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Abstract

This thesis investigates the forecasting performance of the GARCH tree model. This is done

by applying the unconditional and conditional Giacomini and White (2006) tests, and MCS

procedure of Hansen et al. (2011). Using a dataset of daily S&P500 returns, we find that the

GARCH tree is able to outperform the GARCH and GJR-GARCH forecasts on a 1-day horizon,

but this is only true when assuming t-distributed innovations and adding more splitting variables

to the GARCH tree. At longer horizons, the performance is similar or worse than the competing

models. This is especially true for the random forests. Extensions show the forecast errors

depend on the number of terminal nodes and that using the AIC or BIC does not lead to the

best GARCH tree model. Other factors influencing the main results are the block length of the

stationary bootstrap for the random forests, the loss function and chosen stock index. From

a practical perspective, the applied variance targeting estimation method greatly reduced the

computation time.

Keywords: GARCH tree • variance targeting • • forecasting • predictive ability tests • model

confidence set
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1 Introduction

Volatility is a key subject in finance. The conditional variance of financial time series is important

for portfolio allocation problems, risk management and asset pricing. The size and sign of daily

price movements is related to the arrival of news to financial markets. Therefore, accurate

forecasts of the conditional variance aid, for example, central banks to make good decisions, risk

management departments at large financial institutions to hedge risk or trading algorithms to

be profitable. These benefits has led to an high interest in modelling the conditional variance

of financial assets, where volatility is usually modelled using the Generalized Autoregressive

Conditional Heteroskedastic (GARCH) framework of Bollerslev (1986).

The success of GARCH-type models lies in the fact that they are able to capture some im-

portant characteristics of financial assets, namely (1) that returns are not normally distributed

but have heavier tails, (2) that returns are not correlated over time, and (3) that squared or

absolute returns are correlated over time and have long memory. The latter is usually referred to

as volatility clustering. Volatility clustering means that the second moment of financial returns

depends on its past. These temporal dependencies lead to the alternation of periods of high

volatility with periods of low volatility. The workhorse version in the GARCH-type framework

is the GARCH(1,1) model where today’s volatility is a deterministic function of of yesterday’s

volatility and yesterday’s return. Although volatility in GARCH models is not directly observ-

able, it is perfectly predictable one day ahead because it depends only on variables known the

day before. The quality of the GARCH(1,1) predictions has been a widely discussed topic in the

literature. Like many others, Hansen and Lunde (2005) have studied the performance of the tra-

ditional GARCH(1,1) forecasts to a large number of different extensions of the GARCH model.

They find that the GARCH(1,1) model does well in forecasting exchange rate volatility but that

the alternatives provide more accurate forecasts when forecasting financial asset volatility. The

crucial reason why the other models do better than the GARCH(1,1) model is the leverage effect

present in the conditional variance of financial time series. This leverage or asymmetric effect

originates from the finding that negative returns have a larger impact on volatility than positive

returns. The leverage effect thus creates a beneficial nonlinear relation in the volatility equation

of the GARCH model.

The leverage effect is a simple and straightforward extension. A more flexible but also more

complicated version of the GARCH model was introduced by Audrino and Bühlmann (2001).

Their model makes use of a decision tree to relate yesterday’s volatility and yesterday’s return

to today’s volatility. Decision trees, arising from the machine learning literature, introduce

thresholds to create nonlinear relations between input and output and have shown promising

results in other applications. The GARCH tree of Audrino and Bühlmann (2001) allows for

different GARCH parameters at each terminal node of the decision tree. Its main advantage is

that it nests the standard GARCH(1,1) model while at the same time allowing for complex data-

driven relations. Because Audrino and Bühlmann (2001) have not investigated the forecasting

performance of their GARCH tree model, the research question of this thesis is as follows

How well can the GARCH tree forecast volatility compared to the GARCH(1,1) model?
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To answer the research question we compare the forecasting performance of the GARCH

tree with the GARCH(1,1) (henceforth simply GARCH) using data of the S&P500 stock market

index. Because the leverage effect is so prominent in financial volatility, the GJR-GARCH model

of Glosten et al. (1993) is included to see whether the GARCH tree is a real improvement or

just capturing the effects of existing models. The GARCH tree is very flexible, which is why the

GARCH tree will be specified in many different forms. As shown by Audrino and Bühlmann

(2001), the estimation results of the GARCH tree depend on the distributional assumption

of the innovations. These will be either normally or t-distributed. Other forms make use of

additional splitting variables to determine the thresholds or random forests to combine multiple

GARCH trees. After the forecasting exercise, several extensions perform a sensitivity analysis

to investigate the effect of the assumptions made beforehand.

The GARCH tree model of Audrino and Bühlmann (2001) is part of the more general class of

semiparametric ARCH models of Linton and Mammen (2005). In Linton and Mammen (2005),

the news impact curve, which describes the relation between volatility and new return obser-

vations, is estimated nonparametrically and based on kernel smoothing. This general version

differs from the type of models that use a certain amount of regimes or thresholds to capture

nonlinearities in volatility, like the leverage effect. For example, Medeiros and Veiga (2009)

introduced a multiple regime GARCH model. The number of regimes in their model is based

on a sequential testing procedure where new regimes are added until the null hypothesis of a

redundant regime can no longer be rejected. This is different from the GARCH tree model

where the number of regimes is chosen using a model selection criterion.

The tree structure has been exploited by others as well. Audrino and Trojani (2011) use the

GARCH tree in a multivariate setting with thresholds in volatilities and correlations. Goulet

Coulombe (2020) develops a random forest model, which combines multiple trees, in a macroe-

conomic setting. There, the random forest is used to obtain time varying parameters leading

to superior forecasting performance over fixed or rolling window alternatives. Regarding rolling

windows, Oh and Patton (2021) introduces a local estimation method where local is not necessar-

ily based on time but could also be determined by other variables. In their GARCH forecasting

study, the local estimation method with realized variance and time as variables that define the

distance of certain observations, significantly outperformed the standard GARCH model. This

study relates to ours by using variables outside of the model itself to determine its parameter

values, which is what here the splitting variables in the tree will do. It is different from the

GARCH tree in the sense that the GARCH tree uses hard instead of smooth thresholds for the

parameters and that time is not a variable in the GARCH tree.

The forecasting results of Medeiros and Veiga (2009) , Oh and Patton (2021), and Liu et al.

(2020), indicate the forecasting performance of GARCH models can be improved using multiple

regimes, although in these cases the transition is smooth. The GJR-GARCH model of Glosten et

al. (1993) captures the leverage effect by a hard threshold between negative and positive returns

and is know to outperform the GARCH model. The GARCH tree also uses hard thresholds and

can easily incorporate the leverage effect, which is why we can expect the GARCH tree to do

better than standard GARCH as well.

Several contributions have been made to the existing literature. We have performed a fore-
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casting study to show the potential of the GARCH tree model. In addition, more splitting

variables were added to the GARCH tree, which has only been modeled with past return and

variance previously. The implementation of the GARCH tree with the variance targeting estima-

tion method also shows the computation time can be reduced substantially, making the GARCH

tree more accessible in practice. Finally, the extensions of Section 4.3 reveal the specification of

the trees is important for their performance.

Our main analysis shows that for 1-day-ahead forecasts, the GARCH tree is able to do better

than the GARCH and GJR-GARCH model. This is, however, only true for the GARCH tree

with t-distributed innovations and the additional splitting variables included. The other GARCH

tree implementations perform on par with or worse than the traditional models. Especially

the random forests, which were expected to do better given its model averaging and variable

selection characteristics, disappoint. At longer horizons, the GARCH tree models are not able

to do better, which could be because of the recursion we applied to obtain multi-step-ahead

forecasts. They are obtained with the parameters of the most recent terminal node, which

might be irrelevant at long horizons, causing the volatility prediction to revert too fast or too

slow to the unconditional variance.

The main findings are extended in several directions. First, because in the estimation of the

GARCH trees the AIC statistic failed to select a lower than the maximum number of terminal

nodes as optimal, we manually lowered the number of terminal nodes in the GARCH trees. This

shows that the maximum of six terminal nodes does not lead to the lowest average loss. Three

nodes seems to be sufficient. Replacing the AIC with the BIC does not really overcome this

problem. Second, the expected block length of the stationary bootstrap has a large impact on

the performance of the random forests. Although at a block length of 500 the average losses are

at a minimum, the random forests still do worse than all other models. Third, using the squared

error loss function instead of the QLIKE loss function sheds a different light on the GARCH

trees underperforming in the main analysis. However, this is most likely because the squared

error loss is more sensitive to outliers. The QLIKE loss is therefore preferred over the squared

error loss. Fourth, we test whether our results also hold for other stock indices. For the DAX

and Nikkei, the GARCH tree outperforms the traditional GARCH models at the 1-day-ahead

and 5-day-ahead horizons. For the FTSE, the differences are too small to be significant. Finally,

at a lower observation frequency (weekly and monthly), do the GARCH trees not outperform

the traditional models. Possibly because of the low amount of observations.

The structure of the paper is outlined as follows. Section 2 contains the methodology and

explains the GARCH tree model in variance targeting form. Moreover, it discusses the various

specifications of the GARCH tree used in the thesis and how their performance is evaluated.

Section 3 provides an overview of the S&P500 dataset. It also contains information on the

additional splitting variables used in the GARCH trees. Thereafter, Section 4 provides the esti-

mation results, forecasting performance, and extensions of the GARCH tree models. Specifically,

it shows the outcomes of the unconditional and conditional tests of Giacomini and White (2006),

and the MCS procedure of Hansen et al. (2011). The extensions cover changes in the GARCH

tree specifications and using a different dataset or loss function. A summary of the results, its

shortcomings and suggestions for further research can be found in Section 5.

3



2 Methodology

2.1 GARCH Model & Variance Targeting

The original GARCH model of Bollerslev (1986) is a widely used volatility model for asset

returns. Although the model is relatively simple, its forecasts are known to be hard to beat by

other variations and alternatives (see Hansen and Lunde (2005)). In the GARCH model, today’s

volatility σ2
t is a function of yesterday’s volatility σ2

t−1 and yesterday’s return rt−1. Assuming

the conditional mean is a nonzero constant, the GARCH model for the conditional volatility of

the asset is:
rt − µ = ϵt = σtzt

σ2
t = ω + αϵ2t−1 + βσ2

t−1,
(1)

where

ω > 0, α ≥ 0, β ≥ 0, and α+ β ≤ 1.

Here µ is the mean return, zt is the innovation, while ω, α, and β, are the parameters in the

volatility equation. The parameter restrictions make sure volatility is positive and stationary.

Volatility in this model is unobserved and can be obtained after estimating the parameters and

using starting value σ0. The parameter estimates are found assuming a particular distribu-

tion for the innovations zt and maximizing the related likelihood function. The success of the

GARCH model lies in its ability to capture the stylized facts of financial returns, which are a

low autocorrelation in returns, a high autocorrelation in squared returns, and non-normality.

Although the model is straightforward, one of its drawbacks is the number of parameters re-

quired to estimate when the dimensionality increases. This is because every additional volatility

equation needs three new parameters. As will be shown later, the GARCH tree model faces this

problem. As a solution, Engle and Mezrich (1996) proposed the variance targeting estimation

(VTE) method where the unconditional variance is computed first. The unconditional variance

is defined by γ = ω
(1−α−β) = ω

κ , which, using Francq et al. (2011), results in the following

reparametrization

rt − µ = ϵt = σtzt

σ2
t = κγ + αϵ2t−1 + (1− κ− α)σ2

t−1,
(2)

with new constraints

κ > 0, γ > 0, α ≥ 0, and κ+ α ≤ 1.

The unconditional variance γ is estimated by the sample variance 1
T

∑T
t=1 ϵ

2
t , before the κ and α

parameters are calculated. Because in this case the sample variance requires demeaned returns,

the mean return µ is also approximated by the sample mean in the first step of the estimation

process. The volatility equation in this reparametrization has become a weighted average of

the unconditional variance, the square of yesterday’s demeaned return and yesterday’s volatility

together summing up to one. Note that once the unconditional variance is known, the volatility

equation needs only two parameters. This reduces the dimension of the optimization of the

likelihood function in the second step, a useful feature for the computationally intensive GARCH

tree model.
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Francq et al. (2011) have compared the VTE method with the standard quasi-maximum

likelihood estimation (QMLE) method for GARCH models. Asymptotically, the QMLE provides

smaller variance around its estimators and the VTE estimates can be imprecise. In finite samples,

however, simulation experiments show that both estimation methods are equally accurate in

terms of RMSE and their applications to stock market data lead to very similar parameter

estimates.

2.2 GARCH Tree Model

Decision trees, or simply trees, are statistical learning models that divide the regressor space

into several regions (James et al., 2013). These regions defined by a set of thresholds or splitting

rules lead to specific values for the dependent variable(s). The different regions are usually

referred to as the terminal nodes of the tree. The set of splitting rules, where each rule divides

one dimension of the regressor space in two, can visually be represented as a tree and creates

a nonlinear relation between the regressors and the dependent variable. Friedman et al. (2009)

describe trees as the best ”off-the-shelf” method for data mining because of its interpretability,

invariance to data transformations, and internal variable selection. Moreover, the possibility to

combine multiple trees is an additional advantage to obtain accurate predictions.

In Audrino and Bühlmann (2001), a tree is combined with a GARCH model resulting in a

local GARCH model at each terminal node. Initially, a standard GARCH model as in (1) is fit

to asset returns. Then, this GARCH model is split in two based on a splitting rule. For example,

two GARCH models could arise where one is for negative returns and one for positive returns,

each with its own set of parameters ω, α, and β. The mean µ is not node-specific. The choice

of splitting variable and splitting value is such that, among all possible options, the resulting

split leads to the largest increase in likelihood. One does not have to stop at two different

GARCH specifications, these can again be split until a certain number of terminal nodes is

reached. Because a fully grown tree is likely to overfit the data, the tree is pruned such that a

subtree with less terminal nodes remains. Audrino and Bühlmann (2001) implement the pruning

strategy by searching for the subtree with the lowest AIC statistic. The resulting GARCH tree

model can then be used to forecast volatility. At each point in time the splitting rules and the

current values of the splitting variables determine which terminal node is relevant and which

parameters to use in the GARCH volatility equation. The recursion in (1) for volatility then

predicts next periods volatility.

The GARCH tree implementation used here will now be discussed. We adjust the GARCH

tree of Audrino and Bühlmann (2001) to the relevant VTE method of (2) to reduce the total

amount of parameters in the model. Because the tree splits the regressor space in multiple

regions, consider the partition

P = {R1, ...,Rk}, ∪kj=1Rj = R× R+, Ri ∩Rj = ∅ (i ̸= j) (3)

Hence, the partition P consists of k terminal nodes Rj . For each terminal node Rj , a separate

GARCH model is fitted resulting in the following GARCH tree model
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rt − µ = ϵt = σtzt

σ2
t =

k∑
j=1

(κjγ + αjϵ
2
t−1 + (1− κj − αj)σ

2
t−1)I[(ϵt−1,σ2

t−1)∈Rj ]

(4)

The indicator function makes sure a separate GARCH specification is used at each terminal

node, based on past demeaned return ϵt−1 and past volatility σ2
t−1. At each terminal node we

have two parameters for the volatility equation instead of three if we were to use the standard

GARCH parametrization. This saves us a total of k − 1 parameters to estimate. Note that if

k = 1 the GARCH tree is just a normal GARCH model in VTE form. To build the tree, we

introduce a splitting value d1 and splitting variable index ι1 ∈ {1, 2} which partitions

R× R+ = Rleft ∪Rright (5)

where Rleft = {(ϵt−1, σ
2
t−1) ∈ R× R+; (ϵt−1, σ

2
t−1)ι1 ≤ d1} and Rright follows similarly with the

relation ’>’ instead. Hence, we split the space of the splitting variables in two, using either

yesterday’s demeaned return or yesterday’s volatility where Rleft and Rright have their own

GARCH specification. The tree grows further by iteratively introducing new splitting values

and splitting variable indices (dm, ιm) to expand the partition P(old) = ∪jRj into P(new) =

∪j ̸=j∗Rj ∪ (Rj∗,left ∪ Rj∗,right) at every iteration. The final partition P = {R1, ...,Rk} is a

GARCH tree with k terminal nodes.

To estimate the splitting rules and parameter estimates of the GARCH tree a stagewise

procedure is followed. Algorithm 1 provides a detailed description how to grow the GARCH

tree. Initially, the mean µ and unconditional variance γ are estimated by the sample mean and

variance. After setting up a GARCH model for the entire dataset, additional terminal nodes

are iteratively introduced based on the maximum gain in the log-likelihood. The reduced log-

likelihood approach to measure this gain relieves the computational burden of the nonlinear

optimization problem, because otherwise the parameters of the terminal nodes not being split

have to be reestimated at the same time. This would increase the dimension of the likelihood

optimization and thereby increase the computation time. Moreover, using the starting values

θ̂(m−1)\∗ and θ̂∗ to get θ̂m provides an additional shortcut to obtain sensible estimates of the

GARCH tree parameters. The search for the best splitting variable and splitting value is done

on a grid. Like Audrino and Bühlmann (2001), the grid consists of the empirical α-quantiles of

each splitting variable, with α = i/mesh, i = 1, ...,mesh−1. Here, mesh = 8.

The final stage of the GARCH tree estimation process is pruning. To prevent the tree from

overfitting to the data, the tree built with Algorithm 1 is pruned back. The pruning process

is done by going back from P(M) to P(1), evaluating all possible subtrees in between. Denote

subtree i as Pi. The best subtree is the one with the lowest AIC statistic, where

AICPi = −2l(θ̂Pi ; rT2 ) + 2(dim(θ̂Pi) + 2) (6)

is the AIC statistic of subtree Pi. Starting values for θ̂Pi are averages of the relevant nodes

below Pi. Let P̂ denote the partiton of the optimal subtree, then the final GARCH tree model

is as in (4) with partition P̂ and estimates θ̂P̂ .
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Algorithm 1 Growing the GARCH tree model

Given return data r1, ..., rT and choice of number of terminal nodes M ;
for m← 1, M do
if m = 1 then
Set µ̂ = 1

T

∑T
t=1 rt, γ̂ = 1

T

∑T
t=1(rt − µ̂)2, and obtain θ̂(1) of the GARCH(1,1) model, as

given in (2), by maximizing its log-likelihood

l(θ; rT2 ) =

T∑
t=2

log(f(rt|It−1, µ̂, γ̂; θ)),

where θ(1) = (κ1, α1) and It−1 is the information set at time t − 1. Denote this initial
partition by P(1) = R× R+.

else
Given P(m−1) = {R1, ...,Rm−1}, search for the splitting variable and split-
ting value that lead to the optimal new partition P(m). This is done by:

I Consider a splitting rule (dm, ιm) that divides the corresponding terminal
node Rj∗ into Rj∗ = Rj∗,left ∪Rj∗,right. To facilitate the optimization of the
terminal node split, the volatility equation of (4) is now

σ2
t =

∑
j ̸=j∗

(κj γ̂ + αjϵ
2
t−1 + (1− κj − αj)σ

2
t−1)I[(ϵt−1,σ2

t−1)∈Rj ]

+
∑

i∈{j∗left,j
∗
right}

(κiγ̂ + αiϵ
2
t−1 + (1− κi − αi)σ

2
t−1)I[(ϵt−1,σ2

t−1)∈Ri]

(7)

Let θ∗ = {κi, αi; i ∈ {j∗left, j∗right} and θ(m−1)\∗ = {κj , αj ; j = 1, ...,m− 1, j ̸=
j∗} summarize the volatility parameters of the terminal node currently being
split and those that are not.

II Combine the GARCH tree model of (4) with (7) and obtain θ̂∗ by maximizing
the reduced log-likelihood

l((θ̂(m−1)\∗, θ∗); rT2 ) =
T∑
t=2

log(f(rt|It−1, µ̂, γ̂, θ̂
(m−1)\∗; θ∗)

Use the components of θ̂(m−1) of Rj∗ as starting values for the new terminal
nodes Rj∗,left and Rj∗,right to estimate θ∗.

III Optimize the reduced log-likelihood of II) by using different splitting rules in
I) and II). Save the optimal θ̂∗ and splitting rule (dm,ιm).

Estimate the GARCH tree model of (4) by maximum likelihood for the new optimal par-
tition P(m). With θ̂(m−1)\∗ and θ̂∗ as starting values, obtain θ̂m, where θm = {κj , αj ; j =
1, ...,m}.

end if
end for
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2.3 Tree Specifications

Section 2.2 has described the general procedure to estimate the GARCH tree model. Here, we

will discuss the various implementations of the GARCH and GARCH tree model to evaluate

the performance of the GARCH tree method. Comparing multiple specifications and extensions

of the vanilla GARCH and GARCH tree models should provide more robust evidence whether

the GARCH tree method is able to outperform the standard model. This is also because the

GARCH tree is more flexible, allowing for more complicated models.

A universal characteristic of all GARCH tree models is the maximum number of terminal

nodes M that determines the size of the trees before pruning. As suggested by Audrino and

Bühlmann (2001), M = 6. Their empirical applications to the German DAX stock index and

the BMW stock price have no more than 5 terminal nodes after pruning. Allowing for a possibly

larger tree also increases the computational time disproportionately for every additional terminal

node. As baseline versions of both models, the GARCH and GARCH tree models will both be

estimated assuming a standard normal distribution for the innovations zt, hence zt ∼ N(0, 1).

The density of returns is then

f(rt|It−1;µ, θ) =
1√
2πσ2

t

e
1
2

(rt−µ)2

σ2
t (8)

The normal distribution is still often used because of its QMLE properties (Fan et al., 2014).

The estimates are consistent but lose efficiency if the true distribution is not normal. Note

that if the innovation distribution is normal the return distribution is not. Still, using heavier

tailed distributions could provide a better model fit and more accurate forecasts. A simulation

study of Audrino and Bühlmann (2001) shows that under a normal distribution the GARCH tree

could select too many terminal nodes, overspecifying the true model. Furthermore, Wilhelmsson

(2006) shows that a GARCH model with t-distributed innovations outperforms one with normal

innovations for the S&P500. Therefore, I also estimate the GARCH and GARCH tree model

with standardized t-distributed innovations, thus zt ∼ t(0, 1, v), where v represents the degrees

of freedom (Bollerslev, 1987). In this case the density equals

f(rt|It−1;µ, θ) =
Γ(v+1

2 )

Γ(v2 )

1√
π(v− 2)σ2

t

(
1 +

(rt − µ)2

(v− 2)σ2
t

)− v+1
2
, v > 2. (9)

Recently, Oh and Patton (2021) have shown that GARCH forecasts can be improved by using two

exogenous volatility measures, namely realized variance (RV) and the VIX index. RV measures

volatility by using the variation in intraday price changes, while the VIX is an option-implied

index of stock market volatility. In Oh and Patton (2021), GARCH parameters were estimated

locally based on the similarity of current RV or VIX values with their past. The resulting

forecasts performed significantly better. It seems likely that including these two variables as

splitting variables in the GARCH tree will improve forecasts as well. Besides RV and the

VIX, we add three economic indices to the GARCH tree. Schwert (1989), Engle et al. (2013)

and Amendola et al. (2019) have documented, among others, a relation between volatility and

macroeconomic variables. Although these effects are usually found at a low frequency, the

three economic indices can be applied to daily observations. The economic indices are the
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daily Economic Policy Uncertainty Index of Baker et al. (2016), the weekly National Financial

Conditions Index of Brave and Kelley (2017), and the daily Aruoba-Diebold-Scotti Business

Conditions Index of Aruoba et al. (2009) (see Section 3 for more details). All three indices

capture US economy-wide information and could add more forecasting power to the GARCH

tree. The weekly NFCI is turned to a daily index by using the last known weekly observation

to fill the daily observations. To sum up, two GARCH trees are added to the comparison with

RV, the VIX, and the economic indices as additional splitting variables, either with normally or

t-distributed innovations.

2.4 GARCH Random Forest

As an extension to the GARCH tree specifications of Section 2.3, we will combine a set of

GARCH trees to make predictions. A single tree has low bias but high variance and the idea

of using multiple trees is to reduce the variance while keeping bias low (Friedman et al., 2009).

This is done by averaging the forecasts of the individual trees to create the actual prediction. A

random forest is a collection of de-correlated trees where each tree is estimated over a different

bootstrap sample. The trees are de-correlated to further reduce variance. The de-correlation is

accomplished by limiting the choice of splitting variables at each split and in each tree. Instead

of searching for the best splitting variable among all candidates, the choice is limited to only a

few resulting in a wider variety of less correlated trees. The amount of candidates m is usually

set according to some rule. Here we use m = p/3 of Friedman et al. (2009), where p is the

total amount of splitting variables. It is common to not prune the individual trees because the

problem of overfitting for a single tree is averaged out, hence each tree will have six terminal

nodes. For the same reason the innovation distribution in the random forest will be standard

normal. The GARCH random forest is made of GARCH trees with all additional splitting

variables mentioned in Section 2.3. The total amount of splitting variables in the random forest

is thus 7 which leads to 7/3 ≈ 2 splitting candidates at each split. The number of trees in

the forest is set to 100, where each tree is estimated with a bootstrap sample generated by the

stationary bootstrap method of Section 2.5.

2.5 Stationary Bootstrap

The bootstrap samples are created with the stationary bootstrap method of Politis and Romano

(1994). This bootstrap method is able to generate stationary pseudo time-series datasets by

resampling the original data. Opposite to block bootstrap methods which build time series by

stacking blocks of observations of fixed length, the stationary bootstrap selects blocks of random

length depending on a predetermined probability p. Given original data X1, ...XN of size N , a

bootstrap sample X∗
1 , ...X

∗
N is generated according to the following rule: if X∗

i is based on Xj

then X∗
i+1 is equal to Xj+1 with probability 1− p or chosen randomly from all N observations

with probability p. Because the block length follows a geometric distribution in the stationary

bootstrap, the specification of the bootstrap is sometimes expressed by the expected block length

w, where w = 1
p . Similar to Oh and Patton (2021), the expected block length is set to 10, such

that p = 0.1. For other papers using the stationary bootstrap in a GARCH setting, see for

example Hansen and Lunde (2005), Rapach and Strauss (2008), Lee and Long (2009), and Kim
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et al. (2016).

2.6 GJR-GARCH

The GARCH tree and random forest are thus far only competing with the standard GARCH

model. As the conditional variance of financial returns reacts differently to positive and negative

returns, it is likely that the GARCH tree will do better than standard GARCH, simply because

the GARCH tree is able to capture the leverage effect. Therefore, we include the GJR-GARCH

model of Glosten et al. (1993) in the comparison. The parametrization of the GJR-GARCH

model in VTE form is

rt − µ = ϵt = σtzt

σ2
t = κγ + αϵ2t−1 + ϕϵ2t−1I(ϵt−1<0) + (1− κ− α− ϕ

2
)σ2

t−1,
(10)

with constraints

κ > 0, γ > 0, α ≥ 0, ϕ ≥ 0, and κ+ α+
ϕ

2
≤ 1.

The additional term for ϵ2t−1 captures the different reaction of volatility to negative returns.

Although the extension is simple, Engle and Ng (1993) have shown that the GJR-GARCH model

is the best parametric model to measure the leverage effect. If the GJR-GARCH model performs

similar to the GARCH tree this could indicate that the GARCH tree is an overspecified/more

difficult than necessary model for volatility. Because the our goal is not to find the best GJR-

GARCH model, the model is only estimated with normally distributed innovations.

2.7 GARCH Tree Forecasting

2.7.1 Design

For the forecasting exercise we have S&P500 return data from 4/1/2000 until 12/11/2021, a

total of T = 5480 observations. This dataset is divided into an estimation sample running

from 2000-2010 (2755 observations) and an out-of-sample period from 2011 until 2021 (2725

observations). For simplicity, all models are estimated only once based on the estimation sample.

In the forecasting analysis we will compare the performance of eight different models. These

are the standard GARCH, the GARCH tree, the GARCH tree with RV, VIX, and the economic

indices as additional splitting variables, the GARCH random forest, and GJR-GARCH, where

the latter two are only with normal innovations while the others are also estimated with t-

distributed innovations. Their performance will be assessed by using 1-,5-, and 20-day forecast

horizons. 1-day-ahead forecasts of all models are easily obtained because the volatility equations

only require things known the day before. For s ≥ 2, the s-step-ahead forecast of the standard

GARCH in VTE form is

σ̂2
t+s|t = E(κγ + αϵ2t+s−1 + (1− κ− α)σ2

t+s−1|It)

= κγ + ασ̂2
t+s−1|t + (1− κ− α)σ̂2

t+s−1|t

= σ̂2
t+s−1|t + κ(γ − σ̂2

t+s−1|t),

(11)
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because E(ϵ2t+s−1|It) = E(E(ϵ2t+s−1|It+s−2)|It) = E(σ2
t+s−1|It) = σ̂2

t+s−1. This recursion is

applied to get 5-day- and 20-day-ahead predictions. The size of κ controls the speed of forecasts

reverting to the unconditional variance γ. The GARCH tree forecasts also rely on 11, but since

the regressor space is split into k terminal nodes, and each terminal node j has its own set of

parameters (κj , αj), the recursion is now

σ̂2
t+s|t = σ̂2

t+s−1|t + κj(γ − σ̂2
t+s−1|t). (12)

The GARCH tree specification of 4 actually requires the terminal node to forecasts volatility

at time t to be based on the values of the regressor at time t − 1. However, for multi-step-

ahead forecasting these values of the regressor are unknown. We therefore forecast s-step-ahead

volatility at time t+s using the most recent time t terminal node. The forecasts of the GARCH

random forest are obtained by averaging the forecasts of the individual trees. GJR-GARCH

forecasts follow the same recursion as in 11.

The forecasts are evaluated against a proxy for the true conditional variance of daily returns,

which I take as the daily RV. RV is an unbiased and, more importantly, a less noisy estimate of

the true conditional variance than the squared return (Andersen et al., 2003). The prediction

error measuring the accuracy of each model is calculated with the QLIKE loss function

QLIKEt =
RVt

σ̂2
t

− log
(RVt

σ̂2
t

)
− 1, (13)

which measures the loss based on standardized forecast errors (Oh & Patton, 2021). RVt is the

RV at time t and σ̂2
t is the volatility prediction. Many different loss functions exist when eval-

uating volatility forecasts (see Hansen and Lunde (2005)). However, Patton (2011) shows that

for certain loss functions, unlike the QLIKE loss function, forecasting the conditional variance

is not optimal when minimizing the expected loss. Moreover, the QLIKE loss is less affected by

extreme observations and has less variance than the squared error loss. An additional advantage

of QLIKE loss is that the ranking of any two forecasts is invariant to scaling of the data. A

possible downside is its heavier penalty on under-prediction, when the volatility prediction is

less then the benchmark volatility, than on over-prediction (Patton, 2011).

2.7.2 Giacomini-White Tests

To assess the performance of the volatility models we will use the unconditional predictive

ability test and the conditional predictive ability test of Giacomini and White (2006) (GW).

The tests take into account the effect of estimation uncertainty and can be applied to both

nested and nonnested models. The unconditional GW test compares two models and tests

whether one performed significantly better over the out-of-sample period. The null hypothesis

of equal unconditional predictive ability is rejected if the difference in the average loss is nonzero.

Here, we will make use of the unconditional test by evaluating each model at each forecasting

horizon against the standard GARCH model with normally distributed innovations to see if

adding the more complicated tree structure is worth the effort.

For the unconditional test, let ∆L̄i denote the average QLIKE loss difference between model

i and the standard GARCH benchmark. The unconditional predictive ability test then makes
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use of the test statistic

ti =
∆L̄i

σ̂n/
√
n
, (14)

where σ̂n is an estimate of the standard deviation of the difference in QLIKE losses and n

is the number of out-of-sample predictions. For a given significance level α, the null hy-

pothesis is rejected when |ti| > zα/2, where zα/2 is the (1 − α/2) quantile of the standard

normal distribution. As proposed by Giacomini and White (2006), σ̂2 = n−1
∑n

i=1∆L2
i +

2n−1
∑p

j=1

∑n
i=1+j ∆Li∆Li−j is used as a HAC estimator of the variance, where p is the lag

length. The lag length will be set to ten, similar to Oh and Patton (2021).

The conditional test of equal predicitve ability is also a pairwise test for forecasting perfor-

mance but unlike the unconditional test makes use of available information to predict when one

method provides more accurate forecasts than the other. This available information is stored in

a so called test function ht, a q x 1 vector containing the q variables to make the performance

distinction. The test statistic for model i and j is equal to

Tij = n
(
n−1

T−τ∑
t=m

ht∆Lij,t+τ

)′
Ω−1

(
n−1

T−τ∑
t=m

ht∆Lij,t+τ

)
, (15)

where ∆Lij,t+τ is the QLIKE loss difference between model i and j at time t+τ with τ being the

forecast horizon, m the last observation of the estimation sample, and T the total sample size.

Moreover, Ω = n−1
∑T−τ

t=m(∆Lij,t+τ )
2hth

′
t+2n−1

∑τ−1
j=1

∑T−τ
t=m+j(∆Lij,t+τLij,t+τ−jhth

′
t) estimates

the covariance matrix with the last term dropping out whenever τ = 1. The null hypothesis

of equal conditional predictive ability, E(ht∆Lij,t+τ ) = 0, is rejected when Tij > χ2
q,1−α, where

χ2
q,1−α is the (1 − α) quantile of the χ2

q distribution. The null means the variables in the test

function cannot distinguish between the forecasting performance of the two models. In our case,

ht = (1,∆Lij,t, RVt)
′ contains a constant and last known loss difference and RV. It could be that

when model i has a smaller loss at time t than model j, it will also have a lower loss at time t+τ .

More importantly, model i could perform better when RV is low or high hence adding RV to the

test function also takes into account whether the performance difference is volatility-dependent.

The pairwise conditional predictive ability tests will be done for each possible pair of models and

for each forecast horizon. The significance level of the unconditional and conditional test will

be set at 5%. If the test is rejected this means that the test function ht can predict the QLIKE

loss differences out of sample. To indicate the size of the relative outperformance, Giacomini

and White (2006) suggested computing the proportion of times model j is chosen for prediction

instead of model i. This is done by calculating Iij = n−1
∑T−τ

t=m I(δ′ht > 0), where δ stores the

regression coefficients of a regression of the loss differences ∆Lij,t+τ on ht. If δ′ht > 0, then

model i has a larger expected loss and model j should be chosen.

2.7.3 Model Confidence Set

Finally, to test for any significant differences in performance between the standard GARCH

and GARCH tree models, we apply the model confidence set (MCS) procedure of Hansen et al.

(2011). The MCS is a set of models that contains the best models with a certain confidence.

Given a collection of models, the MCS is obtained by comparing the relative performance of
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each model and sequentially dropping models from the set with a relatively bad performance.

It does so until the null hypothesis of equal performance among the models in the set cannot be

rejected. Here, the performance of each model is measured by the time series of QLIKE losses.

Denote Li,t as the QLIKE loss of model i at time t, then

dij,t = Li,t − Lj,t for all i, j ∈M0 (16)

defines the relative performance variables of the starting set of models M0. The superior set of

models is defined by M∗ ≡ {i ∈ M0 : E(dij) ≤ 0 for all j ∈ M0}. The MCS procedure tries

to find this superior set M∗. To test the hypothesis whether E(dij) = 0, we construct the test

statistic TR = max|tij |, where

tij =
d̄ij√

var(d̄ij)
, (17)

with d̄ij = T−1
∑T

t dij,t. Hence, TR is the largest standardized loss differential and the model

responsible for this will be removed from the set if the test statistic is too large. The distribution

of the test statistic TR is estimated with the stationary bootstrap method of Section 2.5 using

5000 bootstrap replications. In the results, the MCS p-values of the models, denoted by pMCS ,

will be reported. These p-values are equal to the maximum p-value of the deleted models and

the current worst model in the sequential testing procedure. This makes it easier to see whether

a certain model is in the superior model set. Here, we will set the significance level at 5%. The

MCS procedure is implemented using Sheppard (2018).

3 Data

The data consists of S&P500 closing prices, two measures of S&P500 volatility, and three eco-

nomic indices. The S&P500 volatility measures are the 5-minute RV and VIX. The closing

prices and RV are taken from the Oxford-Man Realized Library, while the VIX data comes

from Chicago Board Options Exchange (CBOE) website1. RV measures volatility by using the

variation in intraday price changes, while the VIX is an option-implied index of stock market

volatility. Both datasets are on a daily basis and range from 3/1/2000 until 12/11/2021.

The economic indices are the Economic Policy Uncertainty (EPU) Index of Baker et al.

(2016), the weekly National Financial Conditions (NFC) Index of Brave and Kelley (2017), and

the daily Aruoba-Diebold-Scotti Business Conditions (ADS) Index of Aruoba et al. (2009). The

EPU and NFC indices data are taken from the Federal Reserve Bank of St. Louis and the ADS

index is from the Federal Reserve Bank of Philadelphia2 The NFC index has a weekly frequency,

but is turned to a daily series to accommodate with the rest of the data. The ADS index tracks

1See https://realized.oxford-man.ox.ac.uk/data, ”Data”, and https://www.cboe.com/tradable products/vix/
vix historical data/, ”VIX data from 2004 to present”, accessed: 15-11-2021.

2See https://fred.stlouisfed.org/series/USEPUINDXD/, ”Economic Policy Uncertainty Index for United
States”,https://fred.stlouisfed.org/series/NFCI, ”Chicago Fed National Financial Conditions Index”,https://
www.philadelphiafed.org/surveys-and-data/real-time-data-research/ads, ”Aruoba-Diebold-Scotti Business Con-
ditions Index”, accessed 18-01-2022.
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Figure 1: Daily S&P500 returns, 4/1/2000-12/11/2021.

real business activity by combining several macro variables like real GDP and industrial

production, the NFC represents the financial conditions in money, debt and equity markets,

while the EPU index follows activity of economic policy related news in newspapers.

Because at certain dates either the values for the closing price and RV or the VIX were

missing, 22 observations are removed from the dataset. This leaves us with a total of 5481

observations. The S&P500 closing prices are converted to log-returns rt = 100 ∗ log
(

Pt
Pt−1

)
,

where Pt denotes the S&P500 closing price at time t. Figure 1 shows these returns over time.

The Financial Crisis and recent COVID-19 pandemic have led to very large returns of more than

10 percent. Compared to most daily returns, which range between ± 4 percent, these episodes

provide very extreme observations. This is outlined visually in Figure 2. Figure 2 plots the

distribution of S&P500 returns and a fitted normal density function. Clearly, the returns do not

seem to be normally distributed. The return distribution is more peaked and has heavier tails.

Table I provides summary statistics of the data. The kurtosis value of this sample is 13.76, much

more than 3, the kurtosis of a normal distribution. Moreover, the returns are left-skewed i.e.,

Figure 2: Histogram and normal density of S&P500 returns, 4/1/2000-12/11/2021.
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Table I

Descriptive Statistics of S&P500 Data
This table gives an overview of the dataset. The S&P500 return data is daily from 4/1/2000 until
12/11/2021. The last three columns report ρ(τ), the sample autocorrelations at displacement τ .

Mean St.dev. Min Max Skew. Kurt. JB value JB p-value

S&P500 0.021 1.234 −12.670 10.642 −0.392 13.765 26599.743 0.000

positive returns are more common than negative returns. In fact, 54% of all returns is

positive. A Jarque-Bera test of normality consequently rejects the null hypothesis that the

returns follow a normal distribution (Jarque & Bera, 1980).

The sign of the returns in Figure 1 follows a random sequence. However, the size of the

returns seem to slowly change over time. Periods of small returns are followed by a period of

relatively large returns. The pre-Financial Crisis period 2004-2007 and the volatile crisis period

lasting until 2012 is a good example. This phenomenon is usually referred to as volatility clus-

tering. Figure 3 shows the empirical autocorrelation functions of the returns and the squared

returns. Squared returns are a simple measure to approximate volatility. While the autocorre-

lation function of returns is stable around zero, the autocorrelation function of squared returns

is slowly declining. Hence, returns are barely related to past returns but return volatility is

partially determined by itself. This explains the success of volatility models like GARCH.

The VIX index obtained from the CBOE website is on a different scale than the 5-minute RV

of the Oxford-Man Realized Library. The VIX is an annualized volatility index where returns

are measured in units and volatility is defined as the standard deviation of prices, while RV is a

daily measure of the variance based on returns in decimals. Therefore, using Buncic and Gisler

(2016), the VIX is rescaled by VIX2/252 and RV by 1002.

Figure 4 plots the square root of three different measures of S&P500 volatility, namely, the

squared return, RV, and the VIX. The square root was taken to smooth the figure such that

volatility is measured as the standard deviation of returns. It is clear from the graph that the

squared return is the most volatile measure of volatility. Andersen and Bollerslev (1998) has

shown that the squared return is a bad proxy for the conditional variance. Although being an

unbiased estimate of the conditional variance, the idiosyncratic error in returns makes

Figure 3: Empirical autocorrelation functions of S&P500 returns, 4/1/2000-12/11/2021.
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Figure 4: Square root of S&P500 variance measures, 4/1/2000-12/11/2021.

this proxy very noisy. The realized variance is also unbiased but much less noisy because of

its use of intraday data. Figure 4 provides visual evidence of these findings.

The time series of the economic indices are plotted in Figure 5. The EPU is at its highest

around 9/11, the Financial Crisis and the COVID-19 pandemic. Baker et al. (2016) has already

found an association between the EPU and greater stock price volatility at the firm level. After

controlling for the VIX, the EPU index adds explanatory power to the volatility of firms with high

government exposure. The ADS and NFC indices have zero mean by construction. For the ADS

index, positive values indicate better-than-average business conditions, while negative values

indicate worse-than-average conditions. For the NFC index, positive values indicate tighter

than average financial conditions and negative values indicate looser than average financial

conditions. This index has been mostly negative during the sample period. The ADS and NFC

index are updated in real time meaning past values change whenever new data is released. The

changes tend to be very small, however.

Figure 5: Economic Policy Uncertainty (EPU) (left axis), Aruoba-Diebold-Scotti Business Conditions
(ADS) (right axis) and National Financial Conditions (NFC) (right axis) index, 4/1/2000-12/11/2021.
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Table II

Computation Time
Comparison of the computation time of growing and pruning the GARCH tree with normally distributed
innovations using either QMLE or VTE. The reported time is an average of five runs over S&P500 data
from 4/1/2000 until 31/12/2010 (2755 observations).

Time (sec)

GARCH - N QMLE 94.28
GARCH - N VTE 27.8

4 Results

4.1 Model Estimates

This section gives an overview of the estimation results. Before going through the actual es-

timates, we will first discuss the advantage of using the VTE method. Table II shows the

computation time of estimating and pruning a GARCH tree with normally distributed innova-

tions, either with QMLE as in (1) or with VTE as in (2). Remember from Section 2.3 that the

tree first grows to 6 terminal nodes, which means a total of 9 unique subtrees has to be evaluated

afterwards while pruning. With QMLE the computation time is around one and a half minutes,

while with VTE the computation time is about 30 seconds. Hence, the computation time is

reduced to about a third. This gain is not only practically useful for this tree but also indicates

the computational gain when estimating the GARCH trees with the additional RV, VIX, and

economic splitting variables and the GARCH random forest3. Francq et al. (2011) compared

the total computation time of estimating a standard GARCH model for 11 equity indices and

came up with a reduction of 40%.

The estimation results are reported in Table III4. It shows the parameter estimates and log-

likelihood of all models mentioned in Section 2.7.1, except for the random forest. The results

for the traditional GARCH models are in Panel A, Panel B contains the results for the GARCH

trees. The parameter estimates for the conditional mean µ and unconditional variance γ are

the same for all models since these are calculated before estimating the volatility equations.

The estimates of GARCH with normally and t-distributed innovations are very similar with κ

being very close to zero meaning not much weight is given to the unconditional variance in the

volatility equation. Volatility does not revert back quickly to its unconditional mean, which is

why we have volatility clustering. In the GJR-GARCH model, the α parameter controlling the

reaction to past returns is set to zero and therefore volatility only reacts to negative returns.

The slightly negative value for µ is unexpected but can be explained by the estimation sample

which includes the Internet bubble and Financial Crisis.

Panel B of Table III shows the GARCH tree results with the node-specific values for κ and

α for each terminal node R. The first thing to notice is that all four GARCH tree models

have six terminal nodes. This means that the AIC criterion was minimized when the trees were

fully grown. The empirical applications of Audrino and Bühlmann (2001) had no more than 5

terminal nodes, which could possibly be because of a smaller sample size (1000 observations).

3The models are estimated in MATLAB with self-written code. Using any packages or other software might
reduce the estimation time or the difference between the two estimation methods.

4As starting values for all models we set κ = 0.05, α = 0.1, v = 4, and ϕ = 0.15. All model constraints were
implemented, for each node when applicable. An upper bound of 30 was set on v. Furthermore, σ2

1 = r21.
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Table III

Estimation Results
This table reports estimation results for all models mentioned in Section 2. Panel A contains the results for
the standard GARCH and GJR-GARCH model. Panel B contains the results for the GARCH trees. The
models estimated with normally distributed innovations are denoted by N and those with t distributed
innovations by t. The GJR-GARCH is only estimated with normally distributed innovations. The
GARCH trees with +5 have RV, VIX, EPU, ADS and NFC as additional splitting variables. All models
are estimated in VTE form with S&P500 data from 4/1/2000 until 31/12/2010. The table shows the
parameter estimates, number of observations and corresponding log-likelihood. The tree terminal nodes
R1, ...,R6 are shown graphically in Figures 6, 7, 8, and 9.

Panel A: GARCH

N t GJR

µ -0.005 -0.005 -0.005
γ 1.873 1.873 1.873
κ 0.007 0.006 0.008
α 0.085 0.083 0.000
v 8.272
ϕ 0.151
No. obs 2755 2755 2755
Log-likelihood -4132.322 -4098.911 -4072.656

Panel B: GARCH Tree

Tree N Tree t Tree N+5 Tree t+5

µ -0.005 -0.005 -0.005 -0.005
γ 1.873 1.873 1.873 1.873
R1 (κ/α) (0.020/0.015) (0.015/0.018) (0.066/0.478) (0.023/0.199)
R2 (κ/α) (0.000/0.146) (0.000/0.132) (0.018/0.044) (0.058/0.066)
R3 (κ/α) (0.000/0.138) (0.000/0.147) (0.035/0.102) (0.000/0.166)
R4 (κ/α) (0.009/0.093) (0.012/0.101) (0.309/0.182) (0.061/0.290)
R5 (κ/α) (0.000/0.000) (0.000/0.000) (0.000/0.304) (0.870/0.130)
R6 (κ/α) (0.085/0.026) (0.074/0.021) (0.000/0.000) (0.000/0.000)
v 10.071 11.102
No. obs 2755 2755 2755 2755
Log-likelihood -4081.810 -4061.402 -4065.419 -4050.881

The terminal nodes R1, ...,R6 cannot be compared directly across the models because the

splitting variables and their values might be different. To get a better understanding of the

estimated GARCH trees, Figures 6, 7, 8, and 9 plot the way the trees are built. The first

split of the GARCH tree with normally distributed innovations, which we will further denote as

GARCH tree N , of Figure 6 tries to capture the asymmetry effect like the GJR-GARCH model

by splitting the returns at 0.3. Further splitting rules seem to divide the regressor space into

regions of high and low volatility for both negative and positive returns. To relate the terminal

nodes to the parameter estimates, take for example node R3 and R6, where R3 contains large

negative returns and high volatility and R6 large positive returns and high volatility. Node R3

has a large value for α of 0.138 while for node R6 the value is only 0.026. Volatility reacts

differently to returns under different circumstances. Note also that in this case κ is zero for R3

and 0.085 forR6 meaning volatility returns faster to the unconditional variance when yesterday’s

return was positive rather than negative. Another interesting case is at node R5 where both κ

and α are zero leading to no change in volatility at all. There, yesterday’s return is positive and

volatility is low. Meanwhile, Figure 7 plots the GARCH tree with t-distributed innovations
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Figure 6: GARCH Tree N estimated partitions and splitting rules using S&P500 data from 4/1/2000
until 31/12/2010. The terminal nodes R1, ...,R6 match those of Table III.

(GARCH tree t). This tree is in terms of splitting rules almost identical to the GARCH tree

N . Only the values of σ2
t−1 are slightly different because the parameter estimates of the GARCH

tree t leads to another volatility recursion but the splitting values are at the same quantiles as

for the GARCH tree N . The parameter estimates are also very close. The degrees of freedom

of the t distribution is higher for the tree than the standard model.

Figures 8 and 9 plot the estimated GARCH trees with the additional splitting variables RV,

VIX, EPU, ADS, and NFC, denoted GARCH tree N+5 and GARCH tree t+5 respectively. Both

trees first split the regressor space at a return value of 0.3 and do not split the positive returns

any further but focus on the different reactions of volatility to returns below 0.3. Furthermore,

both trees use RV as a splitting variable and ignore the VIX. Oh and Patton (2021) found that

RV is able to improve volatility forecasts more than the VIX, something the tree estimation

procedure recognises as well. The GARCH tree N+5 makes use of all three economic indices,

while the GARCH tree t+5 ignores the EPU index. Looking at the corresponding parameter

estimates of Table III, the values of κ and α can be much higher than without the additional

splitting variables. This is because the additional splitting variables allows the volatility equation

Figure 7: GARCH Tree t estimated partitions and splitting rules using S&P500 data from 4/1/2000
until 31/12/2010. The terminal nodes R1, ...,R6 match those of Table III
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Figure 8: GARCH Tree N+5 estimated partitions and splitting rules using S&P500 data from
4/1/2000 until 31/12/2010. The terminal nodes R1, ...,R6 match those of Table III

to be more specific for certain periods in time. In the GARCH tree N+5 for example, R3

seems to correspond with R3 of the GARCH tree N ; negative returns, tight financial conditions

and below-average business conditions much like the negative returns and high volatility state of

the GARCH tree N . However, the other side of the split where instead business conditions are

above-average is much less common with very different parameters. Then the values of κ and

α are either 0.309 and 0.18 or 0 and 0.3 depending on whether the EPU index is low or high.

Similar arguments hold for the terminal nodes R4 and R5 of the GARCH tree t+5 targeting

only 40 observations per node. As a result, the parameter estimates deviate strongly from the

other terminal nodes.

To summarize, the estimation results between the two innovation distributions differ slightly.

This hold at least for the traditional GARCH and raw GARCH tree models. Once we introduce

more splitting variables the splitting rules start to deviate and potentially target small parts of

the data. Moreover, the AIC criterion did not prune any of the GARCH trees.

Figure 9: GARCH Tree t+5 estimated partitions and splitting rules using S&P500 data from
4/1/2000 until 31/12/2010. The terminal nodes R1, ...,R6 match those of Table III
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4.2 Forecasting performance

We will now discuss the forecasting performance of the GARCH and GARCH tree models. These

depend on the QLIKE losses as defined in (13) and are evaluated using the conditional and

unconditional GW tests of Section 2.7.2 and the MCS procedure of Section 2.7.3. We have three

forecast horizons: 1-day-ahead, 5-day-ahead, and 20-day-ahead. Table IV shows forecasting

results for 1-day-ahead predictions. It contains the average and standard deviation of the QLIKE

losses of every model, the t statistic of the unconditional GW test (GW stat) with the GARCH

treeN as benchmark, and the p-values of the MCS procedure. Of the traditional GARCHmodels

the GJR-GARCH model has the lowest loss. The tests of unconditional predictive ability with

respect to the GARCH N model are rejected when |ti| > 1.96. The fact that the test statistic

is larger for GARCH t does not mean that GARCH t is better than GJR-GARCH, only that

the loss difference had a larger estimated variance. The single GARCH tree models show mixed

results. Without adding the additional splitting variables, the QLIKE losses are lower but the

unconditional GW test is not rejected. If they are added, the GARCH tree t+5 performs well

with a lower average loss than the GJR-GARCH model, while the GARCH tree N+5 does much

worse, with significantly worse results than the GARCH N model. The fact that the GARCH

trees without the additional variables perform almost identical is not surprising, Figures 6 and

7 show these trees are basically the same. The other two, however, do make different splitting

rules, which in case of the GARCH tree N+5 is not for the better. Another disappointing

result is the random forest. Initially, we only chose to estimate the random forest with normally

distributed innovations but because its performance is dissatisfactory, a random forest with t-

distributed innovations is also added. The random forests are the worst models in the table.

Because the random forests make use of model averaging and de-correlated trees this is rather

unexpected. For now, the performance of the GARCH trees is not necessarily better than the

GARCH tree N . Only the GARCH tree t+5 does well, being the only model in the MCS.

Table IV

Forecasting Results - 1-day-ahead
This table reports the out-of-sample forecasting performance of all models based on 1-day-ahead predic-
tions of S&P500 volatility. The competing models are the GARCH model, the GJR-GARCH model, the
GARCH tree, and GARCH random forest. All models are estimated in VTE form. The models esti-
mated with normally distributed innovations are denoted by N and those with t distributed innovations
by t. The GJR-GARCH is only estimated with normally distributed innovations. The GARCH trees
with +5 have RV, VIX, EPU, ADS, and NFC as additional splitting variables, which are also included
in the GARCH random forests. The models are estimated once, where the estimation sample is fixed to
4/1/2000-31/12/2010. The out-of-sample period is from 1/1/2011 until 12/11/2021. The table shows the
average and standard deviation of the QLIKE losses, the t statistics of the equal unconditional predictive
ability test with the GARCH with normally distributed innovations as benchmark (GW stat), and the
MCS p-values.

QLIKE (Std) GW stat pMCS

N 0.430 (0.563) ∗ 0.000
t 0.422 (0.573) -5.279 0.000
GJR 0.399 (0.523) -3.623 0.021
Tree N 0.420 (0.546) -1.148 0.001
Tree t 0.418 (0.560) -1.243 0.004
Tree N+5 0.553 (1.331) 2.493 0.000
Tree t+5 0.380 (0.625) -4.758 1.000
RF N 0.573 (0.494) 6.403 0.000
RF t 0.617 (0.523) 7.053 0.000
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Table V

Conditional Predictive Ability Tests - 1-day-ahead
This table reports results of pairwise tests of equal conditional predictive ability for all models based on
1-day-ahead predictions of S&P500 volatility. The table shows the p-values of equal conditional predictive
ability for the models in the corresponding row and column. The loss is the QLIKE loss and the test
function is ht = (1,∆Lt, RVt)

′. The numbers in parentheses are the proportion of times the model in
the column outperforms the model in the row over the out-of-sample period using the decision rule of
Section 2.7.2. A plus (minus) sign indicates the test of equal conditional predictive ability is rejected at
the 5% level and that the model in the column (row) outperforms the model in the row (column) more
than 50% of the time.

N t GJR Tree N Tree t Tree N+5 Tree t+5 RF N

t 0.000−

(0.10)
GJR 0.000− 0.000−

(0.12) (0.18)
Tree N 0.000− 0.000− 0.000+

(0.39) (0.49) (0.72)
Tree t 0.000− 0.000− 0.000+ 0.000−

(0.36) (0.45) (0.67) (0.38)
Tree N+5 0.000+ 0.000+ 0.000+ 0.000+ 0.000+

(0.94) (0.94) (0.96) (0.94) (0.99)
Tree t+5 0.000− 0.000− 0.000− 0.000− 0.000− 0.000−

(0.10) (0.13) (0.23) (0.18) (0.22) (0.03)
RF N 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+

(0.94) (0.95) (0.96) (0.98) (0.95) (0.80) (0.96)
RF t 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+

(0.94) (0.94) (0.95) (0.97) (0.94) (0.89) (0.95) (0.78)

Table V shows the results of the pairwise conditional predictive ability test for all models

using the 1-day-ahead QLIKE losses. The entries are the p-values of the tests with the propor-

tions Iij in parentheses. A plus (minus) sign indicates the test of equal conditional predictive

ability is rejected at the 5% level and that the model in the column (row) outperforms the

model in the row (column) more than 50% of the time. In all cases the null hypothesis of equal

conditional predictive ability is rejected. Hence, the relative performance between any set of

models can be predicted by lagged relative performance and RV. These results also confirm the

good performance of the GARCH tree t+5. Against all other models, this model outperforms

the others at least 77% of the time. Compared to the unconditional tests of Table IV, where

some models had a lower QLIKE loss than the GARCH N model but failed to reject the null of

equal unconditional predictive ability, the conditional tests find evidence of superior conditional

performance for these models. This holds for the GARCH tree N and GARCH tree t, which

suggests they perform equally well on average but with the use of the variables in the test func-

tion we can predict when one does better than the other. The proportion of times the random

forests and GARCH tree N+5 are selected provides further evidence of their bad position.

Moving on to the 5-day-ahead forecasts, Table VI shows the results of the unconditional

predictive ability test, MCS p-values and average QLIKE loss, similar to Table IV. The average

losses have gone up, while the potential gains over the GARCH N model are now much smaller.

The only model that rejects equal unconditional predictive ability is the GARCH t model. As in

Table IV, the GARCH tree N+5 and random forests perform on average worse than the GARCH

N . A reason for the vanishing gains of the GARCH trees could be the recursion applied in (12)

to obtain the 5-day-ahead predictions. Because the regressors are unknown at time t + 4, we

have used the time t relevant terminal node possibly causing the volatility prediction to either
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Table VI

Forecasting Results - 5-day-ahead
This table reports the out-of-sample forecasting performance of all models based on 5-day-ahead pre-
dictions of S&P500 volatility (See Table IV for more details on model specifications). The models are
estimated once, where the estimation sample is fixed to 4/1/2000-31/12/2010. The out-of-sample period
is from 7/1/2011 until 12/11/2021. The table shows the average and standard deviation of the QLIKE
losses, the t statistics of the equal unconditional predictive ability test with the GARCH with normally
distributed innovations as benchmark (GW stat), and the MCS p-values.

QLIKE (Std) GW stat pMCS

N 0.559 (1.453) ∗ 0.040
t 0.551 (1.516) -2.638 0.991
GJR 0.550 (1.461) -0.952 1.000
Tree N 0.553 (1.613) -0.548 0.991
Tree t 0.557 (1.714) -0.163 0.941
Tree N+5 0.717 (1.654) 2.818 0.004
Tree t+5 0.551 (1.518) -0.700 0.991
RF N 0.818 (0.855) 5.978 0.000
RF t 0.787 (0.934) 5.839 0.000

revert too fast or too slow to the unconditional variance. The MCS now contains the 5

models with a lower average QLIKE loss than the GARCH N . Because the differences are

smaller, the MCS procedure cannot detect which model is best.

Table VII reports the outcomes of the 5-day-ahead conditional predictive ability tests. While

in Table V all pairwise hypotheses could be rejected, some tests now come up with insignificant

results. Focusing on the GARCH tree models, only the GARCH t and GJR-GARCH models

outperform these models more than 50% of the time, except for the GARCH tree t+5. The

lagged relative performance and RV are also not able to distinguish between the GARCH tree

N , GARCH tree t, and GARCH tree t+5 which tree model is best at a certain point in time.

Table VII

Conditional Predictive Ability Tests - 5-day-ahead
This table reports results of pairwise tests of equal conditional predictive ability for all models based
on 5-day-ahead predictions of S&P500 volatility (See Table IV for more details on model specifications).
The table shows the p-values of equal conditional predictive ability for the models in the corresponding
row and column. The loss is the QLIKE loss and the test function is ht = (1,∆Lt, RVt)

′. The numbers
in parentheses are the proportion of times the model in the column outperforms the model in the row
over the out-of-sample period using the decision rule of Section 2.7.2. A plus (minus) sign indicates the
test of equal conditional predictive ability is rejected at the 5% level and that the model in the column
(row) outperforms the model in the row (column) more than 50% of the time.

N t GJR Tree N Tree t Tree N+5 Tree t+5 RF N

t 0.000−

(0.02)
GJR 0.129 0.422

(0.18) (0.36)
Tree N 0.001− 0.002+ 0.002+

(0.38) (0.59) (0.65)
Tree t 0.012− 0.006+ 0.054 0.429

(0.46) (0.73) (0.81) (0.81)
Tree N+5 0.018+ 0.013+ 0.005+ 0.013+ 0.022+

(0.99) (0.99) (0.99) (0.99) (0.99)
Tree t+5 0.188 0.253 0.627 0.066 0.178 0.003−

(0.21) (0.49) (0.59) (0.39) (0.24) (0.00)
RF N 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.005+ 0.000+

(0.99) (0.99) (0.99) (0.99) (0.99) (0.97) (0.99)
RF t 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.012+ 0.000+ 0.000−

(0.99) (0.99) (0.99) (0.99) (0.99) (0.94) (0.99) (0.02)
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Table VIII

Forecasting Results - 20-day-ahead
This table reports the out-of-sample forecasting performance of all models based on 20-day-ahead pre-
dictions of S&P500 volatility (See Table IV for more details on model specifications). The models are
estimated once, where the estimation sample is fixed to 4/1/2000-31/12/2010. The out-of-sample period
is from 31/1/2011 until 12/11/2021. The table shows the average and standard deviation of the QLIKE
losses, the t statistics of the equal unconditional predictive ability test with the GARCH with normally
distributed innovations as benchmark (GW stat), and the MCS p-values.

QLIKE (Std) GW stat pMCS

GARCH - N 0.781 (2.057) ∗ 0.397
GARCH - t 0.774 (2.188) -0.796 1.000
GJR-GARCH 0.789 (2.073) 1.129 0.397
GARCH Tree - N 0.796 (2.284) 0.705 0.397
GARCH Tree - t 0.845 (2.948) 1.204 0.265
GARCH Tree - N + 5 1.003 (2.211) 4.463 0.000
GARCH Tree - t + 5 0.857 (2.044) 4.057 0.001
GARCH Random Forest - N 1.016 (1.181) 3.417 0.000
GARCH Random Forest - t 0.971 (1.266) 3.069 0.001

Tables VIII and IX show the results for the unconditional and conditional predictive ability

test using the 20-day-ahead forecasts. In the unconditional case, the test outcomes are insignif-

icant or in favour of the GARCH N model. The average QLIKE losses of the GARCH trees are

all higher than the one for GARCH N . The MCS excludes the GARCH tree N+5, GARCH tree

t+5 and random forests. The use of the additional splitting variables negatively impacts the

performance on a long horizon. The conditional tests also have a hard time finding significant

differences in performance; most p-values are too high. Among the better performing models,

no pairwise test rejects the null hypothesis.

Table IX

Conditional Predictive Ability Tests - 20-day-ahead
This table reports results of pairwise tests of equal conditional predictive ability for all models based on
20-day-ahead predictions of S&P500 volatility (See Table IV for more details on model specifications).
The table shows the p-values of equal conditional predictive ability for the models in the corresponding
row and column. The loss is the QLIKE loss and the test function is ht = (1,∆Lt, RVt)

′. The numbers
in parentheses are the proportion of times the model in the column outperforms the model in the row
over the out-of-sample period using the decision rule of Section 2.7.2. A plus (minus) sign indicates the
test of equal conditional predictive ability is rejected at the 5% level and that the model in the column
(row) outperforms the model in the row (column) more than 50% of the time.

N t GJR Tree N Tree t Tree N+5 Tree t+5 RF N

t 0.664
(0.02)

GJR 0.479 0.384
(0.92) (1.00)

Tree N 0.688 0.392 0.764
(0.91) (0.93) (0.82)

Tree t 0.550 0.366 0.487 0.646
(0.97) (0.97) (0.94) (0.99)

Tree N+5 0.000+ 0.000+ 0.000+ 0.004+ 0.267
(0.99) (0.99) (0.99) (0.99) (0.99)

Tree t+5 0.004+ 0.017+ 0.003+ 0.242 0.911 0.015−

(1.00) (1.00) (0.99) (1.00) (0.62) (0.02)
RF N 0.011+ 0.021+ 0.015+ 0.080 0.277 0.931 0.089

(0.99) (0.99) (0.99) (0.99) (0.99) (0.96) (0.98)
RF t 0.049+ 0.080 0.055 0.136 0.559 0.879 0.215 0.000−

(0.99) (0.99) (0.98) (0.99) (0.99) (0.01) (0.98) (0.00)
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Figure 10: Realized variance and a 10-day moving average of the κ parameter of the GARCH Tree N
and GARCH Tree t over the out-of-sample period 1/1/2011-12/11/2021.

For more insight into the behavior of the volatility predictions of the GARCH trees, Figures

10 and 11 plot a 10-day moving average of the κ and α parameter with RV for the GARCH tree

N and GARCH tree t over the out-of-sample period. The κ parameter, controlling the speed at

which forecasts revert to the unconditional variance, is relatively high during volatile periods.

The α parameter seems to increase shortly when RV is high but stays at a fixed bandwith over

the entire period. Compare this to the parameter time series of the other tree models. Appendix

A.1 contains the figures for the GARCH tree N+5, GARCH tree t+5, and random forests. Note

that the values κ and α can actually attain are in Table III for the single tree models. For κ,

the response to periods of high RV is delayed compared to Figure 10. In case of the GARCH

tree N+5, this parameter also rises when RV is low. The relative size of κ is also more than 10

times higher in the random forest. The behavior of α differs as well. Where in Figure 11 the

parameter has a strong saw-like pattern, it has extended periods of high or low values in the

other models, especially in the random forests. Its values are high during

Figure 11: Realized variance and a 10-day moving average of the α parameter of the GARCH Tree N
and GARCH Tree t over the out-of-sample period 1/1/2011-12/11/2021.

25



periods of low volatility, where one would expect high values in volatile periods because then

volatility should increase due to large returns. Similar to κ, the α parameter is much larger for

the random forests than for the other models.

This section has shown that the forecasting performance of the GARCH tree models is not

always an improvement over the traditional GARCH models. Only in case of the 1-day-ahead

forecasts does the GARCH tree t+5 clearly better than the others. At longer horizons the

GARCH trees perform equal or worse. The distributional assumption only seems to matter for

the GARCH trees when additional splitting variables are added. The random forests stand out

by their bad performance. Why the performance is not always beneficial is part of the next

section.

4.3 Extensions

4.3.1 Varying Maximum Number of Terminal Nodes

The mixed results of the previous section motivate for a detailed investigation of the sensitivity

of the results with respect to the choices made beforehand. As became clear from the GARCH

tree estimates of Section 4.1 neither of the trees was pruned. All trees had the maximum of

six terminal nodes. The AIC criterion did not select any of the subtrees because the criterion

was at its lowest for the fully grown trees. The degrading performance of the GARCH trees

on a longer horizon suggest the GARCH trees might have been overparameterized at their fully

grown size. Therefore, we investigate the performance of the GARCH trees with less terminal

nodes. To get a full overview at each amount of terminal nodes, the trees are not pruned this

time. Table X shows the average QLIKE loss at each forecasting horizon for the GARCH tree

N , GARCH tree t, GARCH tree N+5 and GARCH tree t+5, while varying the number of

terminal nodes from 2 to 6. In addition, an asterisk is shown at the amount of terminal nodes

that would have been selected if we used the BIC criterion instead of the AIC criterion. For

the 1-day-ahead forecasts, the four GARCH tree models except the GARCH tree N+5 already

perform well with only 3 terminal nodes. There, they are at their best or very close to their

best. The GARCH tree N+5 gets only worse from 3 terminal nodes onwards. Remember that

at 1 terminal node we are back at the GARCH N and GARCH t models. At the 5-day horizon,

the results are similar to the 1-day-ahead forecasts with 3 terminal nodes already reaching the

minimum QLIKE loss. The best result for the GARCH tree N+5 can now be found in Table

VI, with 1 terminal node. At the 20-day horizon, 1 terminal node is optimal for all models.

For short term forecasting, introducing more than 3 terminal nodes seems unfavorable for a low

average QLIKE loss. At the long horizon the tree structure is not able to make any gains over

the standard GARCH recursion. The BIC criterion selects 2 terminal nodes for the GARCH N ,

GARCH t, and GARCH t+5 models. In case of the GARCH N+5, the BIC would have chosen

6 terminal nodes as optimal. Compared with the average QLIKE losses at each terminal node,

the BIC does not choose the amount of terminal nodes corresponding to the lowest QLIKE loss.

Therefore, the BIC also seems to fail as a criterion to select the amount of terminal nodes of

the GARCH trees.
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Table X

Forecasting Results - Varying Number of Terminal Nodes M
This table reports the out-of-sample forecasting performance of the four single GARCH tree models for
different values of M , the number of terminal nodes of the tree. See Table IV for more details. The
models are estimated once, where the estimation sample is fixed to 4/1/2000-31/12/2010. The out-of-
sample period is from 1/1/2011 until 12/11/2021. The table shows the average and standard deviation
of the QLIKE losses for 1-day-ahead (QLIKE1), 5-day-ahead (QLIKE5), and 20-day-ahead (QLIKE20)
forecasts. the values of M with an asterisk * would be selected if the BIC criterion was used.

Panel A: GARCH Tree - N

QLIKE1 (Std) QLIKE5 (Std) QLIKE20 (Std)

M = 2* 0.424 (0.563) 0.566 (1.585) 0.812 (2.015)
M = 3 0.421 (0.559) 0.556 (1.654) 0.783 (2.174)
M = 4 0.429 (0.611) 0.568 (1.627) 0.863 (2.789)
M = 5 0.427 (0.611) 0.594 (1.673) 0.873 (2.783)
M = 6 0.420 (0.546) 0.553 (1.613) 0.796 (2.284)

Panel B: GARCH Tree - t

QLIKE1 (Std) QLIKE5 (Std) QLIKE20 (Std)

M = 2* 0.414 (0.566) 0.559 (1.640) 0.807 (2.063)
M = 3 0.396 (0.559) 0.542 (1.687) 0.822 (2.809)
M = 4 0.409 (0.550) 0.562 (1.744) 0.840 (2.857)
M = 5 0.396 (0.541) 0.543 (1.774) 0.806 (2.908)
M = 6 0.418 (0.560) 0.557 (1.714) 0.845 (2.948)

Panel C: GARCH Tree - N + 5

QLIKE1 (Std) QLIKE5 (Std) QLIKE20 (Std)

M = 2 0.424 (0.563) 0.566 (1.585) 0.812 (2.015)
M = 3 0.472 (0.518) 0.613 (1.247) 0.864 (1.870)
M = 4 0.451 (0.516) 0.620 (1.189) 0.926 (1.990)
M = 5 0.454 (0.546) 0.625 (1.201) 0.932 (2.001)
M = 6* 0.553 (1.331) 0.717 (1.654) 1.003 (2.211)

Panel D: GARCH Tree - t + 5

QLIKE1 (Std) QLIKE5 (Std) QLIKE20 (Std)

M = 2* 0.414 (0.566) 0.559 (1.640) 0.807 (2.063)
M = 3 0.377 (0.556) 0.540 (1.570) 0.818 (1.969)
M = 4 0.380 (0.578) 0.546 (1.625) 0.827 (2.037)
M = 5 0.383 (0.592) 0.548 (1.616) 0.826 (2.036)
M = 6 0.380 (0.625) 0.551 (1.518) 0.857 (2.044)

4.3.2 Varying Stationary Bootstrap Block Length

One thing that stands out from 4.2 is the poor performance of the random forest models across

all horizons. The random forest forecasts were created by fitting trees to bootstrap samples

and then averaging the predictions. The bad performance could originate from the bootstrap

samples. If the bootstrap samples are not a good representation of the behavior in the actual

data, then the fitted trees are not going to produce reliable forecasts. An indication for this

could be the values of the κ and α parameters, which were much higher than for the single

GARCH tree models, as mentioned in Section 4.2. The only parameter controlling the behavior

of the bootstrap samples is the expected block length w of the stationary bootstrap method.

This parameter was set to 10 for the random forests. A larger value for the expected block

length would let the bootstrap samples behave more like the actual data. Therefore, Table XI

shows the average QLIKE losses of the random forests across all forecasting horizons and for

various values of the expected block length w, ranging from 10 to 2000 (the estimation sample

size is 2755). Note that when a block starting close tot the end of the sample is selected it

continues from the first observation onwards to obtain a block of the requested size. Moreover,

Table XI shows the average QLIKE loss if instead of fitting the 100 trees of the random forests
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Table XI

Forecasting Results - Varying Expected Block Length w
This table reports the out-of-sample forecasting performance of the two GARCH random forest models
for different values of w, the average block length of the blocks in the stationary bootstrap. The number
of trees in the random forest is 100. The out-of-sample period is from 1/1/2011 until 12/11/2021. The
table shows the average and standard deviation of the QLIKE losses for 1-day-ahead (QLIKE1), 5-day-
ahead (QLIKE5), and 20-day-ahead (QLIKE20) forecasts. The NO indicates a random forest where the
actual data was taken to fit the trees, instead of bootstrap samples.

RF N RF t

w QLIKE1 (Std) QLIKE5 (Std) QLIKE20 (Std) QLIKE1 (Std) QLIKE5 (Std) QLIKE20 (Std)

10 0.573 (0.494) 0.818 (0.855) 1.016 (1.181) 0.617 (0.523) 0.787 (0.934) 0.971 (1.266)
20 0.515 (0.470) 0.752 (0.879) 0.980 (1.254) 0.482 (0.452) 0.732 (0.939) 0.979 (1.253)
30 0.494 (0.463) 0.713 (1.017) 0.945 (1.354) 0.456 (0.455) 0.695 (1.030) 0.950 (1.334)
40 0.492 (0.475) 0.695 (1.049) 0.924 (1.439) 0.463 (0.462) 0.676 (1.089) 0.928 (1.411)
60 0.481 (0.481) 0.677 (1.073) 0.915 (1.438) 0.446 (0.455) 0.638 (1.102) 0.894 (1.565)
120 0.480 (0.488) 0.645 (1.198) 0.876 (1.592) 0.450 (0.479) 0.626 (1.245) 0.870 (1.647)
250 0.489 (0.504) 0.644 (1.236) 0.874 (1.688) 0.440 (0.496) 0.607 (1.312) 0.854 (1.779)
500 0.475 (0.500) 0.617 (1.179) 0.846 (1.773) 0.445 (0.489) 0.592 (1.255) 0.832 (1.842)
1000 0.497 (0.526) 0.647 (1.211) 0.867 (1.755) 0.452 (0.513) 0.599 (1.302) 0.830 (1.849)
2000 0.503 (0.525) 0.639 (1.236) 0.861 (1.797) 0.452 (0.511) 0.596 (1.300) 0.838 (1.835)
NO 0.428 (0.506) 0.572 (1.293) 0.827 (1.985) 0.413 (0.513) 0.556 (1.344) 0.815 (2.073)

to the bootstrap samples, the 100 trees are fitted to the actual data such that only the

random variable selection remains of the original random forest procedure (NO in the table).

Starting from an expected block length of 10, the QLIKE losses are a decreasing function of the

expected block length. After an expected block length of 500, the QLIKE losses start to increase

again. This means that around 500 the gains from using a bootstrap sample more similar to

the actual data have run out. These gains, however, are still relatively limited compared to the

results for the other models: under both distributional assumptions the average QLIKE losses

are still above the average QLIKE losses of the GARCH N model. If the trees are fitted to

the actual data, keeping only the variable selection intact, the QLIKE losses are lower than for

any achieved by the stationary bootstrap samples. This of course raises the question whether

the stationary bootstrap is able to generate useful samples for our purpose at all. One possible

reason might be the fixed estimation sample such that the random forest are not able to adapt

to most recent events. Oh and Patton (2021) found for example that two standard GARCH

models with a moving window were able to significantly outperform a GARCH model with a

fixed estimation sample. This could potentially overcome the issues with the random forests.

4.3.3 Squared Error Loss

Thus far, we have evaluated the performance of all models based on the QLIKE loss function of

equation (13). Given the fact that the QLIKE loss function puts a heavier penalty on under-

prediction than on over-prediction, a different loss function might lead to different conclusions

regarding the accuracy of the models. Therefore, Tables XII, XIII, and Table XVI in Appendix

A.2 show results when using squared error loss for 1-day, 5-day, and 20-day-ahead forecasts

respectively. Each table shows the average squared error loss (MSE), GW statistics of the

unconditional predictive ability test with the GARCH N as benchmark, and the MCS p-values.

The results are very different from the QLIKE results of the previous section. Where the average

loss at the 1-day horizon was lower for GARCH t and GJR-GARCH than GARCH N
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Table XII

Forecasting Results - 1-day-ahead SE loss
This table reports the out-of-sample forecasting performance of all models based on 1-day-ahead pre-
dictions of S&P500 volatility (See Table IV for more details on model specifications). The models are
estimated once, where the estimation sample is fixed to 4/1/2000-31/12/2010. The out-of-sample period
is from 7/1/2011 until 12/11/2021. The table shows the average and standard deviation of the squared
error (SE) losses, the t statistics of the equal unconditional predictive ability test with the GARCH with
normally distributed innovations as benchmark (GW stat), and the MCS p-values.

SE (Std) GW stat pMCS

GARCH - N 4.767 (42.903) ∗ 0.292
GARCH - t 4.844 (43.334) 1.177 0.292
GJR-GARCH 5.712 (51.717) 0.895 0.167
GARCH Tree - N 3.462 (35.190) -1.176 0.666
GARCH Tree - t 3.798 (37.452) -1.024 0.292
GARCH Tree - N + 5 4.647 (39.798) -0.168 0.167
GARCH Tree - t + 5 6.714 (61.833) 1.094 0.167
GARCH Random Forest - N 3.349 (36.586) -1.088 0.666
GARCH Random Forest - t 3.167 (38.682) -0.997 1.000

using QLIKE loss, the MSE are now higher. The unconditional GW tests can not be rejected

however. In line with the QLIKE situation, do the GARCH tree N and GARCH tree t provide

lower average losses than GARCH N . But where the introduction of the additional splitting

variables led to a further improvement of GARCH t in the QLIKE case, do both GARCH trees

with the additional splitting variables worse than their counterparts. The performance of the

random forests has also changed a lot, with the lowest MSEs in the table. Although the ordering

of average losses is quite different from the QLIKE situation, does no model lead to such an

improvement over GARCH N that the unconditional predictive ability test can be rejected.

Even the MCS cannot make a distinction, as it contains all models. These findings also hold

for the 5-day-ahead and 20-day-ahead forecasts. Why are the results under squared error loss

so different? A downside of squared error loss is that it blows up large errors. As a small

example, consider the 1-day-ahead differences in squared error losses between the GARCH N

and random forest t. On average this difference is -1.6. However, if we set the extreme loss

differences between the two with an absolute value above 20 to zero, the average difference is

0.12 in favor of GARCH N . By filtering out above 20, we have removed less than 2% of the

Table XIII

Forecasting Results - 5-day-ahead SE loss
This table reports the out-of-sample forecasting performance of all models based on 5-day-ahead pre-
dictions of S&P500 volatility (See Table IV for more details on model specifications). The models are
estimated once, where the estimation sample is fixed to 4/1/2000-31/12/2010. The out-of-sample period
is from 7/1/2011 until 12/11/2021. The table shows the average and standard deviation of the squared
error (SE) losses, the t statistics of the equal unconditional predictive ability test with the GARCH with
normally distributed innovations as benchmark (GW stat), and the MCS p-values.

SQL (Std) GW stat pMCS

N 6.700 (58.018) ∗ 0.273
t 6.804 (58.501) 1.206 0.273
GJR 8.147 (73.194) 1.037 0.254
Tree N 4.824 (48.730) -1.220 0.454
Tree t 5.215 (51.351) -1.167 0.273
Tree N+5 6.656 (54.657) -0.044 0.096
Tree t+5 9.546 (88.441) 1.090 0.096
RF N 4.836 (45.012) -1.059 0.304
RF t 4.313 (46.072) -1.059 1.000
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forecasts. An unconditional predictive ability test would be rejected in this sample. If we

repeat this exercise with the QLIKE losses by adjusting the same observations, the QLIKE

difference becomes larger, from 0.19 to 0.2. Therefore it seems, under squared error loss, that

the outliers heavily influence the results disguising the bad performance during most of the

sample.

4.3.4 Other Indices

The GARCH tree models have only been applied to S&P500 returns. To investigate whether the

results also hold for other indices, we perform the same analysis as in Section 4.2 to the FTSE

100 (UK), DAX 40 (Germany) and Nikkei 225 (Japan) index, without the conditional predictive

ability tests. Similar to the S&P500, we collect the closing prices and 5-minute RV from the

Oxford-Man Realized Library. We do not include economic indices or a VIX-like volatility

measure as additional splitting variables. This is because the economic indices we have used or

either not available for other countries or on a much lower frequency. The EPU for

Table XIV

Forecasting Results - Other Indices
This table reports the out-of-sample forecasting performance of all models based on 1-day-ahead, 5-
day-ahead, and 20-day-ahead predictions of S&P500 volatility (See Table IV for more details on model
specifications). Panel A contains results for the FTSE 100 index, Panel B contains results for the DAX 40,
and Panel C for the Nikkei 225 index. The models are estimated once, where the estimation samples are
fixed to 5/1/2000-31/12/2010, 4/1/2000-31/12/2010, and 3/2/2000-31/12/2010 respectively. The out-of-
sample periods are 4/1/2011-15/10/2021, 3/1/2011-15/10/2021, and 4/1/2011-15/10/2021 respectively.
The table shows the average and standard deviation of the QLIKE losses for 1-day-ahead (QLIKE1), 5-
day-ahead (QLIKE5), and 20-day-ahead (QLIKE20) forecasts, their t statistics of the equal unconditional
predictive ability test with the GARCH with normally distributed innovations as benchmark (GW stat),
and their MCS p-values.

Panel A: FTSE 100

QLIKE1 (GW stat) pMCS QLIKE5 (GW stat) pMCS QLIKE20 (GW stat) pMCS

N 0.278 (*) 0.140 0.355 (*) 0.221 0.505 (*) 0.396
t 0.279 (1.666) 0.094 0.355 (0.409) 0.221 0.505 (-0.435) 0.396
GJR 0.264 (-1.427) 0.544 0.337 (-0.340) 0.731 0.499 (-0.325) 0.411
Tree N 0.261 (-1.841) 0.602 0.333 (-1.906) 1.000 0.486 (-1.366) 1.000
Tree t 0.274 (-0.402) 0.094 0.345 (-0.734) 0.246 0.513 (0.292) 0.396
Tree N+1 0.259 (-1.746) 0.602 0.383 (1.867) 0.000 0.605 (3.368) 0.000
Tree t+1 0.256 (-2.099) 1.000 0.339 (-1.027) 0.731 0.527 (0.882) 0.244

Panel B: DAX 40

QLIKE1 (GW stat) pMCS QLIKE5 (GW stat) pMCS QLIKE20 (GW stat) pMCS

N 0.325 (*) 0.000 0.380 (*) 0.000 0.528 (*) 0.005
t 0.324 (-0.695) 0.000 0.376 (-2.629) 0.000 0.514 (-3.171) 1.000
GJR 0.308 (-1.877) 0.000 0.374 (-0.698) 0.000 0.541 (1.614) 0.005
Tree N 0.302 (-2.864) 0.000 0.383 (0.292) 0.000 0.581 (3.870) 0.001
Tree t 0.308 (-2.072) 0.000 0.379 (-0.171) 0.000 0.540 (1.131 0.005
Tree N+1 0.275 (-5.334) 1.000 0.348 (-3.399) 0.273 0.566 (0.915) 0.005
Tree t+1 0.278 (-5.173) 0.492 0.342 (-4.038) 1.000 0.532 (0.144) 0.005

Panel C: Nikkei 225

QLIKE1 (GW stat) pMCS QLIKE5 (GW stat) pMCS QLIKE20 (GW stat) pMCS

N 0.632 (*) 0.000 0.707 (*) 0.000 0.846 (*) 0.000
t 0.629 (-0.911) 0.000 0.697 (-3.306) 0.000 0.819 (-4.756) 0.928
GJR 0.615 (-2.173) 0.000 0.703 (-0.558) 0.000 0.868 (3.057) 0.000
Tree N 0.604 (-2.260) 0.000 0.688 (-1.491) 0.000 0.811 (-1.387) 1.000
Tree t 0.791 (7.015) 0.000 0.968 (7.223) 0.000 1.058 (6.458) 0.000
Tree N+1 0.503 (-6.625) 1.000 0.625 (-4.810) 1.000 0.820 (-1.525) 0.928
Tree t+1 0.505 (-6.556) 0.000 0.626 (-4.778) 0.176 0.820 (-1.498) 0.928
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example is on a monthly basis for the UK, Germany and Japan (discontinued). An option

implied volatility measure is not included because or results so far have totally ignored the VIX.

Oh and Patton (2021) have shown that superior forecasting can be achieved using RV rather

than the VIX. Table XIV shows the 1-day, 5-day, and 20-day-ahead average QLIKE losses with

the GW statistic of the unconditional predictive ability test and MCS p-values, for all three

indices. In case of the FTSE, no model is able to significantly outperform the GARCH N

model, except the GARCH tree t with RV as additional splitting variable (t+1) on a 1-day

horizon. For the DAX and Nikkei, significant gains can be made with the GARCH trees on

a 1-day and 5-day horizon, similar to Section 4.2. Especially for the GARCH trees with RV

as additional variable, since they appear in the MCS. The table supports the previous finding

that short term forecasting with GARCH trees can be beneficial over the traditional GARCH

models.

4.3.5 Lower Frequency

While most of the time volatility is modeled using daily returns, one could be interested in

fitting a GARCH to less frequent observations to forecast volatility at long horizons. In Section

4.2, for example, we have evaluated the performance of the GARCH trees with 5-day-ahead and

20-day ahead horizons using a recursion based on the last known terminal node of the GARH

tree. Because the terminal nodes have parameter values that deviate strongly from each other,

long term recursion based forecasts might revert too quickly or too slow to the unconditional

variance. To still forecast at long horizons, one could fit the GARCH tree to less frequent

observations such that long term forecasts become one step ahead forecasts. Table XV and

Table XVII in Appendix A.3 show results of 1-step-ahead forecasts after turning the data to

weekly and monthly observations respectively. These observations have been created by using

the Monday closing prices with either one week or four weeks in between to calculate weekly and

monthly returns5. The pre 2011 and post 2011 split for the estimation sample and out-of-sample

Table XV

Forecasting Results - 1-week-ahead
This table reports the out-of-sample forecasting performance of all models based on 1-week-ahead pre-
dictions of S&P500 volatility after adjusting the data to a weekly frequency (See Table IV for more
details on model specifications). The models are estimated once, where the estimation sample is fixed to
10/1/2000-28/12/2010. The out-of-sample period is from 3/1/2011 until 8/11/2021. The table shows the
average and standard deviation of the QLIKE losses, the t statistics of the equal unconditional predictive
ability test with the GARCH with normally distributed innovations as benchmark (GW stat), and the
MCS p-values.

QLIKE (Std) GW stat pMCS

GARCH - N 1.559 (0.652) ∗ 0.003
GARCH - t 1.529 (0.646) -2.277 0.133
GJR-GARCH 1.505 (0.611) -2.797 0.184
GARCH Tree - N 1.994 (0.833) 4.141 0.000
GARCH Tree - t 1.869 (0.783) 3.448 0.000
GARCH Tree - N + 5 1.460 (0.681) -2.129 0.184
GARCH Tree - t + 5 1.455 (0.677) -2.300 1.000
GARCH Random Forest - N 1.621 (0.623) 2.458 0.000
GARCH Random Forest - t 1.592 (0.612) 1.492 0.002

5If Monday next week or 4 weeks later was missing, the Tuesday closing price was used.
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period has been maintained6. The weekly and monthly RV and VIX are proxied by the aver-

ages of daily realizations of RV and VIX. The economic indices were kept the same. The results

of Table XV show only the GARCH t, GJR-GARCH, GARCH tree N+5, and GARCH tree t+5,

have lower average QLIKE losses than the GARCH N . They also reject equal unconditional

predictive ability and form the MCS. In the 1-month-ahead results, only the GJR-GARCH is

better than the GARCH N model. This could be because the trees are fitted using a relatively

low number of observations (153), which is, given that they are not pruned by the AIC, very lit-

tle for a 6 terminal node tree. Hence, we can only conclude that for weekly returns the GARCH

trees perform similar to the best non-tree models.

5 Conclusion

The thesis has investigated the forecasting performance of the GARCH tree model. This has

been done by applying the GARCH tree model in various forms to S&P500 data and comparing

its accuracy to the GARCH and GJR-GARCH model. The forms of the GARCH tree model

used throughout the thesis are: either assuming a normal or t distribution for the innovations,

including or excluding additional splitting variables, and combining multiple trees to create

random forests. The additional variables are RV, the VIX, and the EPU, ADS, and NFC index.

Using the QLIKE losses to measure how accurate the forecasts are, we have implemented several

ways to see if the gains in forecasting performance are significant. These are the unconditional

and conditional tests of Giacomini and White (2006), and the MCS procedure of Hansen et

al. (2011). Our main analysis shows that for 1-day-ahead forecasts, the GARCH tree is able

to do better than the GARCH and GJR-GARCH model. This is, however, only true for the

GARCH tree with t-distributed innovations and the additional splitting variables included. The

other GARCH tree implementations perform on par with or worse than the traditional models.

Especially the random forests, which were expected to do better given its model averaging and

variable selection characteristics, disappoint. At longer horizons, the GARCH tree models are

not able to do better, which could be because of the recursion we applied to obtain multi-step-

ahead forecasts. They are obtained with the parameters of the most recent terminal node, which

might be irrelevant at long horizons, causing the volatility prediction to revert too fast or too

slow to the unconditional variance.

The main findings are extended in several directions. First, because in the estimation of the

GARCH trees the AIC statistic failed to select a lower than the maximum number of terminal

nodes as optimal, we manually lowered the number of terminal nodes in the GARCH trees. This

shows that the maximum of six terminal nodes does not lead to the lowest average loss. Three

nodes seems to be sufficient. Replacing the AIC with the BIC does not really overcome this

problem. Second, the expected block length of the stationary bootstrap has a large impact on

the performance of the random forests. Although at a block length of 500 the average losses

are at a minimum, the random forests still do worse than all other models. Third, using the

squared error loss function instead of the QLIKE loss function sheds a different light on the

GARCH trees underperforming in the main analysis. However, this is most likely because the

6This leaves 591 (569) and 153 (143) as number of observations for the estimation sample (out-of-sample
period).
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squared error loss is more sensitive to outliers. The QLIKE loss is therefore preferred over the

squared error loss. Fourth, we test whether our results also hold for other stock indices. For the

DAX and Nikkei, the GARCH tree outperforms the traditional GARCH models at the 1-day

and 5-day-ahead horizons. For the FTSE, the differences are too small to be significant. Finally,

at a lower observation frequency (weekly and monthly), do the GARCH trees not outperform

the traditional models. Possibly because of the low amount of observations.

Several contributions have been made to the existing literature. We have performed a fore-

casting study to show the potential of the GARCH tree model. In addition, more splitting

variables were added to the GARCH tree, which has only been modeled with past return and

variance previously. The implementation of the GARCH tree with VTE also shows the compu-

tation time can be reduced substantially making the GARCH tree more accessible in practice.

Finally, the extensions of Section 4.3 reveal the specification of the trees is important for their

performance.

The applied methodology also has a few shortcomings. In fitting the GARCH tree we

have maximized the reduced log-likelihood to determine the splitting rules and starting values

for the model likelihood optimization. This could lead to local instead of global maxima and

suboptimal parameter estimates. Moreover, the decision to set the splitting values equal to

empirical quantiles could result in suboptimal trees. To obtain multi-step-ahead forecasts, we

have used the last know terminal node but this might not be entirely valid. The long term

forecasting performance of the GARCH trees could therefore be biased.

Further research can use Section 4.3 as a starting point. The fact that the AIC and BIC

criterion failed to select the number of terminal nodes with the lowest average QLIKE loss

suggests the size of the tree should be based on something else. Perhaps using the performance

on a subsample as a criterion, as in Oh and Patton (2021), leads to a better choice. The

random forest results are worse than the single tree results. To counter this problem, and to

investigate the tree performance more generally, a moving estimation window could improve the

performance of the GARCH trees significantly.
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A Appendix

A.1 Time Series of κ and α

Figure 12: Realized variance and a 10-day moving average of the κ parameter of the GARCH Tree
N+5 and GARCH Tree t+5 over the out-of-sample period 1/1/2011-12/11/2021.

Figure 13: Realized variance and a 10-day moving average of the κ parameter of the Random Forest
N and Random Forest t over the out-of-sample period 1/1/2011-12/11/2021.
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Figure 14: Realized variance and a 10-day moving average of the α parameter of the GARCH Tree
N+5 and GARCH Tree t+5 over the out-of-sample period 1/1/2011-12/11/2021.

Figure 15: Realized variance and a 10-day moving average of the α parameter of the Random Forest
N and Random Forest t over the out-of-sample period 1/1/2011-12/11/2021.
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A.2 Squared Error Loss: 20-day-ahead Forecasts

Table XVI

Forecasting Results - 20-day-ahead SE
This table reports the out-of-sample forecasting performance of all models based on 20-day-ahead pre-
dictions of S&P500 volatility (See Table IV for more details on model specifications). The models are
estimated once, where the estimation sample is fixed to 4/1/2000-31/12/2010. The out-of-sample period
is from 7/1/2011 until 12/11/2021. The table shows the average and standard deviation of the squared
error (SE) losses, the t statistics of the equal unconditional predictive ability test with the GARCH with
normally distributed innovations as benchmark (GW stat), and the MCS p-values.

SQL (Std) GW stat pMCS

N 9.260 (77.022) ∗ 0.264
t 9.520 (78.474) 1.327 0.215
GJR 11.121 (95.924) 1.056 0.215
Tree N 7.376 (78.072) -1.143 0.355
Tree t 7.780 (82.446) -1.028 0.264
Tree N+5 8.869 (71.239) -0.284 0.215
Tree t+5 14.340 (128.897) 1.134 0.215
RF N 7.515 (69.213) -0.913 0.264
RF t 6.186 (60.467) -1.079 1.000

A.3 Forecasting Results - 1-month-ahead

Table XVII

Forecasting Results - 1-month-ahead
This table reports the out-of-sample forecasting performance of all models based on 1-month-ahead
predictions of S&P500 volatility after adjusting the data to a monthly frequency (See Table IV for more
details on model specifications). The models are estimated once, where the estimation sample is fixed to
31/1/2000-20/12/2010. The out-of-sample period is from 18/1/2011 until 8/11/2021. The table shows
the average and standard deviation of the QLIKE losses, the t statistics of the equal unconditional
predictive ability test with the GARCH with normally distributed innovations as benchmark (GW stat),
and the MCS p-values.

QLIKE (Std) GW stat pMCS

N 2.542 (0.790) ∗ 0.000
t 2.549 (0.798) 1.664 0.000
GJR 2.357 (0.704) -2.335 1.000
Tree N 3.215 (0.901) 2.476 0.000
Tree t 3.213 (0.900) 2.472 0.000
Tree N + 5 2.931 (0.978) 1.990 0.000
Tree t + 5 2.609 (0.943) 0.399 0.000
RF N 2.872 (0.783) 2.572 0.000
RF t 2.897 (0.784) 2.589 0.000
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