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Abstract

The focus of this research paper is to answer the research question To what extent can Gener-

ative Adversarial Networks alleviate the unbalanced dataset problem and improve the Attribution

modelling of the online digital campaign data?. This is accomplished by exploring how artificial

data generation and anomaly detection methods can be used to alleviate the unbalanced dataset

problem. Hence, two models are developed. The first model is a GAN supported Attribution

Recurrent Neural Network (ARNN) model motivated by Ren et al. (2018) and Goodfellow et al.

(2014), which aims to improve the ARNN model performance by modelling the conversion se-

quence distribution and then generating artificial convergent sequences to balance the dataset on

which a standard ARNN model is then trained. The second model is an Adjusted Adversarially

Learned Anomaly Detection model motivated by Zenati et al. (2018), which treats conversions

as anomalies and tries to distinguish between the non-convergent sequences and their anomalous

counterparts. The research finds that Generative Adversarial Networks can successfully gener-

ate artificial data that can improve model training and performance. On the other hand, the

results suggest that the Generative Adversarial Network architecture is not able to improve the

Attribution modelling of the online digital campaign data.
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1 Introduction

Online shopping has been on the rise for over a decade. Recently, it has been accelerated by the

coronavirus pandemic which forced many physical stores to close due to mandatory country-level

lockdowns. This led many shoppers to turn to online stores, where purchasing items was still

possible with the option of affordable home delivery thereby fuelling the growth of the eCommerce

business across the globe. Market analysts argue that the eCommerce industry will benefit the most

from the pandemic. It is projected that the eCommerce industry will increase to 4.5 trillion USD in

2021, with current penetration rates of 15% to rise to 25% by 2025 (Mohsin, 2020). Furthermore,

(Mohsin, 2020) outlines that 73% of online sales will be made via mobile devices by the end of 2021

with young consumers being the driving force behind the transition. This explains why social media

networks such as Facebook and Instagram have such a strong effect on this trend.

With this immense growth in the sector, new opportunities arise for companies to use the

terabytes of data generated by online shoppers to improve their business results. Online shopping

makes it feasible for companies to track their customers more closely and use this data to improve

their online marketing strategies to increase their conversion rates. In online marketing literature,

conversion rate is defined as the percentage of customers who purchase a product after being targeted

by online ad campaigns, where each interaction with the user is referred to as a touch-point or

impression. Ren et al. (2018) noticed that there is a literature gap in modelling sequential patterns

of individual internet users leading up to the final conversions. Despite the fact that many models

assign the final touch-point full credit for leading the customer to their final purchase, the customer

trip through different touch-points before the conversion is assumed to not be arbitrary. Hence, Ren

et al. (2018) developed a Neural Network architecture to account for the sequential user interaction

with the ad content, where experimental results show performance improvements over basic models.

Nonetheless, the methodology developed by Ren et al. (2018) may still not be completely ap-

propriate for the problem at hand. With high traffic across the internet, it is common to observe

conversion rates of 99:1, if not lower. And with the continuous rise of internet users, it is only

expected that these conversion rates become more extreme. This is highly problematic because

such low conversion rates introduce under-sampling problems that deteriorate Neural Network-

based model performance. Hence, it is pivotal to account for this issue. One of the solutions is to

treat conversion events as outliers and deploy outlier detection algorithms to detect the conversions.

This approach has the potential to overcome the unbalanced class problem because outlier detection
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algorithms are made to work with this kind of data and can be supervised, unsupervised and semi-

supervised, thereby facilitating many possibilities of training the models without large fully labelled

datasets. Applying outlier detection algorithms to model conversions is a novel approach. If suc-

cessful, this research may spark an interest in the development of more tailored models to optimise

online marketing strategies to achieve higher conversion rates and decrease marketing costs.

The issue discussed above gives rise to the research question of this paper:

To what extent can Generative Adversarial Networks alleviate the unbalanced dataset

problem and improve the attribution modelling of the online digital campaign data?

In particular, two separate approaches are tested in this research paper. The first approach uses

a Generative Adversarial Network to generate artificial conversion data that is then used to support

training the Attribution model. The second approach implements an Attribution model within the

Generative Adversarial Network for Anomaly Detection. Hence, the following sub-questions are

taken into account:

1. Can Generative Adversarial Networks generate artificial conversion data to improve Attribu-

tion model performance?

2. Can Generative Adversarial Networks for Anomaly Detection be jointly implemented with an

Attribution model to improve the Attribution model performance?

3. Can Neural Network based models competently model attribution and thereby efficiently

allocate budgets?

This research finds that Generative Adversarial Networks can be successfully used to gener-

ate artificial data that can then supplement model training and alleviate the unbalanced dataset

problem. Implementing Generative Adversarial Networks for Anomaly Detection fails to improve

model performance, which may be due to sub-optimal model architecture or inefficient model train-

ing. Lastly, the Generative Adversarial Network architecture is not able to improve the attribution

modelling of the online digital campaign data.

This research paper continues as follows. Section 2 gives an overview of existing Attribution

models, starting from the most basic ones and elaborating to more advanced models. Section 3 de-

scribes the Criteo dataset and outlines the data preprocessing steps. Section 4 explains each method

used in this research along with the evaluation metrics used for model comparison. Subsequently,

Section 5 discusses the results and Section 6 concludes the research paper.
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2 Literature

This section begins with an outline of existing literature on Attribution models and continues with

a discussion of former research that motivates the use of Generative Adversarial Networks in this

research paper.

2.1 Literature on existing Attribution model research

Many existing works propose different solutions to the Attribution problem. These solutions begin

with traditional heuristic approaches and extend to advanced models that attempt to capture com-

plicated user patterns over time. These approaches are discussed below, motivating the use of the

Attribution model proposed by Ren et al. (2018).

Traditional Attribution models implement heuristic approaches of assigning conversion credit

to different touch points (Wang et al., 2017). Some examples are first-touch, last-touch and linear-

touch. The first-touch heuristic assigns all the credit to the first user interaction with ad content of

a company, whereas the last-touch heuristic assigns it to the last user interaction. The linear-touch

heuristic splits the credit uniformly across all user interactions with the ad content leading up to

a conversion. The advantage of these methods is their simple and easy implementation at scale.

However, heuristic models only implement insights of the convergent sequences, thereby ignoring

the information from the larger population of non-convergent sequences.

Sequential pattern models go a step further from heuristic approaches. Probabilistic models

(Shao and Li, 2011) and models based on Survival theory (Zhang et al., 2014) such as Additive

Hazard models (Ji and Wang, 2017) were developed to capture the sequential nature of the user

interaction data. These methods assume that user conversion is always positively influenced by each

interaction with the ad content. However, this may not be the case in real life, where some ad content

may discourage users from the final purchase, thus lowering the likelihood of their conversion.

Another issue seen across Attribution model research is the failure to distinguish between differ-

ent types of user behaviors (Ren et al., 2018). For example, researchers treat clicks and conversions

as the same event and ignore the difference between click and non-click impressions. This poses

a problem because their models ignore relevant information behind user interaction with the ad

content.

Ren et al. (2018) address the above issues through their Dual-Attention Recurrent Neural Net-

work (DARNN) model. The model incorporates an Encoder for impression-level behavior modelling,
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a Decoder for sequential prediction of click probability and a Dual-Attention model to combine the

two to estimate the final conversion probability. As a result, the DARNN model utilises sequence-

to-sequence prediction for user clicks and models post-view and post-click attribution patterns to

estimate the final user conversion.

Model AUC Log-loss

Additive Hazard 0.6791 0.5067

Additional Multi-touch Attribution 0.8465 0.3897

ARNN 0.9793 0.1850

DARNN 0.9799 0.1591

Table 2.1: Criteo dataset results (Ren et al., 2018)

The DARNN model proves to be highly effective in the experimental set-up from Ren et al.

(2018), shown in Table 2.1 on the Criteo dataset. However, Attribution problem datasets are

known for being highly unbalanced, posing a problem to many statistical models, DARNN being

one of them. Ren et al. (2018) deal with this problem by under-sampling from the non-convergent

population to obtain a 1:20 ratio of convergent to non-convergent sequences.

While the DARNN model proves to be highly effective, only the encoder part of the model with a

single attention layer based on impression-level patterns will be used, i.e. ARNN. This is due to the

fact that the DARNN model trains nine deep-neural networks, while the ARNN model only trains

three, posing a significantly higher computational requirement to estimate the model parameters.

Given the performance results from Ren et al. (2018) displayed in Table 2.1, the ARNN model

outperforms all models aside from the DARNN model, where its AUC performance is marginally

lower and Log-loss is about 16% higher. Hence, the ARNN model is more ideal for the discussed

research objective, because it requires significantly less computational resources while maintaining

an outstanding performance.

2.2 Literature foundation for research paper contribution

The Generative Adversarial Networks (GANs) were first developed by Goodfellow et al. (2014).

This complex neural network architecture has applications in speech, image and video generation,

to name a few. GANs consist of two neural network architectures - Generator G and Discriminator

D. The Generator G generates artificial data as close to the real samples, while the Discriminator
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D tries to distinguish the artificial samples from the real samples. By training the two models

against each other, the Generator G is able to reach a point where it generates artificial data

that is indistinguishable from real samples, while the Discriminator D is not able to distinguish

between real and artificial samples. As a result, the Generator G is able to model a complex high-

dimensional distribution of real-world data. This capability is used to generate artificial convergent

data to balance the dataset and improve Attribution model performance.

An alternative to using artificial data is to treat the convergent sequences as anomalies and

attempt to deploy anomaly detection methods to detect convergent sequences. Zenati et al. (2018)

propose an Adversarially Learned Anomaly Detection (ALAD) model based on Bi-directional GANs

(BiGANs) (Donahue et al., 2017), that adversarially learns features for the anomaly detection task.

The ALAD framework significantly improves anomaly detection performance from BiGANs, by

ensuring for data-space and latent-space cycle-consistencies, and by stabilising the training. Zenati

et al. (2018) validate this performance improvement on a range of image and tabular datasets. This

research uses an adaptation of the ALAD framework to capture this capability while optimising for

model training.

To assess the GAN induced performance improvement of the Attribution model, two-stage

evaluation framework from Ren et al. (2018) is implemented on the test data. The first stage

consists of comparing the theoretical performance via Area Under Curve (AUC), Log-loss and

additional performance metrics described in Section 4.7. The second stage consists of comparing

the budget allocation performance, which will be evaluated against the profit, conversion rate (CVR)

and cost per conversion action (CPA). CVR is the ratio of converted sequences which reflects the

ad placement effectiveness out of all the sequences that were funded. CPA is the ad placement cost

averaged over all funded sequences which reflects the cost efficiency of ad campaigns.

In summary, the contribution of this work is two-fold. First, a standard GAN model is deployed

to generate artificial convergent sequence data, which is then used to support Attribution model

training. Second, an Attribution model is implemented within the adapted ALAD framework with

the purpose of treating conversion events as anomalies. Both of these approaches attempt to alleviate

the unbalanced dataset problem that is a characteristic of the online digital campaign datasets.
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3 Data

This section begins with an overview of the Criteo live traffic dataset used for attribution mod-

elling, where variable description and dataset properties are given. Next, the data preprocessing

methodology is explained.

3.1 Criteo dataset

The Criteo AI Lab is a pioneering company in computational advertising. They published a sub-

sampled and anonymised dataset of live traffic data for Attribution modelling (Diemert Eustache,

Meynet Julien et al., 2017). This dataset spans 30 days with 16.5 million impressions from 6.1

million users, 8.1 million impression sequences and 438 thousand conversions over 675 campaigns.

Each impression corresponds to a banner that has been displayed to a user. Each banner has

detailed information about the context, cost, if it was clicked and if it led to a conversion.

(a) Number of total and converted sequences w.r.t.

user interaction sequence length

(b) Conversion probability w.r.t. user interaction

sequence length

Figure 3.1: Conversion statistics w.r.t. sequence length

Figure 3.1 illustrates two important features of the Criteo dataset. First, sub-figure (a) shows

that the longer sequence lengths have less samples, signifying that estimating conversion probabili-

ties becomes harder with longer sequences. Second, sub-figure (b) shows that conversion probability

decreases towards sequence lengths 15 to 25 and then increases in the Criteo dataset. These two

observations may suggest that increased user exposure would lead to higher conversion probability,

however, this assumption will not be utilised as this is not the focus of this research paper.

The Criteo live traffic dataset contains 22 variables. Each impression sequence can be identified

by a unique user ID, conversion ID and campaign. Each sequence has a binary variable indicating
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whether it concluded in a conversion. Each impression has information on campaign ID along with

9 categorical variables capturing contextual features associated to the display and the cost paid for

the display. Additionally, the timestamp of the impression is given, which starts from 0 for the first

impression, along with time since last click variable that is self-explanatory.

3.2 Data preprocessing

A user interaction sequence with ad content is uniquely identified by user ID, conversion ID and

campaign. In this manner, each user interaction sequence is identified and sorted by timestamp in

an ascending order, where first observation in a sequence is the most recent one. Next, sequences

of minimal length of 20 and maximum length of 31 are extracted such that complex time-series

relationships can be estimated. The sequence length is cut off at 31 due to longer sequences having

less than 1000 samples for estimation. This results in 30,528 sequences, where 780 converge, i.e.

the sample contains 2.56% conversions. Note that to replicate results from Ren et al. (2018), a

separate sample is formed containing sequences of minimal length 5 and maximal length 20, where

only a quarter of convergent sequences are used and non-convergent sequences are randomly under-

sampled to obtain a 1:20 ratio of convergent to non-convergent sequences. All other steps remain

the same. To estimate conversions, 12 features are used: impression timestamp, time since last

click, campaign ID and nine contextual features. To format the data for model use, padding is used

to ensure that each sequence has 31 time-steps.

The train and test sets are obtained by randomly stratifying on the conversion indicator, where

80% of the dataset is dedicated to the train set and the remaining 20% is dedicated to the test

set. Thus, both sets contain only 2.56% of convergent sequences. In the case where a Generative

Adversarial Network model is implemented, either the convergent or non-convergent sequences are

removed from the train set to form an appropriate train set for the corresponding model objective.

All models are evaluated on the same test set, where performance metrics are weighted to account

for class imbalance.

To improve model training, batches are stratified on the conversion indicator within the train set,

such that each batch contains roughly 2.56% of convergent sequences. As a result, it is expected that

the gradient step taken within each batch is more optimal compared to when the conversion rates

within different batches are inconsistent. When the train set is balanced by oversampling convergent

sequences, each stratified batch is supplemented by randomly selected convergent sequences until

the desired number of convergent sequences is reached.
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4 Methodology

This section begins with an explanation of the Attribution model and the baseline used to evaluate

model improvements from using artificial data generated by GANs. Subsequently, GAN, ALAD

and streamlined adaptation of the ALAD model are explained. Next, two frameworks are discussed

of how GANs are trained to generate artificial data, as well as how the adapted ALAD model

is combined with the Attribution model. Finally, the model evaluation methodology is presented

outlining the baseline used to evaluate model improvement via GANs, and outlining the theoretical

and practical metrics deployed to compare the models.

4.1 Attribution model

The Attribution model implemented in this research paper is derived from the DARNN model in

Ren et al. (2018). The Encoder for impression-level behavior modelling and the single Attention

model of impression behavior is retained to estimate conversion probability. Let user ui generate

a behavior sequence {ui, {xj}kj=1, yi} of length k, where xj is the impression feature vector and yi

indicates whether the user converts. The impression features xj contain the impression timestamp,

time since last click, campaign ID and 9 contextual features. The model has three main steps:

capturing sequential user interaction with ad content, computing impression-to-conversion attention

and estimating the final conversion probability. Figure 4.1 illustrates the Attribution model schema.

Figure 4.1: Attribution model ARNN schema

To capture sequential user interaction with ad content, a Recurrent Neural Network (RNN) is

USED. First, each feature vector x
(i)
j for user i is transformed into a dense representation vector v

(i)
j

to decrease the sparsity of original feature space. This has been implemented and shown to be ben-
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eficial in many works, e.g. Ren et al. (2018) and He and Chua (2017). Next, the embedded features

are fed into a standard LSTM network (Hochreiter and Schmidhuber, 1997) fe(v
(i)
j , hj−1) = hj ,

where hj is the hidden vector at time-step j.

To compute the impression-to-conversion attention, a unified energy-based function E is used

- ej = E(hj , v20). The Energy function E is an deep neural network with tanh activation function

and it is implemented in the following manner

c = A(h1, h2, ..., h20) =

20∑
j=1

ajhj (4.1)

where

aj =
exp(ej)∑20
k=1 exp(ek)

(4.2)

In this manner, the learned parameter aj is used to obtain the impression-to-conversion attention.

To estimate the final conversion probability ŷi, a deep neural network r with Sigmoid activation

function is used. The neural network r takes as inputs the encoded feature vector v
(i)
k and the

impression-to-conversion attention c, i.e. ŷi = p(yi = 1|v(i)) = r(vik, c).

The loss function for the attribution problem is the binary cross entropy loss function, namely

L =
n∑
i=1

−yilog(ŷi)− (1− yi)log(1− ŷi) (4.3)

4.2 Generative Adversarial Network

Generative Adversarial Networks (GANs) were first developed by Goodfellow et al. (2014) and they

consist of two neural network architectures - Generator G and Discriminator D. The two network

architectures are trained on unlabelled data {x(i)}Ni=1, where we denote the corresponding data

space as pX .

Figure 4.2: GAN schema
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The goal of the Generator G is to master creating artificial data points identical to the realistic

samples in a given data context. Formally, the Generator G learns to map random variables z

drawn from the latent distribution pZ - this can be the Gaussian distribution - to the input data

space pX , where the mapping is denoted by G(z). This can also be formulated as modelling the

distribution pX (x|z) using pG(x|z).

The goal of the Discriminator D is to distinguish between real and artificial samples in a given

data context. Formally, the Discriminator D learns to distinguish between the training samples x,

i.e. ”real” data, and the artificial samples G(z) produced by the Generator G from the random

variable z, i.e. ”fake” data.

Training of the two models is centered around the idea of iteratively improving the Generator

G at fooling the Discriminator D and improving the Discriminator D at distinguishing between the

”real” and ”fake” samples. This is also referred to as the two-player mini-max game. Mathematical

formulation of this objective function is min
G

max
D

V (G,D), where V (G,D) is defined below. The

two deep neural networks G and D are optimised iteratively during the training procedure.

V (G,D) = Ex∼pX [log(D(x))] + Ez∼pZ [log(1−D(G(z)))] (4.4)

The optimal generator G∗ will match the learned distribution pG∗(x|z) to the true distribution

pX (x|z), where the optimal discriminator D∗ = pX (x)
pX (x)+pG(x) . The corresponding proofs of the

optimal solutions for G∗ and D∗ can be found in Goodfellow et al. (2014).

4.3 Adversarially Learned Anomaly Detection

The Adversarially Learned Anomaly Detection (ALAD) was proposed by Zenati et al. (2018).

The ALAD architecture elaborates on the Bidirectional Generative Adversarial Networks (BiGAN)

developed by Donahue et al. (2017), which are an extension of the standard GAN architecture

discussed in Section 4.2.

BiGANs extend the ordinary GANs by including an Encoder E that maps the data x to the

random variable z that belongs to the latent distribution pZ and train the Discriminator Dxz

to jointly discriminate between the ”real” tuples (x,E(x)) and ”fake” tuples (G(z), z). Thereby,

BiGANs try to match the distribution pE(x, z) = pX (x)pE(z|x) to pG(x, z) = pZ(z)pG(x|z). In this

manner, the Encoder E tries to learn to invert the Generator G. This is accomplished through the

optimisation of the objective function min
G,E

max
Dxz

V (G,E,Dxz), where V (G,E,Dxz) is defined below.
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V (G,E,Dxz) = Ex∼pX [log(Dxz(x,E(z)))] + Ez∼pZ [log(1−Dxz(G(z), z))] (4.5)

As shown in Donahue et al. (2017), the optimal discriminator D∗xz is D∗xz = pE(x,z)
pE(x,z)+pG(x,z) , which

is similar to the optimal solution in Section 4.2. Zenati et al. (2018) argue that in practice, the joint

distributions pE(x, z) and pG(x, z) will not be the identical due to the fact that training does not

always converge to the solutions of the two-player mini-max game.

To solve this problem, they utilise the ALICE framework from Li et al. (2017), which approx-

imates the conditional entropy Hπ(x|z) = −Eπ(x,z)[log(π(x|z))] using an additional Discriminator

Dxx. Li et al. (2017) show that Dxx will enforce cycle-consistency in the model, i.e. G(E(x)) ≈ x.

The new objective function min
G,E

max
Dxz

VALICE(G,E,Dxx, Dxz) is defined as

VALICE(G,E,Dxx, Dxz) = V (G,E,Dxz) + V (G,E,Dxx) (4.6)

where

V (G,E,Dxx) = Ex∼pX [log(Dxx(x, x))] + Ex∼pX [log(1−Dxx(x,G(E(x))))] (4.7)

To stabilize the training of the baseline ALICE model, Zenati et al. (2018) further regularize

latent space conditional Hπ(z|x) = −Eπ(x,z)[log(π(z|x))] using an additional Discriminator Dzz.

The new objective function min
G,E

max
Dzz

V (G,E,Dzz) is defined as

V (G,E,Dzz) = Ez∼pZ [log(Dzz(z, z))] + Ez∼pZ [log(1−Dzz(z, E(G(z))))] (4.8)

Combining the three two-player mini-max games, the ALAD architecture solves the objective

function min
G,E

max
Dxx,Dxz ,Dzz

V (G,E,Dxx, Dxz, Dzz), where

min
G,E

max
Dxx,Dxz ,Dzz

V (G,E,Dxx, Dxz, Dzz) = min
G,E

max
Dxz ,Dxx,Dzz

V (G,E,Dxx)+V (G,E,Dxz)+V (G,E,Dzz)

(4.9)

The schematic representation of this architecture is displayed in Figure 4.3. In blue are the Dis-

criminators Dxx, Dxz and Dzz, the Generator G and the Encoder E. In grey are the tuples that

are fed into each of the Discriminators. In darker shade of orange is the latent distribution space

pZ and in darker shade of green is the feature space pX .
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Figure 4.3: ALAD schema

The final component of the ALAD framework is the Anomaly Score A(x) (Zenati et al., 2019).

This score is a linear combination of a reconstruction loss LG(x) and a discriminator-based loss

LD(x). Their relative weights are tuned through the hyperparameter α.

A(x) = αLG(x) + (1− α)LD(x) (4.10)

where LG(x) = ||x−G(E(x))||1 is the distance between the original samples and their reconstruc-

tions and LD(x) can be defined in two ways. First, LD(x) = ||fD(x,E(x))− fD(G(E(x)), E(x))||1,

where fD(·) is the layer preceding to the final discriminator Dxz output. Second,

LD(x) = σ(Dxz(x,E(x)), 1), which is the cross-entropy loss that captures the confidence of the

discriminator Dxz that the sample comes from the ”real” distribution pX . Zenati et al. (2018)

showed that the first approach of defining LD(x) performs better.

4.4 Adjusted Adversarially Learned Anomaly Detection

The Adjusted Adversarially Learned Anomaly Detection (AALAD) is a simplified adaptation of the

ALAD model from Zenati et al. (2018). The simplification is introduced to optimise the training

process of the model by streamlining the architecture.

The ALAD objective function is defined as min
G,E

max
Dxx,Dxz ,Dzz

V (G,E,Dxx, Dxz, Dzz), where each

component is a neural network. The AALAD architecture removes the two neural networks Dxx

and Dzz, and replaces them with a Mean Squared Error loss objective, where E(G(z)) and G(E(x))

are evaluated against z and x, respectively, i.e. E[(E(G(z))− z)]2 + E[(G(E(x))− x)]2. Hence, the
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objective function is

min
G,E

max
Dxz

V (G,E,Dxz) + V (G,E) (4.11)

where

V (G,E,Dxz) = Ex∼pX [log(Dxz(x,E(z)))] + Ez∼pZ [log(1−Dxz(G(z), z))] (4.12)

and

V (G,E) = E[(E(G(z))− z)]2 + E[(G(E(x))− x)]2 (4.13)

The schematic representation of this architecture is displayed in Figure 4.4. In blue is the Discrim-

inator Dxz, the Generator G and the Encoder E. In grey are the tuples that are fed into each of

the Discriminators, where on each side, the E(G(z)) and G(E(x)) outputs are mapped to z and x,

respectively. In darker shade of orange is the latent distribution space pZ and in darker shade of

green is the feature space pX .

Figure 4.4: AALAD schema

The AALAD framework employs the Anomaly Score A(x), which remains the same as that

in (Zenati et al., 2019). This score is a linear combination of a reconstruction loss LG(x) and a

discriminator-based loss LD(x), where their relative weights are tuned through the hyperparameter

α.

A(x) = αLG(x) + (1− α)LD(x) (4.14)
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4.5 Generative Adversarial Network supported Attribution

GAN supported Attribution model is a three-step method combining the Attribution model from

Section 4.1 and the GAN framework from Section 4.2 to alleviate the unbalanced dataset problem.

First, the Attribution model from Section 4.1 is used in place of the Discriminator D in the GAN

framework presented in Section 4.2, where the Generator G is trained to model pX (x|z) using

pG(x|z) with the input distribution space pX representing the distribution of convergent sequences.

Second, the trained Generator G is used to produce a given number of additional convergent training

sequences to balance the attribution dataset. Third, a new Attribution model is trained using the

original training data combined with the artificial data generated by the trained Generator G. In

this manner, the final Attribution model is trained in a more balanced data setting.

4.6 Attribution via Adjusted Adversarially Learned Anomaly Detection

Attribution via AALAD is a model combining the the Attribution model from Section 4.1 and

the AALAD framework from Section 4.3. The joint model treats the conversion events as out-

liers, thereby attempting to alleviate the unbalanced data setting and improve the conversion

events prediction. The model has the objective function of the AALAD architecture, namely,

min
G,E

max
Dxx,Dxz ,Dzz

V (G,E,Dxx, Dxz, Dzz), where Dxz takes form of the Attribution model. In this

data setting, the non-convergent sequences form the input space pX , i.e. the ”real” data, while the

convergent sequences are regarded as the ”fake” data that will are generated by the generator G.

In this manner, the conversion events are determined using the anomaly score A(x) (Zenati et al.,

2019). This score is a linear combination of a reconstruction loss LG(x) and a discriminator-based

loss LD(x), where their relative weights are tuned through the hyperparameter α, as discussed in

Section 4.3. Since the model does not use real conversion sequences to train, it loses its capability

of computing the impression-to-conversion attention used for budget allocation.

4.7 Model evaluation

The model evaluation framework is two-fold - theoretical and practical. To evaluate theoretical

performance of the models, Log-loss, AUC, Recall, Precision, Accuracy, F-measure metrics are

computed. To evaluate the practical performance of the models, the budget-allocation framework

from Ren et al. (2018) is used.

Log-loss measures the confidence of the classification of a binary outcome via the function
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L = y · log(P (y = 1|X)) + (1− y) · log(1− P (y = 1|X)). The farther the prediction is from its true

value, the higher the penalty.

Recall, Precision and F-measure are metrics derived from the confusion matrix depicted in Figure

4.5, where higher metric score means better model performance. Recall is defined as TP
TP+FN and

conveys how many observations from the Positive class were classified correctly, otherwise known

as the True Positive Rate. Precision is defined as TP
TP+FP and conveys how many classes were

classified as Positive and are in fact Positive. F-measure is defined as 2∗Recall∗Precision
Recall+Precision and attempts

to capture Recall and Precision in one value. Accuracy is defined as TP+TN
TP+FP+TN+FN and conveys

the proportion of correctly classified observations.

Figure 4.5: Confusion matrix

Receiver Operator Characteristic (ROC) curve is used to evaluate binary classification models.

It is a probability curve depicted in Figure 4.6, that plots True Positive Rate (Recall) against the

False Positive Rate.

(a) AUC = 0 (b) AUC = 0.5 (c) AUC = 1

Figure 4.6: ROC curves with corresponding AUC metrics

The Area Under the Curve (AUC) summarises the ROC curve. It is the measure of the ability of

a classifier to distinguish between classes. If AUC = 1, the classifier is able to distinguish between

all classes correctly. If AUC = 0, the classifier miss-classifies all points, i.e. classified all Positive

class points as Negative and vice versa. If AUC = 0.5, the classifier is not able to distinguish

between Positive and Negative class points, i.e. the classifier predicts randomly or classifies all
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points to one class.

To illustrate the practical performance of the models, two-stage budget allocation framework is

deployed from Ren et al. (2018). It is important to note that the Criteo dataset is not fit to test

budgeting frameworks that would be implemented in a business setting, which is why the proposed

methodology is used. This framework consists of computing the budget allocation based on Return

on Investment (ROI) from the training set and then evaluating the corresponding budget allocation

on the test set. In particular, the budget B must be allocated across K campaigns c1, c2, ..., cK .

ROIck =

∑
∀yi=1Attr(ck|yi)yi

Money spent on campaign ck
(4.15)

with

Attr(ck|yi) =

20∑
j=1

aj · I(cj = ck) (4.16)

where ROIck is the total credit attributed to campaign ck, I(·) is an indicator function and yi is

the conversion indicator. Next, the total budget B is allocated across each campaign such that each

campaign receives budget b1, b2, ..., bK , computed as

bk =
ROIck∑K
j=1ROIcj

·B (4.17)

To test the budget allocation, each user interaction sequence in the test set is aggregated to

create tuples {si, ti, oi, yi, ci}ni=1, where n is the total number of tuples, si is the sequence identifier,

ti is the serving time, oi is the total cost of the sequence, yi is the conversion indicator and ci

indicates the campaigns that the sequence is on. Then, Algorithm 1 is ran over the test set to test

the budget allocation for each model.
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Algorithm 1 Budget allocation evaluation

Input: Shuffled sequence tuples {si, ti, oi, yi, ci} and budget allocations b1, b2, ..., bK .

Output: Conversions Y and cost C.

1: Y = 0, C = 0

2: for i = 1 to n do

3: if bci ≥ ci then

4: Y = Y + yi

5: C = C + ci,

6: bci = bci − ci
7: else

8: C = C + bci

9: bci = 0

10: end if

11: end for

12: return Y , C

5 Results

This section begins with a description of the final models and their training framework. Next,

Attribution model results are given for the set-up that is described in Ren et al. (2018) to verify

that the Attribution model in this research paper has similar performance. Finally, theoretical and

practical results are discussed to answer the research question and its sub-questions from Section 1.

5.1 Final models

The Attribution model is trained on the full training dataset using the BCE loss. To improve

model training, batches are stratified on sequence conversion indicator such that the fraction of

conversions is consistent across batches. The GAN model used to generate artificial data is trained

on a subset of the training dataset containing only convergent sequences. To solve for training

issues that are common across GAN literature, Wasserstein loss with Gradient Penalty (Arjovsky

et al., 2017) is used. The AALAD model is trained on the training dataset with non-convergent

sequences only. The Generator and Discriminator networks are optimised using Wasserstein loss

with Gradient Penalty (Arjovsky et al., 2017), while the Encoder is optimised using MSE loss.

To show the benefit of using artificial data generated by the GAN model, an additional Attribu-

tion model is trained by sampling convergent sequences with replacement in the training dataset.
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This is done to match the ratio of convergent sequences in the model training phase with that in

the GAN case. To be precise, the GAN and the baseline Attribution models will append convergent

sequences to make them account for 10%, 30% and 50% of the training dataset. Finally, to make

the metrics comparable and to account for the unbalanced dataset, Recall, Precision, F-measure

and AUC are computed weighted by the respective class size. Due to the fact that Recall equals

Accuracy when weighted, it will not be reported.

5.2 Replicating Ren et al. (2018) results

In this section, the replication results are presented and compared to those in Ren et al. (2018) to

verify that the ARNN model in this research paper has similar performance. The difference in the

dataset in Ren et al. (2018) is the ratio of 1:20 of convergent to non-convergent sequences. The

theoretical and budget allocation capabilities are compared below.

Log-loss AUC Precision Accuracy F-measure

0.078 0.930 0.966 0.906 0.926

Table 5.1: Theoretical results on ARNN model

Table 5.1 shows the ARNN model results from this paper. The Log-loss is considerably smaller

in this paper compared to the Log-loss of 0.185 in Ren et al. (2018). The AUC is inferior to that

in Ren et al. (2018), namely, 0.930 vs 0.979. Hence, the ARNN model gives predictions that are

generally closer to 0 or 1 with slightly worse ability to distinguish between the two classes correctly.

Remaining metrics cannot be compared since Ren et al. (2018) do not report them.

Figure 5.1 clearly displays that with increased budget, the CPA, conversion number and CVR

increase. This contrasts with results from Ren et al. (2018), where the CVR decreases as the budget

increases. The CVR is below 0.048, meaning that the ARNN model is not able to allocated budget

to reach higher conversion rate than by funding all the campaigns in the test set. On the other

hand, the CPA is lower than if all the campaigns were funded.

To conclude, the ARNN model in this paper has close performance to that in the paper Ren

et al. (2018), from a theoretical standpoint but under-performs in the budget allocation task.
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Figure 5.1: Budget Allocation Results for ARNN model

5.3 Theoretical results

This section begins with a discussion of the baseline ARNN and the GAN supported ARNN models.

It then continues onto a comparison of the top-line models.

The results for the baseline ARNN and the GAN supported ARNN models are mixed. Focusing

on the Log-loss and AUC metrics, the baseline ARNN model decreases in performance as the

fraction of conversions increases. The opposite is true for the GAN supported ARNN model. The

picture for Precision, Accuracy and F-measure is more complex. For the baseline ARNN model,

the three measures are highest when the fraction of conversions is at 30%. In the case of the GAN

supported ARNN model, Precision and F-measure are the highest when fraction of conversions is

at 10% while Accuracy peaks at 30% and 50% of conversions. The top models in each case are the

baseline ARNN with 10% of conversions and the GAN supported ARNN with 50% of conversions

because these achieve the lowest Log-loss and highest AUC in their respective groups.
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Model Log-loss AUC Precision Accuracy F-measure

Baseline ARNN (10%) 0.091 0.895 0.979 0.959 0.967

Baseline ARNN (30%) 0.138 0.877 0.980 0.967 0.972

Baseline ARNN (50%) 0.195 0.857 0.976 0.953 0.962

GAN ARNN (10%) 0.062 0.908 0.917 0.977 0.940

GAN ARNN (30%) 0.062 0.932 0.905 0.979 0.933

GAN ARNN (50%) 0.058 0.937 0.914 0.979 0.939

Table 5.2: Theoretical results on ARNN baseline and GAN supported ARNN models

The ARNN model in Table 5.3 achieves a relatively high AUC score and a low Log-loss, in

comparison with the replication case in Section 5.2. The Log-loss and Precision measures are

superior while the AUC, Accuracy and F-measure are inferior. The baseline ARNN generally under-

performs in Log-loss and AUC performance metrics. The GAN supported ARNN model manages

to outperform all models in Log-loss and Precision, achieving the highest AUC in comparison to the

rest of the models in the table, but not reaching the performance level of the model in Ren et al.

(2018). The AALAD model substantially under-performs across all metrics.

Model Log-loss AUC Precision Accuracy F-measure

ARNN 0.059 0.919 0.978 0.909 0.936

Baseline ARNN (10%) 0.091 0.895 0.979 0.959 0.967

GAN ARNN (50%) 0.058 0.937 0.979 0.914 0.939

AALAD 7.764 0.600 0.960 0.513 0.655

Table 5.3: Theoretical results on top-line models

In summary, the GAN supported ARNN model outperforms all other models in terms of Log-

loss, AUC and precision. This model was capable of outperforming the standard ARNN model by

all measures, and most importantly Log-loss and AUC. The increase of AUC by 0.018 is impressive

due to the fact that the ARNN model AUC was already very high at 0.919. Both Log-loss and

AUC are also superior to those in the replication case in Section 5.2. Thus, this approach shows

a high potential in improving model performance by expanding the representation of the minority

population in an unbalanced dataset.
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5.4 Practical results

In this section, the budget allocation results are presented. These are summarised in four plots

displaying CPA, number of achieved conversions, CVR and CPA divided by the benchmark CPA

(total cost / all campaigns) w.r.t. budget as a fraction of the total budget (1, 1/2, 1/4, 1/8, 1/16,

1/32 and 1/64). Furthermore, the budget allocation results are discussed only for the top-line

models from Table 5.3, with the AALAD model being left out. The remaining plots can be found

in Appendix A. Note that the entire budget being allocated does not mean that all of it is used.

Instead, it means that the budget is allocated across channels that may not use all of it, thereby

leaving the budget unemployed.

The ARNN model budget allocation has a CPA that peaks at a quarter of the budget. No-

ticeably, the CPA sharply falls to about 0.32 when half the budget is allocated. The number of

conversions and the CVR steadily increase with the budget, however, the conversion rate only

reaches 0.018, when budget allocations are depleted. Thus, the conversion rate and the CPA are

about 30% and 35% smaller than if all the campaigns in the test set are funded, respectively.

Figure 5.2: Budget Allocation Results for ARNN model

The ARNN baseline budget allocation displays very similar patterns to that of the ARNN

model. The CPA peaks at a quarter of the budget with the conversions almost linearly falling to

a minimum as more budget is used. The CVR increases with the budget at a similar pace to that
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of the ARNN model. Nonetheless, the conversion rate only peaks at around 0.018, which puts the

best performance at an equal level to that of the ARNN model.

Figure 5.3: Budget Allocation Results for ARNN baseline with 10% conversions

The GAN supported ARNN model budget allocation produces a CPA that largely varies in

the budgets smaller than a quarter of the full budget. The CVR increases with higher budget

and reaches similar levels to that of the ARNN and baseline ARNN models. Hence, the budget

allocation is still incapable of outperforming the test set CVR of 0.0256.
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Figure 5.4: Budget Allocation Results for GAN supported ARNN model with 50% conversions

Ultimately, the budget allocations are very similar across the three models. In every case, the

best CVR is achieved with all of the budget being allocated across channels. This also drives down

the CPA which is at about 35% lower than the baseline but with a roughly 30% lower CVR.

6 Conclusion

This research paper aims to answer the research question To what extent can Generative Adversarial

Networks alleviate the unbalanced dataset problem and improve the Attribution modelling of the

online digital campaign data? supplemented by three research sub-question focusing on the artificial

data generation and anomaly detection to solve for the unbalanced dataset problem, and budget

allocation to take on the Attribution modelling challenge. To tackle all of the above, two models

were developed. The first model is the GAN supported ARNN model motivated by Ren et al.

(2018) and Goodfellow et al. (2014), which aims to improve the ARNN model performance by

modelling the conversion sequence distribution and then generating artificial conversion sequences

to balance the dataset on which a standard ARNN model is then trained. The second model is the

AALAD model motivated by Zenati et al. (2018), which treats conversions as anomalies and tries to

distinguish between the non-convergent sequences and their anomalous counterparts - convergent

sequences.
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The GAN supported ARNN model was able to outperform the ARNN model trained on the

original training set, the baseline ARNN and the AALAD models. It was able to do so with superior

Log-loss and AUC versus all other models. Furthermore, it produced more accurate estimates than

the ARNN model, while the top accuracy was obtained by the baseline ARNN model. These results

show that GANs can be successfully used to generate artificial data to improve the theoretical per-

formance of the Attribution model. Beyond that, this result suggests that this approach can prove

to be successful in other applications outperforming under-sampling and over-sampling approaches.

The AALAD model was implemented to test whether treating the Attribution challenge as

an anomaly detection problem would be successful. The results show that this approach has not

worked at all, under-performing all other models by a significant margin in Log-loss, AUC, Precision,

Accuracy and F-measure. This may have happened due to several reasons. One of the causes may

be the structure of the Generator, which was designed to approximately invert the ARNN model

used as the Discriminator. Further, the AALAD model may not have been able to converge to an

optimal solution. Last but not least, the Encoder may have not been able to properly invert the

Generator. While all of the above may have been the cause, this research suggests that GANs for

Anomaly Detection cannot improve the Attribution model performance.

With regards to the practical performance, the ARNN, baseline ARNN and GAN supported

ARNN models all performed very similarly. The best CPA and CVR were achieved when the entire

budget was allocated towards marketing campaigns, yet the CVR still remained lower than the CVR

of the test set. This is also seen in the paper by Ren et al. (2018). However, as mentioned in the

Methodology, the Criteo dataset is not fit to test budgeting frameworks that would be implemented

in real life, which is why the approach from Ren et al. (2018) is used. Hence, it makes sense why

the approach is not successful.

To conclude, the results of this research suggest that the Generative Adversarial Networks can

be successfully used to generate artificial data that can supplement model training and alleviate

the unbalanced dataset problem. However, the results also indicate that the Generative Adversarial

Network architecture is not able to improve Attribution modelling of the digital campaign data.

One of the key areas to explore in future research is comparing Generative Adversarial Networks

to other data augmentation techniques. For example, Synthetic Minority Oversampling Technique

(SMOTE) is a data augmentation method invented by Chawla et al. (2002) that works by inter-

polating new data points based on neighboring minority class samples. Chawla et al. (2002) show

that this approach improves the AUC measure across all experimental datasets in their research
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paper. On the other hand, Blagus and Lusa (2013) find that SMOTE is mostly beneficial in low-

dimensional data settings. Thus, it would be insightful to learn where the Generative Adversarial

Networks take lead and where other data augmentation techniques triumph.

Another key area that should be explored is related to the fact that Neural Network-based

methods require a thorough tuning process to arrive at a model specification that is close to optimal.

The most evident example for this is that the ARNN model was able to perform close to the results

of Ren et al. (2018) but with a noticeable difference. And while the GAN supported ARNN model

outperformed all other candidates, the AALAD model far under-performed all the models used in

this research paper and was not able to adequately fit the non-convergent dataset to classify the

convergent sequences as anomalous. This shortcoming took place due to computational and time

constraints. Thus, dedicating more computing power and time to model specifications can yield

superior models and results, where most importantly the AALAD model could prove to be effective.

Alternatively, an attempt to develop or adapt a different anomaly detection technique could prove

to be successful at detecting convergent sequences.
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Appendix A Budget allocation results

Figure A.1: Budget Allocation Results for ARNN model

Figure A.2: Budget Allocation Results for ARNN baseline with 10% conversions
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Figure A.3: Budget Allocation Results for ARNN baseline with 30% conversions

Figure A.4: Budget Allocation Results for ARNN baseline with 50% conversions
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Figure A.5: Budget Allocation Results for GAN supported ARNN model with 10% conversions

Figure A.6: Budget Allocation Results for GAN supported ARNN model with 30% conversions
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Figure A.7: Budget Allocation Results for GAN supported ARNN model with 50% conversions
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Appendix B Code overview

All Python scripts below are in the Jupyter notebook format. The first three scripts are dedicated to

replicating the results from Ren et al. (2018). The next five scripts are dedicated to the contribution

of this research.

data sampling replication.ipynb Samples the dataset to only include sequences of minimal

length 3 and maximal length 20 to decrease computational demand for any preprocessing steps.

The output is a csv file.

data preprocessing replication.ipynb Prepossesses the dataset according to the steps out-

lined in Section 3.2 to replicate results found in Ren et al. (2018). The outputs are two csv files,

one containing the train set data and the other containing the test set data.

attribution model replication.ipynb Implements the ARNN model to replicate results

found in Ren et al. (2018). The outputs are a txt file containing theoretical performance results, a

csv file containing budget results, and a PyTorch file with the trained ARNN model.

data sampling.ipynb Samples the dataset to only include sequences of minimal length 20 and

maximal length 31 to decrease computational demand for any preprocessing steps. The output is a

csv file.

data preprocessing.ipynb Prepossesses the dataset according to the steps outlined in Section

3.2. The output are two csv files, one containing the train set data and the other containing the

test set data.

attribution model.ipynb Implements the ARNN model. The outputs are a txt file containing

theoretical performance results, a csv file containing budget results, and a PyTorch file with the

trained ARNN model.

attribution model with replication.ipynb Implements the Baseline ARNN model. The

outputs are a txt file containing theoretical performance results, a csv file containing budget results,

and a PyTorch file with the trained ARNN model.

gan supported attribution model.ipynb Implements the GAN ARNN model. The outputs

are a txt file containing theoretical performance results, a csv file containing budget results, and

three PyTorch files of the trained ARNN, Generator and Critic models.

attribution via gan anomaly.ipynb Implements the AALAD model. The outputs are a

txt file containing theoretical performance results, a csv file containing budget results, and three

PyTorch files of the trained Generator, Encoder and Dxz models.
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