARCH-based model.

The rest of the paper is structured as follows. I review literature that is closely related to

this research in Section 2. In section 3, a brief data description is provided. I give an outline in

section 4 on the methodology. In section 5, the results of the research are given and provided with

interpretation.
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2 Literature review

Using the POT method in a market risk setting has been studied in the literature. Gencay and

Selcuk (2004) use EVT by assuming a stationary generalized Pareto distribution (GPD) as the

conditional excess distribution. McNeil and Frey (2000) and Singh et al. (2013) introduce dynamics

in the POT model via a GARCH(1, 1). After fitting the GARCH model to the data, a GPD is

fitted to the residuals. Their ‘dynamic EVT’ accounts for conditional heteroskedasticity in financial

time series. This approach shows promise over the standard EVT approach in Gencay and Selcuk

(2004).

However, in market risk studies that apply EVT, the parameters of the GPD (the conditional

excess distribution) and the probability of exceedance are considered to be stationary in all afore-

mentioned studies. The stationary GPD can be extended to a non stationary GPD, which falls under

the generalized additive model of location, scale, and shape (GAMLSS) in Rigby and Stasinopoulos

(2005). Non stationary GPD models are used in other fields of risk management. Chavez-Demoulin

et al. (2016) fit a non stationary GPD to operational losses, in the sense that the parameters of the

GPD are functions of a small number of covariates. Hambuckers et al. (2018a) extend the approach

of Chavez-Demoulin et al. (2016) by adding more covariates to the model. They use regularization

in the form of a LASSO (Tibshirani, 1996) to counter overfitting. Hence, their model selects the

most informative covariates for estimating the GPD parameters. In contrast, Hambuckers et al.

(2018b) add a hidden Markov model to the methodology of Chavez-Demoulin et al. (2016), thereby

accounting for differing behavior of losses in prosperous and crisis states of the world. However,

the setting of operational risk is different from market risk, since the data frequency is usually

quarterly in the field of operational risk, with multiple losses in each quarter. The data frequency

for market risk studies is often higher (mostly daily). If a loss at a certain day is not large enough

to ‘peak over the threshold’, then there is no observation for that day in the sample of extreme

losses. Therefore, using a Markov switching element for the GPD estimation in a POT setting while

studying market risk is not sound, since the Markov chain would not be equally spaced. Hence, I

follow Hambuckers et al. (2018a), and refrain from using a hidden Markov model for the conditional

excess distribution.

In the setting of Hambuckers et al. (2018a), other forms of regularization could be considered.

There are various extensions of the original LASSO. The adaptive LASSO (AdLASSO) of Zou

(2006) applies a coefficient-specific weighting to the regularization penalty, which could help with
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achieving more stable estimates. Also, AdLASSO can help reduce the bias that comes with the use

of a LASSO term. The elastic net of Zou and Hastie (2005) is a combination of ridge regression and

LASSO, which is shown to select highly correlated variables as a group. In contrast, the LASSO

tends to choose one of the correlated variables and discards the rest. Also, the elastic net is expected

to behave more stable then the LASSO in the situation of highly correlated variables. However,

I choose the original LASSO over the elastic net since the parsimony of the LASSO is desired in

this study. Many of the included covariates are highly related, some even are constructs of each

other. The fact that the LASSO chooses the most informative one and discards the rest yields a

more informative model than when it would include three versions of the same variable. Also, the

LASSO requires less tuning of hyperparameters. LASSO is also preferred over AdLASSO since the

approach is simpler and the differences with LASSO are expected to be minor and not necessarily

in favour of the AdLASSO (Hambuckers et al., 2018a).

3 Data

This study investigates the left tail behavior of the S&P 500 index (SPX). The daily returns of the

SPX are given in Figure 1. The data spans from August 2nd 2001 to October 1st 2021, eventually

yielding a sample size of 5072 trading days. I choose this specific time span since one explanatory

variable is not available before August 2nd 2001. The origin of the entire data set is Bloomberg.

I use a set of 48 covariates to model the SPX. Table 9 in Appendix A shows cohesive list of

all the 49 variables (including the SPX) that are included in the analysis. It consists of other

world major indices (with their volume for the US indices), technical variables, the VIX, natural

resources, exchange rates, several types of interest rates, and spreads between interest rates. The

selection of the covariates is largely based on Zhong and Enke (2019), who gather covariates that

are used in various previous articles that study daily stock returns. The aim in Zhong and Enke

(2019) is to try to predict returns, which includes gains. In contrast, I look exclusive at large losses.

However, I reason that variables that are possibly related to stock returns are also likely to be useful

in predicting large losses. That being said, the set of covariates in Table 9 is slightly different from

the set of variables in Zhong and Enke (2019). These differences are motivated by the difference in

nature between their study and this one and also reflect my own reasoning. Details on why certain

variables are added or left out can be found in Appendix A.

The raw data has several missing values because of mismatching trading day schedules in dif-
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ferent countries and randomly missing periods. As a solution, I take the SPX time series as the

starting point of the cleaning process, in the sense that all the periods that correspond to the

missing values in the SPX series are removed. This is motivated by the fact that the SPX is the

endogenous variable. After this round of cleaning, the data only consists of observations where

the SPX is observed. This however leaves several missing values in the series of the explanatory

variables, which are resolved by linear interpolation. The vast majority of the gaps that are inter-

polated consist of one or two missing observations. For most variables, only one to four percent of

the observations is interpolated.

After the cleaning process, the data is transformed. The SPX index is converted to negative log

returns. The same transformation is applied to all the explanatory variables with exception of the

the VIX, interest rates and interest rate spreads. In addition, all variables that are not the SPX or

lags of the SPX are lagged, since outcomes of covariates should explain the SPX behavior of the

next day. By choosing log differences for most of the explanatory variables, I assume that shocks

explain shocks— that is, that a shock in the SPX return is explained by a shock in the explanatory

variables, instead of the levels of those variables. Also, many covariates are clearly non stationary.

Hence, considering levels of those variables would be uninformative.
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Figure 1: The S&P 500 negative log returns over the entire period spanned by the data.

I use different transformations for interest rates and the VIX. Firstly, the interest rates are

converted to differences instead of log returns. Interest rates can be interpreted as a return, so

considering differences instead of log returns is sensible. Second, the VIX is used in levels instead

of (log) differences. Since the VIX and SPX returns are expected to be heavily connected in real

time (they react to each other fast), a significant loss on a certain day is usually accompanied by

a high positive change in the VIX on that same day. However, lags of the explanatory variables

are used in this research, and the relative change of the VIX is not expected to have a significant

effect on the relative change of the SPX on the next day. Therefore, I choose to use the VIX in

levels, since the level of this variable holds information in itself. Time spans with high VIX levels

are considered as uncertain times, which is expected to have an impact on stock returns.
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4 Methodology

The analysis focuses on the loss of the SPX, denoted X with an unknown distribution F (x). The

aim is to estimate the value at risk (VaR), VaRα = F−1(α), which is a quantile of the distribution

of X. The focus lies on the right tail of the loss distribution, so α is close to one. The tail can

be modeled using extreme value theory (EVT). In fact, with EVT one considers only the tail and

is not attempting to find a complete distribution for the loss X. Instead, the tail, which is the

part that is of interest to risk managers, is modelled exclusively and therefore potentially more

accurately.

There are two main approaches in the EVT framework: the block-maxima and the peak-over-

threshold (POT) methods. In this article, the peak-over-threshold (POT) method is considered.

The more traditional block-maxima method is found to make inefficient use of the data (Singh

et al., 2013). Also, the POT method has a straightforward extension to computing the VaR, which

is the end goal of modelling the tail of the distribution of X. In the classic POT framework where

stationarity of the parameters is assumed, a high threshold value is fixed after which the outcomes

of X that exceed this threshold are modelled. I assume that for X above a certain threshold u, the

excess loss Y = X − u follows a generalized Pareto distribution (GPD):

GPD(y; ξ, β) =


1− (1 + ξ y

σ )
− 1

ξ if ξ ̸= 0

1− exp(− y
σ ) if ξ = 0,

(1)

with y ≥ 0, ξ ∈ R, and σ > 0. If ξ < 0, then 0 < y < −σ/ξ. In the case of ξ = 0, the GPD takes

an exponential form. The assumption that the conditional excess distribution Y (approximately)

follows a GPD stems from the Gnedenko and Pickands–Balkema–De Haan theorems (Gnedenko

(1943); Balkema and De Haan (1974); Pickands III (1975)). For the SPX, ξ > 0 is considered—

that is, the case where the data is heavy tailed (Chavez-Demoulin et al., 2016).

The relevance of equation (1) follows after the distribution of X is rewritten as

F (x) = 1− P (X > x)

= 1− P (X > u)P (X − u > x− u|X > u)

= 1− F̄ (u)F̄u(y)

= 1− F̄ (u)(1− Fu(y)),
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for X > u, where y = x − u, F̄ (u) = P (X > u) is the probability of exceeding u and Fu(y) =

P (X − u ≤ y|x > u) is the conditional excess distribution. As mentioned above, it is assumed that

Fu(y) = GPD(y; ξ, σ). Hence, if follows that

F (x) = 1− F̄ (u)(1−GPD(y; ξ, σ)), (2)

and, after inverting F (x) to find the VaR, that

VaRα = u+
σ

ξ

((
1− α

F̄ (u)

)−ξ

− 1

)
. (3)

Estimating the VaR requires an estimate of ξ, σ and F̄ (u), which is done via maximum likelihood

estimation. Similar to Chavez-Demoulin et al. (2016), the likelihoods for estimating the probability

of exceedance and the parameters in the conditional excess distribution are estimated separately,

since they are assumed to be independent after conditioning on an information set, e.g. covariates.

4.1 Estimation of the probability of exceedance

For ease of notation, define πu = F̄ (u) = P (X > u) as the excess probability. The simplest

approach for estimating πu is to use the empirical distribution of X (McNeil and Frey (2000);

Gencay and Selcuk (2004)). Let T be the size of entire sample, which is split into a training and

test set. If τ is the length of the training set, E is the set of samples in the training set that

exceed the threshold u, and N = |E| is the cardinality of the set E (its size), then the empirical

distribution estimate is simply the ratio

π̂emp
u =

N

τ
. (4)

Since πu appears in equation (3), it influences the VaR estimate directly. Thus, if estimates of πu

could be improved, estimates of the VaR would improve as well. I attempt to do that by considering

a dynamic πu.

4.1.1 Conditioning πu on covariates

To achieve a dynamic probability, the first method that I consider is to condition πu on a set of

covariates. This results in πu(zt), t ∈ {1, ..., T}, with Z = (z1, ...,zT )
′ as the T × (M + 1) matrix

where zt = (1, z1,t, ..., zM,t)
′ consists of a one for including a constant and M covariates. zt stores
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the values of the covariates at time t − 1, which are used to model Xt. This allows for using

the model in practice. The reasoning behind using πu(zt) is that movements or levels of certain

variables could have an impact on the excess probability, and that accounting for this should result

in more accurate estimates.

To estimate πu(zt), the problem can be reformulated as a classification problem. If Bt ∼

Bern(πu(zt)) is a Bernoulli random variable such that

Bt =


1 if Xt > u

0 if Xt ≤ u,

then πu(zt) can be estimated via various methods. In this study, a logistic model is used for its

estimation. Defining β = (β0, ..., βM )′ as the vector of coefficients gives

πu(zt | β) =
exp(β′zt)

1 + exp(β′zt)
. (5)

β can be estimated via maximum likelihood estimation. From Cameron and Trivedi (2005), the

likelihood function of a Bernoulli random variable Bt ∼ Bern(πu(zt | β)) for t = {1, ..., τ} is given

by

L(β|b,Z) =
τ∏

t=1

(πu(zt | β)bt(1− πu(zt | β))1−bt), (6)

where b is the τ -vector of realisations of Bt. The log-likelihood then follows as

l(β|b,Z) =
τ∑

t=1

{
bt lnπu(zt | β) + (1− bt) ln(1− πu(zt | β))

}
. (7)

Maximizing equation (7) with respect to β yields the maximum likelihood estimates β̂.

4.1.2 Regularization

Since the number of covariates that can be considered for modelling stock return dynamics is high,

I use regularization to avoid overfitting. In most applications, the aim of using regularization is to

achieve two things. Firstly, the estimates of the coefficients should shrink, which should provide

better out-of-sample estimation. Second, regularization should provide an interpretable model via

forcing coefficients to exactly zero, where the coefficients of relatively uninformative variables are
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set to zero first. If a coefficient is zero, the variable corresponding to it is essentially excluded from

the model. Hence, regularization can also perform variable selection.

Not all regularization methods achieve both things. For example, ridge regression is excellent

at shrinking coefficients towards zero but fails to set them at exactly zero. I use the least absolute

shrinkage and selection operator (LASSO), which was first proposed by Tibshirani (1996). In

contrast to ridge regression, LASSO does force coefficients to zero, which is of importance in this

study since there are many variables to consider. Defining Lπu(·) as the penalized log-likelihood

for estimating πu gives

Lπu(β|λ, b,Z) = l(β|b,Z)− λ

M∑
m=1

|βm|, (8)

where Z is standardized and λ > 0 is a hyperparameter that needs to be tuned. The LASSO term

in equation (8) ensures that a variable selection takes place, such that only the (most) informative

covariates will have a nonzero coefficient. In addition, it shrinks the nonzero coefficients such that

out-of-sample variance is reduced. This process of shrinking introduces a bias however, as is always

the case with shrinkage. The hyperparameter λ controls the intensity of the regularization, so

choosing λ amounts to choosing a bias-variance trade-off. Furthermore, increasing λ drives more

coefficients to zero. Hence, λ also determines the level of parsimony of the model. I select λ by

using the Bayesian information criterion (BIC). For a given λ, the BIC is given by

BIC(λ) = −2Lπu(β̂|λ, b,Z) + ln(τ)df(λ), (9)

where df(λ) is the estimated degrees of freedom of the model that follows from using λ. The value

of λ that minimizes equation (9) is selected. The maximum likelihood estimates β̂ are found by

maximizing the penalized likelihood:

β̂ = argmax
β

Lπu(β|λ,y,Z). (10)

df(λ) is estimated by the number of nonzero coefficients in the final solution of the LASSO, as in

Zou et al. (2007). I prefer the BIC over the Akaike information criterion (AIC) since it generally

yields more parsimonious models (Hambuckers et al., 2018a). Cross-validation techniques could

also be used but are not considered due to long computation times.
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4.1.3 Markov switching

Inspecting Figure 1 suggests that there are periods were high losses are documented relatively often,

usually accompanied by high volatility in the market. In contrast, there are also period were the

market is more calm with relatively few high losses. I use a Markov switching model to account for

this difference in the behavior of the market. With a Markov switching model, one assumes that

the process under investigation can be in one of multiple states, or regimes. In this application, I

assume that there are two state: state 0, a state of expansion, and state 1, a state of crisis. More

states could be considered if desired. A first order Markov process governs the transition between

the states. The transition matrix

P =

p00 p01

p10 p11,

 (11)

with pij = pi|j = P (St = i | St−1 = j), where S is the unobserved state process and i, j = {0, 1}.

I use an expectation-maximization (EM) algorithm to estimate the parameters of the model. The

complete likelihood function is given by

L(β|yt, St) =
τ∏

t=1

1∏
i,j=0

{pij(π(i)
u )yt(1− π(i)

u )1−yt)}δij(t), (12)

where δij(t) is an indicator variable that equals 1 if St = i and St−1 = j and π
(i)
u is the probability

of exceedance in state i. The log likelihood follows as

l(β|yt, St) =

τ∑
t=1

1∑
i,j=0

{
δij(t)

(
ln pij + yt lnπ

(i)
u + (1− yt) ln(1− π(i)

u )
)}

. (13)

However, one does not observe S for any t. Using Ẽ[·], which is defined as an expectation over the

delta’s conditional on the information set Iτ , gives

Ẽ[L(β|yt)] =
τ∑

t=1

1∑
i,j=0

{
p∗ij(t)

(
ln pij + yt lnπ

(i)
u + (1− yt) ln(1− π(i)

u )
)}

, (14)

where p∗ij = P (St = i, St−1 = j|Iτ ). After finding the p∗ij probabilities (E-step), one can maximize

equation (14) with respect to π
(0)
u and π

(1)
u (M-step). These steps iterate until convergence. Further

details can be found in Appendix B.
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4.2 Estimating the conditional excess distribution

In market risk studies applying EVT, the parameters of the GPD have been considered to be

stationary (McNeil and Frey (2000); Gencay and Selcuk (2004)). Following the methodology of

Chavez-Demoulin et al. (2016) and Hambuckers et al. (2018a), this study extends the non stationary

GPD to market risk. The excesses are modelled by a GPD as in equation (1), but with parameters

that depend on covariates. This yields the excess variable Yn ∼ GPD(y; ξn, σn) with Yn, ξn, σn > 0,

and n ∈ E with E as defined in section 4.1. As in Chavez-Demoulin et al. (2016), I reparameterize

σn, to create orthogonality with respect to the Fisher information metric. This avoids problems

with the fitting procedure. The reparameterization is given by

σn =
exp(κn)

1 + ξn
(15)

such that the Yn ∼ GPD(y; ξn, exp(κn)/(1 + ξn)). The reparameterization holds for ξn > −1 since

σn > 0 for those values of ξn. This is a weak assumption since in general ξn > 0 holds for financial

data. In this study, ξn > 0 is assumed. ξn = ξ(zn) and κn = κ(zn) are functions of covariates that

vary over time. These functions can be specified as

ln(ξ(zn)) = aξ0 +

M∑
m=1

hξ,j(z
ξ
m,n)

κ(zn) = aκ0 +
M∑

m=1

hκ,j(z
κ
m,n)

(16)

where the log link function is applied in the first line to ensure that ξn > 0, and h(·) is a general

function of the covariates that can be specified by the researcher. Chavez-Demoulin et al. (2016)

use spline functions to characterise the effect of the covariates on the parameters. However, I follow

Hambuckers et al. (2018a) in choosing h to be a linear function, for simplification purposes, turning

the model into a generalized linear model for location, scale, and shape (GLMLSS) (Groll et al.,

2019). Also, one could use distinct covariates for estimating for both ξn and κn, but since there is

no apparent reason to do so in this study, I choose to set zξ
n = zκ

n. The resulting GPD parameter

equations are

ln(ξ(zt)) = aξ0 +

M∑
m=1

aξmzm,t

κ(zt) = aκ0 +

M∑
m=1

aκmzm,t.

(17)
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Maximum likelihood estimation is used to estimate the parameters aξ = (aξ0, ..., a
ξ
M ) and aκ =

(aκ0 , ..., a
κ
M ). If θ = (aξ,aκ)′ is the vector of all parameters to be estimated, then the log likelihood

function is given by

l(θ|y,Z) =

N∑
n=1

ln
(
gpd(yn; ξn, exp(κn)/(1 + ξn))

)
, (18)

with gpd(·) being the probability density function of the GPD, N = |E| as defined in section 4.1,

and y = (y1, ..., yN ) being the vector of realisations of the excesses. Similar to equation (8), define

LGPD as the penalized log likelihood function such that

LGPD(θ | ν,y, Z) = l(θ | y,Z)− νξ
M∑

m=1

|aξm| − νκ
M∑

m=1

|aκm|. (19)

where the constants aξ0 and aκ0 are assumed not to be subject to regularization (Hambuckers et al.,

2018a). The hyperparameters ν = (νξ, νκ) allow for a different power of the regularization for ξn

and κn, and need to be tuned. This is done similarly to the procedure in section 4.1.2, with a two-

dimensional grid search for the penalty parameters. The penalized maximum likelihood estimates

are given by

θ̂ = argmax
θ

LGPD(θ | ν,y,Z) (20)

For optimizing equation (20), I follow Hambuckers et al. (2018a) and use a quadratic approximation

for the L1-penalty terms, such that the maximization problem can be linearized(Oelker and Tutz,

2017). Further details on the estimation algorithm can be found in Appendix C

4.3 Threshold selection

So far, the threshold u has been assumed to be given. However, there is no exact rule that always

determines the appropriate u. The selection of the threshold determines the amount of data points

that are considered to be ‘in the tail’. Here one considers a bias-variance trade-off— if too few

points are included, the bias will be low since all points selected are safely regarded as extremes.

In contrast, the variance of the estimates will be high because of a smaller sample, which can result

in poor out-of-sample estimates. The converse is true when selecting too many points, which could

also yield poor out-of-sample estimation due to a high bias. Because of the importance of the

threshold selection, Gencay and Selcuk (2004) advise to use a combination of techniques.

I construct a Q-Q plot to gain a general understanding of the fat-tailedness of the loss data.
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In addition, a mean-excess function (MEF) and plot give insight in where the data is heavy-tailed

and equivalently where a GPD approximation is good fit. The MEF for a threshold v is given by

e(v) =

∑τ
t=1max(Xt − v, 0)∑τ

t=1 I{Xt>v}
, (21)

where v can be varied and I{·} is an indicator function. The mean excess plot evaluates at the

sequence {X(t), e(X(t)) : 2 ≤ t ≤ τ}, where X(t) is the tth order statistic of X with X(1) ≤ ... ≤ X(τ).

If the plot shows an upward linear trend above some threshold v then a GPD approximation should

be accurate above v (Singh et al., 2013).

Lastly, I use a Hill plot, yielding more evidence on which threshold u is suitable to use. Hill

(1975) suggests an estimator for the tail index γ, which is the inverse of ξ for the case where ξ > 0,

i.e. the fat-tailed case. Given the order statistics X(t), the Hill-estimator is given by

γHill =
[1
k

k∑
i=1

ln(X(t−i+1))− ln(X(t−k))
]−1

, (22)

where k is the pre-specified number of observations that exceed u. Varying k provides the Hill plot,

which can be used for selecting the appropriate k. The aim is to select a k where the bias is not

yet too much present, while trying to include as many points in the excess sample as possible to

reduce variance. With k, u equivalently follows.

4.4 Model testing

I consider the following models to estimate the VaR in equation (3):

• Model 0: the dynamic GARCH(1, 1) EVT approach in McNeil and Frey (2000).

• Model 1: estimate πu with the empirical distribution and (ξ, σ) with the stationary GPD

(equations 4 and 1, Gencay and Selcuk (2004)).

• Model 2: estimate πu by conditioning on covariates and (ξ, σ) with the stationary GPD

(equations 10 and 1).

• Model 3: estimate πu with a Markov switching model and (ξ, σ) with the stationary GPD

(section 4.1.3 and equation (1)).

• Model 4: estimate πu with the empirical distribution and (ξ, σ) with the non stationary GPD

(equations 4 and 20).
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• Model 5: estimate πu by conditioning on covariates and (ξ, σ) with the non stationary GPD

(equations 10 and 20).

• Model 6: estimate πu with a Markov switching model and (ξ, σ) with the non stationary GPD

(section 4.1.3 and equation (20)).

For ease of notation, I define Mi as model i, i = {0, ..., 6}. M0 is used as a benchmark, since it

is a well-known EVT approach to estimate the VaR. M0 fits a GARCH(1, 1) model (Bollerslev,

1986) via quasi-maximum likelihood estimation. EVT is then applied to the residuals implied by

the GARCH model. Together with the GARCH parameter estimates, this yields the VaR for the

next day. For further details see Singh et al. (2013)).

Comparing M1, M2 and M3 to each other gives information on how much the VaR estimates

are influenced by using more involved methods to estimate πu. Additionally, comparing these three

models to M4, M5 and M6 provides information on the effect of using covariates to model the

GPD parameters. Lastly, comparing Mj for j = {2, ..., 6} to M0 and M1 shows the effectiveness

of the extensions that are considered in this study.

4.4.1 Test procedure

To test the performance of all the models, the data is split into a training set with observations

{1, ..., τ} and a test set with observations {τ+1, ..., T}. The last 500 trading days of the sample are

selected as the test set. On each day of the test set, the models are re-estimated using an expanding

window. Hence, for making a prediction for the VaR at day t ∈ {τ + 1, ..., T}, the information up

and until day t − 1 is included. This approach makes use of the all the newly available data at a

point in time.

I split the test procedure in two stages, following the suggestion in Nolde and Ziegel (2017). In

the first stage I test whether models Mi, i = {0, ..., 6}, can be rejected or not. Backtests that deal

with this kind of question are referred to as ‘traditional backtests’. The models that pass the test

in the first stage advance to the second stage, where the performance of those models is compared.

This gives the ability to conclude whether certain models perform significantly better than others.

I use the test proposed by Christoffersen (1998) as a traditional backtest, which is closely related

to the first stage tests in Nolde and Ziegel (2017). Traditional backtests evaluate the following null
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hypothesis (Nolde and Ziegel, 2017):

H0: “The risk measurement procedure Mi is correct.”

Hence, these tests only provide judgement on whether a model is adequate or not. Still, the outcome

of traditional backtests gives valuable information on the overall quality of a risk measurement

procedure.

On each day of the test set, a one day ahead prediction of the VaR for next day is made, which

is denote by rt. After observing the outcome, it is evaluated if the loss realization xt exceeded rt.

Vt is defined as an indicator variable of whether or not a violation occurred at day t:

Vt =


1 if xt > rt

0 if xt ≤ rt.

V =
∑T

t=τ+1 Vt is the total number of violations in the test set. Evaluating the violations allows

for testing the accuracy of the VaR estimates.

The test of Christoffersen (1998) uses likelihood ratio tests to test for unconditional coverage and

independence over time. Given a confidence level α for VaRα, unconditional coverage implies that

the chosen coverage rate (1−α) is equal to the expectation of a violation, i.e. E[Vt = 1] = 1−α for

all t. The property of independence demands that the VaR violations in the test set are independent

from each other. Using a Markov chain, the impact of the outcome of Vt−1 on Vt is tested. If being

state 1 means that the last observation was a violation and state 0 means no violation, the transition

matrix is given by

Q =

q00 q01

q10 q11

 , (23)

where qij = qi|j = P (Vt = i | Vt−1 = j). The maximum likelihood estimate of Q is given by

Q̂ =

q̂00 q̂01

q̂10 q̂11

 =


n00

n00+n10

n01
n01+n11

n10
n00+n10

n11
n01+n11

 , (24)
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where nij = ni|j is the number of times state j is followed by state i. Equation (24) allows for testing

the independence property. Combining the tests for unconditional coverage and independence (for

details see Christoffersen (1998)) yields the conditional coverage (CC) test statistic

LRcc = −2 ln

(
αT ⋆−V (1− α)V

(q̂00)n00(q̂01)n01(q̂10)n10(q̂11)n11

)
∼ χ2(2), (25)

where T ⋆ is the amount of observations in the test set. After evaluating the test statistic, H0 is

rejected or not. If H0, it does not mean that the risk measure actually is correct, since the type I

error of the test can not be controlled (Nolde and Ziegel, 2017).

In the second stage of the testing procedure, D is defined as the set of models that pass the

traditional backtest. The aim of comparative testing is to assess if Mi performs significantly better

than Mj , with i, j ∈ D, i ̸= j. The following null hypotheses are therefore tested (Nolde and Ziegel,

2017):

H−
0 : “The risk measurement procedure Mi performs at least as well as Mj .”

H+
0 : “The risk measurement procedure Mi performs at most as well as Mj .”

If H−
0 is rejected, then Mi performs worse than Mj . If H+

0 is rejected, then Mi performs better

than Mj . It is also possible that both H−
0 and H+

0 cannot be rejected. In that case, the comparative

tests cannot detect a significant difference between the performance of Mi and Mj .

To test H−
0 and H+

0 , I follow Nolde and Ziegel (2017). Their test is based on the concept of

elicitability and uses score functions that evaluate the quality of a forecast r. A risk measure (for

example VaR) is elicitable if there exists a strictly consistent score function for it. A score function

C is strictly consistent for the VaR if

E(C(VaR∗, X)) < E(C(r,X)), (26)

where r is the forecast estimate of the VaR, VaR∗ is the VaR of the true unknown distribution

F(x), and r ̸= VaR∗. A version for multidimensional risk measures can be found in Nolde and

Ziegel (2017).

For the VaR measure, strictly consistent score functions are of the type

C(r, x) = (1− α− 1{x > r})G(r) + 1{x > r}G(x), (27)
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for an increasing function G (Nolde and Ziegel, 2017). Hence, the VaR is an elicitable risk measure,

which allows for comparative backtesting. Following Nolde and Ziegel (2017), I choose G as the

identity function. As a result, the score function becomes a hinge loss function:

C(r, x) = (1− α− 1{x > r})r + 1{x > r}x. (28)

Given a scoring function C, it is defined that Mi C-dominates Mj on average if

E(C(ri,t, Xt)− C(rj,t, Xt)) ≤ 0, for all t. (29)

Furthermore, it is assumed that a quantity ω ∈ R exists and is given by

ω = lim
T→∞

1

T

T∑
t=τ+1

E(C(ri,t, Xt)− C(rj,t, Xt)), (30)

where ri,t and rj,t are the forecasts of Mi and Mj respectively, with i and j defined as before.

Under the mild assumption that the sequence {C(ri,t, xt)−C(rj,t, xt)}t is stationary, it follows that

ω ≤ 0 if and only if Mi C-dominates Mj . Conversely, ω ≥ 0 if and only if Mj C-dominates Mi.

The hypotheses H−
0 and H+

0 can be reformulated in terms of ω and therefore C-dominance as

H−
0 : ω ≤ 0.

H+
0 : ω ≥ 0.

The hypotheses are tested with the test statistic

Γ =
∆TC

Σ̂T /
√
T
, (31)

where Σ̂T is an HAC estimator of the asymptotic variance Σ = Var(
√
T∆TC) (e.g. Newey and

West (1987); Andrews (1991)) and ∆TC is given by

∆TC =
1

T

T∑
t=τ+1

C(ri,t, xt)− C(rj,t, xt). (32)

Under assumptions listed in Giacomini and White (2006), Γ is asymptotically standard normal.

Hence, given a significance level η, H−
0 can be rejected if 1 − Φ(Γ) ≤ η and H+

0 can be rejected if
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Φ(Γ) ≤ η. If η < Φ(Γ) < 1−η, then both H−
0 and H+

0 cannot be rejected. This structure lends for a

traffic light system. If H+
0 is rejected and thus Mi passes the comparative backtest with respect to

Mj , then this is denoted by a green sign. If H−
0 is rejected and therefore the comparative backtest

is failed by Mi with respect to Mj , then this is denoted by a red sign. If η < Φ(Γ) < 1− η, then

Mi does not perform significantly better or worse than Mj . This is denoted by an orange sign.

5 Results

This section consists of two parts. The first part discusses the estimation of the models in sections

4.1 and 4.2 on the training set. Also, various in-sample insights are highlighted. The second part

is dedicated to testing the models on the test set as discussed in section 4.4.

5.1 In-sample results

The EVT analysis starts with the selection of a threshold. A threshold allows for labelling the

data as an excess or no excess, which is the basis for estimating Mi, i = {1, ..., 6}. The Q-Q plot

in Figure 2 demonstrates that the data is heavy tailed. The mean-excess plot and the Hill plot in

Figure 3 are used to determine a suitable threshold u. In the mean-excess plot, an upward sloping

linear trajectory indicates heavy-tailedness that would be estimated well with a GPD. The mean-

excess plot shows multiple instances of upward sloping linear parts of the mean-excess function.

Those parts of the plot are ended abruptly by inconclusive or even downward sloping areas. This

indicates that there are local areas that are consistent with a GPD configuration, but that there is

a distortion (bias) between those configurations. The Hill plot confirms this. A stable horizontal

part of the Hill plot indicates a stable tail index for the data, which is a measure for the heaviness

of the tails. An upward sloping Hill plot (with ξ on the vertical axis) indicates an increasing bias.

Figure 3b implies that there are two suitable candidates for a threshold. The first option u1 is

deep in the tail and is located at the point where the Hill plot stabilizes, making it a very suitable

threshold. The second option u2 is in the upward sloping part of the Hill plot in the grand scheme

of things, but resides in a stable horizontal part of the trajectory. This means that u2 is biased,

but also representative for a part of the right tail of the sample. The Hill plot matches with Figure

3a, since u1 and u2 both mark the beginning of a stable upward sloping part of the mean-excess

plot.
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Figure 2: A Q-Q plot, where the log-returns of the SPX are plotted against the quantiles of a normal
distribution.

Choosing between u1 and u2 is making a bias-variance trade-off. A bias is obviously undesirable

in estimation procedures. However, including more data points in the excess sample results in better

estimates in the sense of stability and precision. Also, the non stationary GPD is a challenging

distribution to estimate and large samples, preferably still significantly larger than selecting u2

would generate, are necessary (Hambuckers et al. (2018a); Groll et al. (2019)). Hence, I select

u2 as the threshold in this study, which yields an extreme sample of 392 observations. This is

also supported by the relatively small difference in bias between u1 and u2. Going forwards, u2 is

referred to by u.
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Figure 3: Figure 3a shows the mean-excess plot. The vertical axis gives the values of the mean-excess
function against the ordered losses on the horizontal axis. The values of the ordered losses can also be
interpreted as thresholds. Figure 3b shows the Hill plot. The vertical axis gives the tail index ξ, the bottom
horizontal axis gives the amount of points included in the tail, and the top horizontal axis displays the
corresponding threshold. Two possible options for a threshold, u1 and u2, are highlighted in both graphs.

Given the threshold selection, the models for the probability of excess and the conditional excess

distribution are estimated for the training set. First, the results for the probability of excess models

(section 4.1) are discussed. Searching over a grid for λ, the regularized conditional model for the

excess probability of section 4.1.1 selects only the VIX. Figure 4 gives the path of the coefficients

over a grid for λ. The estimates of the Markov switching probability of excess model of section 4.1.3

are given in Table 1. The states are persistent, with the ’good state’ being more persistent than

the ’bad state’. The high estimates of p11 and p22 indicate that periods of stability and uncertainty

have a long expected duration, which coincides with perceived behavior of the world. Figure 5 gives

the in-sample paths of the excess probability estimates, which highlights three interesting results.
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Figure 4: The values of the coefficients (vertical axis) are plotted against the values of the penalty term
(bottom horizontal axis). The top horizontal axis shows the number of variables that are unequal to zero at
the corresponding value of λ.

p̂11 p̂22 π̂
(0)
u π̂

(1)
u

0.995 0.987 0.032 0.224

Table 1: The estimated parameters of the Markov switching model.

First, the conditional probability of excess and the Markov switching probability of excess

estimates agree in their movements most of the time. This indicates that the VIX and the states

structure in the Markov switching model capture a similar feature. One could label this feature as

a measure of uncertainty and volatility. Second, the πu model based on covariates is able to exceed

the Markov switching πu in its estimates. This is due to the structure of both models. The Markov

model is bounded by π̂
(1)
u , while the covariates model does not have this restriction. Therefore,

the conditional model is more flexible than the Markov model. Third, the Markov model is less

refined than the covariates model. The Markov model predicts its maximum and minimum value

frequently, but it rarely attains intermediate values. This is caused by the Bernoulli density that

is used in the Hamilton filter (Hamilton, 1989).
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Figure 5: A comparison of the different methods for estimating the probability of excess, applied to the
training set. Hence, these are in-sample estimates.

Filtering the data for observations that exceed u allows for the estimation of the conditional

excess distribution (equation (1) and section 4.2). Trial runs indicate that the estimation procedure

of equation (20) is unstable if (a) many variables are included and (b) variables that are highly

correlated or constructs of each other are included, introducing a strong collinearity. Therefore,

to ensure that such issues are largely avoided, I use a subset of covariates zξ = zκ ∈ z before

estimating equation (20). In terms of the notation of section 4.2, this corresponds to setting

multiple coefficients equal to zero a priori. I investigate two sets of covariates, which are listed

in Table 2. With selections A and B, I attempt to preserve as much information as possible by

including variables of all kinds while also featuring variables that connect to different regions in the

world. The difference between selections A and B is that selection B features the VIX. Including the

VIX causes convergence issues for penalty terms on the lower end of the spectrum. In addition, the

model converges less rapidly when it does converge, signaling that the model struggles to find the

optimal parameter set. However, the VIX is expected to be an important factor in the estimation.

Therefore, I also estimate a model that includes the VIX.
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A B

- VIX

TSX TSX

FTSE FTSE

HSI HSI

Oil Oil

Gold Gold

USDYEN USDYEN

CAAA CAAA

TS4 TS4

Table 2: Selected variables for the GPD estimation, before the estimation of (20) is performed. A constant
is included in the models as well. For more information on the listed variables see Table 9 in Appendix A.

Table 3 shows the results of the penalized estimation. Details on the estimation procedure

and the grid search for selection B are given in Appendix C. Following the idea in Hambuckers

et al. (2018a), the coefficients are rounded such that variables with insignificant coefficients can

be excluded. This is necessary because the LASSO is approximated and therefore it cannot set

coefficients to exactly zero, which is what the LASSO is intended for. Also, the number of nonzero

coefficients influences the degrees of freedom estimate in equation (9).

For selection A, the BIC selects a model with only constants, excluding all variables from the

model. This results in the stationary GPD of equation (1). The added value of the covariates

for maximizing the log likelihood does not outweigh the increased penalty of including them. The

BIC therefore selects the outcomes that corresponds to high values of νξ and νκ, which force the

coefficients of the covariates to zero. The results for selection B are similar, with the distinction

that the VIX and the CAAA rates are selected for the estimation of κ. The model prefers a very

low ξ with a volatile κ, and hence a volatile σ. The VIX is the dominant force in the movements of

σ, given its relatively high coefficient. In addition, the inclusion of the CAAA rates suggests that

an increase in the rates of triple-A corporate bonds is linked to volatile periods with large losses,

which is sensible. Figure 6 shows the path of σ for model configuration B, applied to the training

sample. The graph is compared to the σ of the stationary GPD. As is also the case in Figure 5,

the financial crisis of 2008 is prominently visible in the graph.
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A B

aξ aκ aξ aκ

Intercept -1.758 -0.051 -30.193 -0.171

VIX - - 0.000 0.473

TSX 0.000 0.000 0.000 0.000

FTSE 0.000 0.000 0.000 0.000

HSI 0.000 0.000 0.000 0.000

Oil 0.000 0.000 0.000 0.000

Gold 0.000 0.000 0.000 0.000

USDYEN 0.000 0.000 0.000 0.000

CAAA 0.000 0.000 0.000 0.066

TS4 0.000 0.000 0.000 0.000

Table 3: The outcomes of the estimation of the regularized non stationary GPD for variable sets A and B.
The bold faced numbers indicate covariates that are included in the model. The coefficients are rounded to
three decimals, since they cannot be set exactly to zero by the LASSO as the penalty term is approximated.
Also, the coefficients correspond to standardized variables.

0

10

20

2005 2010 2015 2020

Date

E
s
ti
m

a
te

Model

Varying

Stationary

Figure 6: A comparison on the training set of the stationary σ and the σ that varies with covariates.
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5.2 Out-of-sample results

Following the procedure as outlined in section 4.4, the models are tested for their predictive per-

formance. The threshold is re-evaluated on each day of the test, using an expanding window. As a

result, the estimates of the empirical πu and the stationary ξ and σ vary slightly as the training set

expands. Since it is infeasible to visually determine a suitable threshold via plots for the entire test

set, the value of u is determined automatically. One can choose to fix the value of u or the value of

the cumulative distribution function at u for the original training set. The difference between the

options should be minor. I choose the latter, since the value of the cumulative distribution function

has a conceptual meaning in the sense of where the extreme sample starts in general, fixing the

proportion of extreme observations. The original u is just an instance of that mechanism. The

models for the excess probability are also re-estimated on every day of the test set, as is M0. The

model for the conditional excess distribution is re-estimated three times, once every 125 days.

Figure 7a shows the results of the estimated πu for the test set. The graphs are similar to

Figure 5, with agreeing movements of the covariates and the Markov model, a higher reach of the

covariates model, and a Markov model that is less refined than the covariates model. As is the case

for the training set, the LASSO selects only the VIX as a covariate of importance for the entire

test set.

The re-estimated GPDs in the test set select only the VIX, thus dropping the CAAA variable.

Figure 7b shows the results of the estimated σ for the stationary and the non stationary model.

Interestingly, the graph of the non stationary σ shows very similar movements to Figure 7a, with

the main difference being the very high value of σ at the emergence of the corona crisis. The

similarities are not surprising however, since the VIX is the (dominating) selected variable in both

models.
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Figure 7: Figure 7a shows a comparison of the different methods for estimating the probability of excess,
applied to the test set. Figure 7b shows the estimated σ for the stationary and the non stationary model,
also applied to the test set.

The estimates of the VaR0.99 by Mi, i = 1, ..., 6, are given in Figure 8. Unsurprisingly, Figures

8a-8c show similar dynamics as Figure 7a, since πu is the only parameter that varies over time for

those models in the calculation of the VaR (equation (3)). Figures 8d-8f are clearly also influenced

by the dynamics of σ (Figure 7b). As a result, the estimates of M4, M5, and M6 highly exceed the

losses around March 2020. In that aspect, the graph of M0 in Figure 9 follows the path of the SPX

more closely. The GARCH structure of the model allows it to be highly flexible, both in attaining

high and low estimates. Also, M0 often agrees with the non stationary EVT models, which is

expected since all models measure the level of uncertainty in the market and its participants, but

in a different manner. The weakness of the GARCH model seems to be the strong influence of a

high loss on subsequent estimates over a relatively long period of time. M3 and M6 share this

feature to some degree, since the estimated state depends on the state of the previous period. The

rest of the non stationary EVT models suffer less from the persistence of a high loss in subsequent

estimates, since they do not have an explicit autoregressive structure.
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Figure 8: A comparison between the VaR estimates of models Mi, i = 1, ..., 6 on the test set, combined
with the corresponding graph of the SPX. Figures 8a-8c have the same scale, which is different from the
scale of Figures 8d-8f.
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Figure 9: The estimation results of the VaR0.99 for M0 and the path of the SPX for the test set, given on
the scale of Figures 8d-8f.

The results of the traditional backtest are given in Table 4. All models cannot be rejected at

a 5% level. However, M1, the stationary model, and M3, the model where πu is modelled by a

Markov switching model, can be rejected at a 10% level. This implies that the stationary model

might not be adequate. Also, adding dynamics in πu with a Markov switching model does not

improve on M1 in the context of a traditional backtest. The Markov model may not be flexible

enough since it is capped at a certain value, as Figure 8c demonstrates. Furthermore, M4 and M6

cannot be rejected at a 10% level, suggesting that modelling the GPD parameters with covariates

has merit over the stationary GPD approach. Nonetheless, at a 5% level, all models are considered

as adequate risk measurement procedures.

M0 M1 M2 M3 M4 M5 M6

Violations 7 9 7 9 7 4 6

P-value 0.632 0.094 0.149 0.094 0.632 0.845 0.845

Table 4: The results of the test in Christoffersen (1998), used in this research as a traditional backtest.
Since the test set has a length of 500 trading days and α = 0.99, the expected number of violations is 5.
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Since all models pass the traditional backtest, the comparative backtest of Nolde and Ziegel

(2017) is performed to investigated whether certain models significantly outperform others. Given

the loss function in equation (28), well performing models should follow the graph of the SPX

closely while limiting the amount of violations. Table 5 show the results of the test, which are

inconclusive. Some outcomes of the test statistic Γ approach levels where either H+
0 and H−

0 can

be rejected, but the difference between the models is not significant.

Internal Model

M0 M1 M2 M3 M4 M5 M6

S
ta
n
d
ar
d
M
o
d
el

M0 - 0.860 0.855 0.851 0.801 0.751 0.775

M1 0.140 - 0.135 0.130 0.120 0.129 0.134

M2 0.145 0.865 - 0.469 0.108 0.126 0.135

M3 0.149 0.870 0.531 - 0.118 0.133 0.139

M4 0.199 0.880 0.892 0.882 - 0.171 0.193

M5 0.249 0.871 0.874 0.867 0.829 - 0.368

M6 0.225 0.866 0.865 0.861 0.807 0.632 -

Table 5: The table shows the values of Φ(Γ) (section 4.4.1). The internal model outperforms the standard
model if Φ(Γ) ≤ 0.05, and the internal model is outperformed by the standard model if Φ(Γ) ≥ 0.95. The
results are inconclusive if 0.05 < Φ(Γ) < 0.95. The results follow from applying the test in Nolde and Ziegel
(2017) on the entire test set.

I also investigate two subsets of the test set. The formation of the subsets is based on the

state of the market, with intuition that is similar to section 4.1.3. As in section 4.1.3, the possible

states are a volatile (crisis) and a calm (prosperous) state. I estimate the state using the smoothed

conditional state probabilities in P ∗(t), for t = τ + 1, ..., T (Appendix B). Figure 10a shows the

results. Eyeballing Figure 10b, the estimated state probabilities match the SPX behavior well. I

label periods as being in the volatile state when the estimated probability of being in the volatile

state exceeds 0.10. Figure 10a indicates that this value of the estimated probability marks the start

and end of a volatile period. With this selection rule, 181 of the 500 test points are in the volatile

state and 319 observations are labeled as being in the calm state.

The mean scores of the models for the subsets and for the entire test set are given in Table 6.

M0 performs best across the board, as it has the (shared) lowest score in each row of the table. M5

and M6 have similar test scores, suggesting that the models are comparable to M0 in performance.

M1 consistently has the highest score, which is a reason to question its performance. Unfortunately,
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the statistical test in Nolde and Ziegel (2017) cannot be applied to the entire subsets, since the

test uses a HAC estimator of the variance, which is conceptually incorrect for disjoint periods. To

be able to perform the test on data that is exclusively from either state, I choose the first peak

in Figure 10a as test data for the volatile state, yielding 115 data points, and the period after the

second peak until the graph increases at the end as test data for the calm state, yielding 213 data

points. I label these subperiods as SP1 and SP0, respectively.
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Figure 10: Figure 10a shows the smoothed conditional state probabilities in P ∗(t), for t = τ + 1, ..., T
(Appendix B). State 1 is referred to as the volatile state. Figure 10b shows the trajectory of the SPX, which
is used for validating the movements of Figure 10a.

The results for SP1 (the volatile state) are given in Table 7. Again, the results are inconclusive.

A possible explanation is that a sample size of 115 observations is too small for the test in Nolde

and Ziegel (2017) to yield conclusive results. In contrast, the result for SP0 (the calm state), which

are given in Figure 11 and Table 8, show a significant difference in performance. Models M0 and

M6 perform best, while M3 is only outperformed by M6. Figure 8 and Figure 9 show that the

GARCH and the Markov Switching based models can achieve lower VaR estimates than the other

models. This explains their strong perform in the calm state, since the score function also punishes

the difference between market outcomes and VaR estimates when there is no excess. Low VaR

estimates are convenient in a calm state of the market, since less capital is ‘wasted’ by keeping it in

reserve. However, both M0 and M6 are highly volatile models. This is unfavorable, since changing

capital buffers can be costly and even infeasible if the required changes are significant (Gencay and

Selcuk, 2004). Although Figure 8c indicates that M3 is also volatile, it shows that periods of high
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and low VaR estimates stretch for a relatively long period of time, due to the persistence of the

states (Table 1). This is convenient, since it provide an opportunity for less frequent alterations in

capital reserves. Hence, from a practitioner’s point of view, M3 could be the preferred choice.

M0 M1 M2 M3 M4 M5 M6

Total set 0.048 0.093 0.077 0.077 0.060 0.052 0.051

Volatile state 0.087 0.193 0.150 0.162 0.111 0.091 0.096

Calm state 0.026 0.036 0.036 0.029 0.030 0.030 0.026

Table 6: The mean scores for the score function in equation (28). The boldfaced number are the lowest in
their row.

Internal Model

M0 M1 M2 M3 M4 M5 M6

S
ta
n
d
ar
d
M
o
d
el

M0 - 0.853 0.822 0.846 0.825 0.798 0.880

M1 0.147 0.096 0.138 0.138 0.141 0.151

M2 0.178 0.904 - 0.949 0.185 0.175 0.191

M3 0.154 0.862 0.051 - 0.143 0.147 0.162

M4 0.175 0.862 0.815 0.857 - 0.163 0.204

M5 0.203 0.859 0.825 0.853 0.837 - 0.475

M6 0.120 0.849 0.809 0.838 0.796 0.525 -

Table 7: The table shows the values of Φ(Γ) (section 4.4.1). The internal model outperforms the standard
model if Φ(Γ) ≤ 0.05, and the internal model is outperformed by the standard model if Φ(Γ) ≥ 0.95. The
results are inconclusive if 0.05 < Φ(Γ) < 0.95. The results follow from applying the test in Nolde and Ziegel
(2017) to SP1.
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Figure 11: The results of the comparative backtest of Nolde and Ziegel (2017) for models Mi, i = 0, 1, ..., 6.
The green cells stand for the internal model outperforming the standard model, the red cells for the standard
model outperforming the internal model, and the orange cells for inconclusive test results. The results follow
from applying the test in Nolde and Ziegel (2017) to SP0.

Internal Model

M0 M1 M2 M3 M4 M5 M6

S
ta
n
d
ar
d
M
o
d
el

M0 - 0.999 0.999 0.656 0.903 0.915 0.239

M1 0.001 - 0.196 0.000 0.000 0.000 0.000

M2 0.001 0.804 - 0.000 0.000 0.000 0.000

M3 0.344 1.000 1.000 - 1.000 0.999 0.000

M4 0.097 1.000 1.000 0.000 - 0.403 0.000

M5 0.085 1.000 1.000 0.001 0.597 - 0.000

M6 0.761 1.000 1.000 1.000 1.000 1.000 -

Table 8: The table shows the values of Φ(Γ) (section 4.4.1). The internal model outperforms the standard
model if Φ(Γ) ≤ 0.05, and the internal model is outperformed by the standard model if Φ(Γ) ≥ 0.95. The
results are inconclusive if 0.05 < Φ(Γ) < 0.95. The results follow from applying the test in Nolde and Ziegel
(2017) to SP0.
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6 Conclusion

In this research, I investigate a non stationary EVT approach, applied to market risk. The excess

probability and the conditional excess distribution are modelled using a broad selection of covari-

ates. Both models are regularized to avoid overfitting and to gain insight in which covariates have

a significant impact on performance. In addition, the excess probability is modelled by a Markov

switching model, which is motivated by the clusters in which large losses occur. I test the different

model setups with a traditional backtest and a comparative backtest. The traditional backtest

examines if models are adequate methods for modelling the VaR, while the comparative backtest

compares models in their performance.

The estimation of the excess probability with covariates yields that the VIX is the sole significant

explanatory variable. Furthermore, the covariates model often shows consensus with the Markov

switching model. This implies that the VIX in the covariates model and the good and bad states in

the Markov model roughly capture the same feature of uncertainty in the market. However, since

the structure of both models differs, their behavior does to. The covariates model is more flexible

and more refined than the Markov model while the Markov model is more persistent. The VIX also

features in the non stationary GPD model for the scale parameter, as well as the triple-A corporate

interest rates. The model for the shape parameter only includes a constant. A configuration of the

model without the VIX results in the BIC selecting the stationary model. Hence, the VIX plays

an important role in the estimation of the non stationary GPD. Considering the importance of the

VIX in both extensions that non stationary EVT provides, risk managers could make use of the

VIX in their models.

The one day ahead forecasts imply that all models considered in this research are adequate

risk measurement procedures. The stationary model and the model with a Markov model for the

excess probability and a stationary GPD are rejected at a 10% level, but they pass the test at a

5% level. The comparative backtests on the entire test set are inconclusive, meaning that no model

significantly outperforms any other model. When applying the comparative backtests to subperiods

of the test set that correspond to either a volatile or a calm state of the market, the results give

additional insights. The results are again inconclusive in the volatile state, which could be caused

by a small test set. In the calm state, the tests indicate a significant difference in performance,

with the GARCH-based model and two non stationary EVT models performing best. Both non

stationary EVT models use a Markov model for the excess probability, while one uses a stationary
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GPD and the other uses a non stationary GPD. This superior performance with respect to other

models is due to the ability to achieve lower VaR estimates when there are no signs of additional

risk. This shows potential to limit the amount of capital reserves when the market is in a calm state.

Since all three models also pass the traditional backtest and therefore are valid risk measurement

procedures, they are interesting options for practitioners. Out of the three best performing models

in the calm state, the GARCH model and the model with the non stationary GPD are the most

flexible, and they both outperform the model with a stationary GPD. However, the disadvantage

of this flexibility is that the required capital changes frequently and significantly over time, which

is a combination that could be a burden for risk managers. Changing capital allocations is costly

and has its constraints. In contrast, the model with a Markov model for the excess probability

and a stationary GPD is much more persistent in its estimates, which reduces the need for capital

reserve alterations while still having great performance. Therefore, this model could be suitable

option for a practitioner.

Several extensions can be made to further investigate the potential of non stationary EVT

approaches. First, a (simulation) study on the selection of the threshold might help to improve

performance. The threshold influences the estimation of the excess probability and the conditional

excess distribution and therefore has a significant impact on the VaR estimates. In this research, I

choose a threshold that follows from inspecting mean-excess and Hill plots. However, it could be

the case that accepting a higher bias enhances the estimation of both parts of the non stationary

EVT approach to such an extend that the forecasts are improved. Second, using different types

of penalties could result in better performance. An example is the elastic net, although it has the

disadvantage that it is computationally costly (Hambuckers et al., 2018a). Third, applying the tests

on different and perhaps longer periods of data can yield additional insights. The test results rely

heavily on the test data that is fed to the models. Hence, using different test sets could show more

differences between the models. Finally, a combination of the covariates model and the Markov

model for estimating the excess probability might provide better forecasts. The idea behind this

approach is that the probability of excess is potentially explained by different covariates in different

states of the world. It could be the case that certain covariates have a strong explanatory power

in the prosperous state while the crisis state is better determined by other covariates (Hambuckers

et al., 2018b). This would, however, require new methodology on state-wise regularization in a

Markov switching setting (for example a LASSO-type penalty for each state), which is unexplored

to the best of my knowledge.
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A Data details

The selection of covariates that I use is expected to be cohesive and is very similar to the one

Zhong and Enke (2019). The main difference between both sets of variables is the inclusion of the

VIX. The reason I include the VIX is that it is known as the fear thermometer of Wall Street, or

differently put, a measure of uncertainty. Therefore, the VIX is expected to play a significant role

in predicting large losses, which is the focus of this research.

There are also several smaller differences between the variables sets. First, in contrast to Zhong

and Enke (2019), I include simple moving averages (SMAs) in the models instead of exponential

moving averages. The SMA places an equal weight on each return and therefore has a longer

memory than the exponential version, which gives a higher weight to more recent returns. I prefer

SMAs since short term lags of the SPX are also included in the models. Therefore, SMAs are

expected to add more information to the models. Furthermore, I included the LIBOR rates in the

model while Zhong and Enke (2019) does not. This is motivated by the fact that London plays a

central role in the financial world. Hence, the rates there could influence the markets in the U.S.

as well, and probably in a different way than a T-Bill rate might do. Also, there are marginal

differences in all the other types of variables. This is more of a personal choice, but I do not

expect these differences to make a real impact on the results since they are very subtle. Finally,

some variables in Zhong and Enke (2019) are left out, since I do not expect them to add value

to the model, also keeping in mind that limiting the number of variables can be beneficial in the

estimation procedure. The list of variables used in this research is given in Table 9.

Type Name Description

Technical variables

SPX The log returns of the S&P 500 index. Note that this

is not the SPY, which is an actual tradable fund. They

are (almost) one-to-one.

SPX1 The log returns of the S&P 500 index, lagged once.

SPX2 The log returns of the S&P 500 index, lagged twice.

SPX3 The log returns of the S&P 500 index, lagged three

times.
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Type Name Description

SMA10 The simple moving average of the SPX log returns of

the previous 10 days.

SMA20 The simple moving average of the SPX log returns of

the previous 20 days.

SMA50 The simple moving average of the SPX log returns of

the previous 50 days.

SMA200 The simple moving average of the SPX log returns of

the previous 200 days.

Financial variables

VIX The Chicago Board Options Exchange (CBOE)

volatility index.

SPXV The log differences of the S&P 500 24-hour volume.

DJIV The log differences of the DJI 24-hour volume.

IXICV The log differences of the IXIC 24-hour volume.

Major world indices

DJI The log returns of the Dow Jones Industry Average

index.

IXIC The log returns of the NASDAQ Composite.

TSX The log returns of the S&P/TSX Composite.

FTSE The log returns of the FTSE 100 index.

DAX The log returns of the DAX.

CAC The log returns of the CAC 40 index.

AEX The log returns of the AEX.

HSI The log returns of the HSI.
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Type Name Description

NIKKEI The log returns of the NIKKEI 225 index.

Natural resources

NG The log differences of the natural gas future price.

Oil The log differences of the crude oil future prices.

Gold The log differences of the gold future price.

Exchange rates

USDGPB The log differences of exchange rate between the dollar

and the pound.

USDEUR The log differences of exchange rate between the dollar

and the euro.

USDCND The log differences of exchange rate between the dollar

and the Canadian dollar.

USDYEN The log differences of exchange rate between the dollar

and the yen.

USDCNY The log differences of exchange rate between the dollar

and the Chinese yuan.

Interest rates

CAAA Change in Moody’s seasoned AAA corporate bond

yields.

CBAA Change in Moody’s seasoned BAA corporate bond

yields.

LIBOR1M Change in the LIBOR for a 1-month maturity.

LIBOR3M Change in the LIBOR for a 3-month maturity.

LIBOR6M Change in the LIBOR for a 6-month maturity.
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Type Name Description

LIBOR12M Change in the LIBOR for a 12-month maturity.

TB1M Change in the rate on T-bills with a 1-month maturity.

TB3M Change in the rate on T-bills with a 3-month maturity.

TB6M Change in the rate on T-bills with a 6-month maturity.

TB12M Change in the rate on T-bills with a 12-month matu-

rity.

TB60M Change in the rate on T-bills with a 60-month matu-

rity.

TB120M Change in the rate on T-bills with a 120-month matu-

rity.

TB240M Change in the rate on T-bills with a 240-month matu-

rity.

Spreads between interest rates

TS1 Change in the spread between the rates on 3-month

and 1-month T-bills.

TS2 Change in the spread between the rates on 6-month

and 1-month T-bills.

TS3 Change in the spread between the rates on 120-month

and 1-month T-bills.

TS4 Change in the spread between the rates on 120-month

and 3-month T-bills.

TS5 Change in the spread between the rates on 120-month

and 6-month T-bills.

DS1 Change in the spread between Moody’s rates for BAA

and AAA corporate bonds.
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Type Name Description

DS2 Change in the spread between Moody’s BAA rate and

the 1-month T-bill rate.

DS3 Change in the spread between Moody’s BAA rate and

the 3-month T-bill rate.

DS4 Change in the spread between Moody’s BAA rate and

the 6-month T-bill rate.

DS5 Change in the spread between Moody’s BAA rate and

the 60-month T-bill rate.

DS6 Change in the spread between Moody’s BAA rate and

the 240-month T-bill rate.

Table 9: The list of all variables included in the analysis. In the columns from left to right, the type of the
variables, their name in this study and a description is given. The source of all the data is Bloomberg.

B EM Algorithm

The EM algorithm in this research consists of a prediction, updating en smoothing step (Hamilton

(1989); Kim (1994)). The Hamilton prediction step is

ζ̂t+1|t = P ζ̂t|t,

where ζ̂i|j is the predicted state vector (with two entries) of time i, estimated at time j. The

Hamilton updating step is

ζ̂t|t =

f(yt | St = 1)

f(yt | St = 2)

 • ζ̂t|t−1

[
f(yt | St = 1) f(yt | St = 2)

]
ζ̂t|t−1

,
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where the sign • is the element wise multiplication of the vectors. The Kim smoother is given by

ζ̂t|T = ζ̂t|t • P
′
(ζ̂t+1|T /ζ̂t+1|t)

P ∗(t) = P • (ζ̂t|T ζ̂t−1|t−1)
′
/(ζ̂t|t−1

[
1 1

]
),

where the / sign is a element wise division of the matrices, and P ∗(t) is the matrix containing the

probabilities p∗ij(t), i, j = 0, 1.

The algorithm is initially initialized in state 0, based the on the graph of the SPX and trial

runs, with reasonable parameters for the state probabilities π̂(0) and π̂(1). In the test procedure,

the algorithm is initialized at the results on the previous day, including the smoothed estimate of

the initialization. Doing so allows for using less iterations. I use 6 iterations, based on trials in

which the precision did not increase significantly since only one data point is added at a time.

C GPD estimation algorithm

I use a combination of the estimation procedure as in Hambuckers et al. (2018a) and Chavez-

Demoulin et al. (2016). The optimal coefficients are found by using a penalized iterative reweighed

least squares (PIRLS) algorithm, with a LASSO penalty. The penalty is approximated as in Oelker

and Tutz (2017):

|θj | ≈
√
θ2j + c,

with θj ∈ θ. Using this approximation allows for differentiating the penalty. Following Hambuckers

et al. (2018a), I use c = 10−7 and round the coefficients. This is necessary since the LASSO penalty

is approximated. As in Hambuckers et al. (2018a), I round to three decimals since trials show that

the third decimal can have a slight impact on the estimated distribution parameters, while the

impact of the fourth decimal is negligible. Since I use reparameterized parameters, the estimation

can be split for ξ and κ as in Chavez-Demoulin et al. (2016). One can find the coefficients in the

equation for ξ via the recursive algorithm

â
(k)
ξ = â

(k−1)
ξ − vH−1

pen(â
(k−1)
ξ )spen(â

(k−1)
ξ ).

In the algorithm, the penalized Hessian H−1
pen and the penalized score function spen (both for the

coefficients that feature in the model for ξ) are approximated as in Oelker and Tutz (2017), k
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denotes the next iteration and v is the step length. I use v = 0.5, with the purpose of stabilizing

the algorithm. The algorithm is identical for estimating the parameters in the model for κ. The

algorithm is stopped when the relative change ||θ̂(k) − θ̂(k−1)||/||θ̂(k−1)|| is smaller than 10−6 or

after 200 iterations.

Instead of using the build in functions for the Hessian and gradient in R, I programmed them by

hand. The derivation of the Hessian and the gradient follow from the chain rule. For the gradient

of the (log) density f of observation n, this is

∂fn(θj)

∂θj
=

∂fn(θj)

∂ξn

∂ξn
∂θj

+
∂fn(θj)

∂κn

∂κn
∂θj

,

of which either the left of the right term equals zero. For a θj that is part of the model for ξn (the

terms for the case of κn are derived similarly), the Hessian follows from

∂

∂θl

∂fn(θj)

∂θj
=

∂2fn(θj)

∂ξn∂ξn

∂ξn
∂θl

∂ξn
∂θj

+
∂2fn(θj)

∂κn∂ξn

∂κn
∂θl

∂ξn
∂θj

+
∂fn(θj)

∂ξn

∂2ξn
∂θl∂θj

,

where one or multiple terms are zero, with θl ∈ θ. Using the exact gradient and Hessian increases

the speed of the algorithm by a least 100 times. Also, the estimates are more precise since no

approximations are necessary.

I choose starting values in the neighborhood of the stationary GPD, hence with the coefficients

of the covariates being close to zero. A two-dimensional grid search is executed for νξ and νκ

to determine the optimal configuration of the model. However, in the case of selection B, the

algorithm behave erratically. Due to convergence issues and singular Hessians, a proper grid search

is not possible for low values of the penalty terms. This is also hinted at in Hambuckers et al.

(2018a). Hence, I performed the grid search by hand. For configurations that might yield a low

BIC, I approach the point that an extra variable is added to the model to achieve a low BIC for

that model configuration. This is not ideal since it requires considerable manual labor, but it yields

better solutions than the option of keeping penalty terms high to achieve easy convergence. Then,

I compare the BIC values for the different sets of included variables. During this grid search, the

value of νξ is found to be irrelevant as long as it sets the coefficients in the equation of ξ equal to

zero. Hence, only the grid for νκ is investigated extensively for selection B.
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