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Abstract

With a need for automatic selection of parsimonious models in clinical prediction modeling, we

develop an iterative hard thresholding (IHT) method to integrate with the Patient-Level Pre-

diction (PLP) methodology. The method maximises the `0-penalised log-likelihood and selects

a small number of important predictors, while simultaneously estimating the corresponding co-

efficient values. In order to unite the PLP methodology with the IHT algorithm, we deviate

from the standard IHT procedure by employing cyclic coordinate descent (CCD) and incorpo-

rate a ridge penalty for each cycle in order to achieve convergence. Additionally, we make use

of “warm starts” and introduce two extensions, step-halving and screening, with the primary

purpose of decreasing the estimation time. We derive the algorithm for Logistic Regressions and

Cox Proportional Hazard Models. The variable selection property of the algorithm is verified

in simulation, after which the novel algorithm is compared to the current benchmark for sparse

estimation in clinical prediction modeling, the lasso algorithm, in a real real data application.

The IHT algorithm is evaluated on its predictive performance by assessing the discrimination

and calibration. We find that IHT outperforms lasso, i.e., IHT remains close to the optimal lasso

and achieves significantly higher performance when lasso selects a similar number of covariates,

and lastly, that the novel algorithm retains its predictive performance in external validation.
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List of Abbreviations
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1 Introduction

The revolution that followed from the introduction of the Internet, and a bit later, the smartphone,

is arguably comparable to the revolution caused by the printing press (Topol, 2015). The revolutions

share three important characteristics: (1) the explosion of knowledge; (2) the opportunity for the

individual to access it; and (2) for that knowledge to be spread at unprecedented speeds. Recent

years, and especially the current COVID-19 era, have shown the vast implications this revolution can

have for the health care industry, an important one being the global network of digital observational

evidence that has materialised (Murdoch & Detsky, 2013; OHDSI, 2021). This network is structured

by the Observational Medical Outcomes Partnership (OMOP) common data model (CDM), and

it provides a mapping between disparate databases. Such databases consist of electronic health

records (EHRs), which contain an individual’s patient profile.

This global network can be leveraged in clinical prediction problems, and the CDM allows us

to perform transparent and verifiable research. This enables the safe implementation of prediction

problems in clinical practice (OHDSI, 2021). Clinical predictions support the clinical decision-

making process, and are based on a combination of patient characteristics, of which there are many

to choose from (OHDSI, 2021). The number of covariates that are derived from these patient

characteristics can grow into the tens of thousands to hundreds of thousands, which is too many

for clinicians to keep track of, and hence, forms an obstacle to clinical implementation. Currently,

we need a physician’s expertise to select the covariates. While it produces reasonable models, this

approach is not scalable. Therefore, there is need for a method to automatically select parsimonious

models with ten to twenty covariates.

This leaves us with a variable selection problem. The current default method for variable

selection in clinical prediction modeling is the lasso algorithm (Steyerberg, 2019). However, to

obtain a model with good predictive performance, lasso selects many covariates into the active

set. Among these covariates are the true predictors, but lasso also includes noise and correlated

covariates (Bertsimas, King, & Mazumder, 2016). If one would increase the penalty, less covariates

would be nonzero, but at the cost of leaving out true predictors. Since clinical prediction data is
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correlated in general (Steyerberg, 2019), the lasso algorithm is not suited to select only a handful

of covariates from tens to hundreds of thousands if you want to achieve good predictive accuracy.

Recently, promising results were found for a method called iterative hard thresholding (IHT),

which uses a combination of gradient descent and a hard thresholding operator to find a sparse

estimation in an iterative fashion (Chu et al., 2020). This method optimises the `0-regularised

log-likelihood, i.e., automatically selects a subset of covariates and simultaneously estimates their

coefficients (Blumensath & Davies, 2009). Since the hard threshold allows the user to set an

upperbound on the number of selected covariates and the algorithm is scalable to high-dimensional

data sets (Xu & Chen, 2014), this method is an attractive potential candidate for a feature selection

algorithm in clinical predictive modeling.

This research builds upon the foundation laid by the Observational Health Data Sciences and

Informatics (OHDSI) network1 with their work on Patient-Level Predictions (PLPs)—the OHDSI

term for clinical prediction models, and we primarily focus on developing an iterative hard thresh-

olding feature selection algorithm for PLP models. Our contribution is threefold. Firstly, we adapt

the current IHT algorithm such that it can handle the high-dimensionality and sparsity found in

PLP data. Secondly, we introduce two extensions, whose goals are to decrease the estimation time.

The third contribution concerns the external validation of the various models, since it is the first

time that an automated feature selection algorithm for PLP models is externally validated.

The different versions of the novel algorithm, i.e., the IHT algorithm with and without exten-

sions, are derived for Logistic Regressions (LRs) and Cox Proportional Hazard (Cox) Regressions.

The algorithm and its variable selection property are evaluated during a simulation study, where

we confirm that the IHT algorithm has the ability to select the nonzero covariates without includ-

ing any zero covariates. Subsequently, the algorithm is applied to a real data set, where where

the risk of all-cause mortality is predicted for patients with atrial fibrillation or flutter (AFF).

The novel algorithms are compared to lasso and the predictive performance is assessed in terms of

discrimination and calibration. Firstly, IHT’s performance closely approaches that of lasso when

lasso is optimised, in which case the number of nonzero covariates is significantly lower for IHT.

1https://www.ohdsi.org/.

Page 2

https://www.ohdsi.org/


Master Thesis M. Tans

Secondly, when lasso includes a similar number of nonzero covariates, the IHT algorithms obtain

substantially better predictive performance. Additionally, we find that these results carry over in

external validation.

The paper is structured as follows. In Section 2, we review related work. In Section 3, we

elaborate on the PLP framework, which more clearly explains the context of this research. Then,

in Section 4, we outline the methodology and introduce the feature selection algorithm developed

for PLP models. The methods are tested in simulations studies in Section 5, and applied to a real

data set in Section 6. Lastly, the conclusion is presented in Section 7.

2 Related Work

The IHT algorithm was formally introduced by Blumensath and Davies (2009) for linear regressions,

and the algorithm finds its origin in signal approximations (Herrity, Gilbert, & Tropp, 2006). Since

then, the authors of the original algorithm developed IHT further to provide convergence guarantees

and to accelerate the estimation. This resulted in normalised IHT (Blumensath & Davies, 2010),

and accelerated IHT (Blumensath, 2012), respectively. The method gained traction in feature

screening research, where the least important covariates are screened to then be removed from the

model. Xu and Chen (2014) implemented IHT for feature screening and derived the algorithm for

generalized linear models (GLMs). Yang, Yu, Li, and Buu (2016) built upon the work of Xu and

Chen (2014) and extended the IHT algorithm to Cox models, whereas Z. Liu and Xiong (2022)

did the same for additive hazard models. Then, X. Chen, Liu, and Xu (2021) used lasso as an

initial estimate to their IHT method for Cox models. They employed an IHT algorithm similar to

those of Xu and Chen (2014) and Yang et al. (2016), but improved by selecting the step size in

gradient descent in a more advanced fashion. The work in Y. Liu, Xu, and Li (2021) is comparable

to X. Chen et al., 2021, in the respect that they also developed a lasso-initiated IHT algorithm,

although they derived the method for right-censored data, where Cox models are a special case.

In work similar to our IHT algorithm, Zheng, Fan, and Lv (2014) investigated some hard

threshold and an `0-regularisation for linear regressions, where they also explored the possibility of
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including further `2-regularisations. Z. Liu, Sun, and McGovern (2017) provided an algorithm for

`0 approximations that includes the iterative, element-wise ridge-regularisation for GLMs in high-

dimensional biomedical data. By setting low penalties for important predictors and high penalties

for unimportant predictors, their estimation should approximate the `0-penalised regression when

the number of iterations goes to infinity. Kawaguchi, Suchard, Liu, and Li (2020) introduce a similar

method as Z. Liu et al. (2017) for high-dimensional time-to-event data. Secondly, Su, Wijayasinghe,

Fan, and Zhang (2016) and Y. Chen and Zhao (2021) approach the `0-norm penalty and feature

selection from the approximation of an information criterion, e.g., the Bayesian information criterion

(BIC), where Su et al. (2016) derive their algorithm for Cox models, and Y. Chen and Zhao (2021)

for interval-censored data.

For the interested reader, other `0-norm oriented feature selection algorithms are based on

augmented and penalised minimisation for censored data in Li, Xie, Zeng, and Wang (2018), and on

second-generation P-values in Zuo, Stewart, and Blume (2021). Furthermore, in the field of subset

selection or sparse estimation, promising and related research has been presented in Bertsimas et

al. (2016) who implemented mixed integer optimisation for best subset selection, and Bertsimas

and Van Parys (2020) who introduced a novel cutting plane technique. Lastly, interesting work

has been performed in Erion et al. (2021) who utilised artificial intelligence to select a subset of

covariates, or Hazimeh and Mazumder (2020) who used a method that shares similarities with IHT

but also incorporates a combinatorial approach.

3 Patient-Level Prediction

The objective of a patient-level prediction model is to find an answer to the general question:

‘Among a specific group of patients, who is at risk of experiencing some clinical outcome during

the time-at-risk period?’ The specific group of patients is called the target cohort, and the time

these patients enter this cohort defines the start of the time-at-risk. The target cohort can be,

for instance, the group of patients that are (1) newly diagnosed with some disease, (2) recently

started some medication, or (3) just went through a certain procedure (Reps, Schuemie, Suchard,
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Time-at-RiskObservation Window

OutcomeTarget

Index:

Figure 1. The Patient-Level Prediction (PLP) problem. The target, which is a procedure here, defines the
index date. The index date is the start of the time-at-risk. The objective is to find the probability of the
outcome occurring during the time-at-risk.

Ryan, & Rijnbeek, 2018). Then, from the moment a patient enters the target cohort, also known

as the ‘index date’, the time-at-risk starts. The time-at-risk can be one month, but it can also be

a few years. Finally, the group of patients that has the outcome is denoted as the outcome cohort.

Figure 1 shows an illustration of the prediction problem and how, for one patient, the target—which

in this case is some procedure, determines the start of the time-at-risk. The objective is to find

the probability that the outcome will occur during the time-at-risk. An illustration of the way

the target and outcome cohorts are constructed from patient records, for six patients, is shown in

Figure 2, where the target is some procedure and the outcome is represented by the heart icon.

The question posed before is usually answered by developing a risk score using certain patient

characteristics. These characteristics could indicate that a patient is at a higher risk of experiencing

the clinical outcome, and they can include:

• Demographics characteristics, such as age, gender, race, or index month;

1
2
3
4
5
6

Population

1

2

5

6

Target

1

2

3

6

Outcome

1

2

6

Time-at-Risk

Predictor

0

1

1

Outcome
during TAR

1

1

1

Index date

PLP Study

Figure 2. The preparation of a data set for a PLP analysis. The target and outcome cohorts are created
separately and then combined for the PLP study.
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• All conditions, drugs, measurements, procedures, and observations recorded within the last

n days before the index date;

• Hierarchical groupings of the conditions, drugs, measurements, procedures, and observations.

The OHDSI network builds its own software for estimating the PLP models2. The software

and methodology is developed specifically for PLP data, which are retrieved from longitudinal

observational databases that provide time-stamped patient-level medical information. Examples

of databases are medical insurance claims databases or databases containing EHRs. PLP data

is characterised by high-dimensionality and sparseness. Namely, there are enormous amounts of

conditions a patient can be diagnosed with, but a single patient is likely to be diagnosed with only

a few (Suchard, Simpson, Zorych, Ryan, & Madigan, 2013).

4 Methods

In this section we provide an overview of the IHT methodology and outline how one can incorporate

IHT in PLP models. Subsequently, we propose two extensions for the baseline IHT algorithm. We

conclude with descriptions of the various evaluation measures.

4.1 Iterative Hard Thresholding

To illustrate the IHT algorithm, assume we perform a Logistic Regression (LR) for the prediction

of some medical outcome. Whether patient i experiences the medical outcome within the time-

at-risk is presented as yi, where yi is binary and i = 1, . . . , n. A patient has m items of medical

information, where xij carries the information for medical item j, j = 1, . . . ,m, for patient i.

With xi = (xi1, xi2, . . . , xim), xi contains the patient profile for patient i. The m covariates are

accompanied by coefficient vector β = (β1, β2, . . . , βm)′. Then, the probability that patient i will

experience the medical outcome within the time-at-risk is specified as

Pr[Yi = 1] =
exp(xiβ)

1 + exp(xiβ)
, (1)

2See https://github.com/OHDSI, and in particular their PLP package.
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and, trivially, Pr[Yi = 0] = 1− Pr[Yi = 1]. For the IHT algorithm, we will mostly be dealing with

the log-likelihood. We show the derivation for LRs, however the algorithm is applicable to GLMs

as well. Therefore, we take the GLM notation for the LR log-likelihood,

L (β) =

n∑
i=1

yi
(
x′iβ

)
− log [1− exp (xiβ)] . (2)

The primary characteristic of the algorithm is to select a subset of k covariates, which is particularly

useful when the number of covariates is very large. The IHT objective is be the following,

min−L(β) subject to ‖β‖0 ≤ k , (3)

where ‖β‖0 =
∑m

j=1 I(βj 6= 0), and I(·) is the indicator function.

In short, IHT solves the objective by performing gradient descent and limiting the number of

nonzero coefficients to k at each iteration. The algorithm finds an optimum by iteratively going in

the direction of the steepest descent, which is the negative gradient ∇L(β(q)), at iteration q. The

estimate is updated by β(q+1) = β(q) + s(q)∇L(β(q)), where s(q) > 0 is the step size.

In the second step we apply the hard thresholding operator, Hk(β), where the largest k elements

of β keep their value and all others are set to zero. The j-th element of the thresholding operator

is defined as,

Hk,j(β) =


βj if |βj | ≥ λk,

0 if |βj | < λk .

(4)

The parameter λk equals the smallest value of the k largest elements of β. Then, the hard thresh-

olding operator returns Hk(β) = [Hk,1(β), Hk,2(β), . . . ,Hk,m(β)]′. As a result, the IHT algorithm

approximates (3) by updating the parameter vector β at each iteration with

β(q+1) = Hk

(
β(q) + s(q)∇L

(
β(q)

))
. (5)

The step size can be user specified. However, convergence is only guaranteed when the restricted
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isometry property is satisfied (Blumensath & Davies, 2009). Certifying whether this is the case can

be quite complicated (Bandeira, Dobriban, Mixon, & Sawin, 2013). Therefore, Blumensath and

Davies (2009) introduced an optimal step size which should ensure stable performance. Unfortu-

nately, the calculation for the optimal step size requires inverting the Hessian matrix, which is a

computationally expensive exercise for high-dimensional matrices (Suchard et al., 2013).

4.2 Patient-Level Prediction: Cyclic Coordinate Descent

Firstly, it should be noted that the setup of PLP models takes a Bayesian approach. The need for

taking this approach concerns the parallelisation of expensive computations, which is outside the

scope of this research but is explained in more detail in Suchard et al. (2013). For this research, the

only relevant implication is that we define prior distributions for the coefficient instead of penalties

for penalised log-likelihoods. Moreover, the analyses performed here are not Bayesian and, hence,

we also do not report posterior distributions.

Then, we start by assuming a prior for the coefficient vector β, denoting the prior distribution as

p (β) (Suchard et al., 2013). When the prior follows the Laplace distribution with location param-

eter µ = 0 and scale parameter b = σ2
β, it is straightforward to confirm that finding the maximum

a posteriori point-estimates is equal to performing a lasso-regularised regression. Similarly, when

the prior assumes the Normal distribution with the same parameters, finding the posterior is equal

to performing a ridge-regularised regression. The variance defined for both priors is proportionally

inverse to the commonly reported penalty of lasso- or ridge-regularised regressions.

PLP models can grow rather large, with the number of patients in the millions and the number

of covariates in the ten thousands. For such models, gradient descent is an expensive and inefficient

optimisation method. Suchard et al. have found competitive performance using cyclic coordinate

descent (Suchard et al., 2013). This optimisation method updates the coefficient vector element-

wise, by optimising β in one direction while keeping the other elements constant.

An update of the coefficient vector for element j during iteration q is then as follows,

β(q+1) = β(q) +
(
∆β

(q)
j

)
ej , (6)
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where the step size is incorporated in the direction of the update, ∆βj :

∆βj = −
∂
∂βj

[L (β) + log p (β)]

∂2

∂β2
j

[L (β) + log p (β)]
= −

gj (β) + ∂
∂βj

log p (β)

hj (β) + ∂2

∂β2
j

log p (β)
. (7)

The terms gj(β) and hj(β) are the uni-dimensional gradient and hessian, respectively.

The expression above is written with the logistic log-likelihood in mind. PLP models can also

be specified by taking a survival approach. In that case, Cox models are used. The optimisation

method is exactly the same, except that the appropriate likelihood and priors are used to obtain

lasso- and ridge-regularised Cox regressions. For the specifications, see Mittal, Madigan, Burd, and

Suchard (2014). Note, ties are handled by adding a small random quantity to the event times. For

a full description of the methodological framework, we refer the reader to Suchard et al. (2013) for

GLM models and Mittal et al. (2014) for Cox models.

To reiterate, the current standard strategy to automatically obtain a subset of covariates is lasso.

However, the lasso penalty suppresses large coefficients more severely than smaller coefficients,

which means the coefficients of true predictors are underestimated to a larger extent than the

coefficients of noise or correlated covariates. As a result, it is less likely that true predictors can

be distinguished from noise and correlated variables. Hence, to capture most or all of the true

predictors, lasso will need to capture much noise and many correlated covariates. As PLP data

generally contains correlated covariates (Steyerberg, 2019), lasso is unlikely to be a suitable method

to select only five or ten covariates for PLP models.

4.3 Iterative Hard Thresholding for Patient-Level Prediction

Due to the high-dimensionality of PLP models, we cannot just apply the IHT algorithm as described

in Section 4.1. Here, we present the novel methodology to incorporate IHT into the existing PLP

framework.

We use the notation from Section 4.1. For the novel IHT algorithm, we use the Laplace prior as

well as the Normal prior for β. To distinguish the use of either prior, let us denote the two priors as

pL(β) ∼ Laplace(0,Σβ) and pN (β) ∼ Normal(0,Σβ), where Σβ = diag(σ2
β,1, σ

2
β,2, . . . , σ

2
β,m). Then,
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we define the cyclic coordinate descent updates as

∆βj,L(β) = −
gj (β) + ∂

∂βj
log pL (β)

hj (β) + ∂2

∂β2
j

log pL (β)
, and ∆βj,N (β) = −

gj (β) + ∂
∂βj

log pN (β)

hj (β) + ∂2

∂β2
j

log pN (β)
. (8)

We cannot refrain from using an `1-norm or `2-norm penalty. Doing so can be computationally

intractable (Suchard et al., 2013). Therefore, we are forced to add a penalty. We choose the `2-norm

penalty, i.e., perform a ridge regression, according to popular use in recent literature (Kawaguchi

et al., 2020; Z. Liu et al., 2017; Zheng et al., 2014).

Secondly, we initialise the algorithm with “warm starts”, i.e., we initialise with the estimated

coefficients from a lasso-regularised regression. Lasso is not quite as suited for variable selection

when the task is to select a very small fraction of the covariates, since the algorithm can only select

the true predictors by including many correlated predictors (Bertsimas et al., 2016). However, the

algorithm will estimate the least important covariates as zero. Therefore, lasso is a great candidate

to provide the starting values. This is also evidenced by the lasso initialisations in X. Chen et al.

(2021); Y. Liu et al. (2021). The baseline IHT algorithm for PLP models reads as follows,

β(1) =
(
∆βj,L(0)

)
ej , ∀j = 1, . . . ,m, → β(1) = Hk

(
β(1)

)
, (9)

β(q+1) = β(q) +
(
∆βj,N (β(q))

)
ej , ∀j = 1, . . . ,m, → β(q+1) = Hk

(
β(q+1)

)
, (10)

where the iteration counter q starts at 1. The algorithm stops when the coefficient estimates is

converged. This is achieved when the absolute difference between the new and current locations

is 10−8 at most, i.e., max{|β(q+1) − β(q)|} < 10−8. The variance for the Laplacian prior is user

specified and shall henceforth be referred to as the initialising variance. The variances for all

coefficients are the same, hence Σβ = σ2
βI. Note that this variance is proportionally inverse to the

standard lasso penalty.

The variances for the Normal prior are updated with each iteration. The ridge regression

is related to the `0-regularised optimisation problem through the BIC-score. Note also the link

between these concepts in Y. Chen and Zhao (2021); Su et al. (2016). The BIC-score for the ridge
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regression at iteration q is equal to BIC = −2L(β) + log(n)‖β(q)‖0, where ‖β(q)‖0 is the number

of parameters that is being estimated as nonzero, as well as the `0-penalty. Hence, the BIC-score

formulation is equal to `0-regularised regressions if the `0-penalty is set to log(n)/2. As a result

the variances for the Normal priors at each iteration q are calculated as,

σ2
β,j(q) =

(
β

(q)
j

)2
log(n)/2

. (11)

Last, note that larger coefficient estimates are penalised less heavily than smaller coefficients, similar

to the work in Z. Liu et al. (2017).

4.4 Extensions

Here we propose two extensions that could improve the methodology, primarily in terms of efficiency,

i.e., to decrease the estimation time.

4.4.1 Step-halving

The authors of the original IHT publication have developed the algorithm further since its intro-

duction. The first major update was normalised IHT (Blumensath & Davies, 2010), in order to

guarantee convergence. The second development is called accelerated IHT, primarily meant to

achieve faster convergence (Blumensath, 2012). Accelerated IHT is defined as any IHT method

that finds a decrease in the (penalised) log-likelihood at each iteration. A possible approach is to

perform a line search, as in Bertsimas et al. (2016). This translates to an optimisation of the log-

likelihood along the line between the current location and the potential new location of β. Chu et

al. (2020) employ a computationally more attractive approach, namely step-halving. The algorithm

by Chu et al. is designed for gradient descent, but can easily be implemented for CCD.

We introduce a step size multiplier γ and denote a potential new location of β as β(q+1)∗.

The potential new location only becomes the new location if there is a descent in the penalised

log-likelihood. Otherwise the step size multiplier is set to γ = 1
2 , which cuts the step in half, and a

new potential location is estimated. If there is no descent, the step size multiplier is halved again.
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Algorithm 1: Step-halving for iterative hard thresholding

Data: Current location β(q); step size multiplier γ

Result: New location β(q+1)

1 Initialise step size multiplier as γ = 1

2 for j = 1, . . . ,m do

3 β(q+1)∗ ← β(q) +
(
∆βj,N (β(q))

)
ej

4 while L
(
β(q+1)∗)+ log p

(
β(q+1)∗) ≥ L(β(q)

)
+ log p

(
β(q)

)
or γ ≥ 2−5 do

5 γ ← γ
2

6 for j = 1, . . . ,m do

7 β(q+1)∗ ← β(q) + γ
(
∆βj,N (β(q))

)
ej

8 β(q+1) ← Hk

(
β(q+1)∗)

The step size multiplier can be halved five times at most. If there is still no descent after these

five steps, the latest potential location becomes the new location. The procedure is described in

Algorithm 1.

4.4.2 Screening

As was already established, theory suggests that the lasso algorithm is an appropriate method to

provide the starting values to the IHT algorithm. Inspired by Fan, Gong, and Sun (2021), we take

the lasso initialisation a step further by using it for a screening step. That is, the screening extension

starts with a lasso-regularised regression. The variance that is given to the Laplace prior for this

regression is referred to as the screening variance, denoted by ς2. Note that again the prior variance

is equal for all elements, hence Σβ = ς2I. Then, the covariates for which the estimated coefficients

Algorithm 2: Screening for iterative hard thresholding

Data: Screening variance ς2; set of covariates {xj , j = 1, . . . ,m}
Result: New set of covariates {xl, l ∈ A}

1 Define the screening prior as pL(β) ∼ Laplace(0, ς2I)

2 for j = 1, . . . ,m do

3 β(0) ←
(
∆βj,L(0)

)
ej

4 The active set A is then constructed as A = {j |β(0)
j 6= 0}
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Algorithm 3: Iterative hard thresholding

Data: IHTx; k; σ2
β; ς2; y = (y1, . . . , yn)′; {xj , j = 1, . . . ,m}

Result: β̂

1 if IHTx ∈ {IHT2, IHT3} then

2 {xl, l ∈ A} ← Algorithm 2 (ς2; {xj , j = 1, . . . ,m})
3 else

4 A = {1, . . . ,m}

5 Define the prior for initialisation: pL(β) ∼ Laplace(0, σ2
βI)

6 for l ∈ A do

7 β(0) ←
(
∆l,L(0)

)
el

8 β(1) ← Hk

(
β(1)

)
; set iteration counter q = 1.

9 while not converged do

10 for l ∈ A do

11 σ2
β,j(q)←

(
β

(q)
j

)2
/(log(n)/2)

12 Update the prior: pN (β) ∼ Normal(0,Σβ), Σβ = diag(σ2
β,l), ∀l ∈ A

13 if IHTx ∈ {IHT1, IHT3} then

14 β(q+1) ← Algorithm 1 (β(q); γ)

15 else

16 for l ∈ A do

17 β(q+1) ← β(q) +
(
∆l,N (β(q))

)
el

18 β(q+1) ← Hk

(
β(q+1)

)
19 q ← q + 1

20 β̂ ← β(q)

are zero, are discarded. Since lasso should estimate the least important covariates as nonzero, these

covariates are highly unlikely to be selected by IHT. This extension is primarily meant to achieve

faster convergence since the number of covariates shrinks substantially. The procedure is described

in Algorithm 2. Note that the input describes the set of covariates per covariate instead of per

patient, i.e., the index is over j = 1, . . . ,m instead of i = 1, . . . , n. Naturally, the j-th covariate is

defined as xj = (x1j , x2j , . . . , xnj)
′.

Lastly, let us combine the novel methodology into one algorithm. To refer to a specific combi-

nation of extensions, we introduce the notation IHT0 for the baseline IHT algorithm without any
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extensions, IHT1 where the step-halving extension is implemented, IHT2 where the screening step

is included, and IHT3 when both extensions are performed. The completed algorithm is presented

in Algorithm 3.

4.5 Evaluation

The performance of the IHT algorithm is evaluated internally with a holdout set containing 25%

of the data, where we consider the discrimination and the calibration. Then in external validation,

we employ the estimated models to predict the probability of experiencing the medical outcome.

The performance of the models in the external databases is evaluated based on discrimination and

calibration, similarly to the internal evaluation.

For discrimination, we consider the concordance of the observed and predicted probabilities.

For LR, this is similar to computing the area under the receiver operating characteristic (AUC),

which is the most commonly reported statistic for discrimination in binary clinical predictions

(Steyerberg, 2019). For Cox, this measure is simply called the C-Statistic, but it has the same

interpretation as the AUC. Concordance represents the degree to which the observed and predicted

probabilities “agree” with each other. For instance, given that the observed probability for patient

i is higher than for patient j, the patients are concordant if the predicted probability for patient i

is also higher than the predicted probability of patient j. Let the predicted probability be denoted

as ŷi and the observed probability as yi, then the concordance is defined as Pr[ŷi > ŷj |yi > yj ].

The AUC or C-Statistic can be interpreted as an experiment (Therneau & Watson, 2015).

Suppose a predictive model is presented with two patients, where one experiences the medical

outcome and the other does not. The model is tasked with predicting which of these two patients

will experience the medical outcome. If you repeat this experiment one hundred times with a

different pair of patients each time, then the AUC or C-Statistic represent the number of times the

model made the correct prediction. In other words, the AUC and C-Statistic indicate the probability

that the model is able to discriminate well between two patients who have different outcomes. This

measure can take values between 0 and 1, but is often scaled by 100 when reported. If the AUC

is equal to 0.5, the predictions resemble random guesses. Moreover, by conditioning on a pair
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of patients with different outcomes, the AUC and C-Statistic are independent of the calibration

of the predicted probabilities. Lastly, the statistics are reported with a 95% confidence interval.

These intervals are computed asymptotically. Detailed descriptions of the computations are given

in Appendix A.

Lastly, calibration checks whether the predicted risks correspond to the observed risks, which is

commonly evaluated by means of calibration plots (Steyerberg, 2019). In these plots, the observed

probabilities are plotted against the predicted probabilities. These observations are fitted with a

loess curve (Austin & Steyerberg, 2014). This curve is presented in combination with the ideal

calibration line: a straight line with the intercept in zero and a slope of one.

5 Simulation Study

We perform a simulation study to confirm the ability of the IHT algorithm to select the best subset

of covariates and estimate their coefficients correctly. Doing so in a controlled setting allows us to

assess the nuances of the variable selection properties. The study design is to a significant extent

inspired by the simulation study in Kawaguchi et al. (2020).

The simulated data set consists of n = 40 000 subjects and m = 5 000 covariates. We investigate

two settings for the true coefficient vector: (1) the “concentrated” setting where the true coefficient

only has ten equally distinguished nonzero values, β0,conc = (15,−15,0m−10)′; and (2) the “diffused”

setting where the level of “nonzeroness” is more varied, β0,diff = (15,−15,0.12,0.63,0m−15)′. By

combining the two settings with different values of the IHT parameter k, we can simulate some

potential real life settings.

The simulations are applied to LR models and Cox models, and we generate one set of covariates

that is used for both models. Denoting the covariate matrix, X, as X = (x1, . . . ,xn)′ with xi =

(xi1, . . . , xim)′, xij represents covariate value j for subject i. We start by generating Zij ∼ N(0, 1).
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Then, by defining xij as

xij =


1 if |zij | > 1.96,

0 if |zij | ≤ 1.96,

(12)

we generate a covariate set where for each subject 5% of the covariate values are nonzero on average.

This way, we are effectively mimicking typical patient profiles: only a few patients have a specific

condition (Suchard et al., 2013).

Subsequently, the outcomes for the LR model are generated from a Bernoulli distribution with

subject specific probability pi = (1 + exp(−x′iβ0))−1: Yi ∼ Bernoulli(pi). For the Cox model,

we assume baseline hazard h0(t) = 1 and generate the following random variables: event time ti

is generated from a Weibull distribution as Ti ∼ Weibull(1, exp(−x′iβ0)), censoring control ui is

generated from a Uniform distribution as Ui ∼ Unif(0, 10), and lastly, censoring time ci is generated

from a Weibull distribution as Ci ∼ Weibull(1, ui · exp(−x′iβ0)). The outcome yi is then set as

yi = min(ti, ci). Using the true coefficient vector from the concentrated and diffused settings, the

censoring rates are approx. 25% and 15%, respectively.

The simulation results are evaluated by the number of nonzero elements in the estimated coef-

Table 1. Variable selection evaluation for the concentrated setting, i.e., with ‖β0‖0 = 10.

k ‖β̂‖0 ‖β̂ − β0‖2 BIC

Logistic Regression 5 5 2.24 5.32× 104

10 10 0.14 5.14× 104

15 10 0.14 5.14× 104

Cox Regression 5 5 2.26 5.73× 105

10 10 0.10 5.67× 105

15 10 0.10 5.67× 105

Table 2. Coefficient estimates for the concentrated setting.

k intercept β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10
∑m
j=11|β̂j |

β0 0.2 1 1 1 1 1 -1 -1 -1 -1 -1 0

LR 5 0.23 1.01 0 0.94 0 0 0 0 -0.97 -1.01 -1.01 0
10 0.19 1.05 0.98 0.99 0.94 0.94 -0.97 -0.95 -1.02 -1.04 -1.06 0
15 0.19 1.05 0.98 0.99 0.94 0.94 -0.97 -0.95 -1.02 -1.04 -1.06 0

Cox 5 - 0 0 0.88 0.92 0.91 0 -0.80 0 0 -0.80 0
10 - 0.95 0.99 1.01 1.01 1.05 -1.00 -1.02 -0.99 -0.93 -1.01 0
15 - 0.95 0.99 1.01 1.01 1.05 -1.00 -1.02 -0.99 -0.93 -1.01 0
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ficient vector ‖β̂‖0, the Euclidean distance between the true coefficient values and their estimated

counterparts ‖β̂ − β0‖2, and the BIC score (−2L(β̂) + log(n)‖β̂‖0), where ‖β̂‖0 is the number

of parameters we are estimating. We start with the concentrated setting: there are ten nonzero

coefficients that are all equally important and three possibilities for the relationship between k and

the number of nonzero coefficients ‖β0‖0; k is either smaller than, equal to, or larger than ‖β0‖0.

To simulate these possibilities, we run three simulations for both LR and Cox models with k = 5,

k = 10, and k = 15. The results of the simulation are presented in Table 1. Naturally, when k = 5,

the algorithm cannot select all ten nonzero covariates. This explains the higher deviation between

the estimated and true coefficient vector, as well as the higher BIC score for both models. How-

ever, it is important to confirm that the algorithm did not falsely select any zero covariates. The

coefficient estimates are written in Table 2, which verifies that IHT estimated the zero coefficients

exclusively as zero.

Subsequently, when k = 10 the algorithm perfectly selects the ten nonzero coefficients for both

models, and estimates them close to their true values. As a result, the deviation has shrunk close to

zero and the BIC score declined as well. Then, moving to k = 15, the question is whether IHT keeps

its correct selection of the ten nonzero covariates without adding any zero covariates. Clearly, that

is not the case; the estimation remains unchanged when we move from k = 10 to k = 15, confirming

that the algorithm only selects and estimates the nonzero coefficients. Accordingly, the deviation

and BIC score are equal when comparing k = 10 and k = 15 for both models.

The second setting is called the diffused setting, where there is some difference in the level of

coefficient magnitude. We take the true coefficient vector of the concentrated setting and change

five zero coefficients to two values of 0.1 and three values of 0.6. Hence, we now have fifteen nonzero

covariates, but of unequal importance. To assess the algorithm’s behaviour, we run the simulations

four times for both models with k = 5, k = 10, k = 15, and k = 20. First, let us consider the case

where k = 5 or k = 10. Since the first ten covariates are the most important ones, we check if IHT

selected a subset of these for k = 5 and the complete set when k = 10. The evaluating statistics

are presented in Table 3, and the coefficient estimates are given in Table 4. It is easy to confirm

that the algorithm performed desirably. When k = 5 the algorithm selected a subset of the ten
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most important predictors and when k = 10 it selected all ten.

Secondly, we focus on the five covariates of lesser importance and investigate whether they

will be selected when IHT allows enough “space” for them by setting k = 15 or k = 20. From

Table 4 we first quickly note that no zero covariates were selected. Then, the three covariates with

true coefficient value 0.6, β13, β14, and β15, are selected and estimated close to their true value.

However, the other two nonzero covariates with true coefficient value 0.1, β11 and β12, do not seem

to be important enough to be selected. We note two possible explanations for this. The algorithm

employs ridge regularisation, which may shrink the coefficient values of β11 and β12 to an extent

that IHT does not consider them to be significantly different than zero. The other possibility is

Table 3. Variable selection evaluation for the diffused setting, i.e., with ‖β0‖0 = 15.

k ‖β̂‖0 ‖β̂ − β0‖2 BIC

Logistic Regression 5 5 2.47 5.28× 104

10 10 1.06 5.11× 104

15 13 0.22 5.07× 104

20 13 0.22 5.07× 104

Cox Regression 5 5 2.50 6.46× 105

10 10 1.05 6.40× 105

15 13 0.18 6.39× 105

20 13 0.18 6.39× 105

Table 4. Coefficient estimates for the diffused setting.

k intercept β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10

β0 0.2 1 1 1 1 1 -1 -1 -1 -1 -1

LR 5 0.32 0.97 0.94 0 0 0 0 0 -0.96 -1.01 -1.01
10 0.29 1.02 0.98 0.96 0.95 0.93 -0.97 -0.90 -1.01 -1.05 -1.06
15 0.21 1.02 0.99 0.96 0.95 0.94 -0.98 -0.92 -1.02 -1.05 -1.07
20 0.21 1.02 0.99 0.96 0.95 0.94 -0.98 -0.92 -1.02 -1.05 -1.07

Cox 5 - 0 0 0 0.91 0.89 -0.80 -0.78 0 0 -0.80
10 - 0.93 0.98 0.98 1.00 1.01 -0.98 -0.99 -0.97 -0.95 -1.00
15 - 0.95 1.00 1.00 1.03 1.03 -1.01 -1.03 -0.99 -0.97 -1.03
20 - 0.95 1.00 1.00 1.03 1.03 -1.01 -1.03 -0.99 -0.97 -1.03

k β̂11 β̂12 β̂13 β̂14 β̂15
∑m
j=16|β̂j |

β0 0.1 0.1 0.6 0.6 0.6 0

LR 5 0 0 0 0 0 0
10 0 0 0 0 0 0
15 0 0 0.54 0.60 0.59 0
20 0 0 0.54 0.60 0.59 0

Cox 5 0 0 0 0 0 0
10 0 0 0 0 0 0
15 0 0 0.60 0.54 0.57 0
20 0 0 0.60 0.54 0.57 0
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that the estimation converged in a local optimum. The latter seems unlikely, since that would mean

the algorithm did not find the global optimum in all four cases. But, more simulations and more

complex ones should be performed to rule out this possibility with certainty.

For this research, it is sufficient to be aware of this behaviour in the variable selection. However,

it is interesting to discuss the implications. On the one hand, our efforts are aimed at finding

parsimonious models with a manageable number of predictors. If there are covariates that may

technically be nonzero, but with negligible impact, it is a positive result that they are not included.

On the other hand, we clearly allowed space them by setting k at a certain value, and then we

might wish all nonzero covariates to be selected, regardless of the covariate’s impact.

Lastly, it may seem strange that the simulation study did not pay any attention to the exten-

sions. First of all, the simulations were performed for all four possible combinations of extensions,

and the extensions did not change the estimations. Secondly, it was a possibility to evaluate the

estimation time and find if there were any efficiency gains for the extensions. However, that would

require a more complicated simulation study, e.g., where the covariates are correlated. The effi-

ciency gains will be addressed in the real data application, and since we had to set priorities, the

decision was made to refrain from more complicated simulations. Nevertheless, this topic could be

recommended to address in future research. With a more complicated simulation, it would also

be interesting to evaluate the behaviour of lasso’s variable selection compared to IHT. As to why

this was not addressed in this research, the same argument applies. The IHT algorithm is exten-

sively compared to the lasso algorithm in the real data application, and meaningful comparison in

simulation requires a more complex simulation design.

6 Real Data Application

In this section, the methodology is applied to a real data set. We describe the clinical predic-

tion problem, the specifications of the model, and then evaluate the performance of the novel

methodology. First, we compare IHT to the benchmark method lasso, after which we evaluate the

performance of the extensions, and lastly, we find out if the results hold in external validation.
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The real data set considers patients with atrial fibrillation or flutter (AFF) and investigates

whether this group of patients is at increased risk of all-cause mortality. Atrial fibrillation and

atrial flutter are categorised as hearth rhythm disturbances. Vidaillet et al. (2002) provide evidence

that there is increased risk of mortality for patients with AFF. They performed a study with 577

patients and 577 controls, and found that mortality among patients with AFF was nearly 7.8-fold

higher at 6 months and 2.5-fold higher at the last follow-up. In a 2013 study, Andersson et al.

found with Cox Regression that three concomitant diseases—neoplasm, chronic renal failure, and

chronic obstructive pulmonary disease—were the most important predictors.

In our application, we select patients into the target cohort that have a diagnosis for atrial

fibrillation or atrial flutter, or both. They enter the cohort only once, based on their first diagnosis.

Furthermore, if the patient does not have at least 365 days or prior observation, this individual

is excluded from the target cohort. Then, patients are included in the outcome cohort when

they pass away within the time-at-risk, which is three years. Our analysis is run with data from

the Integrated Primary Care Information (IPCI) database. More information on this database

is included in Appendix B. The external validations are run in three different databases: CCAE,

MDCD, and MDCR. The population size, outcome count, and observed risk for these four databases

is presented in Table 5. The covariates that are included are (1) age; (2) ethnicity; (3) gender; (4)

index month; and (5) race for demographic information, as well as the long and short term presence

of (1) conditions; (2) devices exposure; (3) drug use; (4) measurements; (5) observations; and (6)

procedures. A short term presence implies the presence is recorded in the last 30 days, whereas a

long term presence means present in the last 365 days.

The hyperparameters selected for this application are shown in Table 6. In order to show the

behaviour of lasso, we compare two lasso models with the various IHT models. The first lasso

model is based on hyperparameters that were selected for optimal predictive performance. As

Table 5. Population size and outcome count for the four databases used.

Database Population size Outcome count Observed risk (%)

IPCI 67,511 4,892 7.25
CCAE 1,204,068 22,045 1.83
MDCD 630,022 85,585 13.58
MDCR 1,601,565 80,964 5.06
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Table 6. Selected hyperparameters. The first row and the bottom three rows are selected based on predictive
performance in training, whereas the second row of hyperparameters (σ2

β = 10−5 and σ2
β = 10−6) is manually

set to offer another comparison to IHT.

Method Logistic Regression Cox Regression

σ2
β ς2 σ2

β ς2

Lasso LM 10−2 - 10−2 -
LS 10−5 - 10−6 -

IHT0 & IHT1 k ∈ {5, 10, 20} 10−2 - 10−3 -

IHT2 & IHT3 k ∈ {5, 20} 10−2 10−3 10−3 10−4

k ∈ {10} 10−2 10−4 10−3 10−4

this requires a relatively mild lasso penalty, we denote this model as LM . The full procedure is

described in Appendix C, and for the first lasso model, resulted in the prior variance σ2
β = 10−2

for both LR and Cox. The second lasso model aims to show the predictive performance when the

penalty is strict to such an extent that the number of nonzero covariates is similar to the IHT

parameter k, i.e., around ten nonzero covariates. Since the penalty for this lasso model is strong

compared to the first model, we denote this model as LS . Hence, the second set of variances for

lasso (σ2
β = 10−5 and σ2

β = 10−6) were selected independent of predictive performance and are left

out of the description in Appendix C. Remark that for IHT, the step-halving extension does not

require any additional hyperparameters, and the use of step-halving also does not influence the

hyperparameter selection. Therefore, the hyperparameters are the same between IHT0 and IHT1

(IHT, resp., without and with step-halving), and between IHT2 and IHT3 (IHT with screening and,

resp., without and with step-halving). Further details on the hyperparameter selection for IHT are

also included in Appendix C.

6.1 Iterative Hard Thresholding vs Lasso

Our first interest is to investigate the performance of IHT compared to the benchmark method

lasso. For each IHT implementation, the algorithm is run three times, each with a different value

for parameter k; we set k = 5, k = 10, or k = 20. The results for the LR and Cox model are shown in

Figure 3. The mild lasso algorithm selected 355 nonzero covariates for LR and 423 for Cox, whereas

the strong lasso algorithm selected 9 nonzero covariates for LR and 14 for Cox. Unsurprisingly,

the LM model achieves the highest performance. For the LR model, even though the drop in the

Page 21



Master Thesis M. Tans

76

80

84

k = 5 k = 10 k = 20 LS LM

A
U

C

(a) Logistic Regression

75

80

85

k = 5 k = 10 k = 20 LS LM

C
−

S
ta

tis
tic

(b) Cox Regression

Figure 3. Performance of Lasso and IHT.

AUC is significant, the performance of the IHT models is still satisfactory. Especially the result

for the IHT model with k = 10 is positive, since ten is a very manageable number of predictors to

work with in practice. In other words, the slight drop in performance is a welcome compromise.

Furthermore, if we compare the performance of the IHT models with the strong lasso algorithm,

LS , which selects nine nonzero covariates, we find that IHT substantially outperforms lasso.

Then, in Figure 3b we see that the drop of IHT compared to LM is more severe for the Cox

models, although less so when you allow for a larger k. Where LR models only try to predict the

presence of a medical event, Cox models try to predict the timing of this event. It does not surprise

then that the model would need (a few) more covariates in order to predict that well. Secondly,

the strong lasso algorithm seems to achieve comparable performance to IHT. The C-Statistic with

LS is roughly halfway between the k = 10 and the k = 20 IHT models, where the LS selects 14

nonzero covariates.

We also briefly address the calibration of the models. In Figure 4, the calibration of the mild

lasso model and the IHT model with k = 10 is plotted3. As mentioned before, the data is well

3The calibration plots are only shown for the LR models. The Cox models are used much less frequently, hence
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(b) IHT with k = 10

Figure 4. Calibration plots of two Logistic Regression models.

calibrated if the predicted risk is similar to the observed risk. In other words, the intercept should

be close to zero and the slope close to one. It is easy to confirm that the data is well calibrated.

6.2 Iterative Hard Thresholding Extensions

Our next focus is on the performance of the methodology extensions, namely step-halving and

screening. As mentioned before, we refer to the IHT model without any extensions as IHT0, with

step-halving as IHT1, with screening as IHT2, and with both extensions as IHT3. Also, again,

we run all models three times with different values for the IHT parameter k, namely with k = 5,

k = 10, and k = 20. In Figure 5, the results for the LR models are displayed, with the predictive

performance in Figure 5a and the efficiency gains in Figure 5b. The efficiency gains are given in

percentages for IHT1, IHT2, and IHT3 relative to IHT0. The estimation time of the IHT0 models

was generally eight minutes.

Most notable is the fact that Figure 5a only shows the results for IHT0 and IHT2. That is

because step-halving had no impact on the location that the algorithm converges in. In other words,

the calibration evaluation is currently not included in the PLP software.
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every single coefficient estimate was the same regardless of whether step-halving was performed.

Screening, on the other hand, did have an impact, although insignificant. Note that this is not a

negative result in the slightest. The extensions were primarily designed to achieve faster estimation

times. In Figure 5b we find that the contribution of step-halving to shrinking the estimation time

is nonexistent, since there is no efficiency gain when just step-halving is applied. The efficiency

gains also remain constant when step-halving is added to IHT with screening (IHT2). However, the

screening extension results in substantial efficiency gains, with at its peak cutting the estimation

time in half (for k = 10).

Then, let us evaluate the same results for the Cox models, which are shown in Figure 6. The

severe drop in performance for k = 5 and k = 10 seems to have been recovered by the screening step.

This is a great result but it is not necessarily expected. The screening step discards any covariates

that are highly unlikely to end up in the best subset. Without these covariates the algorithm might

be less disturbed by them, and make it easier to find a better subset. Alternatively, the reason could

be in the IHT specification without any extensions. It may also just be a coincidence or related to

some other yet undetected cause, and calls for further investigation in future research. Nevertheless,
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Figure 5. Evaluation of extensions for Logistic Regression.
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it is promising result. Note that the performance for k = 20 does not differ significantly. Moreover,

it should be noted that IHT outperforms the strong lasso if we combine the k = 5 and k = 10

results of the IHT2 algorithm with the k = 20 result of the IHT0 algorithm. The C-Statistic for

the LS model is 76.2, which is equal to the lowest C-Statistic of the combined the IHT models.

The step-halving extension seems to worsen the overall performance by increasing the estimation

time. Even though this is not the intended result, there is an explanation for it. The step-halving

extension introduces additional computations before allowing the algorithm to move to a new cycle

of cyclic coordinate descent. If the time to perform these additional computations do not way up

against the time gain they provide, the algorithm will be slower. Then for the screening step we

see some interesting results. The extension seems to introduce small efficiency gains for k = 5 and

k = 10, while also improving the predictive performance. The extension does not seem to add much

value for k = 20; the predictive performance does not change significantly and the estimation time

has increased slightly.
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Figure 6. Evaluation of extensions for Cox Regression.
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6.3 Selected Covariate Subsets

Having seen the overall performance of the algorithm with all of its possible extensions, let us

address which covariates were actually selected. The selected covariates are listed in Table 7,

including their estimates for the IHT0 and IHT2 algorithm with k = 10 for both LR and Cox. The

same tables for the algorithms with k = 5 and k = 20 are included in Appendix D.

Firstly, let us address a question that is not included in the tables but still important to answer.

The lasso algorithm is used as a benchmark to compare with IHT and for the screening extension.

For the latter, it is interesting to investigate if the set of nonzero covariates selected by lasso leaves

out any covariates that are selected by the IHT algorithm that did not use the screening step.

Namely, if lasso leaves out any of those covariates, that could be an indication that lasso is not a

suitable method for the screening step, since the screening step should only discard covariates that

are highly unlikely to be selected as nonzero. The list of covariates that lasso estimates as nonzero

is too extensive to display in this paper. However, for our application, it has been confirmed that

Table 7. Covariate selection and coefficient estimation for the IHT model with k = 10.

Domain Covariate LR Cox

IHT0 IHT2 IHT0 IHT2

Demographic Age 9.591 8.265 9.147 8.214
Female -0.274 -0.385

Conditions Malignant neoplastic disease (short term) 0.972 0.777 0.703
Malignant neoplastic disease (long term) 1.281 0.789
Primary malignant neoplasm (long term) 1.081
Primary malignant neoplasm of trunk (long term) 1.507
Ulcer of skin or mucosa (long term) 0.671

Drugs Antiemetics and antinauseants (long term) 1.659
Antiiflammatory and antirheumatic (long term) -0.258 -0.217
For alimentary tract and metabolism (long term) 0.518
For obstructive airway diseases (immediate) 0.426
Prednisolone (long term) 0.473
Opioids (long term) 0.557 0.579
High-ceiling diuretics (long term) 0.636 0.583
Antipsychotics (long term) 0.740
Vitamin A and/or D (long term) 0.478
All other theurapeutic products (long term) 1.639

Measurements Oxygen saturation in arterial blood (short term) 0.756 0.598 0.719 0.701
Glomerular filtration rate (long term) -0.369

Other Charlson index - Romano adaptation* 2.909 2.244
CHADS2** 0.743 0.693

* The Charlson index is a comorbidity index
** CHADS2 carries information about the risk of experiencing a stroke
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the list of covariates selected by lasso does not leave out any covariates that are selected by the

IHT algorithms that do not include the screening step, which indicates that the lasso algorithm is

an appropriate method for the screening step.

Then, reviewing the selections of covariates in Table 7, it is clear that these selections differ

between the various IHT algorithms, but the covariates share some similarities. For instance,

neoplasm was found to be an important predictor for all-cause mortality for patients with AFF

(Andersson et al., 2013), and all sets of selected covariate contain a covariate that carries information

about the presence of neoplasm. Age, unsurprisingly, seems to be an important predictor as well.

Secondly, we investigate which covariates are selected when only the value for k changes but

the algorithm remains the same. We address the following question: When moving to a larger

k, while all other specifications are kept equal, does the selection of covariates change in such a

way that covariates that were included before and not included with the larger k? Or, the other

way around, when decreasing k, does IHT only select less covariates or also other covariates? The

short answer is, most of the time, yes it does only select less covariates from the same set that

was previously selected. In our case specifically, the answer is yes for IHT0 in LR context and

IHT2 in Cox models. However, for the other two settings, there are a one or two covariates that

are included for the k = 5 specification but not for the k = 10 or the k = 20 specifications. In

conclusion, increasing k generally means adding covariates without removing any.

6.4 External Validation

One of the most important and interesting unknowns before the execution of the research was

whether the results from IHT would hold up in external validation. The CDM managed by the

OHDSI community makes external validation possible for every single PLP model, as long as

the database is linked to the CDM. The models in this research have been run in three external

databases: CCAE, MDCD, and MDCR. Their population sizes and outcome counts are presented

in Table 5. More information about these databases is included in Appendix B.

To see if the database is generally suited for predicting our clinical prediction problem, we run

the mild lasso algorithm. Additionally, we run the IHT0, IHT2, and strong lasso algorithms. Note
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Figure 7. External validation performance for Logistic Regression.

that IHT1 and IHT3 are excluded, since these estimated models are identical to, resp., IHT0 and

IHT2. The external validation results offer two perspectives. Firstly, we find whether the predictive

performance for this specific clinical prediction problem holds in external validation. Secondly, we

compare the two lasso models with the IHT models in each database. For our research, the latter is

more important, although the first perspective is still relevant. Namely, the mild lasso model gives

an indication of the maximum performance that IHT can achieve. In other words, if LM performs

poorly in external validation, than the severity of the drop in performance for the IHT models is

less meaningful than when LM performs well.

The results for the LR and Cox models are shown in Figures 7 and 8, respectively4. First of

all, we note that the performance in CCAE is much better than in the other two databases. The

predictive performance of the mild lasso in this database is similar to the predictive performance

in IPCI, which cannot be said for the other two databases. Hence, the CCAE database is most

relevant for our evaluation.

In Figure 7a, we find that IHT0 achieves consistent performance across different values of k,

and the AUC is only slightly below LM . The performance for IHT0 decreases more substantially

for k = 10, but recovers for k = 20. The performance of LS , on the other hand, is significantly

below that of IHT. Subsequently, the drop performance of IHT in the other two databases is barely

4The IHT2 model with k = 5 for LR did not run in any external database. This was due to some storage error
and not related to the IHT algorithm.
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Figure 8. External validation performance for Cox Regression.

significant compared to the mild lasso model. Again, we find that the strong lasso model performs

very poorly. However, since the performance of LM in itself is quite poor, there is less space for IHT

to perform worse, hence why these databases are not as relevant. Then in Figure 8, we find similar

results in CCAE and MDCD for the Cox models compared to LR. IHT is capable of retaining

its predictive performance in external validation on a comparable level with the mild lasso model,

while the strong lasso model performs significantly worse. However, in the MDCR database, the

performance of the IHT models is quite poor.

Lastly, we consider the calibration plots for the three databases. The calibration for IHT0 with

k = 10 is shown in Figure 9. We see that, while the intercept is close to zero, the slope is not close to
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Figure 9. Calibration plots for the three external databases for the IHT0 algorithm with k = 10.
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one. The discrimination results are still valid, but the predicted probabilities should be recalibrated

before the models are implemented in practice (Steyerberg, 2019). Overall, the performance of IHT

is excellent, and this seems to confirm that the methodology can hold in external validation.

7 Conclusion

The primary goal of this research was to develop a novel method that finds parsimonious PLP

models by leveraging the inevitable sparsity found in PLP data. PLP models are clinical pre-

diction models that predict the risk of some medical outcome based on patient-level information.

The methodology builds upon the concept of iterative hard thresholding. In IHT, we set a hard

threshold, i.e., we allow the algorithm to select at most k covariates. The algorithm then estimates

the coefficients in an iterative manner, where only the k largest coefficient estimates are retained

at each iteration; the other are set to zero. The methodology has been implemented for Logistic

Regressions (LRs) and Cox models, but can be applied to generalized linear models as well.

Firstly, we altered the current IHT methodology such that it can manage the high-dimensionality

and sparsity of PLP data. This is achieved by implementing cyclic coordinate descent instead of

gradient descent and introducing an `2-norm penalty to the log-likelihood that is optimised by

CCD. This procedure is initialised by a warm start, i.e., a lasso estimation. The variable selection

property of the algorithm was verified in a simulation study, and we found that this IHT algorithm

outperforms the lasso model if both models select a similar number of nonzero covariates. If

the lasso algorithm is optimised with respect to predictive performance, IHT achieve a predictive

performance that is only slightly below lasso’s performance, but IHT then bases its prediction on

approximately ten covariates whereas lasso uses a few hundred covariates.

Secondly, we introduced two extensions, step-halving and screening, which were intended to

decrease the estimation time, i.e., provide gains in efficiency. Step-halving attempts to force a

descent in the negative log-likelihood at each iteration. Screening shrinks the set of covariates

by performing a lasso-regularised regression and excluding covariates for which the coefficient is

estimated as zero. The step-halving extension did not have any impact on the selected covariates,
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nor on their estimated coefficient values. Moreover, the extension was unsuccessful in providing

any efficiency gains, and at times even increased the estimation time. The screening extension,

on the other hand, was successful and provided significant efficiency gains. A positively surprising

result was the fact that screening improved the predictive performance of the IHT algorithm for

the Cox models.

Thirdly, with this research, it was the first time that an automated feature selection algorithm

was evaluated in external validation for clinical prediction modeling. We found that the performance

of IHT carries over to external databases, given that the database is suited for the specific clinical

prediction problem. This condition was assessed by applying the optimised lasso models to the

databases, and their performance provided a benchmark for the IHT algorithm. IHT managed to

stay close to the benchmark in predictive performance and outperform lasso when lasso is tasked

to select a similar number of covariates.

In conclusion, the novel IHT algorithm showed the ability to select some of the most important

predictors, while simultaneously estimating their coefficients, and attained good predictive perfor-

mance when applied to the holdout set as well as during external validation. This means that

the algorithm provides a competitive and scalable approach to automated feature selection in PLP

models, which in itself is useful for the implementation of predictive modeling in clinical practice.

The research was limited most prominently by the absence of a full cross-validation procedure

for the IHT algorithm. Designing such a procedure does not pose major complications, but the

implementation was infeasible for this research. A detailed explanation for this is provided in Ap-

pendix C. As a result, the selected hyperparameters may not have been optimal. This does not

invalidate our assessment of the IHT algorithm. IHT outperformed lasso, and optimising the hyper-

parameters could only improve IHT’s performance. However, this limitation has implications for

the assessment of the proposed extensions. Particularly the screening extension, which performed

surprisingly well, should be evaluated with the optimal hyperparameters. The screening step is

influenced by the prior variance and it should be investigated how to optimise this prior variance.

Hence, we recommend the implementation of a cross-validation procedure for future research, which

should enable a more detailed evaluation of the screening extension.
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Lastly, the real data application showed the performance of IHT in one clinical prediction

problem. The algorithm was run with different settings, such as the varying levels for the IHT

threshold k, and for two different model specifications. Nevertheless, to assess the performance

of IHT in more general terms, the procedures should be applied to more PLP problems, which

we also recommend for future research. The application to multiple problems was not the focus

of this work. Hence, it is not necessarily a limitation of the research, but we should be careful in

formalising our judgement of the performance of IHT. This work derived the algorithm and the real

data application showed promising results. Thereby, we can conclude with certainty that the novel

algorithm holds the potential to become an important player in the implementation of predictive

modeling in clinical practice.
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Appendix A Computation of the AUC and the C-Statistic

Here we outline the details regarding the computation of the AUC and the C-Statistic.

A.1 Computation of the AUC

First, we consider the AUC, which is computed within the PLP software (https://github.com/

OHDSI/PatientLevelPrediction). First, we define the S operator, which is referred to as the

Mann-Whitney kernel in the software, because the operator is identical to the one used for the

Mann-Whitney U -Statistic:

S(x, y) =



1 if x > y,

1
2 if x = y,

0 if x < y .

(A.13)

Secondly, assume we have a set of n observed probabilities yi, i = 1, . . . , n. Since the AUC is

computed with a binary outcome variable, yi = 0 or yi = 1. We compare each patient j who does

not experience the medical outcome with each patient i who does experience the medical outcome,

because we know for this patient pair (i, j) that yi > yj , namely yi = 1 and yj = 0. Then, we

denote the predicted probability of patient i as ŷi. If ŷi > ŷj , the the pair (i, j) is concordant. The

AUC is the average concordance of all patient pairs:

AUC =
1

n

∑
i:yi=1

∑
j:yj=0

S(ŷi, ŷj) . (A.14)

To compute the 95% confidence interval of the AUC, we calculate the variance. First, we

distinguish the number of cases (patients who experience the medical outcome), n1, from the

number of controls (patients who do not experience the medical outcome), n0, such that n = n1+n0.

Secondly, we define two vectors, a0 and a1, that contain the averages of the S operator over the
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controls and cases, respectively, as,

a0,j =
1

n1

∑
i:yi=1

S(ŷi, ŷj) , ∀j : yj = 0, (A.15)

a1,i =
1

n0

∑
j:yj=0

S(ŷi, ŷj) , ∀i : yi = 1 . (A.16)

Subsequently, the variances of these vectors are calculated as

v0 =
1

n0 − 1

∑
j:yj=0

(a0,j −AUC)2, (A.17)

v1 =
1

n1 − 1

∑
i:yi=1

(a1,i −AUC)2 , ∀i : yi = 1 . (A.18)

Lastly, with the variance of the AUC defined as v = v0/n0 + v1/n1, the 95% confidence interval is

asymptotically constructed as AUC± 1.95
√
v.

A.2 Computation of the C-Statistic

The C-Statistic is calculated by the concordance function of the survival package (see https://

github.com/therneau/survival/blob/master/R/concordance.R). For the precise calculations

of the C-Statistic we refer to the concordance vignette and Therneau and Watson (2015). However,

we address two difficulties that arise specifically for survival models: how to handle ties of event

times and how to handle censored data. It is rather straightforward. Namely, the C-Statistic only

considers patient pair (i, j) if it is known that patient i experiences the medical outcome sooner

than patient j. In other words, patients with tied observed event times are excluded, and patients

who cannot be compared due to censoring are excluded (Therneau & Watson, 2015). For example,

if patient i is right-censored at 10 months and patient j experiences the medical outcome at 13

months, it is uncertain if patient i experiences the medical outcome before patient j and the pair

(i, j) is excluded.

Then, for all considered pairs (i, j), where it is known that patient i passed away before patient

j —the medical outcome in our real data application is all-cause mortality, their contribution to
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the C-Statistic is determined by the S operator in (A.14). The variance is estimated with the

infinitesimal jackknife (Therneau & Watson, 2015), which is used to construct the 95% confidence

interval in a similar manner as for the AUC.

Lastly, the AUC and the C-Statistic are independent of the calibration of the estimated prob-

abilities. However, the C-Statistic is sensitive to the censoring pattern. See Chapter 15.2.11 of

Steyerberg (2019) for potential alternatives.

Appendix B Data Background

The main database used in this research is the IPCI database. The IPCI database is managed by

the Medical Informatics department of the Erasmus Medical Centre and consists of information that

a general practitioner (GP) routinely records. It contains patient records from GP’s in The Nether-

lands, including diagnoses, medication, and laboratory measurements. The data is anonymised and

sent to the database twice per year. The first records date from 1996 and the most recent ones are

from 2021. Information from 1.5 million patients has been collected by roughly 650 GP’s in the last

four years. For more information we refer to the IPCI website: https://www.ipci.nl/index.php.

For the external validation, we consider three external databases: Commercial Claims and En-

counters (CCAE), Medicare Supplemental and Coordination of Benefits (MDCR), and Multi-State

Medicaid Database (MDCD), which are all IBM MarketScan® databases. They are managed by

Janssen, a pharmaceutical company that works closely together with the researchers from Erasmus

MC (and the OHDSI network) on the development of the PLP methodology and software, as well

as the common data model (CDM). The databases are linked to the CDM, and contain the pa-

tient profiles of various patients, who differ across databases based on their healthcare plan. For

more information, see https://ohdsi.github.io/ETL-LambdaBuilder/docs/IBM CCAE MDCR and

https://ohdsi.github.io/ETL-LambdaBuilder/docs/IBM MDCD.
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Appendix C Hyperparameter Selection

For the hyperparameter selection, the ideal approach would be cross-validation. If there had been

unlimited availability of time for this research, we would have designed and tested a complete cross-

validation procedure for IHT and the extensions in the PLP software (see https://github.com/

OHDSI/PatientLevelPrediction). The decision was made not to do so, since this would be a

rather complex process. For instance, the screening extension requires a variance parameter for the

screening prior. The screening step is the first one in the algorithm. For us to evaluate the effect of

a screening variance, the complete IHT algorithm should be executed, which is written in another

package. Furthermore, the current cross-validation is also more complicated than a standard n-fold

cross-validation; it consists of an automated grid-search (for more details see Suchard et al. 2013),

and is controlled with C++ software instead of R. Hence, to design a cross-validation procedure was

infeasible for this research. Besides, when the hyperparameters are selected by trial-and-error, they

may not be optimal but we are still able to assess the behaviour of IHT.

The data is split into a train and test set (75%/25%). The algorithm is evaluated based on

the predictive performance in the holdout set, i.e., the test set. The hyperparameters are selected

based on performance measures in the training set, without making a distinction between a training

set and validation set within the first training set, as this was also infeasible within the given time

frame. Firstly, let us consider the hyperparameter for the lasso models in Table C.1 and Table C.2.

Lasso requires one hyperparameter, namely the variance for the prior distribution, σ2
β. For the LR

model, remark that the AUC is highest for σ2
β = 1, while σ2

β = 0.01 is selected. The AUC measures

in the test set of these models are, in order of smallest variance to largest, 85.31, 86.14, 86.33,

85.05. The last model with σ2
β = 10 did not converge. Hence, the variances σ2

β = 0.1 and σ2
β = 1

lead to an overfit of the model in training. For instance, the AUC for σ2
β = 1 is 89.75 in traning,

and dropped significantly to 85.05 in testing. While we do not want to select the hyperparameters

based on the test set, we would be able to avoid overfitting, if it had been feasible to construct a

validation set. Hence, we choose the variance that produces the highest AUC in training, given

that it does not cause overfitting. As a result, σ2
β = 0.01 is selected. Lastly, for Cox there was no
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overfitting, hence the selection is based on the C-Statistic in training (see Table C.2).

Table C.1. Lasso for Logistic Regression

σ2
β AUC

0.001 85.03
0.01 86.51
0.1 88.14
1 89.75
10 -

Table C.2. Lasso for Cox Regression

σ2
β C-Statistic

0.001 85.24
0.01 85.44
0.1 84.83
1 84.20
10 84.25

Subsequently, we consider the hyperparameters for the IHT algorithm in the LR model. First of

all, we have a hyperparameter for the initialising step of the algorithm, i.e., the initialising variance

σ2
β for the Laplace distribution. The value of this hyperparameter has no effect on the selection of

covariates nor the estimation of the coefficients, and hence, does not change the AUC in training.

Therefore, we choose the same variance as was selected for the lasso model: σ2
β = 0.01. The same

holds for the step-halving extension; it does not alter the estimation of the coefficients. Hence, the

selection of hyperparameters for IHT with step-halving is identical for IHT without step-halving,

regardless of the inclusion of the screening extension. In other words, the selection for IHT1 is

identical to the one for IHT0, and the selection for IHT3 is identical to the one for IHT2.

Then, the only algorithms that require a hyperparameter in addition to the initialising variance

are IHT2 and IHT3. We present the selection for IHT2, but note that the selection is identical

for IHT3. For each value of k, we run the algorithm with four different values for the screening

variance ς2 and select the candidate with the highest AUC in training (see Table C.3).

Table C.3. IHT2 for Logistic Regression

k ς2 AUC

5 0.0001 80.61
0.001 81.10
0.01 80.45
0.1 80.35

10 0.0001 82.16
0.001 81.53
0.01 81.69
0.1 80.60

20 0.0001 82.97
0.001 83.26
0.01 82.03
0.1 81.73
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Lastly, we address the hyperparameter selection for the IHT algorithm in a Cox setting. Similar

to the LR model, the step-halving extension has no influence on the covariate selection or coefficient

estimation. Hence, we only report the hyperparameter selection for IHT0 and IHT2; they are

included Table C.4 and Table C.5, respectively. For IHT0, the initialising variance σ2
β is the same

for all values of k. The same holds for the screening variance ς2 and the initialising variance σ2
β of

the IHT2 model.

Table C.4. IHT0 for Cox Regression

k σ2
β C-Statistic

5 0.001 72.19
0.1 70.39

10 0.001 71.94
0.1 69.74

20 0.001 80.10
0.1 73.10

Table C.5. IHT2 for Cox Regression

ς2 σ2
β C-Statistic

k = 5 k = 10 k = 20

0.0001 0.001 76.32 79.94 80.57
0.0001 0.1 74.34 77.60 80.57
0.001 0.001 69.57 70.97 79.50
0.001 0.1 71.80 74.02 75.83
0.01 0.001 69.57 72.68 79.50
0.01 0.1 70.39 70.65 72.56
0.1 0.001 69.55 70.84 80.05
0.1 0.1 69.57 70.25 73.20

Appendix D Covariate Selection and Coefficient Estimates

Table D.1. Covariate selection and coefficient estimation for the IHT model with k = 5.

Domain Covariate LR Cox

IHT0 IHT2 IHT0 IHT2

Demographic Age 9.511 9.624 9.245 8.416

Conditions Malignant neoplastic disease (short term) 1.206 0.899 0.774 0.679
Malignant neoplastic disease (long term) 0.884
Neoplasm of respiratory tract (long term) 1.773
Primary malignant neoplasm (long term) 1.112

Drugs Antiemectis and antinauseants (long term) 1.923
High-ceiling diuretics (long term) 0.699

Measurements Oxygen saturation in arterial blood (short term) 0.768

Other Charlson index - Romano adaptation* 3.115 3.024 2.684
CHADS2** 0.912

* The Charlson index is a comorbidity index
** CHADS2 carries information about the risk of experiencing a stroke
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Table D.2. Covariate selection and coefficient estimation for the IHT model with k = 20.

Domain Covariate LR Cox

IHT0 IHT2 IHT0 IHT2

Demographic Age 9.672 9.199 8.217 8.001
Female -0.279 -0.269 -0.300 -0.340

Conditions Malignant neoplastic disease (short term) 0.862 0.955 0.620 0.699
Malignant neoplastic disease (long term) 0.259 0.723
Neoplasm of respiratory tract (long term) 1.714 1.166
Primary malignant neoplasm (long term) 0.685
Primary malignant neoplasm of trunk (long term) 0.826
Inflammatory disorder of head (long term) -0.239
Heart failure (long term) 0.190
Ulcer of skin or mucosa (long term) 0.854 0.589
Traumatic injury (long term) 0.170
Abnormal renal function (long term) 0.512

Drugs For alimentary tract and metabolism (long term) 0.412 0.361
Antiemetics and antinauseants (long term) 1.570
Antiinflammatory and antirheumatic (long term) -0.260 -0.287
Antipsychotics (long term) 0.752 0.747 0.585
Beta blocking agents (long term) -0.192 -0.277 -0.249
Apixaban (long term) -0.628
Bumetanide (long term) 0.780
For obstructive airway diseases (immediate) 0.248
Endocrine therapy (long term) 0.402
High-ceiling diuretics (long term) 0.425 0.390
Opioids (long term) 0.439 0.412
Prednisolone (long term) 0.254
Vitamin A and/or D (long term) 0.292 0.312
Vitamin K-1 (long term) 0.909
All other therapeutic products (long term) 1.604

Measurements Body temperature (long term) 0.281
Oxygen saturation in arterial blood (long term) 0.145
Oxygen saturation in arterial blood (short term) 0.737 0.718 0.592 0.365
Cholesterol (long term) -0.154 -0.106
Glomerular filtration rate (long term) -0.385 -0.463
Systolic blood pressure (long term) 0.372 0.340
Vitamin D and metabolites (long term) 0.502 0.485

Observations Requests euthanasia (long term) 0.632 0.692 0.573
Weight loss (long term) 0.769

Other Charlson index - Romano adaptation* 2.690 2.532 1.744
CHADS2** 0.449

* The Charlson index is a comorbidity index
** CHADS2 carries information about the risk of experiencing a stroke
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