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Abstract

This paper puts forward a new model and estimation method that estimates heterogeneous

structural breaks in static linear panel data models with endogenous regressors. It extends

the grouped adaptive group fused Lasso framework to account for endogenous regressors.

This is achieved by replacing least-squares-based coefficient estimation with an instrumental

variables GMM estimator that is efficient under heteroskedasticity. Monte Carlo results indi-

cate generally good performance in finite samples and suggest consistent estimation of latent

group structure and structural break pattern. The coverage probability of the two-sided nom-

inal 95% confidence interval of the coefficient estimate declines when the time series grows

longer. However, the root mean squared error of the coefficient estimate moves substantially

towards zero with both a larger number of cross-sectional observations and a longer time

series, indicating accurate estimation. Moreover, comparing the Monte Carlo results of two

GMM estimation methods suggest that structural break induced heteroskedasticity is impor-

tant to take into account for consistent estimation of structural breaks when regressors are

not fixed.
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1 Introduction

Panel data models allow to effectively make use of the information contained in panel data

sets by imposing an underlying data generating process for the observations over both time

and individuals in a single comprehensive manner. This explains the increased popularity of

their usage in economics and finance.

There are two main considerations that I want to address here regarding the model specifi-

cation. First, it is important to account for structural changes in slope coefficients which can

result from financial crises, disruptive technologies, or economic reform, for example. Addi-

tionally, these structural changes may have heterogeneous effects across individuals as both

the direction and magnitude of the structural changes will typically differ significantly across

individuals (De Wachter & Tzavalis, 2012). Second, the presence of endogenous independent

variables leads to inconsistent coefficient estimates for least-squares-based estimators. An

example of this is given by Calderón et al. (2015), who analyze the output contribution of

infrastructure. They state that unobserved shocks represent a major source of simultaneity

as they may affect both firm output and input choices of labor, capital, and infrastructure.

This paper contributes a heterogeneous structural break detection method for linear panel

data models with endogenous regressors. To this end, I propose a new model and estimation

method. It can be considered an extension of the model and estimation method by Okui

& Wang (2021), allowing for time-varying and heterogeneous coefficients. Individual hetero-

geneity is modeled through a latent group structure, where coefficients are the same within

groups and may vary between groups. The time-varying nature of the coefficients is restricted

to structural breaks, differing per group. Group membership for each individual is estimated

from the data. This allows for the desired model ability of heterogeneous structural breaks

in both magnitude and timing.

To deal with the endogeneity of the regressors, instrumental variables (IVs) are used. Pro-

vided that valid instruments are available, the corresponding moment conditions are applied

in a generalized method of moments (GMM) approach. In contrast with the conventional

IV (or two-stage least-squares (2SLS)) estimator, the GMM estimator is efficient under het-

eroskedasticity (Baum et al., 2003). This is why it is also called the efficient GMM (EGMM)

5



estimator. Due to structural breaks in the slope coefficients, the variance of the error term

is indirectly affected through the variance of the explanatory variable. This happens when

the explanatory variable is not fixed and it could induce substantial heteroskedasticity. As

a result, there may be heteroskedasticity between the period before and the period after a

structural break. In the same manner, heteroskedasticity might exist between groups because

the slope coefficients might differ.

In practice, the independent variable might display a variance and hence be random rather

than fixed. For example, imprecise measurement or instances in which the independent

variable has to be estimated because it cannot be directly observed will give rise to such a

variance. Then, the structural break induced heteroskedasticity will be present.

Although 2SLS slope coefficient estimates are still consistently estimated under heteroskedas-

ticity, estimates in finite samples might be poor because the estimation method is ineffi-

cient. Especially structural break estimates might suffer because failing to properly take

heteroskedasticity into account might obscure any structural break or increase the chance of

false detection. Moreover, standard error estimates are inconsistent for 2SLS in the case of

heteroskedasticity. It is possible to account for this by adjusting only the standard error esti-

mation method, for example to Newey-West estimates (Newey & West, 1987). By contrast,

EGMM coefficient estimates and their standard error estimates are consistent already. They

are a generalized version of the Newey-West standard errors.

Model estimation that incorporates EGMM is carried out by several adaptations of the

grouped adaptive group fused Lasso (GAGFL) method from Okui & Wang (2021). GAGFL

is a hybrid procedure of the grouped fixed effects (GFE) method by Bonhomme & Manresa

(2015) and the adaptive group fused Lasso (AGFL) method proposed by Qian & Su (2016).

Before estimating group structure and coefficient values, the number of groups is estimated

and the tuning parameter of a penalization term involved in structural break detection is

determined. Both follow from the minimization of their respective information criterion.

Given the number of groups and the value of the tuning parameter, three algorithms are

applied sequentially to arrive at the final parameter estimates. For the first algorithm, I adapt

the GFE method to estimate fully time-varying coefficients through EGMM iteratively. Here,

many different group pattern initializations (around 100) are tried. Each iteration consists
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of three steps. First, I minimize the EGMM quadratic criterion function with respect to

the coefficients, conditioning on the previous group memberships estimate. Second, each

individual is assigned to the group for which its contribution to the sum of squared errors

is minimized, conditioning on the previously computed coefficient estimates. Given correct

group memberships, the coefficient estimates are consistent. In turn, provided with the

correct coefficient values, group allocation performed through least-squares is consistent as

well. In this way, I propose to iteratively solve both objective functions simultaneously. This

unconventional approach is observed to provide substantially better parameter estimates than

using only the EGMM quadratic criterion function to update parameter estimates. Third, the

weighting matrices are updated using the previously computed parameter estimates. These

steps are repeated until numerical convergence to obtain preliminary coefficient and group

membership estimates.

To obtain intermediary parameter estimates (given the preliminary parameter estimates),

a second algorithm is employed. Here, the time-varying nature of the coefficients is given

through a pattern of structural breaks. Again, model estimation is conducted iteratively.

First, a penalized EGMM objective function as in Qian & Su (2016) is minimized, condition-

ing on the previous group memberships estimates. Second, group membership is determined

by assigning each individual to the group that gives the smallest contribution to the sum of

squared errors, conditioning on the slope coefficient estimates from the previous step. Third,

the weighting matrices are updated using the parameter estimates from the first two steps.

Repeating these steps until numerical convergence gives the intermediary coefficient and

group membership estimates. The final estimates are obtained using a non-iterative post-

Lasso EGMM estimator, where group structure and breakpoints are fixed at the estimates

from the second algorithm and only the coefficients are updated. The complete procedure is

titled EGMM GAGFL.

Important characteristics of GAGFL are (i) consistent estimation of the latent group mem-

bership structure, (ii) automatic determination of the number of breaks and consistent es-

timation of breakpoints for each group in one joint step, and (iii) consistent estimation of

the regression coefficients with group-specific structural breaks (Okui & Wang, 2021). By

changing least-squares-based estimators to EGMM-based estimators, it is not certain whether
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the above characteristics still hold. Therefore, I conduct a Monte Carlo simulation study to

indicate how applicable these characteristics are to EGMM GAGFL. Moreover, the Monte

Carlo simulation is used to study finite sample properties.

The Monte Carlo simulation results indicate good finite sample performance and suggest

that the first two of the above three characteristics still hold. The third characteristic (con-

sistent coefficient estimation) might not apply because EGMM GAGFL possibly gives rise

to a small bias, as indicated by the failure of the two-sided nominal 95% confidence interval

to grow towards one with an increasing length of the time series. However, the root mean

squared error of the coefficient estimates is found to be quite close to zero and becomes sub-

stantially closer with both a larger number of cross-sectional observations and a longer time

series. Furthermore, comparing the break estimation accuracy between EGMM GAGFL and

2SLS GAGFL also indicate that it is important to take heteroskedasticity into account in

the case of random regressors.

The remainder of this paper is organized as follows. First, I present a literature review.

Second, the methodology is explained. This consists of describing the model setup and the

estimation method. Thereafter, the Monte Carlo simulation study is described and the results

that follow are presented. Finally, there is a section with concluding remarks.

2 Literature review

The literature underlying the EGMM GAGFL method is threefold. One stream of research

relates to the (IV-)GMM literature. Another part is about testing and dating structural

breaks. The final part concerns modeling individual heterogeneity. The EGMM GAGFL

method builds upon these three streams of literature.

First, I treat the (IV-)GMM literature. 2SLS IV was independently developed by Theil

(1953) and Basmann (1957). Sargan (1958) formulated 2SLS as an optimal IV estimator

under conditional homoskedasticity. GMM, introduced by Hansen (1982), uses orthogonality

conditions to obtain parameter estimates. 2SLS is a special case of GMM. They are the same

in the exactly identified case, where you have the same number of instruments as regressors.

In the overidentified case and when the errors satisfy all classical assumptions (i.e., the opti-
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mal weighting matrix is proportional to the identity matrix) they coincide too (Baum et al.,

2003). According to Baum et al. (2003), the usual approach for IV under heteroskedasticity

is GMM. Concerning panel data, GMM is widely applied in the context of a dynamic panel.

An IV GMM estimator to solve the problem of endogeneity in a dynamic model setup was

first proposed by Anderson & Hsiao (1981). Later, Blundell & Bond (1998) advocate to use

extra moment conditions as suggested by Arellano & Bover (1995). Endogenous regressors

in panel data have been considered by Neal (2015), using 2SLS as an IV method within the

framework of the common correlated effects (CCE) estimator (Pesaran, 2006).

Second, modelling and estimation of individual heterogeneity have been performed often.

Examples are the random coefficients model (Swamy, 1970), mean group estimation (Pesaran

& Smith, 1995), pooled mean group estimation (Pesaran et al., 1999), and the CCE estimator

Pesaran (2006). These examples allow for different slope coefficients between any pair of

individuals. By contrast, I assume a latent group structure is present in the panel data.

Other work that has been done regarding latent group structure modelling and estimation

include Sun (2005), Hahn & Moon (2010), Lin & Ng (2012), Bonhomme & Manresa (2015),

Su et al. (2016), Ando & Bai (2016), ?, Wang et al. (2018), Miao et al. (2020), and Wang &

Su (2021), among others. All these studies assume a stable panel without structural change.

Third, much research relates to testing and dating common structural breaks in panel data.

These include Bai (2010), Kim (2011), Qian & Su (2016), Li et al. (2016), and Baltagi et

al. (2017), among others. By contrast, I consider structural breaks that may vary between

individuals in both magnitude and timing.

Finally, I discuss research that encompasses a combination of the three streams of literature.

An example of research that incorporates a latent group structure to model heterogeneous

structural change is Su et al. (2019), who model structural change through continuous time-

varying slope coefficients. De Wachter & Tzavalis (2012) study structural breaks in dynamic

panel data models with endogenous regressors. However, they do not consider heterogeneous

coefficients. Okui & Wang (2021) do consider heterogeneous structural breaks using a latent

group structure, but they assume exogenous regressors. Qian & Su (2016) allow for endoge-

nous regressors. However, they consider structural breaks to be common across individuals.

I contribute to the literature by proposing a model and estimation method that models indi-
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vidual heterogeneity of both slope coefficients and structural breaks through a latent group

structure in the presence of endogenous covariates.

3 Methodology

In this section, I treat the methodology. The methodology consists of the model setup and

the estimation method. First, the model setup describes the assumed panel data model.

Afterward, the estimation method details the employed method to estimate the model pa-

rameters.

3.1 Model setup

The model setup is as follows. I consider a static linear panel data model with time-varying

and heterogeneous coefficients. For model parsimony, heterogeneity of coefficients is restricted

to a grouped pattern. Moreover, structural breaks are considered for each group to restrict

how coefficients vary over time. The panel data model is

yit = β′
gi,t

xit + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T, (1)

where yit is the scalar dependent variable for observational unit i at time t. The total

number of cross-sectional observations is N , and T denotes the length of the time series.

The independent variables are captured in the k × 1 vector xit = (1, x′
it,exo, x

′
it,pred, x

′
it,endo)

′.

The 1 is typically included as a first element to incorporate a constant in the model. In

this manner, a group-specific fixed effect (which might even have structural breaks) may be

included as an alternative to the individual-specific fixed effect. Each independent variable

may be exogenous, predetermined or endogenous. They are incorporated into the vector

xit,exo, xit,pred, or xit,endo, respectively. The length of these column vectors corresponds to the

number of exogenous, predetermined, and endogenous independent variables, respectively.

The idiosyncratic error term (with a mean of zero) is εit, it has a variance of σ2. In the case

that only the intercept is allowed to vary over time, the model coincides with the GFE model

(Bonhomme & Manresa, 2015).
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The coefficients to be estimated for every group and time step combination are captured

by the regressors’ k × 1 coefficient vector βgi,t. They are homogeneous within groups and

are allowed to be heterogeneous between groups. I assume that there are G groups, let

G = {1, 2, . . . , G} be the set of groups and let gi ∈ G denote the group membership of unit

i. The number of groups G is estimated using a Bayesian information criterion (BIC), this is

described in Section 3.3. The number of individuals in group g is given by Ng. All individuals

within a group share βg,t as their time-varying coefficients, where g ∈ G. Group membership

structure {gi}Ni=1 is unknown and has to be estimated.

The time-varying nature of the coefficients is as follows. I assume that, for each group,

structural breaks characterize the pattern {βg,1, βg,2, . . . , βg,T}. The coefficients are restricted

to change only at a break date, as such they remain the same in between two consecutive

break dates. Each group has mg break dates, let Tmg ,g =
{
Tg,1, Tg,2, . . . , Tg,mg

}
denote the set

of break dates for group g. Both mg and Tmg ,g are unknown and have to be estimated from

the data. Let Tm = {T1, T2, . . . , Tm} denote the set of all break dates, which consists of every

date on which a break occurs within any of the groups. Then, there are m break dates in total.

Coefficient values in between break dates are expressed as follows. Let αg,j, j = 1, 2, . . . ,mg+1

denote the k × 1 coefficient vector for regime j, which ranges from break date j − 1 up until

but not including break date j for group g,

αg,j = βg,t, if Tg,j−1 ≤ t < Tg,j, (2)

where Tg,0 = 1 and Tg,mg+1 = T + 1 allow for coefficient values in the first and last period,

respectively. Similarly, T0 = 1 and Tm+1 = T + 1.

Suppose one or more of the independent variables is not fixed but rather random. Then,

heteroskedasticity might exist, following the heterogeneous structure of groups and structural

breaks. This is illustrated by

V ar(β′
gi,t

xit) = (β′
gi,t

)2V ar(xit) ̸= 0, i = 1, 2, . . . , N, t = 1, 2, . . . , T. (3)

Imposing a group structure and restricting coefficients to vary in time only at break dates

allows for a flexible and parsimonious way to model individual heterogeneity and structural

change. This way, I can make use of cross-sectional variation in break date and coefficient
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estimation (Bai, 2010).

3.2 Estimation method

To estimate the parameters discussed in Section 3.1, an estimation method is required. The

estimation procedure is named EGMM GAGFL. It will be treated in this section. EGMM

GAGFL is an extension of GAGFL (Okui & Wang, 2021) to endogenous variable settings.

GAGFL combines GFE by Bonhomme & Manresa (2015) and AGFL by Qian & Su (2016).

EGMM refers to the usage of GMM within the GAGFL framework in ensuring consistent

coefficient estimates in the case of endogeneity issues, while being efficient (‘E’GMM) under

heteroskedasticity.

I first introduce some notation. Let β = (β′
1,1, β

′
1,2, . . . , β

′
1,T , β

′
2,1, β

′
2,2, . . . , β

′
G,T )

′ denote the

vector stacking all βg,t and let B ⊂ Rk be the parameter space for each βg,t. It follows that

the parameter space for β is BGT . Let βg = (β′
g,1, β

′
g,2, . . . , β

′
g,T )

′ denote the vector stacking

all βg,t for group g. Let θ denote the vector that contains the group membership information

for each individual, i.e., θ = {g1, g2, . . . , gN}. Hence, the parameter space for θ is GN .

To estimate (β, θ), I propose to jointly optimize two objective functions iteratively. For

now, I assume that the number of groups G is known. To start, a random group pattern

initialization is used. Conditioning on the group membership structure, fully time-varying

coefficient estimates can be obtained through EGMM—provided that enough valid moment

conditions are available. I assume the existence of an m× 1 vector of instrumental variables

zit. Then, the moment conditions are

E [zit (εit)] = E
[
zit
(
yit − β′

gi,t
xit

)]
= 0, i = 1, 2, . . . , N, t = 1, 2, . . . , T, (4)

To perform EGMM estimation of β, it is required that m ≥ k, so that the coefficients are

identified. In the exactly identified case (m = k), it suffices to solve (4) directly. By contrast,

when m > k, coefficient estimates are obtained by minimizing

QNT (β, θ) =
G∑

g=1

T∑
t=1

 1

Ng

∑
i|gi=g

fit(βgi,t)

′

Wg,t

 1

Ng

∑
i|gi=g

fit(βgi,t)

 , (5)

with fit(βgi,t) = zitεit = zit
(
yit − β′

gi,t
xit

)
an m × 1 vector containing the moment condition
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functions for i = 1, 2, . . . , N and t = 1, 2, . . . , T , and Wg,t an m×m symmetric and positive

definite weighting matrix for g = 1, 2, . . . , G and t = 1, 2, . . . , T . Assuming that correct group

membership estimates are known, QNT is quadratic in the parameter vector. Subsequently,

minimization of (5) is a convex optimization problem, and solving it thus gives consistent

coefficient estimates. Furthermore, the choice of weighing matrix does not influence consis-

tency but rather efficiency. This is indicated by the fact that 2SLS, for which Wg,t = Im for

g = 1, 2, . . . , G and t = 1, 2, . . . , T , also gives consistent coefficient estimates.

It can be analytically proven that using the inverse of the covariance matrix of the moment

conditions as weighing matrices yields asymptotically efficient parameter estimates. Thus,

Wg,t = (E[fgi,t(βgi,t)fgi,t(βgi,t)
′])−1. For example, suppose some estimates (β̃, θ̃) exist. Then,

the corresponding sample analogue for Wg,t is W̃g,t =
(

1
Ng

(
∑

i|gi=g fit(β̃gi,t)fit(β̃gi,t)
′)
)−1

, for

g = 1, 2, . . . , G and t = 1, 2, . . . , T , where
∑

i|gi=g sums over all individuals within group g.

Let W = (W1,1,W1,2, . . . ,W1,T ,W2,1,W2,2, . . . ,WG,T )
′ denote the vector stacking all Wg,t. I

use time-varying weight matrices because structural breaks might lead to substantial het-

eroskedasticity, this would in turn make it difficult to accurately detect structural breaks for

weighting matrices that are constant over time.

In contrast with coefficient estimation through minimization of the EGMM objective func-

tion (5), estimation of θ is performed using the least-squares objective function

LSNT (β, θ) =
N∑
i=1

T∑
t=1

(
yit − β′

gi,t
xit

)2
. (6)

Therefore, iterative optimization of two objective functions with interdependent parameter

estimates is conducted simultaneously. The reasoning behind the convergence of both is

that both estimators provide consistent estimates given correct parameter estimates from

the other estimator. As such, they are likely to enable the consistency of each other, at least

for certain initial grouping estimates. Consequently, I propose to perform group membership

estimation by minimizing (6).

Moreover, I attempted to update group membership using the EGMM objective function

(5) instead of performing group allocation through least-squares. This way I would iteratively

optimize a single objective function instead of two. This would make the method coherent

by providing a more justifiable theoretical motivation. The implementation specifics are
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discussed in the last paragraph of Section 3.2.1. Surprisingly, Monte Carlo simulations with

this estimation method setup gave very poor parameter estimates. Hence, I decided to

abandon this approach in favor of the least-squares approach for group allocation.

3.2.1 EGMM estimation

Presuming the existence of enough valid instruments, consistent fully time-varying parameter

estimates can be obtained by a GFE-type estimator. Let β̇ be the preliminary estimate of β,

resulting from a minimization of the EGMM quadratic criterion function (5). Bonhomme &

Manresa (2015) use a least-squares objective function in an estimation method that is similar

but assumes exogenous regressors. Let θ̇ be the preliminary estimate of θ and let Ẇ be the

preliminary estimate of W . Preliminary parameter estimates result jointly from

β̇ = argmin
β∈BGT

QNT (β, θ), (7)

and,

θ̇ = argmin
θ∈GN

LSNT (β, θ). (8)

Ẇ is computed directly from (β̇, θ̇). Computationally, I propose to use Algorithm 1 to obtain

the preliminary parameter estimates iteratively. Algorithm 1 starts by generating a random

group pattern by assigning each individual to one of the groups randomly. This pattern forms

the initial group membership estimates. Afterward, Algorithm 1 enters a loop in which the

parameters that minimize QNT are computed iteratively.

The steps in this loop are as follows. First, coefficient estimates are updated by mini-

mizing QNT with respect to the coefficients, conditioning on the most recent estimates of

group memberships and weighting matrices. To have fully time-varying coefficients, data

and weighting matrices are transformed. I will show how this is done for X, for Z and W a

similar operation is performed. For regressor k,

X
(k)
g,tot = (diag(x

(k)
gi1 ,1

, . . . , x
(k)
gi1 ,T

), diag(x
(k)
gi2 ,1

, . . . , x
(k)
gi2 ,T

), . . . , diag(x
(k)
giNg

,1, . . . , x
(k)
giNg

,T ))
′,

where x(k)
gin ,t

= x
(k)
it for individual n in group g and period t. Then, Xg,tot = (X

(1)
g,tot, . . . , X

(K)
g,tot).
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Algorithm 1: EGMM estimator
Parameters: Regressors’ coefficient vector (β), grouped pattern vector (θ), and
weight matrices vector (W ).

Hyper parameters: Number of groups (G), maximum number of iterations (smax),
and number of simulations (Nsim).

Input: Dependent variable NT × 1 vector (y), independent variable NT × k matrix
(X), and NT ×m instrument matrix (Z).

Output: Preliminary parameter estimates (β̇, θ̇, Ẇ ).
Initialization: Set n = 1 and Rmin = 107.

1. Generate a random group pattern: For i ∈ {1, 2, . . . , N}, set gi = random(G).
Then, let θ(0) be the resulting initial group membership estimates. Set s = 0, β(0) = 0,
and W

(0)
g,t = Im for g = 1, 2, . . . , G and t = 1, 2, . . . , T .

2. Obtain parameter estimates iteratively:

(a) Update coefficients: Given θ(s) and W (s), set

β(s+1)
g =

{
(Z ′

g,totXg,tot)
−1Z ′

g,totyg if m=k
(X ′

g,totZg,totW
(s)
g,totZ

′
g,totXg,tot)

−1X ′
g,totZg,totW

(s)
g,totZ

′
g,totyg if m > k,

(9)

for all g ∈ G.

(b) Update group memberships: For all i ∈ {1, 2, . . . , N}, set

g
(s+1)
i = argmin

g∈G

T∑
t=1

(
yit − β

(s+1)′
gi,t xit

)2
. (10)

Then, θ(s+1) follows.

(c) If m > k, update weighting matrices:

W
(s+1)
g,t =

 1

Ng

(
∑
i|gi=g

fit(β
(s+1)
gi,t )fit(β

(s+1)
gi,t )′)

−1

, (11)

for g = 1, 2, . . . , G and t = 1, 2, . . . , T .

(d) Check stopping criteria: If
∥∥β(s+1) − β(s)

∥∥
2
> 0 and s+ 1 < smax, set

s = s+ 1 and go to Step 2a. Otherwise, set (β, θ,W )n = (β, θ,W )(s+1) and
continue to Step 3.

3. Obtain estimates and check stopping criteria: If∑N
i=1

∑T
t=1

(
yit − β′

gi,t
xit

)2
< Rmin, update Rmin and set (β̇, θ̇, Ẇ ) = (β, θ,W )n. If

n < Nsim, set n = n+ 1 and go to Step 1. Otherwise (when n = Nsim), stop.
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Second, each individual is assigned to the group for which its contribution to the sum of

squared errors is minimized, conditioning on the previously computed coefficient estimates.

As previously explained, group allocation is performed based on least-squares instead of

EGMM.

Third, the weighting matrices are updated using the new parameter estimates from the

previous two steps. These three steps are repeated until numerical convergence (applying

the L2 norm) or until the maximum number of iterations has been reached. After iterating,

I check if the obtained parameter estimates result in the lowest value of the sum of squared

errors thus far. If that is the case, the minimum value of the sum of squared errors and the

preliminary parameter estimates are updated accordingly.

This whole simulation process is repeated by generating a random group pattern again and

following all subsequent steps—that is until the maximum number of simulations has been

reached. By running multiple simulations (that have different initial group memberships

estimates), Algorithm 1 likely avoids getting preliminary parameter estimates corresponding

to a local minimum that is markedly greater than the global minimum. Running a large

number of simulations is the main computational effort, computation time increases linearly

with this number (Okui & Wang, 2021).

The alternative approach to estimate group membership by minimizing the EGMM objec-

tive function (5) is as follows. I compute individual contributions in Step 2b of Algorithm 1

(per group) by

QNTi∗,g(βg, θ) =
T∑
t=1

 1

Ng

∑
i|gi=g

fit+i∗ (βg,t)

′

Wg,t

 1

Ng

∑
i|gi=g

fit+i∗ (βg,t)


−

T∑
t=1

 1

Ng

∑
i|gi=g

fit−i∗ (βg,t)

′

Wg,t

 1

Ng

∑
i|gi=g

fit−i∗ (βg,t)

 ,

(12)

where fit+i∗ (βg,t) = 1 for i = i∗ and fit−i∗ (βg,t) = 0 for i = i∗. Equation (12) subtracts the

contribution of group g to the objective function in case i∗ is included from the case in which

i∗ is not included. Since individual contributions are interdependent, this indirect approach

allows to obtain the individual contributions per group. But, as aforementioned, Monte Carlo

simulations indicated poor performance.
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3.2.2 Penalized EGMM estimation

To restrict the time-varying nature of the coefficient estimates to a pattern of structural

breaks, I follow Qian & Su (2016) by introducing a penalty term to (5). Subsequently, I

jointly estimate (β, θ) by

β̂ = argmin
β∈BGT

(
QNT (β, θ) +

G∑
g=1

λg

T∑
t=1

ẇg,t ∥βg,t − βg,t−1∥F

)
, (13)

and,

θ̂ = argmin
θ∈GN

LSNT (β, θ). (14)

The left-hand side of (13) term is the EGMM quadratic objective function, whereas the

right-hand side term gives the penalty term. The group-dependent tuning parameter of the

penalty term is λg, which is discussed in more detail in Section 3.3. The data-driven weight

ẇg,t is

ẇg,t =
∥∥∥β̇g,t − β̇g,t−1

∥∥∥−κ

k+1
=

{ k∑
p=1

(∥∥∥β̇g,t − β̇g,t−1)
∥∥∥k
1

)
p

}k−1−κ

, (15)

where κ is a user specified constant (typically κ = 2) and
(∥∥∥β̇g,t − β̇g,t−1)

∥∥∥k
1

)
p

denotes entry

number p within the first differenced (in absolute terms) coefficient vector, after exponenti-

ation by k. Furthermore, ∥·∥F denotes the Frobenius norm.

The use of the Frobenius norm (instead of the usual L1 norm) in the penalization term

in (13) for the first difference vector βg,t − βg,t−1 generalizes the fused Lasso (Tibshirani et

al., 2005) to the group fused Lasso. Usage of the adaptive weights ẇg,t is what gives rise to

the procedure name of adaptive group fused Lasso (AGFL) (Qian & Su, 2016). Building on

this, Okui & Wang (2021) consider heterogeneous structural breaks through heterogeneous

coefficients in a grouped pattern. To estimate the grouped pattern, they employ a GFE

estimator (Bonhomme & Manresa, 2015). Okui & Wang (2021) title the resulting estimation

procedure GAGFL. By allowing for endogenous regressors, and by adapting the estimation

procedure accordingly, I extend the existing literature. I do this by replacing least-squares-

based coefficient estimation with efficient IV-GMM, which is where the name EGMM GAGFL
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originates from. Moreover, to achieve this, iterative estimation of the weighting matrices is

incorporated within the iterative parameter estimation.

The motivation for the use of the Frobenius norm within EGMM GAGFL, instead of the

L1 norm, is to have accurate structural break detection. By using the Frobenius norm, the

differences between adjacent (in a temporal sense) coefficient vectors are penalized instead

of differences between scalar coefficients within the vectors. To have accurate detection

of structural breaks, the used norm should give a good indication of the overall similarity

between coefficient vectors. Thus, the Frobenius norm is most applicable.

Having obtained preliminary parameter estimates (β̇, θ̇, Ẇ ) using Algorithm 1, the weights

ẇg,t can be computed as in (15). Subsequently, intermediary parameter estimates (β̂, θ̂, Ŵ )

are obtained employing the penalized EGMM objective function (13) and the least-squares

objective function (14). I propose to use Algorithm 2, very similar to Algorithm 1, to compute

the intermediary parameter estimates.

Instead of randomly sampling multiple initial group patterns, Algorithm 2 utilizes the prelim-

inary group memberships estimate θ̇ from Algorithm 1 as the single initial group memberships

estimate. Provided that β̇ and θ̇ are consistent, the initial parameter estimates are close to

the (global) minimum and hence Algorithm 2 converges fast and there is no need for multiple

initial group patterns.

Iterative minimization is performed in the same manner as the iteration steps in Algorithm

1, except that the penalized EGMM objective function is used in the coefficients update step

instead of just the EGMM objective function (7). Instead of analytically solving the objective

function, a block coordinate descent algorithm is used to numerically solve (16). Group

memberships in Step 2 are updated by minimizing the sum of squared residuals. Furthermore,

the penalization term does not depend directly on the group pattern and therefore need not

be included in the group assignment step.

The estimated break dates are periods for which β̂g,t − β̂g,t−1 ̸= 0. Let the set of estimated

break dates for group g be denoted by T̂m̂g ,g =
{
t ∈ {1, 2, . . . , T} | β̂g,t − β̂g,t−1 ̸= 0

}
. The

estimated number of breaks for group g (m̂g) is then given by the cardinality of T̂m̂g ,g.

Consequently, the estimated number of unique coefficient vectors for group g is m̂g + 1.

Furthermore, let T̂m̂ =
{
t ∈ {1, 2, . . . , T} | β̂g,t − β̂g,t−1 ̸= 0 ∀ g ∈ G

}
denote the set of all
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Algorithm 2: penalized EGMM estimator
Parameters: Regressors’ coefficient vector (β), grouped pattern vector (θ), and
weight matrices vector (W ).

Hyper parameters: Number of groups (G), maximum number of iterations (smax),
and tuning parameter (λg).

Input: Dependent variable NT × 1 vector (y), independent variable NT × k matrix
(X), and NT ×m instrument matrix (Z). Preliminary parameter estimates
(β̇, θ̇, Ẇ ).

Output: Intermediary parameter estimates (β̂, θ̂, Ŵ ).
Initialization: Set β(0) = β̇, θ(0) = θ̇, W (0) = Ẇ , and s = 0.

1. Update coefficients: Given θ(s) and W (s), set

β(s+1) = argmin
β∈BGT

QNT (β, θ
(s)) +

G∑
g=1

λg

T∑
t=1

ẇg,t ∥βg,t − βg,t−1∥F , (16)

2. Update group memberships: For i ∈ {1, 2, . . . , N}, set

g
(s+1)
i = argmin

g∈G

T∑
t=1

(
yit − β

(s+1)′
gi,t xit

)2
. (17)

Then, θ(s+1) follows.

3. If m > k, update weighting matrices:

W
(s+1)
g,t =

 1

Ng

(
∑
i|gi=g

fit(β
(s+1)
gi,t )fit(β

(s+1)
gi,t )′)

−1

, (18)

for g = 1, 2, . . . , G and t = 1, 2, . . . , T .

4. Check stopping criteria: If
∥∥β(s+1) − β(s)

∥∥
2
> 0 and s+ 1 < smax, set s = s+ 1

and go to Step 1. Otherwise, set (β̂, θ̂, Ŵ ) = (β, θ,W )(s+1) and stop.

unique estimated break dates over all groups, where ∀ should be interpreted as ‘for any’. It

follows that the estimated total number of breaks m̂ is given by the cardinality of T̂m̂.

Consistent estimation of break dates is achieved through appropriate weights (ẇg,t) that

result from consistent preliminary coefficient estimates (β̇g,t). To illustrate this, suppose

βg,t − βg,t−1 = 0, then it is likely that β̇g,t − β̇g,t−1 ≈ 0. If that is the case, it can be

seen from (15) that ẇg,t will be large. That results in a heavy penalty, and presumably no
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estimated breakpoint for the corresponding period. This facilitates break dates to be sparse

and consistently estimated.

3.2.3 Post-Lasso EGMM estimation

After obtaining intermediary group pattern estimate θ̂, intermediary weight matrices estimate

Ŵ , and estimated set of break dates T̂m̂g ,g for each group g, post-Lasso coefficient estimates

are computed. Let αg,m =
(
α′
g,1, α

′
g,2, . . . , α

′
g,mg+1

)′
denote the vector stacking all αg,j for

group g. Post-Lasso coefficient estimates are obtained by performing EGMM for each period

in each group. The objective function for group g is

VNT,g(αg,m, Tmg ,g,W ) =

mg+1∑
j=1

Tg,j−1∑
t=Tg,j−1

 1

Ng

∑
i|gi=g

fit(αg,j)

′

Wg,t

 1

Ng

∑
i|gi=g

fit(αg,j)

 , (19)

where fit(αg,j) = zit
(
yit − α′

g,jxit

)
. Minimization of (19), which is performed for all g ∈

G, gives α̂g,m(T̂m̂g ,g, Ŵ ) =
(
α̂′
g,1, α̂

′
g,2, . . . , α̂

′
g,mg+1

)′
. Similar to Step 2a in Algorithm 1,

coefficients are computed by

α̂g,j =

(Z ′
g,jXg,j)

−1Z ′
g,jyg,j if m=k∑Tg,j−1

t=Tg,j−1
(X ′

g,tZg,tWg,tZ
′
g,tXg,t)

−1X ′
g,tZg,tWg,tZ

′
g,tyg,t if m > k,

(20)

for all j ∈ {1, 2, . . . ,mg+1} in each g ∈ G. Here, Xg,j consists of all panel data xit for which

both i ∈ {1, 2, . . . , N} | gi = g, and t ∈ {1, 2, . . . , T} | Tg,j−1 ≤ t < Tg,j. Furthermore, Xg,t

consists of all panel data xit for which i ∈ {1, 2, . . . , N} | gi = g and t = t. The other terms

in (20) are formed in a similar manner. Standard error estimates of the coefficient estimates

are obtained by computing GMM standard errors as in Section 4.4.3 of Heij et al. (2004).

3.3 Selecting the number of groups and the penalty term tuning

parameter

Prerequisites of using EGMM GAGFL are the selection of the number of groups G and

selecting the tuning parameter of the penalty term λg in (13). Those issues are discussed in

this section.
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First, to select the number of groups G, a Bayesian information criterion is used,

BIC(G) =
1

NT

G∑
g=1

mg+1∑
j=1

∑
i|gi=g

Tg,j−1∑
t=Tg,j−1

(
yit − α̂′

g,jxit

)2
+ σ̂2np(G) +N

NT
lnNT, (21)

which is adapted from Bonhomme & Manresa (2015). Here, σ̂2 is a scaling parameter that

can be obtained from an estimate of the variance of the idiosyncratic error term. I use

σ̂2 = 1
NT

∑m1+1
j=1

∑N
i=1

∑Tg,j−1
t=Tg,j−1

(
yit − α̂′

1,jxit

)2, where the coefficient estimates α̂1,j result

from applying EGMM GAGFL to a homogeneous panel (G = 1). Furthermore, np(G) =∑G
g=1((m̂g+1)k) gives the total number of estimated coefficients. To implement the selection

of G, compute BIC(G) for G ⊂ {1, 2, . . . , Gmax}, where Gmax is an upper bound that needs

to be known. Selection of Gmax is not considered here. Subsequently, the estimated number

of groups Ĝ is given by: argmin
G⊂{1,2,...,Gmax}

BIC(G).

Since the squared residuals might differ among both groups and regimes (heteroskedastic-

ity), and because the number of groups might be larger than one, σ̂2 probably yields an

inconsistent estimate of σ2. However, the reason for including σ̂2 is to scale the penalty term

such that it is unaffected by the variation of the data (Okui & Wang, 2021). Okui & Wang

(2021) find that using the upper bound for the number of groups (Gmax) to estimate the

variance of the idiosyncratic error term, as suggested for GFE by Bonhomme & Manresa

(2015), may lead to unstable results. They advocate the use of a single group to estimate σ2.

The BIC represents a tradeoff between model fitness and model parsimony. Generally, a

larger value of G leads to a larger number of parameters and a better fit. However, this is

not necessarily the case since more groups might result in fewer breaks over all groups and

thus a lower number of coefficients and a worse model fit. Nevertheless, according to Okui

& Wang (2021), the model that coincides with the data generating process gives the lowest

BIC value, provided an appropriate choice of the tuning parameters λg.

Next, selection of tuning parameter λg is discussed. Similar to Okui & Wang (2021), I

minimize the following information criterion (IC):

ICg(λg) =
1

NT

mg+1∑
j=1

∑
i|gi=g

Tg,j−1∑
t=Tg,j−1

(
yit − α̂′

g,jxit

)2
+ ρNT

(
m̂λg + 1

)
k, (22)

where m̂λg is the estimated number of breaks when tuning parameter λg is used, and ρNT is a
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tuning parameter. Here, I choose ρNT = c ln(NT )/
√
NT with c = 0.05, following Qian & Su

(2016). The tuning parameter differs per group because the variance of the idiosyncratic error

term and number of breaks might differ per group as well. Therefore, the tuning parameter

value which minimizes (22) might differ too. Both Okui & Wang (2021) and Qian & Su

(2016) verify via simulation that the performance of their method is robust to the choice

of c as long as it lies in a reasonable range. To implement the selection of λg, I compute

IC(λg) for λg ⊂ {λg,min, . . . , λg,max}, where λg,min and λg,max are bounds that need to be

known. In between those bounds, there are a number of evenly spaced values—that is, on

a logarithmic scale. The exact determination of the bounds and the number of values in

between is not considered here. Subsequently, the value of the tuning parameter λg is given

by argmin
λg⊂{λg,min,...,λg,max}

IC(λg).

4 Monte Carlo simulation

In this section, I evaluate the finite sample performance of the proposed EGMM GAGFL

method for linear and static panel data with endogenous regressors by conducting a set of

Monte Carlo experiments. Moreover, I perform a comparison between EGMM GAGFL and

two other estimation methods. One of those methods is GAGFL, which differs from EGMM

GAGFL in the sense that it uses ordinary least-squares (OLS) for coefficient estimation. The

other method is 2SLS GAGFL and it discerns itself from the other two by employing 2SLS for

coefficient estimation. The 2SLS and EGMM coefficient estimation techniques are equivalent

when the number of instruments is equal to the number of parameters. In this case, they

both boil down to a simple IV estimator which directly solves the moment condition.

For each method, following Qian & Su (2016), the bounds of the tuning parameter λg (i.e.,

λg,max and λg,min) are selected so that λg,max would yield no breaks and λg,min would yield

breaks in all time points. Furthermore, 50 logarithmically evenly distributed values in the

interval of [λg,min, λg,max] are used. Subsequently, the optimal tuning parameter is computed

as described in Section 3.3. Following adaptive Lasso literature, I set κ = 2 to construct the

weights ẇg,t.
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4.1 Data generating process

Each method is estimated on three data generating processes (DGPs), which differ in terms of

the presence of serial correlation in the independent variable and instruments, and the number

of available valid instruments. The basis of the specifications resembles a combination of the

Monte Carlo simulation studies of Qian & Su (2016) and Okui & Wang (2021). The basic

form of each DGP is

yit = β′
gi,t

xit + σεεit, i = 1, 2, . . . , N, t = 1, 2, . . . , T. (23)

Further specifications are

DGP 1 xit = ξit + 0.3εit, εit ∼ i.i.d. N(0, 1), ξit ∼ i.i.d. N(0, 1), z
(1)
it = ξit + 0.3uit,

uit ∼ i.i.d. N(0, 1), z(2)it = ξ3it + 0.3vit, vit ∼ i.i.d. N(0, 1), ξit and εit are mutually

independent, z(1)it and z
(2)
it are independent of εit.

DGP 2 Same as DGP 1, except that ξit ∼ AR(1) for each i : ξit = 0.5ξi,t−1 + uit, uit ∼

i.i.d. N(0, 0.75).

DGP 3 Same as DGP 1, except that the only available valid instrument is z
(1)
it .

DGP 1 is the benchmark case, both z
(1)
it and z

(2)
it are valid instruments for the endogenous

regressor xit. Since both of them are used in estimation, the endogenous regressor is overi-

dentified. Furthermore, the exogenous part of the independent variable and all error terms

are i.i.d. over i and t, and the idiosyncratic error process is strong white noise. DGP 2

differs from the benchmark in the sense that it displays serial correlation in the regressor and

instruments. DGP 3 is the same as the benchmark case except that it has just a single in-

strument. Therefore, it corresponds to the exactly identified case. Regarding the instrument

z
(2)
it , it is generated in such a way that it provides a valid instrument while preventing mul-

ticollinearity with z
(1)
it so that the instruments provide valuable information that is different

from each other. This entails a high correlation with the endogenous regressor while ensuring

that the correlation between the instruments is not too high. Due to the exponentiation of

ξit, the instruments will differ in scale. However, standardization is not necessary because

2SLS and EGMM both account for scale differences of the instruments and OLS does not
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use the instruments. Furthermore, note that the independent variables and instruments are

random instead of fixed and as such I expect there to be heteroskedasticity that follows the

heterogeneous structure of groups and structural breaks.

In addition to three different DGPs, I evaluate performance at different noise levels. I

consider σε ∈ (0.5, 0.75). These values correspond to signal-to-noise ratios of 4 and 16
9
,

respectively. Moreover, to investigate the relationship between performance and data size

characteristics, two cross-sectional sample sizes and three time series lengths are considered.

These are N = (50, 100) and T = (10, 20, 40), respectively. This means that a total of 36

different model setups are considered since estimation method performance is assessed for

every possible combination of three DGPs, two noise levels, two cross-sectional sample sizes,

and three time series lengths. For every model setup, 1000 replications are performed for

each estimation method.

In accordance with Okui & Wang (2021), I let there be three groups, and I let that be known.

Let Nj (j ∈ {1, 2, 3}) denote the number of units in group j, as such N = N1+N2+N3. Both

N1 and N2 are a third of N , rounded to the nearest integer. N3 accounts for the remaining

part of the units. The coefficients of the three groups are

β1,t =


1 if 1 ≤ t < ⌊T/2⌋

2 if ⌊T/2⌋ ≤ t < ⌊5T/6⌋,

3 if ⌊5T/6⌋ ≤ t ≤ T

β2,t =


3 if 1 ≤ t < ⌊T/3⌋

4 if ⌊T/3⌋ ≤ t < ⌊5T/6⌋,

5 if ⌊5T/6⌋ ≤ t ≤ T

β3,t = 1.5 for 1 ≤ t ≤ T,

where ⌊·⌋ is an operator that takes the integer part. The first two groups both display two

structural breaks. However, the first break date differs among the two groups. The slope

coefficient of the third group is constant over the entire observational period.

4.2 Evaluation criteria

The evaluation criteria to assess performance are all taken from Okui & Wang (2021). How-

ever, in contrast with Okui & Wang (2021), I do not evaluate the selection of the number of

groups because it would lead to many more simulations and consequently prohibitive compu-

tation time. For example, suppose that I also consider five different number of groups. That
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would mean four new situations for each of the 36 model setups, leading to 144 extra model

setups for which I need the final parameter estimates. Since the adaption of the GAGFL

method to coefficient estimation through EGMM or 2SLS leads to substantial increases in

computation time already, the total computation time of 144 extra model setups becomes

prohibitive.

It seems reasonable to assume that the performance of EGMM GAGFL in selecting the right

number of groups does not differ much from the observed performance of GAGFL by Okui &

Wang (2021) if the other parameters are accurately estimated. This is because the procedure

to select G based on the BIC is the same for both methods and only parameter estimates

are performed differently. Also, as mentioned before, the influence of σ̂2 is presumably very

limited. For the DGP similar to my DGPs, Okui & Wang (2021) find that in the worst case

(σε = 0.75, N = 50, and T = 10), the correct number of groups is selected in over 97% of

the cases.

The performance on the four remaining criteria is quantified through five performance

indicators. The criteria are classification accuracy, break detection accuracy, breakpoint es-

timation accuracy, and coefficient estimation accuracy. Each criterion has one performance

indicator, except for the latter which is evaluated by two distinct indicators. The respec-

tive performance indicators are the ratio of misclassified units to the total number of units,

frequency of correctly estimating the number of breaks for each group, relative Hausdorff

distance (HD) between break date estimates and true set of brake dates for each group, and

root mean squared error (RMSE) and coverage probability of the two-sided nominal 95%

confidence interval.

For the last three performance indicators, I provide some further explanation. The Haus-

dorff distance between any two sets A and B is defined as HD(A,B) ≡ max{D(A,B),D(B,A)},

where D(A,B) ≡ supb∈B infa∈A |a − b|. The Hausdorff error of of an estimated set of break

dates is defined by its HD to the true set of break dates (i.e., HD(T̂m̂g ,g, Tmg ,g), for group g).

Then, the relative (with respect to T ) Hausdorff error is equal to HD(T̂m̂g ,g, Tmg ,g)/T . The

RMSE of β̂gi,t is computed by

RMSE(β̂gi,t) =

√√√√ 1

NT

N∑
i=1

T∑
t=1

(
β̂gi,t − βgi,t

)2
,
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and its coverage probability is

Coverage(β̂gi,t) =
1

NT

N∑
i=1

T∑
t=1

I
(
β̂gi,t − 1.96σ̂βgi,t

≤ βgi,t ≤ β̂gi,t + 1.96σ̂βgi,t

)
,

where σ̂βgi,t
is the estimated standard deviation of β̂gi,t. The estimates of standard deviation

for OLS and 2SLS are Newey-West estimates (Newey & West, 1987) to ensure consistency

under heteroskedasticity. As mentioned in Section 3.2.3, GMM standard errors are com-

puted as in Heij et al. (2004) for EGMM. All performance indicators are averaged over 1000

simulation replications.

4.3 Results

Starting with the classification accuracy, EGMM performs well. The misclassification fre-

quency is around 5% for the worst case and drops to around only 2% with increasing T .

As can be seen from Table 1, the other two estimators perform quite well too, there is not

much difference in performance. However, OLS outperforms EGMM and 2SLS, while 2SLS

performs slightly worse than EGMM. OLS performs very well because the upward bias in

coefficient estimation affects all coefficient estimates in the same direction. Therefore, the

(absolute) differences in coefficient estimates between groups are the same as when strictly

the exogenous part of xit would be used in coefficient estimation. For the other two meth-

ods, the error process included in the instrument results in extra noise and thus a larger

misclassification accuracy. In practice, the nature of endogeneity and heterogeneity between

individuals may lead to results that contrast the better performance observed here.

Overall, misclassification frequency seems unaffected by changes in N , whereas it reduces

markedly with increasing T . Furthermore, the results suggest that serial correlation in the

instrument and independent variable negatively affects the classification accuracy. This may

be explained as follows. In the case of serial correlation, outliers heavily influence close

remaining periods in the same direction as the outlier. Consequently, the slope coefficient

will be overestimated or underestimated for those periods, depending on the direction of the

outlier. The over- or underestimation can coincide with the coefficient value of a different

group, increasing the chance of misclassification. Without serial correlation, outliers affect
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Table 1: Misclassification frequency group allocation estimates (in percentages)

DGP σε Method N = 50 N = 100
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

1 0.5 EGMM 1.16 0.22 0.00 1.04 0.22 0.01
2SLS 1.18 0.24 0.00 1.05 0.24 0.00
OLS 0.91 0.15 0.00 0.87 0.15 0.00

0.75 EGMM 4.64 1.86 0.25 4.12 1.72 0.24
2SLS 5.75 1.96 0.26 4.27 1.82 0.27
OLS 3.49 1.29 0.12 3.40 1.36 0.14

2 0.5 EGMM 1.38 0.33 0.00 1.40 0.30 0.01
2SLS 1.48 0.42 0.01 1.46 0.33 0.01
OLS 1.07 0.27 0.00 1.20 0.23 0.01

0.75 EGMM 5.42 2.48 0.39 4.79 2.22 0.35
2SLS 6.13 2.48 0.41 5.04 2.29 0.40
OLS 4.16 1.71 0.23 3.97 1.77 0.23

3 0.5 IV 1.09 0.22 0.01 1.12 0.22 0.00
OLS 0.87 0.19 0.01 0.90 0.15 0.00

0.75 IV 4.87 1.80 0.25 4.28 1.82 0.26
OLS 3.44 1.31 0.13 3.54 1.37 0.12

Note: For DGP 3, the EGMM and 2SLS estimators are equivalent and equal to a simple
IV estimator because it represent the exactly identified case.

just a single period.

Moving on to break detection accuracy, the results suggest that EGMM performs satisfac-

torily because it accounts for heteroskedasticity. In the worst case, as can be seen from Table

2, the frequency of correctly estimating the number of breaks is 70%. This occurs for the

combination of large error size (σε = 0.75), smaller cross-sectional sample size (N = 50), and

overidentification of the endogenous regressor (DGP 1 and DGP 2). However, only changing

the error size to be moderate (σε = 0.50) increases performance to around 94% or more,

while increasing N from 50 to 100 gives an accuracy of around 85% or higher. Again, OLS

outperforms the other two methods with accuracy measures of 85% or higher for all cases.

2SLS performs very poorly. Its accuracy measures for groups with breaks are 90% at best

and only 20% at worst. As previously mentioned, this can be attributed to the failure of

2SLS to account for heteroskedasticity, for which I found the following evidence.

As can be observed from Table 2, the number of breaks in group 3 (no breaks) is quite well
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estimated, so 2SLS generally does not seem to falsely detect breaks when there are none. For

the other groups (which have two breaks each), 2SLS tends to falsely detect an extra break.

This was concluded after a closer inspection of the results on the number of breaks estimated,

which revealed an overall overestimation of the number of breaks for 2SLS. The main differ-

ence between 2SLS and EGMM is that the former does not account for heteroskedasticity.

The results thus suggest that there is some form of heteroskedasticity induced by the struc-

tural breaks which increases the chance of false break detection. The mechanism behind this

can be explained as an increase in the variance of the error term resulting from an increase

in the slope coefficient at a breakpoint. This works through the idiosyncratic variance of the

independent variable. An increase in the error variance will lead to bigger deviations from

the expected value for the dependent variable and hence a false break detection will become

more likely. Further evidence for this is the lower accuracy of 2SLS for group 2 than for

group 1. The main difference between these groups is that the coefficients of group 2 are

higher than those of group 1. EGMM accounts for heteroskedasticity by having the influence

of observations inversely proportional to their variance.

In line with the better performance of OLS observed for classification accuracy, OLS per-

forms comparatively well again for break detection accuracy. Similar reasoning applies, fo-

cusing on the difference between regimes now. Supporting evidence is that the OLS results

shown in Table 2 display no notable difference with the corresponding results found by Okui

& Wang (2021).

All methods’ break detection accuracy improves substantially with increasing N . For OLS

this is also the case for increasing T , whereas the performance of 2SLS decreases with in-

creasing T . Regarding EGMM, its accuracy generally improves with increasing T . Cases

in which a decrease in performance is observed, associated with an increase in T , may be

explained by the slight chance for a false break detection for every additional period since

the number of breaks is allowed to grow unrestricted (Qian & Su, 2016).

Finally, in the exactly identified case (DGP 3), the IV estimators’ accuracies become high

(83% at worst and over 88% elsewhere) and very similar to those of OLS, albeit slightly worse.

This difference may be attributed to the error term in the instrument, as the expected value

of the (absolute) difference between regimes is the same for both methods.
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Table 2: Frequency of correctly estimating the number of breaks (in percentages)

σε Method Group N = 50 N = 100
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP 1
0.5 EGMM G1

(
m0

1 = 2
)

94.5 96.8 97.8 98.3 99.5 100

G2
(
m0

2 = 2
)

93.8 96.5 96.9 98.6 99.4 99.9

G3
(
m0

3 = 0
)

94.4 97.0 98.9 99.0 99.6 99.9

2SLS G1
(
m0

1 = 2
)

74.4 67.1 53.6 88.8 85.6 79.1

G2
(
m0

2 = 2
)

42.0 29.5 21.9 59.7 48.2 35.9

G3
(
m0

3 = 0
)

99.2 100 100 100 100 100

OLS G1
(
m0

1 = 2
)

99.7 100 99.9 100 100 100

G2
(
m0

2 = 2
)

99.6 100 100 100 100 100

G3
(
m0

3 = 0
)

99.8 100 100 100 100 100

0.75 EGMM G1
(
m0

1 = 2
)

70.6 77.9 79.9 86.0 92.1 97.2

G2
(
m0

2 = 2
)

69.5 96.2 75.1 89.0 92.7 96.2

G3
(
m0

3 = 0
)

76.3 98.2 93.6 88.0 95.1 98.8

2SLS G1
(
m0

1 = 2
)

59.7 54.4 42.8 78.0 77.8 65.1

G2
(
m0

2 = 2
)

40.6 29.8 19.7 54.0 40.8 30.6

G3
(
m0

3 = 0
)

80.9 95.7 99.9 94.5 99.7 100

OLS G1
(
m0

1 = 2
)

85.8 94.6 97.3 96.8 99.9 99.0

G2
(
m0

2 = 2
)

91.9 96.2 95.6 97.7 99.6 100

G3
(
m0

3 = 0
)

87.0 98.2 99.9 98.1 99.9 100

DGP 2
0.5 EGMM G1

(
m0

1 = 2
)

93.1 95.9 98.0 98.3 99.5 99.7

G2
(
m0

2 = 2
)

92.7 95.9 95.8 98.4 99.8 99.8

G3
(
m0

3 = 0
)

95.0 97.5 98.6 98.5 99.7 99.9

2SLS G1
(
m0

1 = 2
)

75.9 68.0 55.2 89.6 85.0 80.0

G2
(
m0

2 = 2
)

44.1 35.0 23.4 57.4 49.3 36.5

G3
(
m0

3 = 0
)

99.5 99.9 100 99.9 100 100

OLS G1
(
m0

1 = 2
)

99.8 99.8 99.0 100 100 100

G2
(
m0

2 = 2
)

99.4 100 100 100 100 100

G3
(
m0

3 = 0
)

99.8 100 100 100 100 100

0.75 EGMM G1
(
m0

1 = 2
)

69.1 78.6 78.1 87.0 93.2 95.8

G2
(
m0

2 = 2
)

69.2 76.7 74.9 84.3 92.5 96.9

G3
(
m0

3 = 0
)

76.2 88.6 95.4 89.7 95.5 98.7

2SLS G1
(
m0

1 = 2
)

58.8 55.7 41.5 77.9 76.4 70.2

G2
(
m0

2 = 2
)

40.5 28.7 20.4 53.3 44.2 33.3

G3
(
m0

3 = 0
)

77.4 94.4 99.7 93.6 99.4 100

OLS G1
(
m0

1 = 2
)

86.6 95.8 94.8 97.0 99.7 100

G2
(
m0

2 = 2
)

90.8 97.0 96.7 97.9 100 99.9

G3
(
m0

3 = 0
)

85.6 97.3 99.9 96.9 99.9 100

DGP 3
0.5 IV G1

(
m0

1 = 2
)

99.1 99.0 98.8 100 99.9 100

G2
(
m0

2 = 2
)

98.8 99.3 98.6 99.9 100 100

G3
(
m0

3 = 0
)

99.4 100 100 100 100 100

OLS G1
(
m0

1 = 2
)

99.7 99.9 100 100 100 100

G2
(
m0

2 = 2
)

99.6 100 99.9 100 100 100

G3
(
m0

3 = 0
)

99.5 100 100 100 100 100

0.75 IV G1
(
m0

1 = 2
)

82.9 88.7 88.0 95.6 98.9 99.6

G2
(
m0

2 = 2
)

84.0 90.0 86.9 96.9 98.1 98.9

G3
(
m0

3 = 0
)

84.6 96.9 99.6 96.6 99.8 100

OLS G1
(
m0

1 = 2
)

85.6 94.4 95.9 97.5 99.9 99.9

G2
(
m0

2 = 2
)

89.2 96.0 94.9 99.2 99.8 99.9

G3
(
m0

3 = 0
)

86.0 98.3 99.8 97.8 99.8 100

Note: For DGP 3, the EGMM and 2SLS estimators are equivalent and equal to a simple
IV estimator because it represent the exactly identified case. The Group column shows for
each group the true number of breaks m0

g in parentheses.29



The third evaluation criterion is breakpoint estimation accuracy, for which EGMM scores

well with a relative HD of around 5% in the worst case (σε = 0.75, N = 50, and T = 10).

The Hausdorff errors in Table 3 are reported only for cases in which the correct number of

breaks has been estimated. Substantial improvements are observed with increasing N for all

methods. Much of the results are very similar to those found for break detection accuracy.

OLS performs best, whereas 2SLS performs markedly worse than the other methods (error

for group 2 is always > 6%). The performance of IV is really good again. I observe once

more no notable impact of serial correlation. Increasing T generally has a positive effect on

performance, but incidentally not for EGMM. For 2SLS it is mostly a negative effect. This

is somewhat surprising because the Hausdorff errors are given relative to T , in contrast with

the frequency of correctly estimating the number of breaks.

Finally, I consider coefficient estimation accuracy. Here, the benefit of using EGMM instead

of OLS, in the presence of endogenous regressors, becomes apparent. The EGMM estimates

are relatively close to the true coefficient values, as observed from its low RMSE in Table

4. Conversely, the low coverage probabilities suggest poor performance of EGMM. However,

further inspection revealed that can likely be attributed to a combination of a very low

estimated variance and a slight bias, which is not that problematic generally.

As is well known, RMSE =
√
V ariance+ bias2. The RMSE of EGMM and 2SLS are

very similar, but the coverage probability of 2SLS is substantially higher. This suggests

that the portion of bias in the RMSE is higher for EGMM than for 2SLS. Moreover, the

coverage probability of EGMM decreases with increasing T , accompanied by a simultaneous

substantial decrease in RMSE. Furthermore, I looked into the unreported standard error

estimates of EGMM and 2SLS, which showed that those of 2SLS are markedly greater. A

reason for this is that 2SLS often falsely detects breaks, presumably as a consequence of

not accounting for heteroskedasticity. This leads to overfitting on the data through more

flexibility in coefficient estimation, which leads to a bigger variance. Concluding, the above

suggests that EGMM coefficient estimates have a very low estimated variance and a slight

bias, giving rise to poor coverage probabilities.

As aforementioned, the coefficient estimation accuracy motivates the use of EGMM instead

of OLS when dealing with endogenous regressors. OLS performs very poorly on both RMSE

30



Table 3: Ratio of Hausdorff distance to time for break date estimates (in percentages)

σε Method Group N = 50 N = 100
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP 1
0.5 EGMM G1

(
m0

1 = 2
)

0.87 0.46 0.26 0.21 0.13 0.00

G2
(
m0

2 = 2
)

0.94 0.50 0.48 0.22 0.11 0.01

2SLS G1
(
m0

1 = 2
)

3.68 3.81 5.00 1.39 1.33 1.78

G2
(
m0

2 = 2
)

10.2 11.1 12.1 6.34 7.79 8.94

OLS G1
(
m0

1 = 2
)

0.08 0.01 0.01 0.00 0.00 0.00

G2
(
m0

2 = 2
)

0.06 0.01 0.01 0.00 0.00 0.00

0.75 EGMM G1
(
m0

1 = 2
)

4.97 3.56 2.92 2.12 1.30 0.46

G2
(
m0

2 = 2
)

4.84 3.61 3.31 1.56 0.94 0.59

2SLS G1
(
m0

1 = 2
)

6.56 6.50 7.38 2.98 2.51 3.36

G2
(
m0

2 = 2
)

10.9 12.2 12.4 7.77 8.98 10.1

OLS G1
(
m0

1 = 2
)

2.36 0.81 0.36 0.46 0.02 0.01

G2
(
m0

2 = 2
)

1.39 0.62 0.58 0.32 0.06 0.01

DGP 2
0.5 EGMM G1

(
m0

1 = 2
)

1.09 0.57 0.24 0.28 0.04 0.04

G2
(
m0

2 = 2
)

1.03 0.53 0.51 0.19 0.02 0.02

2SLS G1
(
m0

1 = 2
)

3.72 3.97 4.70 1.26 1.34 1.57

G2
(
m0

2 = 2
)

9.86 10.5 11.7 7.03 7.50 9.16

OLS G1
(
m0

1 = 2
)

0.04 0.02 0.01 0.00 0.00 0.00

G2
(
m0

2 = 2
)

0.10 0.01 0.01 0.00 0.00 0.00

0.75 EGMM G1
(
m0

1 = 2
)

5.07 3.52 2.96 2.09 1.16 0.47

G2
(
m0

2 = 2
)

4.53 3.50 3.36 2.19 0.96 0.39

2SLS G1
(
m0

1 = 2
)

7.00 6.19 7.25 3.27 2.82 2.97

G2
(
m0

2 = 2
)

11.1 12.0 12.6 8.15 8.39 9.71

OLS G1
(
m0

1 = 2
)

2.38 0.67 0.64 0.54 0.09 0.01

G2
(
m0

2 = 2
)

1.54 0.54 0.46 0.30 0.00 0.00

DGP 3
0.5 IV G1

(
m0

1 = 2
)

0.21 0.12 0.13 0.00 0.01 0.00

G2
(
m0

2 = 2
)

0.23 0.11 0.24 0.01 0.00 0.00

OLS G1
(
m0

1 = 2
)

0.09 0.01 0.00 0.00 0.00 0.00

G2
(
m0

2 = 2
)

0.04 0.01 0.02 0.00 0.00 0.00

0.75 IV G1
(
m0

1 = 2
)

3.17 1.63 1.31 0.74 0.10 0.04

G2
(
m0

2 = 2
)

2.66 1.55 1.81 0.41 0.15 0.11

OLS G1
(
m0

1 = 2
)

2.60 0.90 0.51 0.43 0.03 0.01

G2
(
m0

2 = 2
)

1.63 0.62 0.70 0.13 0.01 0.02

Note: For DGP 3, the EGMM and 2SLS estimators are equivalent and equal to a simple
IV estimator because it represent the exactly identified case. The Group column shows for
each group the true number of breaks m0

g in parentheses. No results are reported for group 3
because all Hausdorff errors are naturally zero.
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and coverage probability, due to the high bias resulting from the endogeneity of the regressor.

Looking at the results for the combinations of moderate error size (σε = 0.50), and high T

(T = 20 and T = 40), OLS seems to converge asymptotically to a squared bias value which

is relatively large. By contrast, the RMSEs of 2SLS and EGMM appear to be converging to

zero, or a value close to zero. Moreover, the dominance of a large bias squared term shows

from the coverage probability of OLS decreasing substantially with both N and T , becoming

practically zero for N = 100 and T = 40.

Except for the coverage probabilities of OLS and EGMM, substantial performance im-

provements are observed with increasing T , which can mainly be attributed to a decrease in

variance. Performance improvements with increasing N are less substantial but occur more

uniformly across the model setups and estimation methods. Only for the coverage probabil-

ity of OLS does the performance decrease with increasing N , due to the large bias involved.

The increase in coverage probability of EGMM with increasing N is opposite to the effect of

increasing T .

In the exactly identified case (DGP 3), the IV estimator performs especially well. The

coverage probability is 85% in the worst case (σε = 0.75, N = 50, and T = 10), and rises

greatly to > 90% when increasing T . Furthermore, the RMSEs are substantially lower than

those of EGMM and 2SLS (DGP 1 and DGP 2).

5 Conclusion

I propose a new estimation method that allows for heterogeneous structural changes in the

slope coefficients of panel data models in the presence of endogenous independent variables.

Individual heterogeneity is modeled through a latent group structure. The time pattern of

the coefficients is characterized by structural breaks in the slope coefficients that may vary in

size and timing between groups. My EGMM GAGFL method is an extension of the GAGFL

method. It uses EGMM instead of OLS to estimate coefficients, to correct for the endogeneity

bias.

Monte Carlo simulation results show that EGMM GAGFL generally performs well in fi-

nite samples, despite that a slight bias in coefficient estimation is possibly present. This is
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Table 4: Root mean squared error and coverage probability of coefficient estimates

DGP σ N T RMSE Coverage
EGMM 2SLS OLS EGMM 2SLS OLS

1 0.5 50 10 0.1455 0.1518 0.1733 0.6622 0.8810 0.2444
50 20 0.0952 0.1114 0.1465 0.6284 0.8991 0.0746
50 40 0.0737 0.0901 0.1410 0.5633 0.9149 0.0108
100 10 0.1142 0.1164 0.1667 0.7506 0.9108 0.0842
100 20 0.0644 0.0740 0.1439 0.7267 0.9250 0.0127
100 40 0.0411 0.0548 0.1391 0.6795 0.9288 0.0004

0.75 50 10 0.2615 0.2627 0.2920 0.6276 0.8168 0.2585
50 20 0.1750 0.1759 0.2364 0.6227 0.8619 0.0791
50 40 0.1259 0.1198 0.2142 0.5563 0.8968 0.0125
100 10 0.2186 0.2206 0.2759 0.7188 0.8556 0.0881
100 20 0.1327 0.1370 0.2307 0.7084 0.8986 0.0118
100 40 0.0742 0.0859 0.2108 0.6629 0.9214 0.0004

2 0.5 50 10 0.1523 0.1599 0.1825 0.6835 0.8794 0.2321
50 20 0.0995 0.1166 0.1526 0.6340 0.8945 0.0725
50 40 0.0728 0.0893 0.1421 0.5680 0.9155 0.0104
100 10 0.1299 0.1336 0.1805 0.7310 0.9030 0.0748
100 20 0.0687 0.0752 0.1487 0.7140 0.9188 0.0129
100 40 0.0421 0.0555 0.1408 0.6818 0.9328 0.0003

0.75 50 10 0.2810 0.2843 0.3082 0.6257 0.7984 0.2441
50 20 0.1869 0.1848 0.2457 0.6113 0.8559 0.0810
50 40 0.1277 0.1245 0.2180 0.5546 0.8940 0.0146
100 10 0.2411 0.2450 0.2948 0.7087 0.8449 0.0775
100 20 0.1451 0.1496 0.2412 0.6963 0.8847 0.0123
100 40 0.0792 0.0883 0.2143 0.6678 0.9188 0.0004

3 0.5 50 10 0.1172 0.1718 0.9239 0.2461
50 20 0.0609 0.1470 0.9392 0.0791
50 40 0.0365 0.1410 0.9431 0.0111
100 10 0.1076 0.1679 0.9296 0.0833
100 20 0.0490 0.1435 0.9361 0.0125
100 40 0.0220 0.1391 0.9521 0.0004

0.75 50 10 0.2311 0.2895 0.8568 0.2546
50 20 0.1356 0.2366 0.9128 0.0847
50 40 0.0736 0.2146 0.9316 0.0134
100 10 0.2087 0.2789 0.8738 0.0848
100 20 0.1181 0.2305 0.9205 0.0126
100 40 0.0533 0.2104 0.9438 0.0005

Note: For DGP 3, the EGMM and 2SLS estimators are equivalent and equal to a simple
IV estimator because it represent the exactly identified case.
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indicated by the fact that the coverage probability of the two-sided nominal 95% confidence

interval of the coefficient estimate declines when the time series grows longer. Conversely,

the root mean squared error of the coefficient estimate moves substantially towards zero with

both a larger number of cross-sectional observations and a longer time series, which suggests

accurate estimation. EGMM GAGFL seems to outperform GAGFL and 2SLS GAGFL. The

better performance of GAGFL (which employs OLS coefficient estimation) for classification

accuracy and break estimation accuracy can be attributed to the specification of endogeneity

and heterogeneity in my Monte Carlo simulation. In practice, this advantage might not be

there. By contrast, the poorer performance on coefficient estimation accuracy will exist in

practice too. Moreover, comparing break estimation accuracy between EGMM GAGFL and

2SLS GAGFL indicates that it is important to take heteroskedasticity into account in the

case of random regressors. Finally, the Monte Carlo results suggest that latent group mem-

bership, the number of breaks, and the breakpoints are consistently estimated by EGMM

GAGFL.

For future work, the method can likely be improved by using regime-dependent weighting

matrices in post-Lasso estimation instead of fully time-variant matrices, because the errors

may be assumed homoskedastic within a regime. Furthermore, the method may be extended

to allow for a dynamic model component and individual-specific fixed effect. This requires

first differenced data and appropriate instruments for the first-order lag of the dependent

variable.
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