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1. Introduction 
1.1. Lung cancer 

Lung cancer is the largest cause of cancer-related deaths worldwide (Bray et al., 2018). Incidence is 
highest in Europe, North America and parts of Asia; and quickly rising in developing nations (Bray et 
al., 2018). Smoking is by far the biggest risk-factor in lung cancer and creates familiar patterns in 
incidence and mortality across the world as tobacco companies successfully introduce their product 
and are subsequently reined in by tobacco control policies (de Groot et al., 2018; Malhotra et al., 
2016). This pattern usually happens in men first, followed by women. The US were the first to reach a 
peak for lung cancer incidence in 2005 and it has been decreasing ever since (Barta et al., 2019). In 
Belgium, like in many European nations, the overall incidence continues to increase as the decreasing 
incidence in males is offset by a continued increase in females (Barta et al., 2019; Belgian Cancer 
Registry, 2018a). Countries in the developing world seem destined to repeat these patterns as 
tobacco companies shift their marketing and lobbying efforts to territories with less comprehensive 
tobacco control policies. The greater socio-economic inequality, inconsistent access to healthcare 
and greater environmental contamination in these regions will likely aggravate the issue. Apart from 
smoking, about a quarter of lung cancer diagnoses happen in people who have never smoked (Sun et 
al., 2007). Other risk-factors include radon and asbestos exposure, air pollution, ionising radiation, 
chronic obstructive pulmonary diseases (COPD) & genetic predisposition (Malhotra et al., 2016). The 
Belgian cancer registry has been collecting data on cancer diagnosis and follow-up since the mid 90s 
and registers 8.000 new lung cancer diagnoses every year (Belgian Cancer Registry, 2018a).  

 
Figure 1: Histological subtypes of lung cancer (Bender, 2014) 

Lung cancer can be divided in two main types: small-cell lung cancer (SLCL) and non-small cell lung 
cancer (NSCLC) (Bender, 2014). More than 80% of lung cancer diagnoses are non-small cell lung 
cancers (NSCLC).  NSCLC, in turn, branches out in three subtypes based on the cancer’s cellular 
origins. Adenocarcinoma (ADC) originates in mucus-secreting cells, squamous cell carcinomas start in 
the squamous cells that make up the inner lining of the lungs, while large cell carcinoma grows from 
undifferentiated cells in any part of the lungs (Figure 1) (Bender, 2014).  
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Early stage lung cancer can often successfully be treated with surgery and radiation therapy. Yet 
early screening programs for lung cancer are virtually non-existent and remain a hotly debated topic 
among health economists (Shojaee et al., 2017). Lung cancer symptoms, like coughing and chest 
pain, usually only appear when the cancer has progressed. As a result, more than 70% of all lung 
cancers are locally advanced (stage III) or metastatic (stage IV) at diagnosis (Belgian Cancer Registry, 
2018b). For decades the only available therapy for these unresectable cancers was chemotherapy 
and expectations were grim (Lu et al., 2019). Advanced stage lung cancer inevitably progresses and 
five-year survival was less the 5%. The gradual introduction of precision medicine in the last decade 
has improved this outlook and patient subgroups receiving personalised treatment are exceedingly 
extending their overall survival and quality of life (Joshi et al., 2020).   

1.2. Precision medicine & immunotherapy 

Joshi et al. (2020) describe the advent of precision medicine and the promise it holds for improving 
the overall survival (OS) and health-related quality of life (HRQoL) of lung cancer patients. Precision 
medicine refers to the tailoring of treatments based on biomarkers in a subset of patients. In cancer, 
these biomarkers are usually specific oncogenic drivers. Two types of precision medicine exist. 
Targeted therapies are therapeutic agents aimed at stopping hyperactive cellular proliferation 
pathways caused by a mutation in a specific gene. They are usually gene- and tissue-specific although 
some have been successfully validated in tumours with the same mutation from different tissues or 
even in tumours with a different mutation. Immunotherapies are therapies that target the 
interaction between cancer cells and the immune system, they are often tissue-agnostic and have 
shown promising results in many cancer types. Unlike targeted therapy that can only be used in the 
minority of patients that presents with a actionable gene mutation, immunotherapy has the 
potential to complement or even replace chemotherapy as the standard first-line treatment in 
advanced cancer (Joshi et al., 2020). 

Majeed et al. (2021) give an overview of the history and future perspectives of targeted therapy in 
lung cancer, which have only proven effective in non-squamous NSCLC. The first therapies were 
developed after the discovery of EGFR-activating mutations in subsets of patients. Currently, third 
generation EGFR Tyrosine Kinase inhibitors (TKIs) are being evaluated in early phase trials. Other 
activating mutations have been targeted with TKIs as well. ALK & ROS1 TKIs have become an 
indispensable element in the arsenal of non-squamous NSCLC treatment in the last decade, while 
more recently NTRK TKIs have also proven to increase survival in patients with NTRK fusions. Apart 
from TKIs, drugs with different mechanisms of disrupting oncogenic drivers have been launched for 
patients with specific BRAF, MEK and RET alterations. Although targeted therapies are very effective, 
only 20 to 30% percent of lung cancer patients have an actionable mutation (Majeed et al., 2021).  

The current advances in immunotherapy-treated lung cancer were reviewed by Lim et al. (2020). Like 
targeted therapies, immunotherapies are a group of therapies with various different mechanisms of 
action. Immune checkpoint inhibitors (ICIs) are currently the most relevant for lung cancer and are 
effective in both squamous and non-squamous NSCLC. After discovering that many cancer cells 
disarm the immune system by over-expressing programmed death ligand 1 (PD-L1), drugs blocking 
PD-L1 from binding on host T-cells became interesting drug candidates. ICIs like pembrolizumab and 
nivolumab have become an effective treatment option for many different types of cancer, often 
drastically improving overall survival chances (Lim et al., 2020). The initial clinical trials for these 
drugs generated tremendous gains in overall and progression free survival in patients with a very dim 
survival rate, forcing many national health care payers to break the bank and reimburse these 
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therapies well above the cost-effectiveness threshold. In spite of this, the benefits from 
immunotherapy are far from guaranteed. The European Society of Medical Oncology (ESMO) advises 
first-line pembrolizumab for patients with tumours expressing PD-L1 in more than 50% of the cells, 
even though an objective response was achieved in less than half of the patients in clinical trials 
(Planchard et al., 2020; Reck et al., 2016). Tumours with a PD-L1 expression score of less than 50% 
are advised to receive first-line pembrolizumab and chemotherapy combination therapy to which 
even fewer respond (Cuppens et al., 2020; Gandhi et al., 2018; Planchard et al., 2020). 

In 2005, 1.6% (roughly 50 million euros) of the Belgian healthcare budget for pharmaceutical 
specialties was spent on precision oncology drugs. In 2021, around 10% of the budget, or more than 
800 million euros, will be spent on precision oncology drugs (Van Dyck et al., 2016). Though these 
therapies have increased the OS and HRQoL of cancer patients, the high costs and seemingly random 
distribution of benefits have raised concerns among decision makers and policy analysts (Annemans, 
2018; Van Dyck et al., 2016). Effective diagnostics to better stratify patients, find actionable targets 
and/or response-predicting biomarkers are of crucial importance to the cost-effective use of these 
hyper expensive treatments, yet they are often treated as an afterthought (Govaerts et al., 2020). In 
NSCLC, as in oncology as a whole, better diagnostics can lead more people into potentially life-saving 
clinical trials and reduce the budget impact of immunotherapies. 

1.3. Current diagnostic practices 

Diagnostic cascades are often a complex combination of techniques to which newly discovered 
biomarkers are added in a modular fashion, leading to inefficient pathways and long turnaround 
times (Roelofsen-De Beer et al., 2020). For medical laboratories, especially those subject to ISO 
certification and national accreditation bodies, validating and implementing new biomarkers at the 
same pace as they are discovered presents a big challenge (Roelofsen-De Beer et al., 2020). 
Additionally, diagnostic tests are often reimbursed months, if not years, after their counterpart 
therapy (Govaerts et al., 2020). Leaving already underfinanced and understaffed labs at the grace of 
diagnostic manufacturers to prove the clinical and health economic value of tests that can improve 
patient outcomes in their hospital.  

In NSCLC the standard of care cascade is a combination of histopathology, immunohistochemistry 
(IHC), fluorescent in situ hybridization (FISH) and molecular testing (Pauwels et al., 2016, 2018). Some 
biomarkers can be multiplexed in a single test, others need individual assessment. As a result, the 
sequential strategy used to assess NSCLC subtypes differs from one laboratory to another, leading to 
delays in time to treatment with potentially dramatic consequences (Neal et al., 2015; van de Ven et 
al., 2019). In an attempt to streamline the diagnostic cascade pathologists from the Belgian Society of 
Pathology (BSP) published the decision tree in Figure 2 (Pauwels et al., 2016, 2018). Samples with a 
clear squamous morphology are advised to be tested for PD-L1 expression to determine suitability 
for immunotherapy. Non-squamous samples require additional molecular testing. At a minimum, 
EGFR mutations, ROS1 fusions and ALK fusions need to be assessed. In addition to the BSP guidelines, 
ESMO advises testing for NTRK fusions, MET exon 14 skipping and BRAF, PIK3CA and ERRB2 
mutations (Planchard et al., 2020). Mutations are commonly tested by next-generation DNA 
sequencing. Fusions genes can be visualized with IHC probes and confirmed with FISH. Due to the 
increasing amount and importance of clinically relevant fusion genes, the Belgian Commission for 
Personalized Medicine (ComPerMed) recently added RNA sequencing to the NSCLC workflow as an 
alternative to IHC + FISH testing (ComPerMed, 2021). Although effective, RNA sequencing requires 
some inhouse expertise in molecular biology and bio-informatics and turnaround times remain low 
even in advanced labs (UZ Ghent, 2021; UZ Leuven, 2021).  
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Figure 2: Sequential diagnostic cascade of NSCLC samples in Belgium as advised by Pauwels et al., (2018). Red box marks 
start of molecular testing, potential place of comprehensive genomic profiling. 

Whole genome sequencing has long been thought to be the eventual endpoint of the continuous 
innovation in genomic technology. In WGS the entire genome of a normal and a tumour cell are 
sequenced and aligned, revealing all genomic differences between the two (Nakagawa & Fujita, 
2018). In oncology diagnostics, it could replace all currently used targeted sequencing panels, detect 
DNA mutations and RNA fusions and future-proof the diagnostic cascade for yet-to-become 
actionable alterations (Nakagawa & Fujita, 2018). In 2016, the Dutch research organisation ZonMw 
assessed the potential of WGS in oncology in the TANGO project. Preliminary results presented at 
conferences at their annual symposium are freely available on the Zenodo platform. For now, the 
project concluded that WGS is not cost-effective in metastatic NSCLC (Tango project researchers, 
2020).  

Comprehensive Genomic Profiling (CGP) is a compelling alternative to WGS in oncology diagnosis. 
Since it doesn’t sequence two whole genomes it is more feasible in sequencing costs and data 
analytics. Yet its scope is wide enough to enable the detection of all mutations and fusions currently 
known to be relevant in oncology, meaning it could be a first-line molecular test across all cancer 
types and lead patients without currently actionable biomarkers to ongoing clinical trials. CGP has 
been shown to perform to the same standard as WGS for the scoring of aggregate markers such as 
tumour mutational burden (TMB), Human Leukocyte Antigen (HLA) diversity and microsatellite 
instability (MSI) (Szustakowski et al., 2018), as such it could lead to more effective use of 
immunotherapy. In lung cancer, CGP offers the additional benefit of easing the pressure to get a high 
tumour yield from the biopsy and reducing the chance of needing a re-biopsy (Kim & Tsao, 2014; 
Planchard et al., 2020).  

Research on CGP’s clinical value and applicability was previously published by researchers at 
RadboudUMC (Kroeze et al., 2020). Earlier this year the Belgian Society of Medical Oncology (BSMO) 
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partnered with several companies with the intention to study the clinical value of CGP using 
Illumina’s TSO500 panel in the BALLETT study (Press Release, 2021). With research to CGP’s clinical 
value ongoing, very little evidence exists regarding the health economic value of CGP. The 
introduction of a new, more expensive diagnostics will require will require proof of cost-effectiveness 
before it can become part of the standard of care (SoC). 

1.4. Health economic modelling  

Health technology assessment in diagnostics and genomics is subject to much debate and 
methodologies developed for drugs or medical devices are not necessarily adequate for sequencing-
based tests (Wordsworth & Buchanan, 2019). Establishing an adequate comparator can be difficult as 
the standard of care might differ from one lab to another (Buchanan & Fermont, 2016). Generating 
average costs and outcomes over a lifetime horizon is near impossible since patients are usually not 
followed up longitudinally and the analytical context might change with different samples (Buchanan 
& Fermont, 2016). Moreover, the great ethnical and regional variability in the genetics of a 
population affects the efficacy of a genomic diagnostic. As a result, many diagnostic tests enter the 
market under a Research Use Only (RUO) label. 

Capturing the value of CGP as a first-line diagnostic in precision oncology is beyond the scope of this 
work. The framework for many facets of its value is still being developed and real-world data to 
support definitive conclusions is missing. Instead, this report uses two early models to simulate the 
health economic effects of introducing CGP. First, the value of finding more genomic alterations and 
sending more patients into potentially life-saving clinical trials is assessed. Second, the cost-savings 
that can be generated by having more adequate predictors of durable response to immunotherapy 
are estimated. Though these benefits apply to all cancer types that can be treated with targeted and 
immunotherapy, this case study focusses on NSCLC, a cancer with a complex diagnostic cascade and 
a correspondingly complicated arsenal of treatments.  

 

1.5. Objective and Research Questions 

This evaluation neatly fits in the ongoing assessments of comprehensive genomic profiling as a 
standard first-line diagnostic test in oncology. Research on the clinical value of CGP for NSCLC is 
ongoing, but reimbursement agencies will require proof of cost-effectiveness before it can become 
part of the standard of care (SoC). This work can provide more information for the decision makers 
deciding on reimbursement for diagnostic practices. 

Main research question: What is the health economic value of CGP in the diagnosis of metastatic,  
non-squamous NSCLC?  

1) What is the value of finding more gene alterations in metastatic, non-squamous NSCLC 
patients and entering more patients to clinical trials? 

2) What savings can be made by stratifying patients for immunotherapy using biomarkers 
resulting from CGP rather than just PD-L1 expression?  
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2. Research Methods 
2.1. Overview 

This report aims to determine the value of CGP as a standard first-line diagnostic in patients with 
metastatic, non-squamous NSCLC in Belgium. Two effects of introducing CGP on the use of therapy 
are analysed.  

Firstly, the value of finding additional gene alteration and sending more patients to clinical trials is 
determined using a decision model comparing CGP with the SoC cascade in the Belgian health care 
setting. CGP has a much broader scope than the SoC in terms of genomic biomarkers and is assumed 
to have a positive impact on the fraction (%) of patients being identified with a gene alteration. If 
more gene alterations are identified, more patients with metastatic, non-squamous NSCLC are 
expected to be treated with targeted therapies, which will result in positive health effects. Within the 
decision model, a partitioned survival model was build to allow modelling of the costs and effects for 
patients with and without an identified gene alteration. Model inputs for this partitioned survival 
model were taken from the BIOMARKERs study, an observational study  conducted between April 
2012 and July 2014 in 17,664 patients, that compared patients with and without an identified gene 
alteration (Barlesi et al., 2016). In the decision model the outputs from the partitioned survival 
models are weighted against the distribution of the patients across both groups (gene alteration 
identified and unidentified) by the diagnostic cascade. Finally, the costs of the diagnostics (GCP and 
SoC cascades) are taken into account to result in average costs and effects of CGP versus SoC 
resulting in an ICER/LY (Figure 3a).  

In a second part of this report the more efficient stratification of patients for immunotherapy and 
chemotherapy by CGP is analysed. Again, a decision model comparing CGP with the SoC cascade in 
the Belgian health care setting is developed. Currently, stratification for immunotherapy or 
immunotherapy + chemotherapy is done solely based on PD-L1 expression levels and only in a 
minority of patients an objective response is achieved. Using a combination of biomarkers from CGP 
is expected to lead to better prediction of susceptibility and resistance to immunotherapy. Certain 
patient subgroups, in which no response could have been achieved with immunotherapy, can 
immediately be treated with much cheaper chemotherapy. Partitioned survival models are created 
to generate average costs and outcomes for each patient subgroup as well as for non-responders. 
Model inputs are taken from the KEYNOTE-024 and -189 trials, comparing the effects of 
immunotherapy and/or chemotherapy in patients with different levels of PD-L1 expression (Gandhi 
et al., 2018; Reck et al., 2016). The decision model then weights the outputs from the partitioned 
survival model against the distribution of patients in each subgroups. Again, the final step is to take 
the costs of diagnostics into account to result in average cost savings per patient (Figure 3b).  
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Figure 3: Overview of the analyses in this report. (a) Cost-effectiveness analysis of identifying genomic markers using CGP or 
the SoC cascade. (b) Cost-savings model by using CGP or SoC cascade to stratify patients for immunotherapy. (c) Partitioned 
survival model used to determine average costs and outcomes for each patient subgroup. 

2.2. Partitioned survival models  
2.2.1. Model characteristics 

All models are constructed following the guidelines of the Belgian Healthcare Knowledge Centre 
(KCE) (Swartenbroeckx et al., 2012). All costs are sourced with a healthcare payer perspective as 
required, but no evidence exists about the HRQoL of targeted therapies or immunotherapies as a 
whole. Therefor Life Years (LYs) gained, rather than Quality-Adjusted Life Years (QALYs) gained, are 
used as a primary outcome. The introduction of CGP is assumed to result in more patients having 
access to targeted therapies and more efficient use of immunotherapy. Since targeted therapies are 
generally accepted to be associated with higher HRQoL compared to conventional chemotherapy, 
and non-responders to immunotherapy do not lose any utility from not getting ineffective treatment, 
using LYs rather than QALYs is a warranted and conservative approach.  

The KCE requires a time horizon that catches all relevant costs and outcomes associated with 
patients in each group. Traditionally, cost-effectiveness studies on metastatic NSCLC have used 10-
year horizons since 5-year survival rate has been lower than 5% for decades. However, both targeted 
therapies and immunotherapies have significantly increased that number, some patient subgroups 
even reaching 20-30% 5-year survival rates (EB et al., 2019; Lin et al., 2016). Unfortunately, most of 
these therapies have only been launched in the last 5 to 10 years and no long-term survival data 
exists. All partitioned survival models will therefore use a 20-year horizon. Cycle length is set at 3 
weeks. All future costs and outcomes are half-cycle corrected when appropriate and discounted to 
account for time preference. As required by the KCE the discount rate is set at 3% for costs and 1.5% 
for outcomes. The discount rate is used to generate a discount factor (Dn) for every year of the 
horizon using the following formula:  

 Dn= 1 / (1+r)n 

Dn= discount factor 
r = discount rate 

 n = number of years ahead 
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2.2.2. Gene alteration identified vs unidentified – clinical input 

The partitioned survival model for patients with and without an identified gene alteration is based on 
the BIOMARKERs study by the French Cooperative Thoracic Intergroup (IFCT) (Barlesi et al., 2016). 
The researchers compared 17,774 non-squamous NSCLC patients and determined PFS and OS for 
patients with an identified gene alteration in EGFR, ERBB2, KRAS, BRAF, PIK3CA and ALK and for 
patients without a gene alteration in these genes. Patients got treatment based on decisions by the 
treating physician who either adapted treatment based on the available genomic information or 
prescribed a chemotherapy regimen. Patients could also be entered into clinical trials or receive best 
supportive care only. Three third generation platinum-based chemotherapy doublets were available, 
with cisplatin/pemetrexed the favoured option. Targeted therapies consisted of first-generation 
EGFR TKIs and crizotinib, an ALK TKI.  

The average distribution across the therapy options for the group with and without an identified 
gene alteration can be found in table 1. The full distribution of first- and second-line therapies in the 
BIOMARKER study can be seen in supplementary table 1. Patients were assumed to receive first line 
treatment until progression and an average of 6 cycles of second line therapy after progression. 

Distribution 
 First line Second line 

Gene alteration 
identified 

Gene alteration 
unidentified 

Gene alteration 
identified 

Gene alteration 
unidentified 

Targeted therapy 31% 1% 21% 12% 
Chemotherapy 46% 55% 25% 25% 
Trial 3% 3% 2% 3% 
BSC only 27% 30% 47% 50% 

Table 1: Treatment distribution for different patient groups in the BIOMARKERS study. Adapted from Barlesi et al., (2016). 

The Kaplan-Meier (KM) PFS and OS curves from the BIOMARKERs study presented by Barlesi et al. 
(2016) are used to estimate the underlying individual patient data (IPD) using the methods described 
by Hoyle & Henley (2011). The IPD are fit and extrapolated to the lifetime horizon along four distinct 
parametric distributions (exponential, Weibull, lognormal and loglogistic). All OS and PFS KM curves 
and corresponding parametric distributions are presented in table 2. The fit between each 
parametric curve and the actual KM data is evaluated visually and by calculating the Akaike 
Information Criteria with the R script also provided by Hoyle & Henley (2011). 

Although the lower AIC suggests the lognormal curve is a better fit for both targeted therapy and 
chemo PFS, the Weibull curve is a more clinically plausible option. The heavy tail of the lognormal curve 
is unlikely to fit the real world as a small percentage of patients would have to survive progression-
free for more than a decade. Moreover, given that Weibull is the best fit for the OS curve, choosing a 
lognormal distribution for PFS would mean the proportion of patients surviving progression free is 
higher than the overall survival could allow. Once more, the lack of long-term survival data on targeted 
therapies creates considerable uncertainty, as the lognormal curve might be a better fit for the higher 
overall survival rates of targeted therapies. This is explored in sensitivity analysis. 
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PFS 

  

Gene alteration identified Gene alteration unidentified 

exponential Weibull lognormal loglogistic exponential Weibull lognormal loglogistic 

12249.83 12172.58 12120.88 12139.9 3878.486 3863.541 3834.025 3836.769 

 
OS 

  
Gene alteration identified Gene alteration unidentified 

exponential Weibull lognormal loglogistic exponential Weibull lognormal loglogistic 

10654.88 10564.59 10569.72 10581.41 3555.22 3551.243 3563.00 3557.80 
Table 2: PFS and OS KM curves and parametric distributions to extrapolate the data. Corresponding AIC for the fit of each 
parametric distribution to the KM data. 

2.2.3. Immunotherapy models – clinical input 

The KEYNOTE trials are a series of randomized controlled trials (RCTs) sponsored by Merck Sharp & 
Dohme (MSD) to test the effectiveness of their immunotherapy pembrolizumab in different patient 
populations and against different comparators. In KEYNOTE-024, patients with advanced NSCLC, a 
PD-L1 score ≥ 50% and no actionable alterations in EGFR and ALK received 35 cycles of 
pembrolizumab or a platinum-based chemotherapy doublet (Reck et al., 2016). In KEYNOTE-189, 
patients with advanced NSCLC and no actionable alterations in EGFR and ALK received 35 cycles of 
pembrolizumab + a platinum-based chemotherapy doublet or a platinum-based chemotherapy 
doublet + placebo (Gandhi et al., 2018). The KEYNOTE-189 researchers presented results stratified by 
PD-L1 expression level (Gandhi et al., 2018).  
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Both clinical trials showed a significant increase in PFS and OS in the pembrolizumab-treated patient 
group. An objective response rate was reached in 44.8%, 48.4% and 32.3% of PD-L1 ≥ 50%,  50% > 
PD-L1 ≥ 1 % and PD-L1 < 1 % patients, respectively (Gandhi et al., 2018; Reck et al., 2016). As a result, 
ESMO guidelines were updated to make pembrolizumab the first-line therapy for advanced NSCLC 
patients with PD-L1 score ≥ 50%; and pembrolizumab + chemotherapy the first-line therapy for 
advanced NSCLC patients with a 1% ≤ PD-L1 score < 50% and PD-L1 negative patients (PD-L1 < 1%) 
(Planchard et al., 2020). 

Using the data from KEYNOTE-024 and -189, three separate partitioned survival models are 
constructed to quantify average costs and outcomes for populations with PD-L1 ≥ 50%, 50% > PD-L1 
≥ 1 % and PD-L1 < 1 %. PFS and OS KM curves from the trials are extrapolated and fit to parametric 
distributions using the same method as before (section 2.2.2.). All KM curves and AIC scores can be 
found in the supplementary table 2-4 in the appendix. Similar to the previous model, the Weibull 
distribution is the best choice to model PFS and OS in all models regardless of AIC scores, since the 
heavy tails of the lognormal and loglogistic distributions make them clinically implausible.    

2.2.4. Cost inputs  
2.2.4.1. Drug acquisition costs 

A targeted therapy proxy was created based on the average cost per day of all patent protected 
targeted therapies for NSCLC currently reimbursed by the Belgian healthcare payer (table 3). This 
proxy will be used to model costs for targeted therapy. Given that this is an average, the uncertainty 
this creates will be investigated in sensitivity analysis.  

Name Price/tablet Daily/dosage Cost per day Target 
Ceritinib  €             31.20  3  €       93.60  ALK 
Afatinib  €             71.85  1  €       71.85  EGFR 
Osimertinib  €          215.33  1  €     215.33  EGFR 
Crizotinib  €             82.15  4  €     328.60  ALK + ROS1 
Alectinib  €             25.87  8  €     206.93  ALK 
Lorlatinib  €          184.59  1  €     184.59  ALK + ROS1 
Dabrafenib  €             60.41  4  €     241.64  BRAF 
Trametinib  €          227.25  1  €     227.25  BRAF + MEK 
Larotrectinib  €          130.00  2  €     260.00  NTRK 
Source Riziv –  

Geneesmiddelen 
(web 
application) 

Package inserts  Cancer.org 

  Average  €     203.31   
Table 3: A targeted therapy proxy to be used in the gene alteration identified vs unidentified model. The proxy is based on 
the average cost per day of all targeted therapies patent-protected and currently reimbursed in Belgium. 

Costs for patients on chemotherapy are based on the most commonly used platinum-based 
chemotherapy doublet regimen in advanced NSCLC, three weekly intravenous injections of 500 
mg/m2 pemetrexed and 75 mg/m2 cisplatin for 6 cycles followed by three weekly 500 mg/m2 
pemetrexed maintenance therapy. Costs for pembrolizumab are calculated for 200 mg once per cycle 
intravenously.  

Dose per cycle and dosage are taken from package inserts. Unit price are sourced from RIZIV/INAMI’s 
Geneesmiddelen web application on which drug acquisition costs for the Belgian health care payer 
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are published (RIZIV/INAMI, 2021). When more than one option was available cheapest price was 
taken. Unit prices are multiplied with units per cycle to obtain costs per cycle (Table 4). 

 
Targeted 
therapy 
(proxy) 

Pembroli-
zumab 

Platinum doublet 
chemotherapy 

Pemetrex
ed 

mainten-
ance 

therapy 

Source 
Peme-
trexed Cisplatin 

Admin method Oral IV IV IV IV 

Package 
insert 

Doses per cycle 21 1 1 1 1 

Dosage 1 200 mg 500 
mg/m2 75 mg/m2 500 

mg/m2 

IV min/admin / 30 10 120 10 

Treatment 
duration TDP TDP 6 weeks 6 weeks After 6 

weeks 
BIOMARKER 
& KEYNOTE 

Formulation / 100 
mg/4ml 

500 mg 
100 mg 

100 mg 
50 mg 

500 mg 
100 mg 

Package 
insert 

 

Unit Price (€) 203.31 3460.26 422,23 
84,47 

40.80 
22.99 

422,23 
84,47 

Riziv – 
Genees-

middelen 
(web 

application)  

BSA (m2) 1.79 1.79 1.79 1.79 1.79 (Sacco et al., 
2010) 

Required units 
per cycle 21 2 1+4 1+1 1+4  

Costs/cycle  € 4,269.51 € 6,920.52 € 760.21 € 63.79 € 760.21  
Table 4: Calculation of drug acquisition costs per cycle using information from clinical trial regimens, package inserts and 
prices published by RIZIV. 

2.2.4.2. Premedication and concomitant medication costs 

Patients receiving platinum-based chemotherapy doublets receive pre- and concomitant medication 
to manage side effects and avert allergic reactions. Dose per cycle and dosage is sourced from 
package inserts, unit prices from Geneesmiddelen web application. Unit price is multiplied by units 
per cycle to obtain costs per cycle. 

 Dexamethasone Folic acid Vitamin b12 Source 
Admin method IM Oral IM 

Package insert Doses per cycle 3 31 1/3 
Dosage 5 mg 1 mg 1000 mg 

Unit Price (€) 1.52 1.50 120.00 Riziv – 
Geneesmiddelen  

Required units per 
cycle 

3 21 1/3  

Costs/cycle  € 4.56   € 31.50 € 40  
Table 5: Calculation of premedication and concomitant costs per cycle for patients on chemotherapy regimens. 
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2.2.4.3. Drug administration costs 

Intravenous therapy administration (chemotherapy and pembrolizumab) requires supervision from a 
trained oncologist and the infusion is prepared by a pharmacist. Sources for the costs per hour of 
these healthcare professionals come from the KCE manual for costing and are indexed using the 
Belgian Health Index as described in section 2.2.4.8. 

Medical specialist Hourly costs Source/comment 

Oncologist € 100.45 1/4 * half a day costs from KCE Report (Cleemput et al., 
2012), indexed from 2012 using Be-HI 

Pneumologist € 98.45 1/4 * half a day costs from KCE Report (Cleemput et al., 
2012), indexed from 2012 using Be-HI 

Radiologist € 173,41 1/4 * half a day costs from KCE Report (Cleemput et al., 
2012), indexed from 2012 using Be-HI 

Pharmacist € 61.70 Hourly costs from KCE Report (Cleemput et al., 2012), 
indexed from 2012 using Be-HI 

Table 6: Hourly costs for healthcare professionals in Belgium. 

 Pembrolizumab Chemotherapy Source 
Oncologist supervision 30 min 30 min 

KOL interview 
Pharmacist preparation  1 hr  1 hr 
Costs/cycle € 111.93 € 111.93  

Table 7: Calculation of drug administration costs per cycle for patients receiving intravenous therapy. 

2.2.4.4. Disease management 

Costs for healthcare resources used in disease management were based on the RIZIV/INAMI 
Nomensoft web application. Frequency of use was taken from a KOL interview. Radiologists were 
assumed to need 30 min for an MRI/CT scan. Forfaits for consultations/day visits in the oncology 
ward were separated by therapy (basic for oral tablets/targeted therapy, maxi forfait monotherapy 
for pembrolizumab, maxiforfait combitherapy for pemetrexed/cisplatin). 

 Costs Source/comment 
Outpatient 
consultation 

€ 50.28 Forfait oncologische basiszorg –  
Riziv Nomensoft (web application) 

Outpatient day 
visit monotherapy 

€ 127.47 Maxiforfait monotherapy oncologisch dagziekenhuis –  
Riziv Nomensoft (web application) 

Outpatient day 
visit combitherapy 

€ 171.02 Maxiforfait combitherapie oncologisch dagziekenhuis –  
Riziv Nomensoft (web application) 

Lab tests € 72.88 Sum of costs for hematological, renal & hepatic tests from 
Riziv – Nomensoft (web application) 

Tumour response 
assessment 
(MRI/CT) 

€ 132.66 Tomography –  
Riziv Nomensoft (web application) 

Table 8: Costs of healthcare resources used in disease management. 
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Targeted therapy proxy Pembrolizumab Chemotherapy 

SD PD SD PD SD PD 
Outpatient 
consultation 

1 1 0 0 0 0 

Outpatient day 
visit monotherapy 

0 0 1 1 0 0 

Outpatient day 
visit combitherapy 

0 0 0 0 1 1 

Oncologist 
consultation 

1 0 1 0 1 0 

Lab tests 1 0 1 0 1 0 
Tumour response 
assessment 
(MRI/CT) 

0,4 0 0,4 0 0,4 0 

Radiologist 
consultation 

0,2 0 0,2 0 0,2 0 

Costs/cycle € 294.01 € 50.28   € 414.75 € 171.02 
Source KOL interview 

Table 9: Calculation of disease management costs per cycle for all therapy groups before and after progression. 

2.2.4.5. Re-biopsy 

Costs for re-biopsy depend on the medical personnel and technique used for the intervention. 
Whether or not a re-biopsy is done depends on the advice of the tumour board. One third of the 
gene alteration known patients is assumed to need re-biopsy at progression. No re-biopsies are 
considered for patients with gene alteration unidentified or patients in the immunotherapy models. 

 Costs 

Frequency 

Source/comment Gene alteration 
identified 

Gene alteration 
unidentified, 

immunotherapy, 
chemotherapy 

Re-biopsy € 350,00 0.33 0 KOL Interview 
Table 10: Costs of re-biopsy for patients with a gene alteration identified who progress. 

2.2.4.6. Best supportive care & end-of-life 

Best supportive care costs for NSCLC patients were taken from a Dutch cost-effectiveness analysis of 
EGFR TKIs and indexed accordingly. End of life costs were taken from an international study of 
terminal care costs specific for lung cancer, converted and indexed. BSC and EoL are considered 
constant across therapy groups. 

 Costs Source/comment 
Best supportive 
care 

€ 1.895,98  BSC costs in the Netherlands from (Holleman et al., 2020) 
indexed from 2016 using Be-HI 

End of life costs € 5.215,47  Cancer patients end of life costs for Belgium from 
(Bekelman et al., 2016), converted to euro and indexed 

from 2010 using Be-HI 
Table 11: Costs per cycle for best supportive care and end of life costs per death. 
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2.2.4.7. Adverse events 

Adverse events for the targeted medicine proxy and the associated costs are sourced from a dutch 
cost-effectiveness study on first generation EGFR-TKIs (Holleman et al., 2020). Incidence of AE of 
Pembrolizumab and chemotherapy is taken from KEYNOTE-024, associated costs are taken from a 
French cost-effectiveness study based on the same trial.  

AE Costs Source/Comment 
ALT/AST increase  €            478.22  (Holleman et al., 2020) 
Anemia  €         2,012.85  
Anorexia  €            821.43  
Asthenia  €            837.92  
Colitis  €         3,625.77  (Chouaid, Loirat, et al., 2017) 
Decreased appetite  €            851.31  (Holleman et al., 2020) 
Diarrhoea  €         2,431.30  
Dyspnea  €            481.31  
Fatigue  €            837.92  
Nausea  €            750.31  
Neutropenia/Decreased 
neutrophil count  €         1,448.06  

(Chouaid, Loirat, et al., 2017) 

Paronychia  €         2,431.30  (Holleman et al., 2020) 
Pneumonitis  €         6,060.08  (Chouaid, Loirat, et al., 2017) 
Rash/Skin reaction  €         2,431.30  (Holleman et al., 2020) 
Stomatitis  €         4,435.46  
Thrombocytopenia/decreased 
platelet count  €            217.11  

(Chouaid, Loirat, et al., 2017) 

Type I Diabetes Mel.  €         8,119.96  
Vomiting  €            750.31  (Holleman et al., 2020) 

Table 12: Costs of treating adverse events sourced from cost-effectiveness studies of similar patient groups and treatments. 
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AE Incidence targeted 
therapy 

Incidence 
Pembrolizumab 

Incidence 
chemotherapy 

ALT/AST increase 0,02575 0 0 
Anemia 0 0,019 0,193 
Anorexia 0,0055 0 0 
Asthenia 0 0 0 
Colitis 0 0,013 0 
Decreased appetite 0,01075 0 0,027 
Diarrhoea 0,03825 0,039 0,013 
Dyspnea 0 0 0 
Fatigue 0,00925 0,013 0,033 
Nausea 0 0 0,02 
Neutropenia/Decreased 
neutrophil count 

0,0045 0 0,173 

Paronychia 0,0115 0 0 
Pneumonitis 0 0,026 0,007 
Rash/Skin reaction 0,06425 0,039 0,015 
Stomatitis 0,016 0 0,013 
Thrombocytopenia/decreased 
platelet count 

0 0 0,113 

Type I Diabetes Mel. 0 0,006 0 
Vomiting 0 0,006 0,007 
Average cost per patient          € 388.39              € 905.48  

 

Source (Holleman et al., 
2020) 

KEYNOTE-024 KEYNOTE-024 

Table 13: Costs for treatment of adverse events per therapy group. Frequency taken from clinical trials and/or literature. 

2.2.4.8. Indexes & conversion rates 

The Belgian Bureau of Statistics (STATBEL) maintains monthly and yearly records on the Belgian 
Health Index (B-HI). This index is used to index costs whenever necessary using the following formula. 

C2021= Cn * (B-HI2021/B-HIn) 

Cn= Original costs from year n 

Year Health Index 
 (base 2013)  Source/Comment 

2010 93,36 

(Health Index | Statbel, 2021) 

2011 96,22 
2012 98,77 
2013 100 
2014 100,4 
2015 101,45 
2016 103,58 
2017 105,49 
2018 107,35 
2019 108,92 
2020 110 
2021 110,64 
     
Euro to dollar conversion 
rate (avg. 2010) 

1.327 (Euro to US Dollar Spot Exchange Rates for 
2010, 2021) 

Table 14: Belgian health index and conversion rate US dollar to Euro for 2010. 
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2.3. Diagnostic decision models 
2.3.1. The diagnostic cascade 

Diagnostic decision models are used to compare the CGP cascade with the SoC diagnostic cascade. 
The CGP cascade consist of CGP and PD-L1 IHC (table 15d). The SoC cascade is based on the BSP and 
ESMO guidelines and the workflow published by ComPerMed (table 15a). Consulting a KOL revealed 
that RNA sequencing is an optional addition to the SoC and depends on the lab’s technical expertise 
and the willingness of the treating physician to wait for the longer turnaround time of RNA 
sequencing. Whether or not RNA sequencing is done affects both the costs of the diagnostic cascade 
and the biomarkers that are detected (RET fusions and MET exon 14 skipping can only be detected 
using RNA sequencing). For our base case analysis we assume that half the samples follow an SoC 
cascade without RNA sequencing as seen in table 15b, while the other half follows an SoC cascade 
with immediate DNA and RNA sequencing as seen in table 15c.  

Table 15: Biomarkers imperative in NSCLC diagnosis; consensus standard of care cascade and comprehensive genomic 
profiling according to ESMO, BSP and Compermed (Planchard et al., 2020; Pauwels et al. 2018; ComPerMed, 2021). 

 

 

 

(a) BIOMARKERS Method Use 
FISH IHC DNA 

seq 
RNA 
seq 
 

CGP 

EGFR mutations 
 

 ٧  ٧ EGFR TKI therapy 
ALK fusions ٧ ٧  ٧ ٧ ALK TKI therapy 
ROS1 fusions 

 
  ٧ ٧ ROS1 TKI therapy 

BRAF mutation 
 

 ٧  ٧ BRAF inhibitor therapy 
NTRK fusions ٧ ٧  ٧ ٧ NTRK TKI therapy 
RET fusions    ٧  RET inhibitor therapy 
MET ex. 14 skip    ٧  MET inhibitor therapy 
PD-L1 expression ٧ ٧     ICIs 
SOURCE (ComPerMed, 2021; Pauwels et al., 2018; Planchard et al., 2020) 

(b) Standard of care cascade – Option A 

Phase I: Simultaneous targeted DNA NGS Panel + IHC ALK + IHC ROS1 + IHC PD-L1 
Phase II: Confirmation FISH ALK & ROS1 
Phase II: TRK – IHC 

(c) Standard of care cascade – Option B 

Phase I: Simultaneous targeted DNA + RNA sequencing + PD-L1 

(d) Comprehensive Genomic Profiling 

Phase I: Simultaneous CGP + IHC PD-L1 
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2.3.2. Biomarker prevalence 

The diagnostic decision models weight the outputs from the partitioned survival model against the 
distribution of patients by each diagnostic cascade. This distribution is dependent on the prevalence 
of the biomarkers within the population.  

In the first decision model, the diagnostic cascade determines the proportion of patients on targeted 
therapy. The base case analysis is done with the biomarker prevalence reported in the BIOMARKERs 
study used to develop the corresponding partitioned survival model, an additional source from 
literature is added to use in scenario analysis (table 16a). The SoC cascade can detect all biomarkers 
in table 15a if it includes RNA sequencing, the SoC cascade without RNA sequencing does not detect 
RET fusions and MET exon 14 skipping. CGP can detect all biomarkers and will identify a gene 
alteration in the proportion of patients reported as unknown or wild type (WT). In how big a 
proportion of this group CGP will detect an alteration is impossible to predict. ICERs/LY resulting from 
the diagnostic model will therefore be presented with an additional 5, 10 and 15% genomic 
alterations identified as compared to the SoC cascade with RNA sequencing.  

The second decision model compares the stratification of patients for immunotherapy by both 
diagnostic cascades. In addition to PD-L1 expression (used to stratify patients after the SoC cascade), 
CGP uses HLA diversity scores and TMB status to determine immunotherapy susceptibility. Several 
literature sources are consulted to generate three sets of distributions for these biomarkers, all 
biomarkers are considered independent. The results from Cuppens et al. (2021) are used for the base 
case. Two additional sets of distributions of PD-L1 expression and TMB status are used in scenario 
analyses (table 16b). Because of the lack of standardization in HLA diversity scoring, no other sources 
could be used for the purpose of scenario analyses 

. 
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(a) Biomarkers for targeted therapy 

 Prevalence Prevalence 
EGFR 0.11 0.19 
KRAS 0.29 0.29 
BRAF 0.02 0.05 
ERRB2 0.01 0.03 
PIK3CA 0.02 0.02 
ALK 0.05 0.03 
ROS1  0.02 0.01 
NTRK1-3 0.0023 0.001 
MET (exon 14 skipping)* 0.02* 0.03 
RET* 0.01* 0.01 
SUM 0.5523 0.661 
Unknown alterations and WT 0.4477 0.339 
SOURCE (Barlesi et al., 2016) (Chevallier et al., 2021) 

(b) Biomarkers for immunotherapy 

 Set 1 Set 2 Set 3 
PD-L1 ≥ 50% 0.50 0.30 0.22 
50% ≥ PD-L1 ≥ 1% 0.28 0.44 0.30 
PD-L1 ≤ 1% 0.22 0.26 0.48 
Source (Cuppens et al., 2020) (Holmes et al., 2019) (Dietel et al., 2019) 
    
TMB-H 0.56 0.40 0.46 
TMB-L 0.44 0.60 0.54 
Source (Cuppens et al., 2020) (Yarchoan et al., 2019) (Zehir et al., 2017) 
    
Low HLA-I diversity 0.64 0.64 0.64 
High HLA-I diversity 0.36 0.36 0.36 
Source (Cuppens et al., 2020) 

Detected by SoC cascade and CGP 

Detected by CGP 

Table 16: (a)Two sets  of biomarker prevalence relevant for targeted therapy in NSCLC patient populations sourced from 
literature.(*) RET fusions and MET exon 14 skipping mutations can only be found if the consensus cascade includes RNA 
sequencing (see section 2.3.2.). (b) Three sets of biomarker prevalence relevant for immunotherapy stratification of NSCLC 
patients sourced from literature. 
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2.3.3. Costs of the diagnostic cascade 

The reimbursement paid by the healthcare payer per test type is published in the RIZIV/INAMI 
Nomensoft web application (table 17). Prices per test are used to calculate the average price per 
patient of each cascade after taking the incidence of each biomarker into account (table 18). The 
average cost of both SoC cascade options is calculated and used in both decision models. 

 

Test Costs Source 
IHC  €             92.42  

RIZIV - Nomensoft  
(web application)  

FISH  €           191.66  
DNA seq (panel)   €           360.43  
RNA seq (panel)  €           555.56  
CGP (DNA+RNA)  €           915.99  

Table 17: Costs by the healthcare payer per test type from RIZIV/INAMI Nomensoft. 

 

Standard of care – Option A 
 

 End of testing for:  Percentage of 
total patients 

Phase I: Simultaneous test DNA seq + IHC 
ALK + IHC ROS1 + IHC PD-L1 € 637.69  EGFR, KRAS, BRAF, 

ERBB2, PIK3CA 45% 

Phase II: Confirmation FISH ALK & ROS1 € 91.66  ALK, ROS1 7% 
Phase II: TRK - IHC € 92.42  NTRK1-3 0.23% 
Average cost per patient € 345.02    

Standard of care – Option B 
 

 End of testing for:  Percentage of 
total patients 

Phase I: Simultaneous test DNA seq + RNA 
seq + IHC PD-L1 € 1,008.41  All 100% 

Average cost per patient € 1,008.41    

Consensus Standard of care (50% A – 50% B) 

Average cost per patient €  676.71     

Comprehensive Genomic Profiling 

Phase I: Simultaneous CGP panel + PD-L1 
IHC € 1,008.41 End of testing for:  Percentage of 

total patients  
 All 100% 

Average cost per patient € 1,008.41   
Table 18: Calculation of the costs of the diagnostic cascade combining prevalence of biomarkers (table 15) with cost per test 
(table 17) 
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2.3.4. Proportion of patients with identified gene alterations  

The first decision models weights the average costs and outcomes for patients with and without an 
identified gene alteration against the proportion of patients in each group. This proportion is 
determined by the diagnostic cascade used and the prevalence of biomarkers in the population. 
Using the prevalence in table 16 the percentage of patients with an identified gene alteration is 
determined (table 19). 

Cascade Gene alterations identified Percentage of 
total patients 

Standard of care – Option A EGFR, KRAS, BRAF, ERBB2, 
PIK3CA, ALK, ROS1, NTRK1-3 52.23% 

Standard of care – Option B 
EGFR, KRAS, BRAF, ERBB2, 

PIK3CA, ALK, ROS1, NTRK1-3, 
RET, MET exon 14 skipping 

55.23% 

Consensus Standard of care  53.73% 

Comprehensive genomic profiling 
EGFR, KRAS, BRAF, ERBB2, 

PIK3CA, ALK, ROS1, NTRK1-3, 
RET, MET exon 14 skipping + … 

55.23 % + 
5/10/15% 

Table 19: Proportion of patient with an identified gene aklteration for each cascade. 

2.3.5. Stratification of patients for immunotherapy 

The second decision model weights the outputs of the immunotherapy partitioned survival models 
with the proportion of patients in each subgroup created by the diagnostic cascades. The SoC 
cascade stratifies patients in three subgroups based on PD-L1 expression level from table 16. Based 
on their response to immunotherapy, sourced from corresponding KEYNOTE trials, all subgroups are 
split into responders and non-responders resulting in six final subgroups with different costs and 
outcomes.  

Standard of 
care 

Proportion of 
Patients 

First line 
therapy 

Response 
rates 

Responders Non-
responders 

PD-L1 ≥ 50% 500.00 Immuno-
therapy 

0.448 224.00 276.00 

50% ≥ PD-L1 ≥ 
1% 

280.00 Immuno + 
Chemotherapy 

0.484 135.52 144.48 

PD-L1 ≤ 1% 220.00 Immuno + 
Chemotherapy 

0.323 71.06 148.94 

SOURCE Table 16  KEYNOTE-
024 & -189   

Table 20: Subgroups of patients created by the SoC cascade. 

Using CGP + PD-L1 leads to three biomarkers stratifying patients in 12 subgroups (table 21a). For all 
but two subgroups, response rates are assumed the same as determined by PD-L1 status alone. 
Response rates for triple positive patients (PD-L1 ≥ 50%, TMB-H & HLA diversity high) and triple 
negative patients (PD-L1 ≤ 1%, TMB-L & HLA Diversity low) are taken from recent evidence published 
by Cuppens et al. (2020) (table 21b). Triple positives patients have a response rate of 64% while triple 
negative patients have a response rate of 0% and therefore do not receive immunotherapy. Based on 
these response rates the 12 subgroups are split into responders and non-responders, resulting in 23 
subgroups with different costs and outcomes and one empty group (table 21c). 
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(a) Proportion of 
patients PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 diversity 

Low 
TMB-H 0.17920 0.10035 0.7885  
TMH-L 0.14080 0.7885 0.6195  

 
   

 
Proportion of 
patients PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 Diversity 

high 
TMB-H 0.10080 0.5645 0.4435  
TMH-L 0.7920 0.4435 0.3485  

 
   

 
(b) Response rates 
per group PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 diversity 

Low 
TMB-H 0.448 0.484 0.323  
TMH-L 0.448 0.484 0*  

 
   

 
Response rates per 
group PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 Diversity 

high 
TMB-H 0.64** 0.484 0.323  
TMH-L 0.448 0.484 0.323  
     
(c) Responders and 
non-responders PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 diversity  

Low 
TMB-H 0.08028 0.04857 0.02547  
  0.09892 0.05178 0.05338  
TMH-L 0.06308 0.03816 0.00  
  0.07772 0.04069 0.06195  

 
   

 
Responders and non-
responders PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 Diversity  

high 
TMB-H 0.06451 0.02732 0.01433  
  0.03629 0.02913 0.03003  
TMH-L 0.03548 0.02147 0.01126  
  0.04372 0.02289 0.02359  

First-Line Therapy Immuno-
therapy 

Immunotherapy + chemotherapy 
(*): first line chemotherapy  

Table 21: Stratification of patients by CGP cascade. (*/**) different response rates of triple positives and negatives. 
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3. Results 
3.1. Finding more gene alterations and sending more patients to clinical trials 
3.1.1. Base case analysis 

Treatment Gene alteration  
identified 

Gene alteration 
unidentified 

Drug acquisition costs - SD € 41,418  € 8,883  
Chemo admin costs - SD € 1,840  € 1,685  
Premed & concomitant costs SD € 863  € 790  
Disease management costs - SD € 6,953  € 5,070  
BSC costs - SD € 12,625  € 10,746  
AE costs SD € 329  € 253  
    
Drug acquisition costs - PD € 5,153  € 1,104  
Chemo admin costs - PD € 233  € 157  
Premed & concomitant costs PD € 109  € 74  
Re-biopsy costs PD € 111  € 0  
Disease management costs - PD € 725  € 331  
BSC costs € 5,122  € 5,505  
    
End of life costs  € 4,860 € 5,215  
TOTAL € 80,340  € 39,812  
    
LYs accrued in SD state 1.43 1.08 
LYs accrued in PD state 0.89 0.39 
TOTAL 2.32 1.48 

Table 22: Disaggregated results of the partitioned survival model for patients with and without an identified gene alteration. 

The average costs and outcomes from the partitioned survival model of patients with and without an 
identified gene alteration are shown in table 22. Average costs for patients with an identified gene 
alteration are € 80,340 versus € 39,812 for patients without an identified gene alteration. Average 
outcome is 2.32 LYs gained for patient with an identified gene alteration versus 1.48 LYs gained for 
those without. These differences are largely driven by a proportion of patients within the gene 
alteration identified group receiving expensive but effective targeted therapy.  

The first diagnostic decision model weights these output against the proportion of patients in each 
group to determine the ICER/LY of the diagnostic (table 23). This second step also takes the costs of 
diagnostic cascade into account. Since it is impossible to predict the additional percentage patients in 
which CGP will find a genomic alteration, results are presented as a triple ICER/LY with 5, 10 and 15% 
more patients in the gene alteration identified group (+1.5% for RET and MET fusions missed by the 
SoC consensus cascade; see section 2.3.1).  

Regardless of the additional gene alterations identified by CGP, the average incremental cost for 
diagnostics is €331.70. Depending on the additional gene alterations identified, CGP results in an 
incremental average cost of therapy of € 3,297.68 - € 7,350.42 and 0.055 - 0.140 LYs gained. CGP’s 
ICERs/LY for an additional 5, 10 and 15% gene alterations identified are € 59,920.64, € 54,679.66 and 
€ 52,615.04, respectively. 

 



  
 

 

 26 

Standard of care cascade vs. Comprehensive genomic profiling 

  Costs of 
diagnostics 

Proportion 
gene 

alteration 
identified 

Proportion 
gene 

alteration 
unidentifie

d 

Average cost 
per patient 

Average 
LY 

ICER/LY 

SoC cascade  € 676.71  0.5373 0.4627  € 61,932.52  1.930 
 

CGP  € 1,008.41  0.6023 0.3977  € 65,230.20  1.985 
 

∆  € 331.70  0.065 -0.065  € 3,297.68    0.055  € 59,920.64  

SoC cascade  € 676.71  0.5373 0.4627  € 61,932.52  1.930 
 

CGP  € 1,008.41  0.6523 0.3477  € 67,256.57  2.027 
 

∆  € 331.70  0.115 -0.115  € 5,324.05    0.097  € 54,679.66  

SoC cascade  € 676.71  0.5373 0.4627  € 61,932.52  1.930 
 

CGP  € 1,008.41  0.7023 0.2977  € 69,282.95  2.070 
 

∆  € 331.70  0.165 -0.165  € 7,350.43  0.140 € 52,615.04 
Table 23: ICER/LY for three scenarios in which CGP identifies 5, 10 and 15% more patients with a gene alterations based  on 
average costs and outcomes from partitioned survival model in table 18. 

3.1.2. Scenario analyses 
3.1.2.1. Scenario I: Different distribution of biomarkers 

Treatment Gene alteration  
identified 

Gene alteration 
unidentified 

Average costs € 80,340  € 39,812  
Average outcomes 2.32 1.48 

 

 

Standard of care cascade vs. Comprehensive genomic profiling 

  Costs of 
diagnostics 

Proportion 
gene 

alteration 
identified 

Proportion 
gene 

alteration 
unidentifie

d 

Average cost 
per patient 

Average 
LY 

ICER/LY 

SoC cascade  € 705.72  0.641 0.359  € 66,193.24  2.018 
 

CGP  € 1,008.41  0.711 0.289  € 69,635.53  2.077 
 

∆  € 302.69  0.07 -0.07  € 3,442.30    0.059  € 58,080.69  

SoC cascade  € 705.72  0.641 0.359  € 66,193.24  2.018 
 

CGP  € 1,008.41  0.761 0.239  € 71,661.91  2.119 
 

∆  € 302.69  0.12 -0.12  € 5,468.67   0.102  € 53,824.73  

SoC cascade  € 705.72  0.641 0.359  € 66,193.24   2.018  
 

CGP  € 1,008.41  0.811 0.189  € 73,688.28   2.162  
 

∆  € 302.69  0.17 -0.17  € 7,495.04   0.144  € 52,072.28 

Table 24: Average costs and outcomes and resulting ICERs/LY using a different biomarker distribution. 
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The distribution of biomarkers is highly dependent on the region of testing and the ethnical and 
genetic characteristics of the population. The BIOMARKER researchers themselves reported that the 
biomarker distribution they reported was likely an underestimation of the real world prevalence of 
actionable alterations (Mazières et al., 2016). In a first scenario analysis we used the distribution 
from a recent review by Chevallier et al. (2021) and verify the effect on the results (table 16).  

Using a different prevalence for the biomarkers affects the cost of the SoC cascade as more patients 
will require additional phases of testing. Since the costs for the CGP cascade remain the same the 
incremental costs for diagnostics are slightly lower. There is a slight increase in additional gene 
alterations identified by CGP because of a higher prevalence of MET exon 14 skipping mutations. As a 
result average costs and outcomes per patient for the entire population are slightly higher. Because 
the relative increase in LYs is higher, the corresponding ICERs/LY are slightly lower than the base case 
analysis. 

3.1.2.2. Scenario II:  Overall survival gene alteration identified follows lognormal distribution 

Treatment Gene alteration  
identified 

Gene alteration 
unidentified 

Average costs € 81,014 € 39,812 

Average outcomes 3.74 1.48 

Long-term survival rates in NSCLC are historically low, as a result all four KM curves were 
conservatively extrapolated using a Weibull distribution in the base case analysis. Early long-term 
survival data for targeted therapies show that a proportion of patients may survive beyond the five-
year mark (Lin et al., 2016; Rennert et al., 2021). In the second scenario analysis this long-term 
survival is accounted for by changing the extrapolation of the OS data in the gene alteration 
identified group to a lognormal distribution (table 25). 

 

Standard of care cascade vs. Comprehensive genomic profiling 

  Costs of 
diagnostics 

Proportion 
gene 

alteration 
identified 

Proportion 
gene 

alteration 
unidentifie

d 

Average cost 
per patient 

Average 
LY 

ICER/LY 

SoC cascade  € 676.71  0.5373 0.4627  € 62,294.89  2.693 
 

CGP  € 1,008.41  0.6023 0.3977  € 65,636.40  2.841 
 

∆  € 331.70  0.065 -0.065  € 3,341.52  0.147 € 22,670.35  

SoC cascade  € 676.71  0.5373 0.4627  € 62,294.89  2.693 
 

CGP  € 1,008.41  0.6523 0.3477  € 67,696.50  2.954 
 

∆  € 331.70  0.115 -0.115  € 5,401.61  0.261 € 20,713.50  

SoC cascade  € 676.71  0.5373 0.4627  € 62,294.89  2.693 
 

CGP  € 1,008.41  0.7023 0.2977  € 69,756.59  3.068 
 

∆  € 331.70  0.165 -0.165  € 7,461.70  0.374 € 19,942.61 

Table 25: Average costs and outcomes and resulting ICERs/LY using a lognormal distribution to model gene alteration 
identified OS. 
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Changing the parametric distribution greatly affects the average outcomes of patient in the gene 
alteration identified group who gain 3.74 LYs as compared to 2.32 LYs before. As a result, the 
additional gene alterations identified by CGP generate additional average LYs for the entire 
population and the incremental LYs gained increase from 0.055-0.014 to 0.147-0.374. The resulting 
ICERs/LY decrease to € 22,670.35 - € 19,942.61. It is important to remark that though the lognormal 
curve might be a better fit for targeted therapies, most additional LYs gained are generated after 
progression. The partitioned survival model accounts for a constant average of six therapy cycles per 
progressed patient based on data from the BIOMARKERs study. If overall survival increases, average 
number of therapy cycles, associated costs and ICERs/LY would likely increase as well. 

3.1.2.3. Scenario III: Average price of targeted therapy equals costs of crizotinib 

Treatment Gene alteration  
identified 

Gene alteration 
unidentified 

Average costs € 103,631  € 40,309  
Average outcomes 2.32 1.48 

 

A  targeted therapy proxy was created based on the average cost per day of all patent protected and 
reimbursed targeted therapies in Belgium. In a final scenario analysis this average is changed with 
the costs per day of the most expensive therapy, crizotinib (table 26).  

Costs for targeted therapy change from € 203.31 to € 328.60. As a result, the average costs per 
patient of both the gene alteration identified and unidentified groups increase. The larger increase of 
the patient group with an identified gene alteration results in an increase of incremental average 
costs of € 3,297.68 - € 7,350.42 to € 4,779.30 - € 11,111.47. This greatly increases the ICERs/LY to € 
86,842.55, € 81,601.58 and € 79,536.95. 

 
 
 
 

Standard of care cascade vs. Comprehensive genomic profiling 

  Costs of 
diagnostics 

Proportion 
gene 

alteration 
identified 

Proportion 
gene 

alteration 
unidentifie

d 

Average cost 
per patient 

Average 
LY 

ICER/LY 

SoC cascade  € 676.71  0.5373 0.4627  € 74,676.93  1.930 
 

CGP  € 1,008.41  0.6023 0.3977  € 79,456.23  1.985 
 

∆  € 331.70  0.065 -0.065  € 4,779.30    0.055  € 86,842.55  

SoC cascade  € 676.71  0.5373 0.4627  € 74,676.93  1.930 
 

CGP  € 1,008.41  0.6523 0.3477  € 82,622.32  2.027 
 

∆  € 331.70  0.115 -0.115  € 7,945.39    0.097  € 81,601.58  

SoC cascade  € 676.71  0.5373 0.4627  € 74,676.93  1.930 
 

CGP  € 1,008.41  0.7023 0.2977  € 85,788.40  2.070 
 

∆  € 331.70  0.165 -0.165  € 11,111.47  0.140 € 79,536.95 
Table 26: Average costs and outcomes and resulting ICERs/LY using a higher cost per day for targeted therapy. 
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3.2.  Cost-savings from more effective use of immunotherapy 
3.2.1. Average costs and outcomes for patient subgroups 

PD-L1 ≥ 50% Immunotherapy Chemotherapy Non-responders 
immuno 

Average costs € 213,688  € 36,915 € 65,319 
Average outcomes 3.102 1.906 1.906 

50% > PD-L1 ≥ 1% Immunotherapy 
+ chemotherapy Chemotherapy Non-responders 

immuno + CT 

Average costs € 239,150  € 38,248 € 75,689 
Average outcomes 2.310 1.354 1.354 

PD-L1 < 1% Immunotherapy 
+ chemotherapy Chemotherapy Non-responders 

immuno + CT 

Average costs € 172,156 € 35,148  € 69,876 
Average outcomes 2.380 1.616 1.616 

Table 27: Average costs and outcomes from partitioned survival models of  patients receiving immunotherapy and/or 
chemotherapy as well as non-responders. 

Partitioned survival models were created to generate average costs and outcomes for patients 
receiving first-line immunotherapy, immunotherapy + chemotherapy or chemotherapy alone based 
on their PD-L1 expression levels (table 27). Additionally, patients that did not respond to 
immunotherapy were modelled to account for costs and outcomes of ineffective use of 
immunotherapy. 

Patients with PD-L1 ≥ 50% receive first-line immunotherapy. Average costs of this therapy is € 
213,688 for which an average of 3.102 LYs are gained. Non-responsive patients cost € 65,319 on 
average while patients receiving first-line chemotherapy cost € 36,915, both gain an average of 1.906 
LYs.  

Patients with 50% > PD-L1 ≥ 1% or PD-L1 < 1% receive first-line immunotherapy + chemotherapy. 
Average costs of this combination therapy are € 239,150 or € 172,156 for which an average of 2.310 
LYs or 2.380 LYs are gained. Non-responsive patients cost € 75,689 or €69,876 on average while 
patients receiving first-line chemotherapy cost € 38,248 or € 35,148 both gain an average of 1.354 or 
1.616 LYs.  

The complete disaggregated costs and outcomes per patient group can be found in supplementary 
table 5-8 of the appendix. 
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3.2.2. Average costs and LYs using the standard of care diagnostic cascade 

Standard 
of care 

Pro-
portion

of 
patients 

First line 
therapy 

Response 
rates 

Pro-
portion 

respond
ers 

Pro-
portion 

non-
respond

ers 

Proportional 
costs 

Pro-
portio

nal LYs 

PD-L1 ≥ 
50% 0.50 Immuno-

therapy 0.448 0.224 0.276 € 65,894.27 1.221 

50% ≥ PD-
L1 ≥ 1% 0.28 Immuno + 

Chemotherapy 0.484 0.136 0.144 € 43,345.11 0.509 

PD-L1 ≤ 
1% 0.22 Immuno + 

Chemotherapy 0.323 0.071 0.149 € 22,640.74 0.410 

 Average costs and outcomes per patient € 131,880.12 2.139 
Table 28: Average costs and outcome per patient are calculated by combining the distributional effects of the SoC cascade 
and the response rates per subgroup and therapy (table 20) with the average costs and outcomes per subgroup (table 27). 

The second decision model weights the average costs and outcomes per patient subgroup against 
the proportional distribution by the diagnostic cascade. The SoC cascade stratifies patients for 
immunotherapy in three subgroups based on PD-L1 expression, 50%, 28% and 22% of patients 
respectively. Each subgroups is subsequently split in responders and non-responders based on 
response rates from literature, 44.8%, 48.4% and 32.3% respectively. Taken together, the 
proportional costs and outcomes per subgroup result in an average cost of € 131,880.12 per patient 
and an average of 2.139 LYs gained per patient (table 28).  
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3.2.3. Average costs and LYs using Comprehensive Genomic Profiling 

Responders and non 
responders PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 diversity 

Low 
TMB-H 0.08028 0.04857 0.02547  
 0.09892 0.05178 0.05338  
TMH-L 0.06308 0.03816 0.00  
 0.07772 0.04069 0.06195*  
    

 
Responders and non 
responders PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 Diversity 

high 
TMB-H 0.06451 0.02732 0.01433  
 0.03629 0.02913 0.03003  
TMH-L 0.03548 0.02147 0.01126  
 0.04372 0.02289 0.02359  
    

 

Proportional costs PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 diversity 
Low 

TMB-H  € 17,155.22   € 11,615.60   € 4,384.45   
  € 6,461.29   € 3,919.29   € 3,729.99   
TMH-L  € 13,479.10   € 9,126.54   € -    
  € 5,076.73   € 3,079.44   € 2,177.50*   
    

 

Proportional costs PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 Diversity 
high 

TMB-H  € 13,785.44   € 6,533.77   € 2,466.25   
  € 2,370.31   € 2,204.60   € 2,098.12   
TMH-L  € 7,581.99   € 5,133.68   € 1,937.77   
  € 2,855.66   € 1,732.19   € 829.22   
     

Proportional LYs PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 diversity  
Low 

TMB-H 0.249 0.112 0.061  
  0.189 0.070 0.086  
TMH-L 0.196 0.088 0.000  
  0.148 0.055 0.100*  
    

 

Proportional LYs PD-L1 ≥ 50% 50% ≥ PD-L1 ≥ 1% PD-L1 ≤ 1% HLA-1 Diversity  
high 

TMB-H 0.200 0.063 0.034  
  0.069 0.039 0.049  
TMH-L 0.110 0.050 0.027  
  0.083 0.031 0.038  

First-Line Therapy Immuno-
therapy 

Immunotherapy + chemotherapy 
(*): first line chemotherapy  

Table 29: Proportional costs and outcome per patient are calculated by combining the distributional effects of the CGP 
cascade and the response rate per subgroup and therapy (table 21) with the average costs and outcomes per subgroup 
(table 27). 
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The additional biomarkers from the CGP cascade result in an extensive stratification of subgroups as 
shown earlier (table 21). For 21 out of 23 subgroups, response rates are assumed the same as they 
would be based on PD-L1 expression alone (table 29). Based on recent research by Cuppens et al. 
(2020) triple positive patients (PD-L1 high, TMB-H and HLA Diversity High) are assumed to have a 
higher response rate of 64%. Based on the same research it’s assumed that no durable response rate 
can be achieved in triple negative patients (PD-L1 Low, TMB-L and HLA Diversity low), who are 
therefore given first-line chemotherapy. As a consequence, proportional costs and LYs are slightly 
different than they would have been based on PD-L1-only response rates. Taking all proportional 
costs and LYs together then results in an average cost per patient of € 129,734.15 and an average of 
2.147 LYs gained per patient (table 30).  

Comprehensive genomic profiling Costs LYs 

Average per patient € 129,734.15 2.147 
Table 30: Proportional costs and outcomes are taken together to get average costs and outcomes per patient. 

 

3.2.4. Cost savings using Comprehensive Genomic Profiling 

Treatment  Cost of 
diagnostics 

Average 
proportion 
responders 

Average 
proportion 

non-
responders 

Average costs + 
costs of 

 diagnostics 

Average LY 

SoC cascade  € 676.71  0.4306 0.5694  € 132,557.83  2.139 
CGP  € 1,008.41  0.5821 0.4179  € 130,742.56  2.147 

∆  € 331.70  0.1515 -0.1515  € -1,815.27  0.008 
Table 31: Cost savings are calculated by combining the costs of the diagnostic cascade with the average costs and outcomes 
per patient after each diagnostic cascade (tables 28 & 30). 

In the final step the decision model takes the costs of each diagnostic cascade (section 2.3.3 – table 
18) into account. This is combined with the average costs and outcomes after stratification by each 
diagnostic (tables 28 and 30). Total average costs after stratification with the SoC cascade are € 
132,557.83 for an average 2.139 LYs gained. Stratification with the additional biomarkers from CGP 
leads to € 130,742.56 average costs and 2.147 average LYs gained. Using CGP thus leads to cost-
savings of € 1,815.27 per patient and a negligible increase in LYs gained (0.008 LYs). 
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3.2.5. Scenario analyses 

Biomarker distribution – Set 2 

Diagnostic cascade Average Costs  Average LYs 

Standard of Care € 110,691.45 1.972 
Comprehensive genomic profiling € 129,734.15 2.147 
Treatment  Cost of 

diagnostics 
Average 

proportion 
responders 

Average 
proportion 

non-
responders 

Average costs + 
costs of 

 diagnostics  

Average LY 

SoC cascade  € 676.71  0.3986 0.6014  € 124,878.50  2.007 
CGP  € 1,008.41  0.6582 0.3418  € 111,699.86  1.972 

∆  € 331.70  0.2596 -0.2596  € -13,178.65  -0.036 
Table 32: Scenario analysis using a different set of biomarker distributions (set 2 - Table 16). 

Biomarker distribution – Set 3 

Diagnostic cascade Average Costs  Average LYs 

Standard of Care € 133,748.60 2.004 
Comprehensive genomic profiling € 127,862.88 1.993 
Treatment  Cost of 

diagnostics 
Average 

proportion 
responders 

Average 
proportion 

non-
responders 

Average costs + 
costs of 

 diagnostics 

Average LY 

SoC cascade  € 676.71  0.4341 0.5659  € 134,426.32  2.004 
CGP  € 1,008.41  0.6143 0.3857  € 128,871.29  1.993 

∆  € 331.70  0.1802 -0.1802  € -5,555.02  -0.011 
Table 33: Scenario analysis using a different set of biomarker distributions (set 3 - Table 16). 

The research by Cuppens et al. (2020) on the use of additional biomarkers from CGP and their 
distribution in the population was done on a relatively small sample size (N = 126). To account for the 
uncertainty resulting from this sample size we sourced additional distributions of biomarkers from 
large international studies (N > 1000) to use in scenario analysis. Two sets of biomarkers (table 16) 
were entered into the model and resulted in increased cost savings of  € -13,178.65 and  € -5,555.02. 
The extremely small gain in LYs of the base case model turns into a loss of LYs of 0.036 and 0.011 LYs. 
Both sets of biomarkers have an increased amount of patients in the PD-L1 ≤ 1% group that drives 
the increased savings and diminished LYs in these scenarios. 
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4. Discussion 
4.1. Results 

Diagnostic decision models were developed to analyse the health economic effects of introducing 
Comprehensive Genomic Profiling in the diagnosis of metastatic, non-squamous NSCLC, as a case 
study for the broader value of CGP in precision oncology. The decision models used average costs 
and outcomes generated by partitioned survival models. One model was used to estimate the cost-
effectiveness of identifying more gene alterations in patients and increase the use of targeted 
therapies. Another was used to determine the cost savings that could be achieved by more efficient 
stratification of immunotherapies.  

The base case analysis of the first decision model used average costs and outcomes from a 
partitioned survival model generated with inputs from the BIOMARKERs study, an observational trial 
that followed nearly 18.000 non-squamous NSCLC patients as they were diagnosed for the presence 
of a genetic alteration and treated accordingly by the French healthcare system. Unsurprisingly, 
average costs and outcomes were higher for patients with an identified gene alteration (€ 80,340 for 
2.32 LYs) gained than in those without (€ 39,812 for 1.48 LYs gained). Disaggregation of the costs 
showed that higher costs are driven by a third of the patients with known gene alterations receiving 
expensive targeted therapy. It is assumed that these therapies are also the driver of the higher 
average outcomes in patients with an identified gene alteration. However, since the BIOMARKERs 
study was an observational study and not a designed clinical trial this can’t be concluded with 
absolute certainty. Several other limitations arising from the layout of the BIOMARKERs study are 
discussed later.  

The decision model combined the output of the partitioned survival model with the diagnostic 
cascade. To do so the costs and distributional effects of each cascade were assessed and the effect of 
the prevalence of the biomarkers in the population was taken into account. It is impossible to predict 
how big the fraction of unknown gene alteration that CGP can additionally identify is. Consequently, 
the results generated by the model were shown in triple ICERs/LY, representing three possible 
scenarios in which CGP identifies 5, 10 and 15% more gene alteration than the SoC cascade. This 
resulted in three ICERs/LY of € 59,920.64, € 54,679.66 and € 52,615.04, respectively.  

Very little real world data exist on the costs and effects of large scope sequencing diagnostics such as 
CGP. In the construction of the early model several assumptions were made to compensate for this 
lack of data. Scenario analysis was performed to account for some of the uncertainty created the 
assumptions. It showed that CGP’s ICERs/LY was not sensitive to changes in biomarker distribution in 
the population, but could be heavily impacted by better outcomes or higher prices of targeted 
therapies. Although this is not an unexpected result, more long-term survival data could help later 
modelling efforts generate more robust ICERs. 

The Belgian healthcare payer has no formal ICER or Willingness-To-Pay (WTP) threshold on which 
potential reimbursement hinges, rather reimbursement decisions are made on a case-by-case basis 
using broad assessment criteria (Cleemput et al., 2011). Consequently, the results generated by the 
first model cannot conclusively determine whether CGP is considered a cost-effective use of 
healthcare resources according to the Belgian healthcare payer’s standards. Nevertheless, the 
ICERs/LY are an interesting result as they are not solely the result of the incremental costs of the 
diagnostic cascade divided by the incremental outcome. They are, in large part, determined by the 
increased use of more expensive targeted therapy that is already reimbursed. Broken down, the 
increased cost of CGP as compared to the SoC cascade makes up 5 to 10% of the total incremental 
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costs. As such, the question is not as much whether these ICERs/LY show cost-effective or not. 
Rather, is it worth paying 331.70 euro more per patient to identify more gene alterations and 
increase the use of targeted therapies at an ICER/LY of €52,615.04 to € 59,920.64 to unlock better 
outcomes for patients currently receiving ineffective chemotherapy? Because the Belgian healthcare 
payer does not publish ICERs to protect the confidentiality, it is impossible to compare this ICER to 
those of reimbursed precision oncology drugs. However, given that our costs (and presumably 
outcomes) were generated using an average of the prices of those same targeted therapies, it’s hard 
to imagine their respective ICERs would be of a completely different scale. 

Taken together, the results from the first diagnostic model suggest that the Belgian healthcare payer 
should at least consider introducing conditional reimbursement for CGP for the remainder of its 
clinical evaluation. That way the detection of genetic alterations and use of targeted therapy in 
current metastatic non-squamous NSCLC patients could increase while more data is gathered to 
confirm or deny the assumptions made in this early model, specifically regarding the increased 
detection of gene alterations and the effectiveness of targeted therapy. Once finished, the data from 
these studies should be followed by a more mature model of cost-effectiveness for which this report 
can be the basis. This could then be used to make a final decision on reimbursement of CGP. 

A second diagnostic decision model was developed to determine cost-savings that could be achieved 
by better stratifying metastatic, non-squamous NSCLC patients for immunotherapy regimens. 
Following research by Cuppens et al. (2020), the additional biomarkers from CGP could lead to the 
early exclusion of patient groups in which no durable response can be achieved, while in other 
patient groups higher response rates can be achieved. The decision model used average costs and 
outcomes of partitioned survival models based on input from the KEYNOTE trials that determined the 
effectiveness of immunotherapy and immuno + chemotherapy in patients with different PD-L1 
expression levels. The decision model took into account the costs of the diagnostic, the distribution 
in patient subgroups with different first-line therapies by the diagnostic and the response rate of 
each subgroup. Resulting in an average cost per patient of € 132,557.83 for an average of 2.139 LYs 
gained by using the SoC cascade to stratify patient. Using CGP-based stratification led to an average 
cost per patient of € 130,742.56 for an average of 2.147 LYs gained. The second decision model thus 
suggest that using CGP to stratify patients for immunotherapy regimens can lead to an average 
decrease of € 1,815.27 per patient and a negligible gain in LYs.  

Scenario analyses was used to account for the small sample size on which the biomarker distributions 
taken from Cuppens et al. (2020) were based. This showed that the cost-savings from the base case 
analysis is likely a conservative estimate and savings could be as high as € 13,178.65, though a 
different biomarker distribution could also lead to small amounts of LYs lost.  

It is advisable to wait for the results of the ongoing clinical valuation of CGP and the effects of an 
increased sample size on the stratification proposed by Cuppens et al.(2020). Of particular interest 
are the response rates of triple positive and triple negative patients as these drive the cost savings. If 
the stratification proposed by Cuppens et al. (2020) holds in a larger patient group, than the results 
from this second early decision model generate strong arguments for the reimbursement of CGP in 
the diagnosis of metastatic, non-squamous NSCLC. 
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4.2. Limitations & future research 

The early models used in this report were made with historical data that does not necessarily reflect 
the current situation. The assumptions made to compensate for the lack of appropriate data limit the 
conclusions that can be drawn from this report and its results. 

The BIOMARKERs study, used to create the partitioned survival model for patients with identified 
gene alteration, followed NSCLC patients between 2012 and 2014. EGFR, ERBB2, KRAS, BRAF, PIK3CA 
and ALK were considered the only relevant genes for NSCLC diagnosis and the only available targeted 
therapies were EGFR TKI’s and crizotinib. In 2021, a study of the same nature would certainly assess 
more genomic alterations and more targeted therapies would be available for the alterations found. 
It is also more common to enter patients into clinical trials due to the spread of genomic data-
analytics. The ongoing BALLETT study presents an ideal opportunity to gather more real-world 
evidence on the identification of genetic alterations and the consequences thereof. A greater focus 
on data collection and evidence generation is urgently needed to increase the adoption of innovative 
In Vitro Diagnostics. 

The cost savings generated by the second model are driven by the stratification proposed by 
Cuppens et al. (2020). Although impressive, their research was done on a relative small group of 
patients and should be confirmed in a larger scale study. Again, the ongoing BALLETT study provides 
a great opportunity to gather this data and make more definitive conclusions.  

Collecting data during the BALLETT study could also take away the need to have two diagnostic 
decision models with and partitioned survival models embedded within. Data could be collected 
from a single study allowing the comparison of the effects of immunotherapy, targeted therapy and 
chemotherapy in a single patient population. 
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5. Conclusion 

Early decision models suggest the introduction of comprehensive genomic profiling could have 
beneficial effects on the health economics of therapy options for metastatic, non-squamous NSCLC 
patients in Belgium. The results suggest that CGP could unlock better outcomes for patients with very 
dim survival rates by detecting more genetic alterations than the current standard of care diagnostic 
cascade, allowing for increased use of targeted therapies. Moreover, in patients without gene 
alterations, biomarkers from the CGP cascade can lead to cost savings by more efficiently stratifying 
patients for immunotherapy regimens. Taken together these results make a strong case for the 
health economic benefits of CGP. Although the assumptions made in the construction of the early 
models need to be confirmed in a real world setting. The BALLETT study provides a unique 
opportunity to do so and decision makers should consider conditionally reimbursing CGP for the 
duration of the study. 
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7. Appendix 

Table S1: Full distribution of therapy options in the BIOMARKER study. 
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Table S2-S4: Kaplan Meier curves and corresponding parametric distributions and AIC scores for 
the partitioned survival models of immunotherapy patients. 

Immunotherapy I – KEYNOTE-024 

 

PFS 

Immunotherapy Chemotherapy 

exponential Weibull lognormal loglogistic exponential Weibull lognormal loglogistic 

588.9915 585.0808 575.0603 579.1243 769.3036 770.2073 756.5085 756.0489 

 

OS 

Immunotherapy Chemotherapy 

exponential Weibull lognormal loglogistic exponential Weibull lognormal loglogistic 

415.7498 417.3362 415.1901 416.5377 547.6024 548.8006 543.5672 545.6462 
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Immunotherapy II – KEYNOTE-189 

 

PFS 

Immuno + chemotherapy Chemotherapy 

exponential Weibull lognormal loglogistic exponential Weibull lognormal loglogistic 

613.7898 613.9813 618.7834 615.8768 286.5851 288.0318 279.8964 277.7273 

 

 

 

 

 

 

 

 

OS 

Immuno + chemotherapy Chemotherapy 

exponential Weibull lognormal loglogistic exponential Weibull lognormal loglogistic 

487.5107 486.0291 489.6381 488.1634 251.9553 250.3661 241.9534 242.6173 
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Immunotherapy III – KEYNOTE-189 

 

 
PFS 

Immuno + chemotherapy Chemotherapy 

exponential Weibull lognormal loglogistic exponential Weibull lognormal loglogistic 

621.4821 623.4212 617.6984 617.0643 308.0606 309.7599 307.7 306.0196 

 

 

OS 

Immuno + chemotherapy Chemotherapy 

exponential Weibull lognormal loglogistic exponential Weibull lognormal loglogistic 

535.1314 535.6156 539.3703 537.3294 337.2915 339.189 338.7867 337.3319 
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Table S5-S8: Disaggregated costs and outcomes from partitioned survival models of 
immunotherapy patients. 

IMMUNOTHERAPY I – PD-L1 ≥ 50% 

 

 

IMMUNOTHERAPY II – 1% ≤ PD-L1 < 50% 

 

 

 

 

 

Treatment Pembrolizumab Chemotherapy Increment Non durable responseIncrement

Drug acquisition costs - SD € 184,725 € 8,681 € 176,043 € 38,689 € 146,036
Chemo admin costs - SD € 2,659 € 4,293 -€ 1,633 € 3,957 -€ 1,298

Premed & concomitant costs SD € 0 € 2,014 -€ 2,014 € 1,624 -€ 1,624
Disease management costs - SD € 9,368 € 4,350 € 5,018 € 3,880 € 5,488

BSC costs - SD € 0 € 0 € 0 € 0 € 0
AE costs SD € 497 € 905 -€ 409 € 497 € 0

Sum € 197,248 € 20,242 € 177,006 € 48,647 € 148,602

Drug acquisition costs - PD € 2,360 € 2,238 € 122 € 2,238 € 122
Chemo admin costs - PD € 464 € 159 € 305 € 159 € 305

Premed & concomitant costs PD € 218 € 75 € 143 € 75 € 143
Disease management costs - PD € 3,224 € 3,693 -€ 469 € 3,693 -€ 469

BSC costs € 5,430 € 5,582 -€ 151 € 5,582 -€ 151
Sum € 11,697 € 11,747 -€ 50 € 11,747 -€ 50

End of life costs € 4,743 € 4,926 -€ 183 € 4,926 -€ 183

Total costs € 213,688 € 36,915 € 176,772 € 65,319 € 148,368

LYs accrued in SD state 1.54 0.61 0.935022851 0.61 0.9350229
LYs accrued in PD state 1.56 1.30 0.261292242 1.30 0.2612922

Treatment Pembrolizumab Chemotherapy Increment Non durable responseIncrement

Drug acquisition costs - SD € 188,232 € 11,289 € 176,943 € 48,345 € 139,887
Chemo admin costs - SD € 6,373 € 3,935 € 2,438 € 4,450 € 1,923

Premed & concomitant costs SD € 1,846 € 1,846 € 0 € 1,835 € 11
Disease management costs - SD € 8,587 € 5,687 € 2,901 € 5,071 € 3,517

BSC costs - SD € 0 € 0 € 0 € 0 € 0
AE costs SD € 1,402 € 905 € 497 € 1,402 € 0

Sum € 206,440 € 23,662 € 182,778 € 61,102 € 145,338

Drug acquisition costs - PD € 19,880 € 2,225 € 17,655 € 2,225 € 17,655
Chemo admin costs - PD € 466 € 158 € 308 € 158 € 308

Premed & concomitant costs PD € 218 € 74 € 144 € 74 € 144
Disease management costs - PD € 1,853 € 1,574 € 279 € 1,574 € 279

BSC costs € 5,446 € 5,549 -€ 103 € 5,549 -€ 103
Sum € 27,864 € 9,580 € 18,284 € 9,580 € 18,284

End of life costs € 4,845 € 5,006 -€ 161 € 5,006 -€ 161

Total costs € 239,150 € 38,248 € 200,901 € 75,689 € 163,461

LYs accrued in SD state 1.41 0.81 0.605102688 0.81 0.6051027
LYs accrued in PD state 0.90 0.55 0.351513912 0.55 0.3515139
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IMMUNOTHERAPY II –PD-L1 < 1% 

 

Treatment Pembrolizumab Chemotherapy Increment Non durable responseIncrement

Drug acquisition costs - SD € 124,660 € 9,884 € 114,776 € 43,671 € 80,988
Chemo admin costs - SD € 4,221 € 2,607 € 1,615 € 3,060 € 1,161

Premed & concomitant costs SD € 1,223 € 1,223 € 0 € 1,205 € 18
Disease management costs - SD € 6,388 € 4,973 € 1,415 € 4,980 € 1,408

BSC costs - SD € 0 € 0 € 0 € 0 € 0
AE costs SD € 1,402 € 905 € 497 € 1,402 € 0

Sum € 137,894 € 19,592 € 118,303 € 54,319 € 83,575

Drug acquisition costs - PD € 20,187 € 2,232 € 17,955 € 2,232 € 17,955
Chemo admin costs - PD € 473 € 159 € 314 € 159 € 314

Premed & concomitant costs PD € 222 € 74 € 147 € 74 € 147
Disease management costs - PD € 3,023 € 2,566 € 456 € 2,566 € 456

BSC costs € 5,530 € 5,566 -€ 36 € 5,566 -€ 36
Sum € 29,435 € 10,597 € 18,837 € 10,597 € 18,837

End of life costs € 4,827 € 4,959 -€ 133 € 4,959 -€ 133

Total costs € 172,155 € 35,148 € 137,007 € 69,876 € 102,279

LYs accrued in SD state 0.92 0.70 0.213434267 0.70 0.2134343
LYs accrued in PD state 1.46 0.91 0.550362124 0.91 0.5503621


