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Abstract

This paper puts forward a new model and estimation method that estimates heterogeneous
structural breaks in static linear panel data models with endogenous regressors. It extends
the grouped adaptive group fused Lasso framework to account for endogenous regressors.
This is achieved by replacing least-squares-based coefficient estimation with an instrumental
variables GMM estimator that is efficient under heteroskedasticity. Monte Carlo results indi-
cate generally good performance in finite samples and suggest consistent estimation of latent
group structure and structural break pattern. The coverage probability of the two-sided nom-
inal 95% confidence interval of the coefficient estimate declines when the time series grows
longer. However, the root mean squared error of the coefficient estimate moves substantially
towards zero with both a larger number of cross-sectional observations and a longer time
series, indicating accurate estimation. Moreover, comparing the Monte Carlo results of two
GMM estimation methods suggest that structural break induced heteroskedasticity is impor-
tant to take into account for consistent estimation of structural breaks when regressors are

not fixed.
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1 Introduction

Panel data models allow to effectively make use of the information contained in panel data
sets by imposing an underlying data generating process for the observations over both time
and individuals in a single comprehensive manner. This explains the increased popularity of
their usage in economics and finance.

There are two main considerations that I want to address here regarding the model specifi-
cation. First, it is important to account for structural changes in slope coefficients which can
result from financial crises, disruptive technologies, or economic reform, for example. Addi-
tionally, these structural changes may have heterogeneous effects across individuals as both
the direction and magnitude of the structural changes will typically differ significantly across
individuals (De Wachter & Tzavalis, 2012). Second, the presence of endogenous independent
variables leads to inconsistent coefficient estimates for least-squares-based estimators. An
example of this is given by Calderon et al. (2015), who analyze the output contribution of
infrastructure. They state that unobserved shocks represent a major source of simultaneity
as they may affect both firm output and input choices of labor, capital, and infrastructure.

This paper contributes a heterogeneous structural break detection method for linear panel
data models with endogenous regressors. To this end, I propose a new model and estimation
method. It can be considered an extension of the model and estimation method by Okui
& Wang (2021), allowing for time-varying and heterogeneous coefficients. Individual hetero-
geneity is modeled through a latent group structure, where coefficients are the same within
groups and may vary between groups. The time-varying nature of the coefficients is restricted
to structural breaks, differing per group. Group membership for each individual is estimated
from the data. This allows for the desired model ability of heterogeneous structural breaks
in both magnitude and timing.

To deal with the endogeneity of the regressors, instrumental variables (IVs) are used. Pro-
vided that valid instruments are available, the corresponding moment conditions are applied
in a generalized method of moments (GMM) approach. In contrast with the conventional
IV (or two-stage least-squares (2SLS)) estimator, the GMM estimator is efficient under het-
eroskedasticity (Baum et al., 2003). This is why it is also called the efficient GMM (EGMM)



estimator. Due to structural breaks in the slope coefficients, the variance of the error term
is indirectly affected through the variance of the explanatory variable. This happens when
the explanatory variable is not fixed and it could induce substantial heteroskedasticity. As
a result, there may be heteroskedasticity between the period before and the period after a
structural break. In the same manner, heteroskedasticity might exist between groups because
the slope coefficients might differ.

In practice, the independent variable might display a variance and hence be random rather
than fixed. For example, imprecise measurement or instances in which the independent
variable has to be estimated because it cannot be directly observed will give rise to such a
variance. Then, the structural break induced heteroskedasticity will be present.

Although 2SLS slope coefficient estimates are still consistently estimated under heteroskedas-
ticity, estimates in finite samples might be poor because the estimation method is ineffi-
cient. Especially structural break estimates might suffer because failing to properly take
heteroskedasticity into account might obscure any structural break or increase the chance of
false detection. Moreover, standard error estimates are inconsistent for 2SLS in the case of
heteroskedasticity. It is possible to account for this by adjusting only the standard error esti-
mation method, for example to Newey-West estimates (Newey & West, 1987). By contrast,
EGMM coefficient estimates and their standard error estimates are consistent already. They
are a generalized version of the Newey-West standard errors.

Model estimation that incorporates EGMM is carried out by several adaptations of the
grouped adaptive group fused Lasso (GAGFL) method from Okui & Wang (2021). GAGFL
is a hybrid procedure of the grouped fixed effects (GFE) method by Bonhomme & Manresa
(2015) and the adaptive group fused Lasso (AGFL) method proposed by Qian & Su (2016).
Before estimating group structure and coefficient values, the number of groups is estimated
and the tuning parameter of a penalization term involved in structural break detection is
determined. Both follow from the minimization of their respective information criterion.

Given the number of groups and the value of the tuning parameter, three algorithms are
applied sequentially to arrive at the final parameter estimates. For the first algorithm, I adapt
the GFE method to estimate fully time-varying coefficients through EGMM iteratively. Here,

many different group pattern initializations (around 100) are tried. Each iteration consists



of three steps. First, I minimize the EGMM quadratic criterion function with respect to
the coefficients, conditioning on the previous group memberships estimate. Second, each
individual is assigned to the group for which its contribution to the sum of squared errors
is minimized, conditioning on the previously computed coefficient estimates. Given correct
group memberships, the coefficient estimates are consistent. In turn, provided with the
correct coefficient values, group allocation performed through least-squares is consistent as
well. In this way, I propose to iteratively solve both objective functions simultaneously. This
unconventional approach is observed to provide substantially better parameter estimates than
using only the EGMM quadratic criterion function to update parameter estimates. Third, the
weighting matrices are updated using the previously computed parameter estimates. These
steps are repeated until numerical convergence to obtain preliminary coefficient and group
membership estimates.

To obtain intermediary parameter estimates (given the preliminary parameter estimates),
a second algorithm is employed. Here, the time-varying nature of the coefficients is given
through a pattern of structural breaks. Again, model estimation is conducted iteratively.
First, a penalized EGMM objective function as in Qian & Su (2016) is minimized, condition-
ing on the previous group memberships estimates. Second, group membership is determined
by assigning each individual to the group that gives the smallest contribution to the sum of
squared errors, conditioning on the slope coefficient estimates from the previous step. Third,
the weighting matrices are updated using the parameter estimates from the first two steps.
Repeating these steps until numerical convergence gives the intermediary coefficient and
group membership estimates. The final estimates are obtained using a non-iterative post-
Lasso EGMM estimator, where group structure and breakpoints are fixed at the estimates
from the second algorithm and only the coefficients are updated. The complete procedure is
titled EGMM GAGFL.

Important characteristics of GAGFL are (i) consistent estimation of the latent group mem-
bership structure, (ii) automatic determination of the number of breaks and consistent es-
timation of breakpoints for each group in one joint step, and (iii) consistent estimation of
the regression coefficients with group-specific structural breaks (Okui & Wang, 2021). By

changing least-squares-based estimators to EGMM-based estimators, it is not certain whether



the above characteristics still hold. Therefore, I conduct a Monte Carlo simulation study to
indicate how applicable these characteristics are to EGMM GAGFL. Moreover, the Monte
Carlo simulation is used to study finite sample properties.

The Monte Carlo simulation results indicate good finite sample performance and suggest
that the first two of the above three characteristics still hold. The third characteristic (con-
sistent coefficient estimation) might not apply because EGMM GAGFL possibly gives rise
to a small bias, as indicated by the failure of the two-sided nominal 95% confidence interval
to grow towards one with an increasing length of the time series. However, the root mean
squared error of the coefficient estimates is found to be quite close to zero and becomes sub-
stantially closer with both a larger number of cross-sectional observations and a longer time
series. Furthermore, comparing the break estimation accuracy between EGMM GAGFL and
2SLS GAGFL also indicate that it is important to take heteroskedasticity into account in
the case of random regressors.

The remainder of this paper is organized as follows. First, I present a literature review.
Second, the methodology is explained. This consists of describing the model setup and the
estimation method. Thereafter, the Monte Carlo simulation study is described and the results

that follow are presented. Finally, there is a section with concluding remarks.

2 Literature review

The literature underlying the EGMM GAGFL method is threefold. One stream of research
relates to the (IV-)GMM literature. Another part is about testing and dating structural
breaks. The final part concerns modeling individual heterogeneity. The EGMM GAGFL
method builds upon these three streams of literature.

First, I treat the (IV-)GMM literature. 2SLS IV was independently developed by Theil
(1953) and Basmann (1957). Sargan (1958) formulated 2SLS as an optimal IV estimator
under conditional homoskedasticity. GMM, introduced by Hansen (1982), uses orthogonality
conditions to obtain parameter estimates. 2SLS is a special case of GMM. They are the same
in the exactly identified case, where you have the same number of instruments as regressors.

In the overidentified case and when the errors satisfy all classical assumptions (i.e., the opti-



mal weighting matrix is proportional to the identity matrix) they coincide too (Baum et al.,
2003). According to Baum et al. (2003), the usual approach for IV under heteroskedasticity
is GMM. Concerning panel data, GMM is widely applied in the context of a dynamic panel.
An IV GMM estimator to solve the problem of endogeneity in a dynamic model setup was
first proposed by Anderson & Hsiao (1981). Later, Blundell & Bond (1998) advocate to use
extra moment conditions as suggested by Arellano & Bover (1995). Endogenous regressors
in panel data have been considered by Neal (2015), using 2SLS as an IV method within the
framework of the common correlated effects (CCE) estimator (Pesaran, 2006).

Second, modelling and estimation of individual heterogeneity have been performed often.
Examples are the random coefficients model (Swamy, 1970), mean group estimation (Pesaran
& Smith, 1995), pooled mean group estimation (Pesaran et al., 1999), and the CCE estimator
Pesaran (2006). These examples allow for different slope coefficients between any pair of
individuals. By contrast, I assume a latent group structure is present in the panel data.
Other work that has been done regarding latent group structure modelling and estimation
include Sun (2005), Hahn & Moon (2010), Lin & Ng (2012), Bonhomme & Manresa (2015),
Su et al. (2016), Ando & Bai (2016), ?, Wang et al. (2018), Miao et al. (2020), and Wang &
Su (2021), among others. All these studies assume a stable panel without structural change.

Third, much research relates to testing and dating common structural breaks in panel data.
These include Bai (2010), Kim (2011), Qian & Su (2016), Li et al. (2016), and Baltagi et
al. (2017), among others. By contrast, I consider structural breaks that may vary between
individuals in both magnitude and timing.

Finally, I discuss research that encompasses a combination of the three streams of literature.
An example of research that incorporates a latent group structure to model heterogeneous
structural change is Su et al. (2019), who model structural change through continuous time-
varying slope coefficients. De Wachter & Tzavalis (2012) study structural breaks in dynamic
panel data models with endogenous regressors. However, they do not consider heterogeneous
coefficients. Okui & Wang (2021) do consider heterogeneous structural breaks using a latent
group structure, but they assume exogenous regressors. Qian & Su (2016) allow for endoge-
nous regressors. However, they consider structural breaks to be common across individuals.

I contribute to the literature by proposing a model and estimation method that models indi-



vidual heterogeneity of both slope coefficients and structural breaks through a latent group

structure in the presence of endogenous covariates.

3 Methodology

In this section, I treat the methodology. The methodology consists of the model setup and
the estimation method. First, the model setup describes the assumed panel data model.
Afterward, the estimation method details the employed method to estimate the model pa-

rameters.

3.1 Model setup

The model setup is as follows. I consider a static linear panel data model with time-varying
and heterogeneous coefficients. For model parsimony, heterogeneity of coefficients is restricted
to a grouped pattern. Moreover, structural breaks are considered for each group to restrict

how coefficients vary over time. The panel data model is

yit:ﬁ;i7t$it+€ita i:1,2,...,N, t:1,2,...,T, (1)

where y;; is the scalar dependent variable for observational unit ¢ at time t. The total
number of cross-sectional observations is N, and T denotes the length of the time series.
The independent variables are captured in the k x 1 vector i = (1, Z}; c10s Tis preds Tit.endo) -
The 1 is typically included as a first element to incorporate a constant in the model. In
this manner, a group-specific fixed effect (which might even have structural breaks) may be
included as an alternative to the individual-specific fixed effect. Each independent variable
may be exogenous, predetermined or endogenous. They are incorporated into the vector
Tit exos Titpred, OF Tit endo, Tespectively. The length of these column vectors corresponds to the
number of exogenous, predetermined, and endogenous independent variables, respectively.
The idiosyncratic error term (with a mean of zero) is e;, it has a variance of 2. In the case

that only the intercept is allowed to vary over time, the model coincides with the GFE model

(Bonhomme & Manresa, 2015).
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The coefficients to be estimated for every group and time step combination are captured
by the regressors’ k x 1 coefficient vector 3,,;. They are homogeneous within groups and
are allowed to be heterogeneous between groups. I assume that there are G groups, let
G =1{1,2,...,G} be the set of groups and let g; € G denote the group membership of unit
i. The number of groups G is estimated using a Bayesian information criterion (BIC), this is
described in Section 3.3. The number of individuals in group g is given by Ny. All individuals
within a group share 3, as their time-varying coefficients, where g € G. Group membership
structure {g;} , is unknown and has to be estimated.

The time-varying nature of the coefficients is as follows. I assume that, for each group,
structural breaks characterize the pattern {fs 1, Bg2, - - ., Ber}. The coefficients are restricted
to change only at a break date, as such they remain the same in between two consecutive
break dates. Each group has m, break dates, let 7, , = {TQJ, Tyo,..., T, g,mg} denote the set
of break dates for group g. Both my and 7,,, 4 are unknown and have to be estimated from
the data. Let T,, = {T1, T3, ..., T} denote the set of all break dates, which consists of every
date on which a break occurs within any of the groups. Then, there are m break dates in total.
Coefficient values in between break dates are expressed as follows. Let o, j = 1,2,...,mg41
denote the k£ x 1 coefficient vector for regime 7, which ranges from break date 7 — 1 up until

but not including break date j for group g,

O{g,j = /Bg7t7 lf Tg?.]il S t < Tg7j7 (2)

where Ty o = 1 and T,,,+1 = T + 1 allow for coefficient values in the first and last period,
respectively. Similarly, 7o =1 and T;,,.1 =T + 1.

Suppose one or more of the independent variables is not fixed but rather random. Then,
heteroskedasticity might exist, following the heterogeneous structure of groups and structural

breaks. This is illustrated by
Var(B,, oq) = (ﬁ;i,t)QVar(a:it) #0, +=12,...,N, t=1,2,...,T. (3)
Imposing a group structure and restricting coefficients to vary in time only at break dates

allows for a flexible and parsimonious way to model individual heterogeneity and structural

change. This way, I can make use of cross-sectional variation in break date and coefficient
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estimation (Bai, 2010).

3.2 Estimation method

To estimate the parameters discussed in Section 3.1, an estimation method is required. The
estimation procedure is named EGMM GAGFL. It will be treated in this section. EGMM
GAGFL is an extension of GAGFL (Okui & Wang, 2021) to endogenous variable settings.
GAGFL combines GFE by Bonhomme & Manresa (2015) and AGFL by Qian & Su (2016).
EGMM refers to the usage of GMM within the GAGFL framework in ensuring consistent
coefficient estimates in the case of endogeneity issues, while being efficient (‘E’GMM) under
heteroskedasticity.

[ first introduce some notation. Let 8 = (8 1,814,817, 821, B2, -+ Bar) denote the
vector stacking all 8,, and let B C R* be the parameter space for each f3,,. It follows that
the parameter space for 8 is BT, Let 8, = ( w1 Bg2: - Bgr) denote the vector stacking
all B, for group g. Let 6 denote the vector that contains the group membership information
for each individual, i.e., @ = {g1, o, ..., gn}. Hence, the parameter space for 6 is G".

To estimate (3,0), I propose to jointly optimize two objective functions iteratively. For
now, I assume that the number of groups G is known. To start, a random group pattern
initialization is used. Conditioning on the group membership structure, fully time-varying
coefficient estimates can be obtained through EGMM-—provided that enough valid moment
conditions are available. I assume the existence of an m x 1 vector of instrumental variables

z;it. Then, the moment conditions are

E [z (e)] = E [z (yie — By y0)] =0, i=1,2,...,N, t=1,2,....T, (4)

To perform EGMM estimation of 3, it is required that m > k, so that the coefficients are
identified. In the exactly identified case (m = k), it suffices to solve (4) directly. By contrast,

when m > k, coefficient estimates are obtained by minimizing

/

G T
Qr8.0) =33 | 3 Fulo) | Woe | 3 Fulbon) | (5)

g=1 t=1 9 ilgi=g 9 ilgi=g
. , .. ..
with fir(By, 1) = zicit = 2t (yit — Bgiixit) an m X 1 vector containing the moment condition

12



functions for ¢« =1,2,..., N and t = 1,2,...,T, and W,, an m X m symmetric and positive
definite weighting matrix for g = 1,2,...,Gand t =1,2,...,T. Assuming that correct group
membership estimates are known, Q)7 is quadratic in the parameter vector. Subsequently,
minimization of (5) is a convex optimization problem, and solving it thus gives consistent
coefficient estimates. Furthermore, the choice of weighing matrix does not influence consis-
tency but rather efficiency. This is indicated by the fact that 2SLS, for which W, = I,,, for
g=12 ..., Gand t=1,2,...,T, also gives consistent coefficient estimates.

It can be analytically proven that using the inverse of the covariance matrix of the moment
conditions as weighing matrices yields asymptotically efficient parameter estimates. Thus,
Wi = (Efy,4(Bgit) fart(Bgit)]) ", For example, suppose some estimates (3,6) exist. Then,

the corresponding sample analogue for W, ; is V~Vg,t = <ﬁ(zz‘gl fzt(ﬁgz, )fzt(ﬁg“ ) )) , for
g=12,...,Gand t =1,2,...,T, where Z”gi:g
Let W = (Wi, Wig,...,Wip,Waq1,Was,...,Wer) denote the vector stacking all W, ,. I

sums over all individuals within group g.

use time-varying weight matrices because structural breaks might lead to substantial het-
eroskedasticity, this would in turn make it difficult to accurately detect structural breaks for
weighting matrices that are constant over time.

In contrast with coefficient estimation through minimization of the EGMM objective func-
tion (5), estimation of € is performed using the least-squares objective function

LSnr(B,0) Z Z Yie — B, i) (6)

=1 t=1

Therefore, iterative optimization of two objective functions with interdependent parameter
estimates is conducted simultaneously. The reasoning behind the convergence of both is
that both estimators provide consistent estimates given correct parameter estimates from
the other estimator. As such, they are likely to enable the consistency of each other, at least
for certain initial grouping estimates. Consequently, I propose to perform group membership
estimation by minimizing (6).

Moreover, I attempted to update group membership using the EGMM objective function
(5) instead of performing group allocation through least-squares. This way I would iteratively
optimize a single objective function instead of two. This would make the method coherent

by providing a more justifiable theoretical motivation. The implementation specifics are
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discussed in the last paragraph of Section 3.2.1. Surprisingly, Monte Carlo simulations with
this estimation method setup gave very poor parameter estimates. Hence, I decided to

abandon this approach in favor of the least-squares approach for group allocation.

3.2.1 EGMM estimation

Presuming the existence of enough valid instruments, consistent fully time-varying parameter
estimates can be obtained by a GFE-type estimator. Let A be the preliminary estimate of 3,
resulting from a minimization of the EGMM quadratic criterion function (5). Bonhomme &
Manresa (2015) use a least-squares objective function in an estimation method that is similar
but assumes exogenous regressors. Let 0 be the preliminary estimate of @ and let W be the

preliminary estimate of . Preliminary parameter estimates result jointly from

5 = arg min QNT(B; 9)7 (7)
BGBGT
and,
0 = argmin LSy7(8,6). (8)
0cGN

W is computed directly from (ﬂ , 6) Computationally, I propose to use Algorithm 1 to obtain
the preliminary parameter estimates iteratively. Algorithm 1 starts by generating a random
group pattern by assigning each individual to one of the groups randomly. This pattern forms
the initial group membership estimates. Afterward, Algorithm 1 enters a loop in which the
parameters that minimize ()7 are computed iteratively.

The steps in this loop are as follows. First, coefficient estimates are updated by mini-
mizing ()7 with respect to the coefficients, conditioning on the most recent estimates of
group memberships and weighting matrices. To have fully time-varying coefficients, data
and weighting matrices are transformed. I will show how this is done for X, for Z and W a

similar operation is performed. For regressor k,

k , k k : k k , k k
X;’t)ot = (dzag(xfhl)vl, . ’xéil),T)’ dzag(:vgi;l, . ,[L’;Z_;T), - dzag(:péj}vg’l, . ,xéi])vg 2,
where a:(g];)”t = l‘l(f) for individual n in group ¢ and period ¢. Then, X, ;o = (Xé,lt)ot, N Xg(ffo)t).

14



Algorithm 1: EGMM estimator

Parameters: Regressors’ coefficient vector (), grouped pattern vector (6), and
weight matrices vector (V).

Hyper parameters: Number of groups (G), maximum number of iterations (smaz),
and number of simulations (Ng;n, ).

Input: Dependent variable NT x 1 vector (y), independent variable NT' x k matrix
(X), and NT x m instrument matrix (7).

Output: Preliminary parameter estimates (3,6, W).

Initialization: Set n =1 and R,,;,, = 107.

1. Generate a random group pattern: Fori € {1,2,..., N}, set g; = random(G )
Then, let ) be the resulting initial group membershlp estlmates Set s =0, O =
and Wg(g) =I,forg=12,... Gandt=1,2,...,T.

2. Obtain parameter estimates iteratively:

(a) Update coefficients: Given 0(®) and W), set

ﬁ(erl) — (Zg tOth7tOt) Zg totYg if m=k (9>
! (X; tot ZgytOth tot Z; toth,tot) Xg totZ toth totZ totyg ifm > k,
for all g € G.

(b) Update group memberships: For all i € {1,2,..., N}, set

2
e = sagain 3 (o AV (10

9€G 5

Then, 6D follows.
(c) If m > k, update weighting matrices:
—1
Wit = [ 3 RlBeAs N | (11)
9 ilgi=g
forg=1,2,...,.Gandt=1,2,...,T.

(d) Check stopping criteria: If HB(SH) — B(S)H2 >0 and s+ 1 < S0z, st
s = s+ 1 and go to Step 2a. Otherwise, set (3,0, W), = (3,0, W)&+1 and
continue to Step 3.

3. Obtain estimates and check stopping criteria: If

Zf\il Zle (yzt - B;i7txit)2 < Rminy update Rmzn and set (57 97 W) - (67 97 W)n If
n < Ngm, set n =n+ 1 and go to Step 1. Otherwise (when n = Ng;,), stop.

15



Second, each individual is assigned to the group for which its contribution to the sum of
squared errors is minimized, conditioning on the previously computed coefficient estimates.
As previously explained, group allocation is performed based on least-squares instead of
EGMM.

Third, the weighting matrices are updated using the new parameter estimates from the
previous two steps. These three steps are repeated until numerical convergence (applying
the Ly norm) or until the maximum number of iterations has been reached. After iterating,
I check if the obtained parameter estimates result in the lowest value of the sum of squared
errors thus far. If that is the case, the minimum value of the sum of squared errors and the
preliminary parameter estimates are updated accordingly.

This whole simulation process is repeated by generating a random group pattern again and
following all subsequent steps—that is until the maximum number of simulations has been
reached. By running multiple simulations (that have different initial group memberships
estimates), Algorithm 1 likely avoids getting preliminary parameter estimates corresponding
to a local minimum that is markedly greater than the global minimum. Running a large
number of simulations is the main computational effort, computation time increases linearly
with this number (Okui & Wang, 2021).

The alternative approach to estimate group membership by minimizing the EGMM objec-

tive function (5) is as follows. I compute individual contributions in Step 2b of Algorithm 1
(per group) by

T

1 1
QNTi*7g(ﬁgue) = Z F Z fitﬂ-* (ﬁg,t) Wg,t F Z fit+i* (59,15)
t=1 9 ilgi=g 9 ilgi=g (12)
T (1 / 1
- Z ﬁ Z fz't_l-* (Bg,t) Wg,t F Z fz't_l-* (Bg,t) )
t=1 9 ilgi=g 9 ilgi=g

where fi;, .. (Bg:) = 1 for i = i* and fi; .. (By:) = 0 for i = 7*. Equation (12) subtracts the
contribution of group g to the objective function in case ¢* is included from the case in which
i* is not included. Since individual contributions are interdependent, this indirect approach
allows to obtain the individual contributions per group. But, as aforementioned, Monte Carlo

simulations indicated poor performance.
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3.2.2 Penalized EGMM estimation

To restrict the time-varying nature of the coefficient estimates to a pattern of structural
breaks, T follow Qian & Su (2016) by introducing a penalty term to (5). Subsequently, T
jointly estimate (/3,6) by

EEBGT

G T
3 = arg min (QNTw, 0)+> Ay D> gl Bes — ﬁg,t_an) , (13)

g=1 t=1
and,
0 = argmin LSy7(8,0). (14)
0eGN

The left-hand side of (13) term is the EGMM quadratic objective function, whereas the
right-hand side term gives the penalty term. The group-dependent tuning parameter of the

penalty term is A\, which is discussed in more detail in Section 3.3. The data-driven weight

|

p

1D%tis

—K

b= o)) } o w

Bg,t - Bg,t—l’

Wg,t = ’

Bg,t - Bg,tfl)

number p within the first differenced (in absolute terms) coefficient vector, after exponenti-

where £ is a user specified constant (typically x = 2) and <’ ‘]j) denotes entry
p
ation by k. Furthermore, ||| denotes the Frobenius norm.

The use of the Frobenius norm (instead of the usual L; norm) in the penalization term
in (13) for the first difference vector 8,; — B,:-1 generalizes the fused Lasso (Tibshirani et
al., 2005) to the group fused Lasso. Usage of the adaptive weights 1w, is what gives rise to
the procedure name of adaptive group fused Lasso (AGFL) (Qian & Su, 2016). Building on
this, Okui & Wang (2021) consider heterogeneous structural breaks through heterogeneous
coefficients in a grouped pattern. To estimate the grouped pattern, they employ a GFE
estimator (Bonhomme & Manresa, 2015). Okui & Wang (2021) title the resulting estimation
procedure GAGFL. By allowing for endogenous regressors, and by adapting the estimation
procedure accordingly, I extend the existing literature. I do this by replacing least-squares-

based coefficient estimation with efficient IV-GMM, which is where the name EGMM GAGFL

17



originates from. Moreover, to achieve this, iterative estimation of the weighting matrices is
incorporated within the iterative parameter estimation.

The motivation for the use of the Frobenius norm within EGMM GAGFL, instead of the
Ly norm, is to have accurate structural break detection. By using the Frobenius norm, the
differences between adjacent (in a temporal sense) coefficient vectors are penalized instead
of differences between scalar coefficients within the vectors. To have accurate detection
of structural breaks, the used norm should give a good indication of the overall similarity
between coefficient vectors. Thus, the Frobenius norm is most applicable.

Having obtained preliminary parameter estimates (5 0, W) using Algorithm 1, the weights

W,y can be computed as in (15). Subsequently, intermediary parameter estimates (B, 0, W)
are obtained employing the penalized EGMM objective function (13) and the least-squares
objective function (14). I propose to use Algorithm 2, very similar to Algorithm 1, to compute
the intermediary parameter estimates.
Instead of randomly sampling multiple initial group patterns, Algorithm 2 utilizes the prelim-
inary group memberships estimate 6 from Algorithm 1 as the single initial group memberships
estimate. Provided that B and 6 are consistent, the initial parameter estimates are close to
the (global) minimum and hence Algorithm 2 converges fast and there is no need for multiple
initial group patterns.

I[terative minimization is performed in the same manner as the iteration steps in Algorithm
1, except that the penalized EGMM objective function is used in the coefficients update step
instead of just the EGMM objective function (7). Instead of analytically solving the objective
function, a block coordinate descent algorithm is used to numerically solve (16). Group
memberships in Step 2 are updated by minimizing the sum of squared residuals. Furthermore,
the penalization term does not depend directly on the group pattern and therefore need not
be included in the group assignment step.

The estimated break dates are periods for which Bgﬂf — B%t,l # 0. Let the set of estimated
break dates for group g be denoted by ﬁhg,g = {t e{1,2,...,T}| Bgﬂt — Bgﬂt_l + O}. The

~

estimated number of breaks for group g () is then given by the cardinality of Ty, 4.

Consequently, the estimated number of unique coefficient vectors for group g is m, + 1.

Furthermore, let 7, = {t e{1,2,...,T}| Bm — Bm,l #0V g€ G} denote the set of all
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Algorithm 2: penalized EGMM estimator

Parameters: Regressors’ coefficient vector (), grouped pattern vector (6), and
weight matrices vector (V).

Hyper parameters: Number of groups (G), maximum number of iterations (smaz),
and tuning parameter (\,).

Input: Dependent variable NT x 1 vector (y), independent variable NT' x k matrix
(X), and NT x m instrument matrix (7). Preliminary parameter estimates
(5,0, 1).

Output: Intermediary parameter estlmates (3,0, W).

Initialization: Set 50 =3, 0© =4, W© =1V, and s = 0.

1. Update coefficients: Given 6®) and W), set

B+ = argmin Qup (8, 6 +Z/\ ngtnﬁgt Boi-1llps (16)

ﬂEBGT

2. Update group memberships: For i € {1,2,..., N}, set

2
g™ = argmin Z (yzt — giﬂ xzt) : (17)

geG

Then, 611 follows.

3. If m > k, update weighting matrices:
—1

Wg(f—l—l) Z f'Lt gi—H flt(ﬁ ZS,—H )) ) (18>

9 ilgi=g
forg=1,2,...,.Gandt=1,2,...,T.

4. Check stopping criteria: If Hﬁ(”l) — B(S)H2 >0and s+ 1 < Sz, St s =5+ 1
and go to Step 1. Otherwise, set (B, 0, W) = (8,6, W) and stop.

unique estimated break dates over all groups, where V should be interpreted as ‘for any’. It
follows that the estimated total number of breaks m is given by the cardinality of T

Consistent estimation of break dates is achieved through appropriate weights (w,;) that
result from consistent preliminary coefficient estimates (Bg,t)- To illustrate this, suppose
ot — Bgi—1 = 0, then it is likely that Bg,t — Bg,t—l ~ 0. If that is the case, it can be

seen from (15) that w,, will be large. That results in a heavy penalty, and presumably no
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estimated breakpoint for the corresponding period. This facilitates break dates to be sparse

and consistently estimated.

3.2.3 Post-Lasso EGMM estimation

After obtaining intermediary group pattern estimate é, intermediary weight matrices estimate

W, and estimated set of break dates 7A}ng,g for each group g, post-Lasso coefficient estimates
/

are computed. Let ag,, = <a;71,a;’2, . ,o/gmgH) denote the vector stacking all ay; for

group g. Post-Lasso coeflicient estimates are obtained by performing EGMM for each period

in each group. The objective function for group g is

/

mg+1 Ty j—
1 1
VNTg(O‘gmv mgg’ E : E N, E , fit(agvj) Wi N, E fit(ag,j) , (19)
J=1 t=T4 ;1 9 ilgi=g 9 ilgi=g

where fi(oy;) = 2t (y,-t — Oé;,ﬂ?z‘t)- Minimization of (19), which is performed for all g €
~ ~ /
G, gives agm(Th, 9. W) = (dlg,1a&;,2,-~adlg,mg+1> . Similar to Step 2a in Algorithm 1,
coefficients are computed by
R (Z/ -XgJ)_lZ/ jyg,j lf m:k
Qgj = (20)
Ztgj ( Zg th tZ/’thJ)ilX‘;’tZgin tZ tygt if m > k,

for all j € {1,2,...,my41} in each g € G. Here, X, ; consists of all panel data z; for which
bothi € {1,2,...,N} | g =g, and t € {1,2,...,T} | Ty ;-1 <t < T, ;. Furthermore, X,
consists of all panel data x;; for which ¢ € {1,2,..., N} | g; = g and t = t. The other terms
n (20) are formed in a similar manner. Standard error estimates of the coefficient estimates

are obtained by computing GMM standard errors as in Section 4.4.3 of Heij et al. (2004).

3.3 Selecting the number of groups and the penalty term tuning

parameter

Prerequisites of using EGMM GAGFL are the selection of the number of groups G and
selecting the tuning parameter of the penalty term ), in (13). Those issues are discussed in

this section.
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First, to select the number of groups G, a Bayesian information criterion is used,

G mg+1

BIC(G ZZ Z Z Z/zt—d;,sz‘ty"’&?wln]vﬂ (21)

glﬂlzlgbgthyl

which is adapted from Bonhomme & Manresa (2015). Here, 62 is a scaling parameter that
can be obtained from an estimate of the variance of the idiosyncratic error term. I use

= NT Z’”l“ sz\i 1 Z;‘Fi’};jl_l (yit — d’l,jxit)Q, where the coefficient estimates & ; result
from applying EGMM GAGFL to a homogeneous panel (G = 1). Furthermore, n,(G) =
Zngl((mg +1)k) gives the total number of estimated coefficients. To implement the selection
of G, compute BIC(G) for G C {1,2,...,Guaz}, Wwhere G4, is an upper bound that needs
to be known. Selection of G, is not considered here. Subsequently, the estimated number
of groups G is given by:  argmin BIC (G).

GC{1,2,....Gmaz}

Since the squared residuals might differ among both groups and regimes (heteroskedastic-
ity), and because the number of groups might be larger than one, 62 probably yields an
inconsistent estimate of o2. However, the reason for including 6 is to scale the penalty term
such that it is unaffected by the variation of the data (Okui & Wang, 2021). Okui & Wang
(2021) find that using the upper bound for the number of groups (G...) to estimate the
variance of the idiosyncratic error term, as suggested for GFE by Bonhomme & Manresa
(2015), may lead to unstable results. They advocate the use of a single group to estimate o2.

The BIC represents a tradeoff between model fitness and model parsimony. Generally, a
larger value of GG leads to a larger number of parameters and a better fit. However, this is
not necessarily the case since more groups might result in fewer breaks over all groups and
thus a lower number of coefficients and a worse model fit. Nevertheless, according to Okui
& Wang (2021), the model that coincides with the data generating process gives the lowest
BIC value, provided an appropriate choice of the tuning parameters A,.

Next, selection of tuning parameter ), is discussed. Similar to Okui & Wang (2021), I

minimize the following information criterion (IC):
1 mg+1 )
—_— P /\I . >
1Cy(Ag) = NT ; |2: ~ TZ: Yit Oég,jil?zt) + pnr (o, + 1) k, (22)
tlgi=g 9,5—1

where 1), is the estimated number of breaks when tuning parameter A, is used, and py7 is a
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tuning parameter. Here, I choose pyr = ¢In(NT)/v/NT with ¢ = 0.05, following Qian & Su
(2016). The tuning parameter differs per group because the variance of the idiosyncratic error
term and number of breaks might differ per group as well. Therefore, the tuning parameter
value which minimizes (22) might differ too. Both Okui & Wang (2021) and Qian & Su
(2016) verify via simulation that the performance of their method is robust to the choice
of ¢ as long as it lies in a reasonable range. To implement the selection of \,, I compute
IC(\y) for Ay C {N\gmins - - - Agmaz ;> Where Ay i and Ay e, are bounds that need to be
known. In between those bounds, there are a number of evenly spaced values—that is, on
a logarithmic scale. The exact determination of the bounds and the number of values in

between is not considered here. Subsequently, the value of the tuning parameter ), is given

by arg min IC(Ny).

/\QC{)‘g,minwny)\g,maz}

4 Monte Carlo simulation

In this section, I evaluate the finite sample performance of the proposed EGMM GAGFL
method for linear and static panel data with endogenous regressors by conducting a set of
Monte Carlo experiments. Moreover, I perform a comparison between EGMM GAGFL and
two other estimation methods. One of those methods is GAGFL, which differs from EGMM
GAGFUL in the sense that it uses ordinary least-squares (OLS) for coefficient estimation. The
other method is 2SLS GAGFL and it discerns itself from the other two by employing 2SLS for
coefficient estimation. The 2SLS and EGMM coefficient estimation techniques are equivalent
when the number of instruments is equal to the number of parameters. In this case, they
both boil down to a simple IV estimator which directly solves the moment condition.

For each method, following Qian & Su (2016), the bounds of the tuning parameter A, (i.e.,
Agmaz and Ag min) are selected so that Ag.,q, would yield no breaks and A, i, would yield
breaks in all time points. Furthermore, 50 logarithmically evenly distributed values in the
interval of [Ag min, Agmaz) are used. Subsequently, the optimal tuning parameter is computed
as described in Section 3.3. Following adaptive Lasso literature, I set x = 2 to construct the

weights wg;.
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4.1 Data generating process

Each method is estimated on three data generating processes (DGPs), which differ in terms of
the presence of serial correlation in the independent variable and instruments, and the number
of available valid instruments. The basis of the specifications resembles a combination of the
Monte Carlo simulation studies of Qian & Su (2016) and Okui & Wang (2021). The basic
form of each DGP is

Yit :B;i’txit+05€it7 = ].,2,...,N, t= 1,2,...,T. (23)

Further specifications are

DGP 1 1y = & + 0.3, e ~ iid. N(0,1), & ~ iid. N(0,1), 2 = & + 0.3us,
wg ~ iid. N(0,1), 2 = € 4 0.3v, vy ~ 1.i.d. N(0,1), & and £; are mutually

(1) )

independent, z;,” and Zl(tQ are independent of ;.

DGP 2 Same as DGP 1, except that §; ~ AR(1) for each i : & = 0.5 -1 + wi, wip ~
iid. N(0,0.75).

DGP 3 Same as DGP 1, except that the only available valid instrument is zz(tl ),

DGP 1 is the benchmark case, both zz(tl ) and zz(tz ) are valid instruments for the endogenous
regressor x;;. Since both of them are used in estimation, the endogenous regressor is overi-
dentified. Furthermore, the exogenous part of the independent variable and all error terms
are i.i.d. over ¢ and ¢, and the idiosyncratic error process is strong white noise. DGP 2
differs from the benchmark in the sense that it displays serial correlation in the regressor and
instruments. DGP 3 is the same as the benchmark case except that it has just a single in-
strument. Therefore, it corresponds to the exactly identified case. Regarding the instrument
zz(t2 ), it is generated in such a way that it provides a valid instrument while preventing mul-
ticollinearity with zz(tl ) so that the instruments provide valuable information that is different
from each other. This entails a high correlation with the endogenous regressor while ensuring
that the correlation between the instruments is not too high. Due to the exponentiation of

&it, the instruments will differ in scale. However, standardization is not necessary because

2SLS and EGMM both account for scale differences of the instruments and OLS does not
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use the instruments. Furthermore, note that the independent variables and instruments are
random instead of fixed and as such I expect there to be heteroskedasticity that follows the
heterogeneous structure of groups and structural breaks.

In addition to three different DGPs, 1 evaluate performance at different noise levels. I
consider o. € (0.5,0.75). These values correspond to signal-to-noise ratios of 4 and 136,
respectively. Moreover, to investigate the relationship between performance and data size
characteristics, two cross-sectional sample sizes and three time series lengths are considered.
These are N = (50,100) and 7" = (10, 20,40), respectively. This means that a total of 36
different model setups are considered since estimation method performance is assessed for
every possible combination of three DGPs, two noise levels, two cross-sectional sample sizes,
and three time series lengths. For every model setup, 1000 replications are performed for
each estimation method.

In accordance with Okui & Wang (2021), I let there be three groups, and I let that be known.
Let N; (j € {1,2,3}) denote the number of units in group j, as such N = N;+ Ny+ N;. Both
N; and N, are a third of N, rounded to the nearest integer. N3 accounts for the remaining

part of the units. The coefficients of the three groups are

1 ifl1<t<|T/2] 3 if1<t<|T/3]
bip=1q 2 if [T/2] <t<|[5T/6], L= 4 if|T/3]<t<|5T/6],
3 if [BT/6] <t<T 5 if [BT/6] <t<T

Bse= 15 for1<t<T,

where |-] is an operator that takes the integer part. The first two groups both display two
structural breaks. However, the first break date differs among the two groups. The slope

coefficient of the third group is constant over the entire observational period.

4.2 FEvaluation criteria

The evaluation criteria to assess performance are all taken from Okui & Wang (2021). How-
ever, in contrast with Okui & Wang (2021), I do not evaluate the selection of the number of
groups because it would lead to many more simulations and consequently prohibitive compu-

tation time. For example, suppose that I also consider five different number of groups. That

24



would mean four new situations for each of the 36 model setups, leading to 144 extra model
setups for which I need the final parameter estimates. Since the adaption of the GAGFL
method to coefficient estimation through EGMM or 2SLS leads to substantial increases in
computation time already, the total computation time of 144 extra model setups becomes
prohibitive.

It seems reasonable to assume that the performance of EGMM GAGFL in selecting the right
number of groups does not differ much from the observed performance of GAGFL by Okui &
Wang (2021) if the other parameters are accurately estimated. This is because the procedure
to select GG based on the BIC is the same for both methods and only parameter estimates
are performed differently. Also, as mentioned before, the influence of 52 is presumably very
limited. For the DGP similar to my DGPs, Okui & Wang (2021) find that in the worst case
(0. = 0.75, N = 50, and T" = 10), the correct number of groups is selected in over 97% of
the cases.

The performance on the four remaining criteria is quantified through five performance
indicators. The criteria are classification accuracy, break detection accuracy, breakpoint es-
timation accuracy, and coefficient estimation accuracy. Each criterion has one performance
indicator, except for the latter which is evaluated by two distinct indicators. The respec-
tive performance indicators are the ratio of misclassified units to the total number of units,
frequency of correctly estimating the number of breaks for each group, relative Hausdorff
distance (HD) between break date estimates and true set of brake dates for each group, and
root mean squared error (RMSE) and coverage probability of the two-sided nominal 95%
confidence interval.

For the last three performance indicators, I provide some further explanation. The Haus-
dorff distance between any two sets A and B is defined as HD(A, B) = max{D(A, B),D(B, A)},
where D(A, B) = supycginfaea |a — b|. The Hausdorff error of of an estimated set of break
dates is defined by its HD to the true set of break dates (i.e., HD(’f’mmg, Ting.g), for group g).
Then, the relative (with respect to 7)) Hausdorff error is equal to HD(7s, g, Tra,4)/T- The
RMSE of Bgi,t is computed by

T
RMSE(B\g“t) == % Z (B\gi,t - Bgi,t)2v
i=1 t=1
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and its coverage probability is

Coverage( 591

N T
=21 (5% —1.9655, , < Byt < Byt + 1.968Bg1_,t) :

=1 t=1
where 0, , is the estimated standard deviation of Egi,t. The estimates of standard deviation
for OLS and 2SLS are Newey-West estimates (Newey & West, 1987) to ensure consistency
under heteroskedasticity. As mentioned in Section 3.2.3, GMM standard errors are com-
puted as in Heij et al. (2004) for EGMM. All performance indicators are averaged over 1000

simulation replications.

4.3 Results

Starting with the classification accuracy, EGMM performs well. The misclassification fre-
quency is around 5% for the worst case and drops to around only 2% with increasing T
As can be seen from Table 1, the other two estimators perform quite well too, there is not
much difference in performance. However, OLS outperforms EGMM and 2SLS, while 2SLS
performs slightly worse than EGMM. OLS performs very well because the upward bias in
coefficient estimation affects all coefficient estimates in the same direction. Therefore, the
(absolute) differences in coefficient estimates between groups are the same as when strictly
the exogenous part of x; would be used in coefficient estimation. For the other two meth-
ods, the error process included in the instrument results in extra noise and thus a larger
misclassification accuracy. In practice, the nature of endogeneity and heterogeneity between
individuals may lead to results that contrast the better performance observed here.

Overall, misclassification frequency seems unaffected by changes in N, whereas it reduces
markedly with increasing T'. Furthermore, the results suggest that serial correlation in the
instrument and independent variable negatively affects the classification accuracy. This may
be explained as follows. In the case of serial correlation, outliers heavily influence close
remaining periods in the same direction as the outlier. Consequently, the slope coefficient
will be overestimated or underestimated for those periods, depending on the direction of the
outlier. The over- or underestimation can coincide with the coefficient value of a different

group, increasing the chance of misclassification. Without serial correlation, outliers affect
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Table 1: Misclassification frequency group allocation estimates (in percentages)

DGP Oe Method N = 50 N = 100
T =10 T = 20 T = 40 T =10 T = 20 T = 40
1 0.5 EGMM 1.16 0.22 0.00 1.04 0.22 0.01
2SLS 1.18 0.24 0.00 1.05 0.24 0.00
OLS 0.91 0.15 0.00 0.87 0.15 0.00
0.75 EGMM 4.64 1.86 0.25 4.12 1.72 0.24
2SLS 5.75 1.96 0.26 4.27 1.82 0.27
OLS 3.49 1.29 0.12 3.40 1.36 0.14
2 0.5 EGMM 1.38 0.33 0.00 1.40 0.30 0.01
2SLS 1.48 0.42 0.01 1.46 0.33 0.01
OLS 1.07 0.27 0.00 1.20 0.23 0.01
0.75 EGMM 5.42 2.48 0.39 4.79 2.22 0.35
2SLS 6.13 2.48 0.41 5.04 2.29 0.40
OLS 4.16 1.71 0.23 3.97 1.77 0.23
3 0.5 v 1.09 0.22 0.01 1.12 0.22 0.00
OLS 0.87 0.19 0.01 0.90 0.15 0.00
0.75 v 4.87 1.80 0.25 4.28 1.82 0.26
OLS 3.44 1.31 0.13 3.54 1.37 0.12

Note: For DGP 3, the EGMM and 25LS estimators are equivalent and equal to a simple
1V estimator because it represent the exactly identified case.

just a single period.

Moving on to break detection accuracy, the results suggest that EGMM performs satisfac-
torily because it accounts for heteroskedasticity. In the worst case, as can be seen from Table
2, the frequency of correctly estimating the number of breaks is 70%. This occurs for the
combination of large error size (0. = 0.75), smaller cross-sectional sample size (N = 50), and
overidentification of the endogenous regressor (DGP 1 and DGP 2). However, only changing
the error size to be moderate (0. = 0.50) increases performance to around 94% or more,
while increasing N from 50 to 100 gives an accuracy of around 85% or higher. Again, OLS
outperforms the other two methods with accuracy measures of 85% or higher for all cases.
2SLS performs very poorly. Its accuracy measures for groups with breaks are 90% at best
and only 20% at worst. As previously mentioned, this can be attributed to the failure of
2SLS to account for heteroskedasticity, for which I found the following evidence.

As can be observed from Table 2, the number of breaks in group 3 (no breaks) is quite well

27



estimated, so 2SLS generally does not seem to falsely detect breaks when there are none. For
the other groups (which have two breaks each), 2SLS tends to falsely detect an extra break.
This was concluded after a closer inspection of the results on the number of breaks estimated,
which revealed an overall overestimation of the number of breaks for 2SLS. The main differ-
ence between 2SLS and EGMM is that the former does not account for heteroskedasticity.
The results thus suggest that there is some form of heteroskedasticity induced by the struc-
tural breaks which increases the chance of false break detection. The mechanism behind this
can be explained as an increase in the variance of the error term resulting from an increase
in the slope coefficient at a breakpoint. This works through the idiosyncratic variance of the
independent variable. An increase in the error variance will lead to bigger deviations from
the expected value for the dependent variable and hence a false break detection will become
more likely. Further evidence for this is the lower accuracy of 2SLS for group 2 than for
group 1. The main difference between these groups is that the coefficients of group 2 are
higher than those of group 1. EGMM accounts for heteroskedasticity by having the influence
of observations inversely proportional to their variance.

In line with the better performance of OLS observed for classification accuracy, OLS per-
forms comparatively well again for break detection accuracy. Similar reasoning applies, fo-
cusing on the difference between regimes now. Supporting evidence is that the OLS results
shown in Table 2 display no notable difference with the corresponding results found by Okui
& Wang (2021).

All methods’ break detection accuracy improves substantially with increasing N. For OLS
this is also the case for increasing 7', whereas the performance of 2SLS decreases with in-
creasing T. Regarding EGMM, its accuracy generally improves with increasing 7. Cases
in which a decrease in performance is observed, associated with an increase in T, may be
explained by the slight chance for a false break detection for every additional period since
the number of breaks is allowed to grow unrestricted (Qian & Su, 2016).

Finally, in the exactly identified case (DGP 3), the IV estimators’ accuracies become high
(83% at worst and over 88% elsewhere) and very similar to those of OLS, albeit slightly worse.
This difference may be attributed to the error term in the instrument, as the expected value

of the (absolute) difference between regimes is the same for both methods.
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Table 2: Frequency of correctly estimating the number of breaks (in percentages)

o Method Group N = 50 N = 100
T — 10 T = 20 T = 40 T = 10 T = 20 T = 40
DGP 1
0.5 EGMM Gl(my] =2 94.5 96.8 97.8 98.3 99.5 100
G2 (2) = 2 93.8 96.5 96.9 98.6 99.4 99.9
G3(m3 =0 94.4 97.0 98.9 99.0 99.6 99.9
2SLS G1 m(l) =2 74.4 67.1 53.6 88.8 85.6 79.1
G2 (2) =2 42.0 29.5 21.9 59.7 48.2 35.9
G3 mg =0 99.2 100 100 100 100 100
OLS G1 m(l) = 2 99.7 100 99.9 100 100 100
G2 (2) =2 99.6 100 100 100 100 100
G3 mg =0 99.8 100 100 100 100 100
0.75 EGMM Gl(my =2 70.6 77.9 79.9 86.0 92.1 97.2
G2 mg =2 69.5 96.2 75.1 89.0 92.7 96.2
G3 mg =0 76.3 98.2 93.6 88.0 95.1 98.8
2SLS G1 mcl) =2 59.7 54.4 42.8 78.0 77.8 65.1
G2 mg = 2 40.6 29.8 19.7 54.0 40.8 30.6
G3 mg =0 80.9 95.7 99.9 94.5 99.7 100
OLS G1 mcl) =2 85.8 94.6 97.3 96.8 99.9 99.0
G2 m(z) =2 91.9 96.2 95.6 97.7 99.6 100
G3(m3 =0 87.0 98.2 99.9 98.1 99.9 100
DGP 2
0.5 EGMM Gl(my = 2 93.1 95.9 98.0 98.3 99.5 99.7
G2 mg =2 92.7 95.9 95.8 98.4 99.8 99.8
G3 mg =0 95.0 97.5 98.6 98.5 99.7 99.9
2SLS G1 m(l) = 2 75.9 68.0 55.2 89.6 85.0 80.0
G2 m(z) =2 44.1 35.0 23.4 57.4 49.3 36.5
G3 mg =0 99.5 99.9 100 99.9 100 100
OLS G1 m(l) =2 99.8 99.8 99.0 100 100 100
G2(m9 =2 99.4 100 100 100 100 100
G3(m3 =0 99.8 100 100 100 100 100
0.75 EGMM Gl(m; = 2 69.1 78.6 78.1 87.0 93.2 95.8
G2 mg = 2 69.2 76.7 74.9 84.3 92.5 96.9
G3 mg =0 76.2 88.6 95.4 89.7 95.5 98.7
2SLS G1 m(l) =2 58.8 55.7 41.5 77.9 76.4 70.2
G2 m(z) =2 40.5 28.7 20.4 53.3 44.2 33.3
G3 mg =0 77.4 94.4 99.7 93.6 99.4 100
OLS G1 m? = 2 86.6 95.8 94.8 97.0 99.7 100
G2 mg = 2 90.8 97.0 96.7 97.9 100 99.9
G3(m3 =0 85.6 97.3 99.9 96.9 99.9 100
DGP 3
0.5 v Gl(my =2 99.1 99.0 98.8 100 99.9 100
G2 m(z) =2 98.8 99.3 98.6 99.9 100 100
G3 mg =0 99.4 100 100 100 100 100
OLS G1 m(l) =2 99.7 99.9 100 100 100 100
G2 mg = 2 99.6 100 99.9 100 100 100
G3(m3 =0 99.5 100 100 100 100 100
0.75 v G1 mcl) =2 82.9 88.7 88.0 95.6 98.9 99.6
G2 g = 2 84.0 90.0 86.9 96.9 98.1 98.9
G3 mg =0 84.6 96.9 99.6 96.6 99.8 100
OLS G1 m(l) =2 85.6 94.4 95.9 97.5 99.9 99.9
G2 (2) =2 89.2 96.0 94.9 99.2 99.8 99.9
G3 mg =0 86.0 98.3 99.8 97.8 99.8 100

Note: For DGP 3, the EGMM and 2SLS estimators are equivalent and equal to a simple
1V estimator because it represent the exactly identified case. The Group column shows for
each group the true number of breaks mg mn %entheses.



The third evaluation criterion is breakpoint estimation accuracy, for which EGMM scores
well with a relative HD of around 5% in the worst case (0. = 0.75, N = 50, and T' = 10).
The Hausdorff errors in Table 3 are reported only for cases in which the correct number of
breaks has been estimated. Substantial improvements are observed with increasing N for all
methods. Much of the results are very similar to those found for break detection accuracy.
OLS performs best, whereas 2SLS performs markedly worse than the other methods (error
for group 2 is always > 6%). The performance of IV is really good again. I observe once
more no notable impact of serial correlation. Increasing T generally has a positive effect on
performance, but incidentally not for EGMM. For 2SLS it is mostly a negative effect. This
is somewhat surprising because the Hausdorff errors are given relative to 7', in contrast with
the frequency of correctly estimating the number of breaks.

Finally, I consider coefficient estimation accuracy. Here, the benefit of using EGMM instead
of OLS, in the presence of endogenous regressors, becomes apparent. The EGMM estimates
are relatively close to the true coefficient values, as observed from its low RMSE in Table
4. Conversely, the low coverage probabilities suggest poor performance of EGMM. However,
further inspection revealed that can likely be attributed to a combination of a very low
estimated variance and a slight bias, which is not that problematic generally.

As is well known, RMSE = \/Variance + bias®. The RMSE of EGMM and 2SLS are

very similar, but the coverage probability of 2SLS is substantially higher. This suggests
that the portion of bias in the RMSE is higher for EGMM than for 2SLS. Moreover, the
coverage probability of EGMM decreases with increasing 7', accompanied by a simultaneous
substantial decrease in RMSE. Furthermore, I looked into the unreported standard error
estimates of EGMM and 2SLS, which showed that those of 2SLS are markedly greater. A
reason for this is that 2SLS often falsely detects breaks, presumably as a consequence of
not accounting for heteroskedasticity. This leads to overfitting on the data through more
flexibility in coefficient estimation, which leads to a bigger variance. Concluding, the above
suggests that EGMM coefficient estimates have a very low estimated variance and a slight
bias, giving rise to poor coverage probabilities.

As aforementioned, the coefficient estimation accuracy motivates the use of EGMM instead

of OLS when dealing with endogenous regressors. OLS performs very poorly on both RMSE
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Table 3: Ratio of Hausdorff distance to time for break date estimates (in percentages)

oe Method Group N = 50 N = 100
T=10 T=20 T=40 T=10 T=20 T=40

DGP 1
0.5 EGMM G1(m =2 0.87 0.46 0.26 0.21 0.13 0.00
G2(m9 =2 0.94 0.50 0.48 0.22 0.11 0.01
2SLS G1(m =2 3.68 3.81 5.00 1.39 1.33 1.78
G2(mJ =2 10.2 11.1 12.1 6.34 7.79 8.94
OLS G1(mY =2 0.08 0.01 0.01 0.00 0.00 0.00
G2(mJ =2 0.06 0.01 0.01 0.00 0.00 0.00
0.75 EGMM G1(m =2 4.97 3.56 2.92 2.12 1.30 0.46
G2(mJ =2 4.84 3.61 3.31 1.56 0.94 0.59
2SLS G1(m =2 6.56 6.50 7.38 2.98 2.51 3.36
G2(mJ =2 10.9 12.2 12.4 7.77 8.98 10.1
OLS G1(mY =2 2.36 0.81 0.36 0.46 0.02 0.01
G2(mJ =2 1.39 0.62 0.58 0.32 0.06 0.01

DGP 2
0.5 EGMM G1(m =2 1.09 0.57 0.24 0.28 0.04 0.04
G2(mJ =2 1.03 0.53 0.51 0.19 0.02 0.02
2SLS G1(mY =2 3.72 3.97 4.70 1.26 1.34 1.57
G2(mJ =2 9.86 10.5 11.7 7.03 7.50 9.16
OLS G1(mY =2 0.04 0.02 0.01 0.00 0.00 0.00
G2(mJ =2 0.10 0.01 0.01 0.00 0.00 0.00
0.75 EGMM G1(m =2 5.07 3.52 2.96 2.09 1.16 0.47
G2(mJ =2 4.53 3.50 3.36 2.19 0.96 0.39
2SLS G1(mY =2 7.00 6.19 7.25 3.27 2.82 2.97
G2(mJ =2 11.1 12.0 12.6 8.15 8.39 9.71
OLS G1(mY =2 2.38 0.67 0.64 0.54 0.09 0.01
G2(mJ =2 1.54 0.54 0.46 0.30 0.00 0.00

DGP 3
0.5 v G1(m =2 0.21 0.12 0.13 0.00 0.01 0.00
G2(mJ =2 0.23 0.11 0.24 0.01 0.00 0.00
OLS G1(mf =2 0.09 0.01 0.00 0.00 0.00 0.00
G2(mJ =2 0.04 0.01 0.02 0.00 0.00 0.00
0.75 IV G1(m =2 3.17 1.63 1.31 0.74 0.10 0.04
G2(m9 =2 2.66 1.55 1.81 0.41 0.15 0.11
OLS G1(m =2 2.60 0.90 0.51 0.43 0.03 0.01
G2(mJ =2 1.63 0.62 0.70 0.13 0.01 0.02

Note: For DGP 3, the EGMM and 2SLS estimators are equivalent and equal to a simple
1V estimator because it represent the exactly identified case. The Group column shows for
each group the true number of breaks mg in parentheses. No results are reported for group 3
because all Hausdorff errors are naturally zero.
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and coverage probability, due to the high bias resulting from the endogeneity of the regressor.
Looking at the results for the combinations of moderate error size (0. = 0.50), and high T
(T'=20 and T = 40), OLS seems to converge asymptotically to a squared bias value which
is relatively large. By contrast, the RMSEs of 2SLS and EGMM appear to be converging to
zero, or a value close to zero. Moreover, the dominance of a large bias squared term shows
from the coverage probability of OLS decreasing substantially with both N and 7', becoming
practically zero for N = 100 and T" = 40.

Except for the coverage probabilities of OLS and EGMM, substantial performance im-
provements are observed with increasing 7', which can mainly be attributed to a decrease in
variance. Performance improvements with increasing /N are less substantial but occur more
uniformly across the model setups and estimation methods. Only for the coverage probabil-
ity of OLS does the performance decrease with increasing N, due to the large bias involved.
The increase in coverage probability of EGMM with increasing N is opposite to the effect of
increasing 7.

In the exactly identified case (DGP 3), the IV estimator performs especially well. The
coverage probability is 85% in the worst case (0. = 0.75, N = 50, and 7' = 10), and rises
greatly to > 90% when increasing 7. Furthermore, the RMSEs are substantially lower than
those of EGMM and 2SLS (DGP 1 and DGP 2).

5 Conclusion

I propose a new estimation method that allows for heterogeneous structural changes in the
slope coeflicients of panel data models in the presence of endogenous independent variables.
Individual heterogeneity is modeled through a latent group structure. The time pattern of
the coefficients is characterized by structural breaks in the slope coefficients that may vary in
size and timing between groups. My EGMM GAGFL method is an extension of the GAGFL
method. It uses EGMM instead of OLS to estimate coefficients, to correct for the endogeneity
bias.

Monte Carlo simulation results show that EGMM GAGFL generally performs well in fi-

nite samples, despite that a slight bias in coefficient estimation is possibly present. This is
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Table 4: Root mean squared error and coverage probability of coefficient estimates

DGP o N T RMSE Coverage
EGMM 2SLS OLS EGMM 2SLS OLS
1 0.5 50 10 0.1455 0.1518 0.1733 0.6622 0.8810 0.2444
50 20 0.0952 0.1114 0.1465 0.6284 0.8991 0.0746
50 40 0.0737 0.0901 0.1410 0.5633 0.9149 0.0108
100 10 0.1142 0.1164 0.1667 0.7506 0.9108 0.0842
100 20 0.0644 0.0740 0.1439 0.7267 0.9250 0.0127
100 40 0.0411 0.0548 0.1391 0.6795 0.9288 0.0004
0.75 50 10 0.2615 0.2627 0.2920 0.6276 0.8168 0.2585
50 20 0.1750 0.1759 0.2364 0.6227 0.8619 0.0791
50 40 0.1259 0.1198 0.2142 0.5563 0.8968 0.0125
100 10 0.2186 0.2206 0.2759 0.7188 0.8556 0.0881
100 20 0.1327 0.1370 0.2307 0.7084 0.8986 0.0118
100 40 0.0742 0.0859 0.2108 0.6629 0.9214 0.0004
2 0.5 50 10 0.1523 0.1599 0.1825 0.6835 0.8794 0.2321
50 20 0.0995 0.1166 0.1526 0.6340 0.8945 0.0725
50 40 0.0728 0.0893 0.1421 0.5680 0.9155 0.0104
100 10 0.1299 0.1336 0.1805 0.7310 0.9030 0.0748
100 20 0.0687 0.0752 0.1487 0.7140 0.9188 0.0129
100 40 0.0421 0.0555 0.1408 0.6818 0.9328 0.0003
0.75 50 10 0.2810 0.2843 0.3082 0.6257 0.7984 0.2441
50 20 0.1869 0.1848 0.2457 0.6113 0.8559 0.0810
50 40 0.1277 0.1245 0.2180 0.5546 0.8940 0.0146
100 10 0.2411 0.2450 0.2948 0.7087 0.8449 0.0775
100 20 0.1451 0.1496 0.2412 0.6963 0.8847 0.0123
100 40 0.0792 0.0883 0.2143 0.6678 0.9188 0.0004
3 0.5 50 10 0.1172 0.1718 0.9239 0.2461
50 20 0.0609 0.1470 0.9392 0.0791
50 40 0.0365 0.1410 0.9431 0.0111
100 10 0.1076 0.1679 0.9296 0.0833
100 20 0.0490 0.1435 0.9361 0.0125
100 40 0.0220 0.1391 0.9521 0.0004
0.75 50 10 0.2311 0.2895 0.8568 0.2546
50 20 0.1356 0.2366 0.9128 0.0847
50 40 0.0736 0.2146 0.9316 0.0134
100 10 0.2087 0.2789 0.8738 0.0848
100 20 0.1181 0.2305 0.9205 0.0126
100 40 0.0533 0.2104 0.9438 0.0005

Note: For DGP 3, the EGMM and 25LS estimators are equivalent and equal to a simple
1V estimator because it represent the exactly identified case.
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indicated by the fact that the coverage probability of the two-sided nominal 95% confidence
interval of the coefficient estimate declines when the time series grows longer. Conversely,
the root mean squared error of the coefficient estimate moves substantially towards zero with
both a larger number of cross-sectional observations and a longer time series, which suggests
accurate estimation. EGMM GAGFL seems to outperform GAGFL and 2SLS GAGFL. The
better performance of GAGFL (which employs OLS coefficient estimation) for classification
accuracy and break estimation accuracy can be attributed to the specification of endogeneity
and heterogeneity in my Monte Carlo simulation. In practice, this advantage might not be
there. By contrast, the poorer performance on coefficient estimation accuracy will exist in
practice too. Moreover, comparing break estimation accuracy between EGMM GAGFL and
2SLS GAGFL indicates that it is important to take heteroskedasticity into account in the
case of random regressors. Finally, the Monte Carlo results suggest that latent group mem-
bership, the number of breaks, and the breakpoints are consistently estimated by EGMM
GAGFL.

For future work, the method can likely be improved by using regime-dependent weighting
matrices in post-Lasso estimation instead of fully time-variant matrices, because the errors
may be assumed homoskedastic within a regime. Furthermore, the method may be extended
to allow for a dynamic model component and individual-specific fixed effect. This requires
first differenced data and appropriate instruments for the first-order lag of the dependent

variable.

34



References

Anderson, T. W., & Hsiao, C. (1981). Estimation of Dynamic Models with Error
Components. Journal of the American Statistical Association, 76(375), 598-606. doi:
10.1080/01621459.1981.10477691

Ando, T., & Bai, J. (2016). Panel Data Models with Grouped Factor Structure Under
Unknown Group Membership. Journal of Applied Econometrics, 31(1), 163-191. doi:
10.1002/jae.2467

Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation
of error-components models. Journal of Econometrics, 68(1), 29-51. doi: 10.1016/0304
-4076(94)01642-D

Bai, J. (2010). Common breaks in means and variances for panel data. Journal of Econo-

metrics, 157(1), 78-92. doi: 10.1016/j.jeconom.2009.10.020

Baltagi, B. H., Kao, C., & Liu, L. (2017). Estimation and identification of change points
in panel models with nonstationary or stationary regressors and error term. Econometric

Reviews, 36(1-3), 85-102. doi: 10.1080/07474938.2015.1114262

Basmann, R. (1957). A generalized classical method of linear estimation of coefficients in a

structural equation. Econometrica, 25(1), 77-83. doi: 10.2307/1907743

Baum, C. F., Schaffer, M. E., & Stillman, S. (2003). Instrumental variables and GMM: Es-
timation and testing. The Stata Journal, 3(1), 1-31. doi: 10.1177/1536867X0300300101

Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel
data models. Journal of Econometrics, 87(1), 115-143. doi: 10.1016,/S0304-4076(98)00009
-8

Bonhomme, S., & Manresa, E. (2015). Grouped Patterns of Heterogeneity in Panel Data.
Econometrica, 83(3), 1147-1184. doi: 10.3982/ECTA11319

35



Calderon, C., Moral-Benito, E.; & Servén, L. (2015). Is infrastructure capital productive? A
dynamic heterogeneous approach. Journal of Applied Econometrics, 30(2), 177-198. doi:
10.1002/jae.2373

De Wachter, S., & Tzavalis, E. (2012). Detection of structural breaks in linear dynamic
panel data models. Computational Statistics & Data Analysis, 56(11), 3020-3034. doi:
10.1016/j.csda.2012.02.025

Hahn, J., & Moon, H. R. (2010). Panel data models with finite number of multiple equilibria.
Econometric Theory, 26(3), 863-881. doi: 10.1017/S0266466609990132

Hansen, L. P. (1982). Large Sample Properties of Generalized Method of Moments Estima-
tors. Econometrica, 50(4), 1029-1054. doi: 10.2307/1912775

Heij, C., de Boer, P., Franses, P. H., Kloek, T., & van Dijk, H. K. (2004). FEconometric

methods with applications in business and economics. Oxford University Press.

Kim, D. (2011). Estimating a common deterministic time trend break in large panels with
cross sectional dependence. Journal of Econometrics, 164(2), 310-330. doi: 10.1016/
j.jeconom.2011.06.018

Li, D., Qian, J., & Su, L. (2016). Panel Data Models With Interactive Fixed Effects and
Multiple Structural Breaks. Journal of the American Statistical Association, 111(516),
1804-1819. doi: 10.1080/01621459.2015.1119696

Lin, C.-C., & Ng, S. (2012). Estimation of Panel Data Models with Parameter Heterogeneity
when Group Membership is Unknown. Journal of Econometric Methods, 1(1), 42-55. doi:
10.1515/2156-6674.1000

Miao, K., Su, L., & Wang, W. (2020). Panel threshold regressions with latent group struc-
tures. Journal of Econometrics, 214(2), 451-481. doi: 10.1016/j.jeconom.2019.07.006

Neal, B. T. (2015). Estimating Heterogeneous Coefficients in Panel Data Models with En-

dogenous Regressors and Common Factors.

36



Newey, W. K., & West, K. D. (1987). A Simple, Positive Semi-Definite, Heteroskedasticity
and Autocorrelation Consistent Covariance Matrix. Econometrica, 55(3), 703-708. doi:

10.2307/1913610

Okui, R., & Wang, W. (2021). Heterogeneous structural breaks in panel data models. Journal
of Econometrics, 220(2), 447-473. doi: 10.1016/j.jeconom.2020.04.009

Pesaran, M. H. (2006). Estimation and inference in large heterogencous panels with a
multifactor error structure. FEconometrica, 74(4), 967-1012. doi: 10.1111/j.1468-0262
.2006.00692.x

Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled Mean Group Estimation of Dynamic
Heterogeneous Panels. Journal of the American Statistical Association, 94(446), 621-634.
doi: 10.1080/01621459.1999.10474156

Pesaran, M. H., & Smith, R. (1995). Estimating long-run relationships from dynamic het-
erogeneous panels. Journal of Econometrics, 68(1), 79-113. doi: 10.1016,/0304-4076(94)
01644-F

Qian, J., & Su, L. (2016). Shrinkage estimation of common breaks in panel data models
via adaptive group fused Lasso. Journal of Econometrics, 191(1), 86-109. doi: 10.1016/
j-jeconom.2015.09.004

Sargan, J. D. (1958). The Estimation of Economic Relationships using Instrumental Vari-

ables. Econometrica, 26(3), 393-415. doi: 10.2307/1907619

Su, L., Shi, Z., & Phillips, P. C. B. (2016). Identifying Latent Structures in Panel Data.
Econometrica, 84(6), 2215-2264. doi: 10.3982/ectal2560

Su, L., Wang, X., & Jin, S. (2019). Sieve Estimation of Time-Varying Panel Data Models
With Latent Structures. Journal of Business & Economic Statistics, 37(2), 334-349. doi:
10.1080,/07350015.2017.1340299

Sun, Y. (2005). Estimation and Inference in Panel Structure Models. SSRN Electronic
Journal. doi: 10.2139/SSRN.794884

37



Swamy, P. A. V. B. (1970). Efficient Inference in a Random Coefficient Regression Model.
Econometrica, 38(2), 311-323. doi: 10.2307/1913012

Theil, H. (1953). Repeated least squares applied to complete equation systems. The Hague:

central planning bureau.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smooth-
ness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(1), 91-108. doi: 10.1111/;.1467-9868.2005.00490.x

Wang, W., Phillips, P. C., & Su, L. (2018). Homogeneity pursuit in panel data models:
Theory and application. Journal of Applied Econometrics, 33(6), 797-815. doi: 10.1002/
jae.2632

Wang, W., & Su, L. (2021). Identifying latent group structures in nonlinear panels. Journal
of Econometrics, 220(2), 272-295. doi: 10.1016/j.jeconom.2020.04.003

38



