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2. Summary 
This thesis was written in combination with an internship at AstraZeneca Netherlands, Market Access 

department. The primary goal was to develop a method to forecast the cost-effectiveness of the drug 

dapagliflozin as the conditions determining its cost-effectiveness change. Dapagliflozin is a SGLT2 

inhibitor used in treatment of diabetes type 2 treatment for patients whose blood sugar levels are 

not sufficiently controlled on metformin alone. The main competitor of dapagliflozin, and the 

comparator used in this study, is the drug group of sulfonylurea (SU). Dapagliflozin is associated with 

weight loss and lowered rates of hypoglycemia and heart failures compared to SU. The effect on 

patient’s blood sugar is similar across both treatment options. SU is a lot cheaper and currently more 

widely used than dapagliflozin in the Netherlands. 

AstraZeneca uses a stochastic simulation model, called the Cardiff diabetes model, to estimate the 

cost-effectiveness of dapagliflozin in various European countries. Since the Cardiff model does not 

offer sufficient functionality for the aims of the study, a second model was developed instead, which 

approximates the incremental costs and effects of dapagliflozin treatment as a function of selected 

input parameters. In order to precisely estimate the uncertainty involved in the estimates, all 

statistical analyses in this study are performed from a Bayesian perspective. Incremental costs and 

effects are modeled as a bivariate normal distribution, with the two means being linear functions of 

the selected input parameters.  

The so-called metamodel requires training data which is generated from the original model. This is 

achieved by performing multiple probabilistic sensitivity analyses (PSAs) within the Cardiff model 

while systematically varying the selected inputs. The results are stored together with the inputs. Four 

inputs parameters are included in the analysis: prices of dapagliflozin, sulfonylurea and metformin, as 

well as the yearly weight loss that dapagliflozin is associated with.  

When validated against test data which was not included in the training data, the metamodel 

produced approximately equal estimates to those of the Cardiff model. The weight loss parameter 

had a moderate negative impact on the incremental effects and a small positive impact on the 

incremental costs. Out of the investigated prices, the price of dapagliflozin had a strong positive 

effect on the incremental costs. The SU price had a small but credible negative effect, while the price 

of metformin had no credible impact. A forecast based on an assumed price drop after patent loss 

indicates that dapagliflozin treatment will become cost-saving once the drug’s costs fall below € 360 

per year per patient.  

The study’s methodology makes it possible to model the development of a treatments cost-

effectiveness in the future, provided that there is information of how the prices involved will 

develop. Such forecasts are of course very much dependent on and sensitive to assumptions, but 

could nevertheless be a valuable add-on to health economic evaluations. A medicine may not be 

cost-effective right now, but might become cost-effective in the near future, and would thus be the 

most optimal long-term choice for reimbursement. The major unresolved challenge in applying the 

metamodeling method lies in the need to generate a large amount of training data from the original 

model. For most health economic models which are currently in use, this will require a lot of time-

intensive and error-prone work.   



3. Introduction 
The conditions surrounding pharmaceutical cost-effectiveness are in constant flux: prices change, 

new clinical evidence regarding existing medicines becomes available and completely new medicines 

are launched onto the market.  

In order to facilitate the efficient allocation of the health care system’s limited resources, it is of 

utmost importance that cost-effectiveness evaluations are based on correct assumptions and input 

parameters. This can be challenging, especially when multiple treatments in a therapeutic area are 

subject to changes in costs or other attributes. Performing a scenario analysis based on the expected 

new parameters can provide information on the expected future cost-effectiveness. But each 

analysis performed is limited to a single scenario. It remains difficult to understand how the changing 

parameters affect the cost-effectiveness in terms of effect size, uncertainty, development over time 

and potential correlations. Particularly when cost-effectiveness evaluations are performed with a 

long time horizon, it may be relevant to anticipate changes in the market conditions (e.g. price 

decreases) and incorporate these into the evaluation. 

Forecasting the effects of changing inputs is also important in the context of so-called value-based 

payments or innovative contracts [1]. These arrangements are attractive when healthcare payers and 

providers cannot find an agreement through traditional fixed-pay per unit contracts. Providers are 

instead paid “per value”, for example per patient successfully treated, as measured by clinical 

response indicators. In order to have an appropriate basis for negotiations between providers and 

payers, value-based arrangements require that the risk (clinical or financial) associated with a 

medical treatment is precisely estimated and updated as soon as new relevant information becomes 

available. This necessitates the incorporation of (uncertain) changes into cost-effectiveness analyses, 

which is simply not possible within standard health economic models.  

Neumann et al [2] expressed the need for the development of metamodeling techniques in order to 

approach problems like the ones discussed above. Metamodeling can be used to estimate the impact 

that certain key factors have on a medicine’s costs and benefits, and create useful forecasts as these 

factors change. Within this study I seek to answer this call and provide ideas of how to apply 

metamodels for health economic evaluations. 

The research goal is two-fold: 

• Develop an effective and widely applicable metamodeling method, which can be used to 

better understand the determinants of a drug’s cost-effectiveness. The method should be 

reasonably simple to execute and produce demonstrably accurate estimates. 

• Apply the proposed method in a suitable case study: the diabetes drug dapagliflozin and its 

cost-effectiveness in the Netherlands.  

Background and methods are closely intertwined in this study, and separating them would have lead 

to many repetitions and cross-references. Thus they are instead dealt with in a joint section, for the 

sake of readability and conciseness. The section begins by motivating why all statistical modelling in 

the study is performed under the Bayesian paradigm. It goes on to explain what metamodeling is and 

which viable metamodeling methods could be identified in the literature. Section 4.3 introduces the 

case of diabetes type 2 in the Netherlands, as well the Cardiff model and the clinical evidence it is 

based on. The two are brought together by constructing a metamodel based on the literature 

research and case study. Section 5 presents the results of the conducted analysis. This includes both 

the estimated parameters of the metamodel and simulations based on these parameters. I will 

investigate the impact of the prices involved in the cost-effectiveness of dapagliflozin, as well as the 



impact of one selected clinical parameter. Finally, I put the key findings into context and discuss 

strengths and weaknesses of the study design, as well as possible applications of my methods in 

value-based pricing of pharmaceuticals.  

The appendix provides the inputs used for the Cardiff model, a summary of the training data, 

references as well as all R and Stan code used within this project. 

  



4. Background and methods 

4.1.  A short introduction to Bayesian statistics 
It is anticipated that most readers will have had limited exposure to Bayesian statistics. In order to 

make sense of the methodology of this study, a minimal understanding of theoretical foundations is 

needed. Thus this section quickly summarizes the most important concepts as well as differences to 

the more common frequentist paradigm. Some mathematical details are necessary; they will become 

clearer when they are applied to the case study in later sections. For a more sophisticated treatment 

of mathematical statistics and the differences between frequentist and Bayesian inference, see 

Betancourt [3]. 

Fundamentally, Bayesian statistics is about the quantification of belief. It assumes that a given set of 

observed data is caused by some data-generating process, which cannot be observed but is 

approximated through an adequate statistical model. The components of a model are the likelihood 

(probability of observing the observed data, given a set of parameters and their mathematical 

relationship) and the prior probability of these parameters, which is based on knowledge available 

before seeing the data.  This can be formally expressed through Bayes’ theorem: 

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃) ∗ 𝑝(𝜃)

𝑝(𝑦)
=

𝑝(𝑦|𝜃) ∗ 𝑝(𝜃)

∫ 𝑝(𝑦|𝜃) ∗ 𝑝(𝜃)𝑑𝜃
 

Where 

• 𝜃 is a parameter of interest (or, more commonly, a vector of multiple parameters) 

• 𝑦 is the observed data 

• 𝑝(𝜃) is the prior distribution of the parameter(s) 

• 𝑝(𝑦|𝜃) is the likelihood 

• 𝑝(𝑦) is the average likelihood 

• 𝑝(𝜃|𝑦) is the posterior distribution 

The quantity 𝑝(𝑦) serves as a normalization constant which ensures that the posterior distribution 

sums to 1 and comprises a valid probability distribution. For all but the most simple models, it will be 

difficult or impossible to compute. It is thus more common to work with the unnormalized posterior 

distribution (more on this at the end of the section). Bayes’ theorem can then be rewritten as: 

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃) ∗ 𝑝(𝜃)1 

Any outcome of a Bayesian model will always, by definition, be a probabilistic distribution of 

parameter values, rather than just a single point estimate and confidence interval for each 

parameter. It is possible and common to summarize these distributions into a single value such as 

the mean, median or mode of the distribution, or to calculate the probability that an outcome falls 

within a certain interval2 or is larger or smaller than a specific value, such as zero. However, these 

values are merely summaries of the estimated parameter distribution, not the estimate itself. 

The aforementioned concepts can be illustrated through a simple example of a model with only one 

parameter. Let us imagine a newly discovered rare disease about which not much is known yet. An 

analyst wants to estimate the sex-proportion 𝑝 of people affected by the disease, where 𝑝 = 0 and 

𝑝 = 1  imply that only women or only men are affected, respectively. The likelihood of the model is 

 
1 The symbol ∝ should be understood as “proportional to”. 
2 Commonly called a credibility interval, in order to avoid confusion with frequentist confidence intervals. 



𝑦 ~ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝) 

where 𝑦 is the sex of a patient. There is no a priori reason to believe that either men or women are 

more likely to be affected and most diseases are roughly equally distributed across the sexes. Thus 

the analyst chooses a prior distribution which expresses this belief: 

𝑝 ~ 𝑏𝑒𝑡𝑎(8, 8) 

This distribution puts most of the probability density around 0.5 and little on the extreme ends of the 

spectrum (see Figure 1, blue curve). Out of the 20 cases documented thus far, 15 were male. The 

model estimates the posterior distribution for the parameter 𝑝: 

Table 1: summary of poesterior distribution for the example case 

 mean CI lower bound – 
5% 

CI upper bound – 
5% 

𝒑 0.61 0.48 0.74 

 

 

Figure 1: illustration of Bayesian inference 

The expected proportion of men affected by the disease, based on the prior knowledge and the 

available data, is 61%. The credibility interval (CI) in Table 1 is a 90% highest posterior density interval 

(HPDI). This is the most narrow interval possible that contains 90% of the distribution’s probability 

mass. And 90% of samples drawn from this distribution will fall within the interval. Thus there is a 5% 

chance a realized value from this distribution is smaller than the lower bound of the interval, and a 

5% chance that it is larger than the upper bound.  

We see that there is still a probability of more than 5% that the proportion is 0.5 or lower, and the 

observed sample just happened to contain a lot more men by chance (Figure 1, small sample). Thus 

we can say that the proportion is not credibly different from 0.5, based on a 90% credibility level. 

Now suppose that instead 100 cases of the disease have been observed, 75 of whom were male. 

Even though the proportion of male patients is the same as in the previous example, the estimated 

parameter distribution of the parameter 𝑝 is different: it has a larger mean and a smaller spread 

(Figure 1, large sample). In this case, the proportion is in fact credibly higher than 0.5: there is a 



strong indication that the disease does affect more men than women. This kind of result is to be 

expected, since more data generally constitutes stronger evidence, and as such the prior belief has a 

smaller impact on the posterior belief. 

The obtained posterior distribution can be implemented into a probabilistic model and used to 

generate outcome samples (or, technically incorrect but perhaps more intuitive: new 

“observations”). This latter aspect is extremely important, since it means that a Bayesian model is 

generative: it allows us to generate predictions which are similar to the original observations (data) 

the model is based on.   

Let 𝑦∗ represent a future occurrence of the outcome variable 𝑦. The posterior predictive distribution 

is then defined as  

𝑝(𝑦∗|𝑦) = ∫ 𝑝(𝑦∗|𝜃) ∗ 𝑝(𝜃|𝑦)𝑑𝜃 

In the context of the discussed example, this might come into play when building a patient simulation 

model involving the example disease: the posterior distribution can be used to randomly generate 

the sex of simulated patients. Most models contain more than one parameter, but the procedure is 

analogous to the univariate case. 

For most models in applied Bayesian statistics, the integrals in the above formulas above will be 

difficult or impossible to solve, and thus no closed mathematical form of the posterior distribution 

can be found. It is however possible to generate exact samples from the posterior distribution, 

through the use of Markov chain Monte Carlo sampling [4]. When combined, these samples will 

converge to an increasingly accurate representation of the posterior distribution as more samples 

are generated. This is how the posterior distributions in the example (Figure 1) were obtained (even 

though in this simple case, an analytical solution would have been possible).  

For the modeling in this study, I use the probabilistic programming software Stan [5]. Stan estimates 

the posterior distribution through the No-U-Turn Sampler (NUTS, a variant of Hamiltonian Monte 

Carlo, which in turn is a variant of Markov chain Monte Carlo) as described by Hoffman and Gelman 

[6]. 

4.1.1. Difference from frequentist statistics 
In frequentist statistics, it is not possible to calculate the probability of either parameters or outcome 

taking any specific value or falling within some range of values; any interpretations of this sort are 

always wrong [7]. A 95% confidence interval does not contain 95% of the parameter values, since 

there is only one “true” parameter value which is fixed and therefore not subject to stochastic 

variation. The confidence interval also does not have a 95% chance to contain the true parameter. 

Rather, if the experiment were repeated an infinitive amount of times under the same conditions, 

95% of the estimated confidence intervals would contain the (still unknown) true parameter. See 

Greenland et al [8] for a detailed treatment of these issues. 

The correct interpretation of a confidence interval is generally not very useful for practical analyses, 

and as such it is extremely common to misinterpret frequentist estimates as if they were Bayesian. In 

order to avoid such inconsistencies, this study was conducted under a strict Bayesian paradigm. 

Consequently, all intervals presented are credibility intervals, not confidence intervals. 

4.1.2. Bayesian statistics and health economics 
The use of Bayesian statistics in health economics was strongly advocated by Baio [9], who 

emphasized the uncertainty quantification inherent in the Bayesian paradigm. This has obvious 



advantages in health economic evaluation, where a “wrong” decision can lead to huge opportunity 

costs in terms of money and human well-being. In their standard work Decision Modelling for Health 

Economic Evaluation, Briggs et al argue that decision modelling is always essentially Bayesian [10]: 

“In decision analysis, a probability is taken as a number indicating the likelihood of an event taking 

place in the future. As such, decision analysis shares the same perspective as Bayesian statistics. This 

concept of probability can be generalized to represent a strength of belief which, for a given 

individual, is based on their previous knowledge and experience. This more ‘subjective’ 

conceptualization of probabilities is consistent with the philosophy of decision analysis, which 

recognizes that decisions cannot be avoided just because data are unavailable to inform them, and 

‘expert judgement’ will frequently be necessary.” 

Nevertheless, most health economic analyses have been and are performed using frequentist 

methods (almost always suffering from the aforementioned misinterpretations). With the recent 

development of fast and simple tools like Stan and Turing [11] and an abundance of information 

about their usage [5, 7], there is nothing stopping researchers from familiarizing themselves with 

Bayesian methods.  

4.2. Metamodelling 
As indicated in the introduction, conventional health economic models have certain severe 

limitations. They tend to be “black boxes”: it is not clear how a specific results comes to be and which 

impact the inputs have on the result. Simply simulating different scenarios provides a rough idea at 

best about the effect of inputs and does not uncover any precise mathematical relationships. 

Furthermore, simulating a large number of scenarios is often unfeasible, since complex simulation 

models can take many hours to sample a single scenario [12]. These are not good preconditions for a 

sophisticated analysis. 

A possible solution to these issues is to create another model which is trained on data generated by 

the original health economic model. Here the original model is the data-generating process as 

described in the previous section, and its mathematical properties can be approximated through 

Bayesian inference. This second model is called a metamodel or surrogate model. Error! Reference s

ource not found. provides an illustration of the idea. A Bayesian model is generally preferable to a 

frequentist one because it retains the uncertainty inherent in the original simulation, instead of 

producing only a single point estimate. 



 

Figure 2: illustration of the metamodel concept3 

In other words: assuming that a chosen health economic model provides a reasonable approximation 

of costs and effects for a defined scenario, a metamodel can be utilized to extrapolate the outcomes 

of the model as a function of specific inputs. Jalal et al [13] define a metamodel as “a second model 

that simplifies the relationship between the inputs and outputs of a simulation model”. The purpose 

of metamodels is twofold: they can be used to  

• Reduce computing time and replace the original model for most purposes 

• Increase transparency by uncovering the relationship of specific inputs and outputs in the 

original model 

The latter aspect is more important in the context of this study, but the former will be investigated as 

well and briefly commented on. While metamodeling is common in fields such as biomedicine and 

engineering, it is not very widespread yet in health economics. A comprehensive literature review 

from 2019 found only 13 studies utilizing them [12]. The available research has been concerned with 

expected value of information (EVPI) analyses [15, 16], sensitivity analysis [17], parameter calibration 

[18], and simplification of a complex model [13]. Using a metamodel to forecast cost-effectiveness in 

the future has, to my knowledge, not been done yet. 

Degeling et al have written a valuable article on the application of metamodeling in health 

technology assessment [14], which will serve as a guide for my research. They recommend a five step 

process to build a metamodel: 

• Identifying candidate metamodel techniques 

• Simulating data sets 

• Fitting metamodels 

• Assessing metamodel performance (validation) 

• Applying the metamodel 

My methodology is based on this framework. 

4.2.1. Modelling techniques 
When picking a modelling method, there is generally a tradeoff between interpretability and 

predictive accuracy: simple parametric models tend to be more interpretable than complex machine 

learning algorithms but produce less accurate predictions, and vice versa [14]. I therefore had to 

 
3 inspired by Jalal et al [13] and Degeling et al [14] 



determine which of the three techniques provided the best compromise in that regard. In the early 

stages of the study, a literature review was conducted in order to identify suitable metamodeling 

techniques. Three stood out: 

• Linear Model [13] 

• Gaussian Process [15, 16] 

• Artificial Neural Network (ANN) [17, 18] 

I discarded the ANN-approach due to the high computational burden and the “black box” nature of 

neural networks, which makes them unfeasible for interpretation [19]. Non-parametric regression 

using a Gaussian process was attempted and worked appropriately on synthetic test-data. However, 

with actual data the computation time quickly became unmanageable. One study using a Gaussian 

process for health economic metamodeling reported a computation time of 260 hours [20]. 

Therefore this was discarded as well. I still consider the Gaussian process a promising candidate for 

health economic metamodeling, but it requires the use of approximation methods instead of full 

inference. Further research on this would be valuable. 

Ultimately I decided on modelling incremental cost and effects through a multivariate normal 

distribution. My methodology thus expands on the linear model approach used by Jalal et al [13]. 

Through testing it could be determined that this model produces accurate approximations of the 

original model’s estimates, despite the simplifying assumption that the mean outcomes are a linear 

function of the inputs. The concrete model definition is presented in section 4.4.2.  

There are two main reasons to assume a multivariate normal distribution:  

• Interpretability: when given the model parameters, one can easily get an idea of what the 

resulting distribution looks like and which impact the individual parameters have. Each 𝛽 or 

slope-parameter is a linear effect of the input it is assigned to, while the 𝛼 or intercept 

parameters are the mean outcome when all inputs are zero. The correlation coefficient 𝜌 

describes the correlation between the two outcomes, incremental costs and effects. 

• Practical considerations: the normal distribution is easily extended to multiple dimensions 

and included in all common statistical programming libraries. Multivariate versions of other 

distributions are often not readily available and have to be programmed manually, which 

requires advanced knowledge of mathematical statistics. Since the method presented in this 

study is supposed to be accessible to a large number of people, I decided to stick with a 

normal distribution. And indeed, despite their simplicity, normal distributions work very well 

for many applied problems. However, if another distribution seems more appropriate for a 

problem at hand, the methodology of this study can easily be adapted to use that instead.  

A disadvantage of the method is that it assumes the outcome distribution of the original simulation 

model to take a multivariate Gaussian shape. The more the actual distribution deviates from this, the 

higher the risk for inaccurate results becomes. For further discussion of this point see section 6.2.4. 

4.3. Case study 
Diabetes type 2 (TDM) is the most prevalent chronic disease in the Netherlands, with an estimated 

patient count of more than one million in 2019 [21] and a yearly economic burden exceeding one 

and a half billion euros [22]. The patient count is expected to grow even larger in the coming years 

[23], putting more pressure on Dutch healthcare payers. 

Drug manufacturers in turn have to deal with a lot of competing treatments and the need to 

demonstrate the long-term value of their own product to payers. These factors make diabetes drugs 



a prime candidate for innovative contracts [1]. Within this thesis, I focus on the drug dapagliflozin 

[24] as a case study. Reimbursement of dapagliflozin in the Netherlands is currently restricted to 

patients who do not use insulin and cannot be treated with a combination of metformin and 

sulfonylurea. Patients receive dapagliflozin in combination therapy with either or both of those [25]. 

Both dapagliflozin and SU are considered to be equally effective at controlling the levels of glycated 

hemoglobin (commonly abbreviated to hemoglobin A1c or HbA1c). Dapagliflozin is associated with a 

higher quality of life and slightly improved survival for patients, due to a decreased risk of 

hypoglycemic episodes and heart attacks as well a reduction in patient’s bodyweight. SU treatment is 

associated with higher risks of adverse events and weight gain [26], but is currently a lot cheaper. 

The price of dapagliflozin is subject to change in the near future, due to a recently decided change to 

the Dutch reference pricing system [27] as well as the loss of patent protection of dapagliflozin in 

2028 [28, 29], which will allow generic medicines to enter the market. It can also not be ruled out 

that newly released clinical evidence will expand the knowledge about dapagliflozin’s (relative) 

efficacy. All of these factors will affect the cost-effectiveness of dapagliflozin against alternative 

treatment options. If we were able to forecast the potential impact of these changes on 

dapagliflozin’s cost-effectiveness, healthcare payers would be able to anticipate these changes in 

their decisions.  

The study is focused on the following comparison: 

Table 2: overview of treatment arms in the case study 

 Treatment arm: Control arm: 

First line Metformin + dapagliflozin Metformin + SU 

Second line Metformin + insulin Metformin + insulin 

Third line Metformin + insulin + bolus Metformin + insulin + bolus 

The cost-effectiveness of dapagliflozin in this specific comparison has been investigated for the UK 

[30] and the Nordic countries [31]. However, these prior studies were mostly based on results of the 

UKPDS68 study [32], while the current version of the Cardiff model also includes evidence from the 

more recent DECLARE study [33], supplemented with data from UKPDS68 where necessary. A health 

economic study based on this setup has been published in 2020, albeit with a slightly different 

scenario focused on high-risk patients [34]. None of these studies were performed from the Dutch 

perspective. All of them made use of the Cardiff type 2 diabetes model, which I will explain shortly in 

the next section.  

Unlike the aforementioned studies, I will not investigate any specific clinical outcomes or adverse 

events in the main analysis and only model incremental costs and effects. While the metamodel 

approach can be extended to include any outcome which is estimated in the base model, the 

complexity and effort involved increases with any input and outcomes included, especially regarding 

the generation of training data. It is therefore recommended to decide which parameters are the 

most relevant and focus on those.  

4.3.1. The Cardiff model 
The Cardiff type 2 diabetes model provides the training data which the metamodel is trained on. It is 

a microsimulation model which simulates individual patients and their clinical development over the 

course of fixed half-yearly increments. Patients switch from first to second and second to third line 

treatment when their HbA1c levels exceed 8% and 9%, respectively. The model is accessed through 

an interface in Microsoft Excel and Visual Basic for Applications (VBA), while most of the calculations 

happen in an external engine coded in C++. For a detailed explanation and validation of the Cardiff 



model see McEwan et al [35].  The risk equations put into the model are based on results of the 

DECLARE study [33, 34].  

Like many health economic models, the Cardiff model has the option to perform a probabilistic 

sensitivity analysis (PSA) where all model inputs are varied according to predefined probability 

distributions. For example, one can specify to simulate a cohort of 1000 patients, 1000 times. For 

each of these simulation runs, the inputs of the simulation (patients’ clinical history, treatment 

effects, costs and utilities) are slightly different, since they are drawn from a probability distribution 

which is parameterized by a mean and standard error for each input. The rationale behind the PSA is 

that the model inputs are uncertain: they are based on limited available knowledge and evidence. 

This uncertainty should be reflected in the results as well, in order to avoid overconfidence in the 

results. See Briggs et al [10] for a detailed exposition.  

Figure 3 shows a screenshot from the Cardiff model. Based on this simulation, the treatment is on 

average less costly and more effective than the comparator, but there is a lot of uncertainty 

surrounding both of these.  

 

Figure 3: screenshot from the Cardiff model. In health economic evaluation, quality-adjusted life years (QALYs) are a 
common measure for the effectiveness of medical treatments. 

4.3.2. Prices 
A short note on terminology: throughout this paper, I frequently refer to drug prices, when what is 

meant is strictly speaking the yearly cost per patient associated with the use of a particular drug 

(which is determined by the price per drug unit), i.e. drug costs. The reason for this is to avoid the 

confusion of drug costs with the total treatment costs per patient simulated by the model.  

Table 3 shows the three drug prices which are included in the metamodel and their current level as 

of April 2021. They will be varied when simulating training data for the metamodel (section 4.5.1). 

Dapagliflozin is subject to the Dutch reference pricing system and as such, its maximum price per 

pack is defined as the average price in the four reference countries [27].  

Table 3: yearly drug costs 

Drug Costs per day Cost per year 

Dapagliflozin € 1.26 [36] € 459.85 



SU4 € 0.09 [36] € 33.46 

Metformin € 0.05 [36] € 18.26 

The yearly treatment costs put into the Cardiff model (Table 4, far right) are calculated by taking the 

daily costs times the number of days in a year, plus additional pharmacy dispensing fees of € 28 per 

drug [37], plus consumables in the treatment profiles where insulin is involved. Insulin costs are 

calculated separately by the Cardiff model, based on the weight and weight change of the individual 

simulated patient (€0.014/kg/day for insulin, €0.033/kg/day for insulin + insulin bolus [38]). Since 

insulin costs are equal for both treatment arms, they are not further discussed here.  

Table 4: yearly treatment costs by treatment arm (excluding insulin) 

Treatment Drug costs 
(excluding 
insulin) 

Consumables Pharmacy 
costs  

Treatment 
costs 
(excluding 
insulin) 

Metformin + 
dapagliflozin 

€ 478.11 - € 56 € 534.11 

Metformin + SU € 51.72 - € 56 € 107.72 

Metformin + 
insulin 

€ 18.26 € 284.90 € 56 € 359.16 

Metformin + 
insulin + bolus 

€ 18.26 € 1139.50 € 56 € 1213.76 

For the prices put into the metamodel, I decided to use only the yearly drug costs themselves, 

without the overhead costs. For the prices I will discuss later, the daily price can thus be recovered by 

dividing by 365.25. The reason for doing this is that the drug prices are the interesting part of the 

costs, while the overhead costs are constant across treatment profiles.  

4.3.3. Clinical efficacy 

In addition to the prices of the drugs involved in the treatment of type 2 diabetes, the impact of 

changes in clinical efficacy of dapagliflozin is to investigated as well. The goal is not to anticipate any 

specific scenario, but rather to provide an idea how such an anticipatory analysis can be undertaken. 

The impact of dapagliflozin on body weight has been chosen as an example, since it is typically cited 

as a major benefit of the drug [39]. 

According to clinical evidence [40], dapagliflozin leads to an average reduction in bodyweight of 3.3 

kilograms per year used. Reduced bodyweight has a direct benefit to a patient’s quality of life and 

also decreases the risk of adverse clinical events, most notably heart disease. It is reasonable to 

assume that the impact on adverse events and survival will also affect the treatment costs. The 

release of hypothetical novel trial or registry data, which shows that the effect of dapagliflozin on 

bodyweight is different from what is currently known, could therefore change both the expected 

costs and benefits of treatment with dapagliflozin. 

 
4 In the case of sulfonylurea, there are multiple generic drugs which are used in diabetes therapy, therefore a 
weighted average is used to determine the cost. See Table 16 in the appendix for precise calculations. 



4.3.4. Other inputs to the Cardiff model 

As discussed, three price parameters and one clinical parameter are varied, while the rest of the 

model setup stays constant. Since cost-effectiveness analyses dealing with the dapagliflozin-SU 

comparison using the Cardiff model have been performed before, with similar results to the base-

case in my analysis, I will not discuss the input choices in depth and only point out some important 

details. A detailed list of all inputs used is provided in the appendix. 

Means and standard errors for all inputs were sourced from the literature where possible. When 

there was no standard error reported and no option to calculate it, the standard error was assumed 

to be 10% of the mean. An important exception to this are the patient characteristics and clinical risk 

factors: for the inputs where the standard error is known, it is small, mostly below 1% of the mean. 

Setting the unknown ones to 10% resulted in a massive spread of the resulting cost-effectiveness 

pairs which were not at all in line with the available literature. It also made the model very 

unresponsive to changes in the treatment profiles. This was considered to be both unrealistic and 

unsuitable for analysis, and I therefore set all unknown standard errors in the patient characteristics 

and clinical risk factors to 1% instead of 10% of the mean. 

4.4. Statistical metamodel 

4.4.1. Causal structure of the case 
The main outcomes of a health economic model are incremental costs and effects. Costs are directly 

affected by drug prices, since they comprise parts of the treatment costs. Clinical efficacy parameters 

impact the effects and, as motivated earlier, potentially also the costs associated with a treatment.  

In each model run in a PSA, there are lots of factors which have an effect on the incremental costs 

and effects of the respective simulation run: 

• Sampled risk equations 

• Sampled treatment effects 

• Sampled costs, utilities and patient population 

These randomized factors induce covariance between clinical costs and effects: for a simulation run 

where the treatment leads to far fewer adverse events relative to the comparator, incremental costs 

will be low and QALYs high, and vice versa (negative correlation between costs and effects). The 

reverse can be reasonable as well: for simulation runs where patients in the treatment group live 

much longer and enjoy more QALYs, costs will also be higher (positive correlation). These are just 

two examples of correlation effects; many more are imaginable. It is thus very important to enable 

the model to capture and reproduce this correlation between costs and effects. Since the 

correlation-inducing factors are not included in the training data, they are treated as unobserved 

variables (U). 

This causal structure of an analysis can be represented through a directed acyclical graph (DAG) [7]. 

The DAG is important because it helps us decide how to interpret the model’s parameters. A model 

can only report statistical associations. If we are investigating some association between two 

variables A and B, the model cannot determine whether A causes B, B causes A, A and B are both 

caused by some third variable C, or a combination of those. The causal interpretation depends on 

domain knowledge outside of the model, which can be expressed through the DAG. Causal 

interpretations within this study are conditional on the DAG and should be understood in the 

following manner: 

A has an effect of 𝛽 on B, assuming that the DAG is correct 



The DAG for the case study is shown in Figure 4 and Table 5. P and W are experimentally controlled; 

therefore they are not caused by anything and the association they have with their respective 

outcomes can be interpreted as a causal effect. While U has a causal effect on both outcomes, it does 

not affect any of the exposures and is thus not a confounder with respect to E and C. The parameters 

of E and C are unbiased and represent full causal effects. The correlation parameter of E and C has no 

causal interpretation, it is purely a measure of correlation. E does not cause C and vice versa; they 

are both caused by the unobserved variables U as well the exposures P and W. 

 

Figure 4: Directed acyclical graph (DAG) illustrating the causal structure of the case 

Table 5: Legend of DAG variables 

Variable Description Type 

C Incremental costs Outcome 

E Incremental effects Outcome 

P Drug prices Exposure 

W Weight change in dapagliflozin patients Exposure 

U Unobserved variables Affect the outcomes but not the 
exposures 

4.4.2. Model definition (likelihood) 
A multivariate normal distribution is parameterized by a vector of means and a covariance matrix, 

which is in turn parameterized by a vector of standard deviations and a correlation matrix. The 

following model includes two outcomes, incremental costs and effects, and thus has a bivariate 

normal distribution as its outcome. In line with the DAG presented in the previous section, the mean 

effects are a (linear) function of the weight change parameter, while the mean costs are a linear 

function of the weight change parameter and the drug prices. The method is a generalization of 

ordinary linear regression to multiple outcomes. 

(
𝐸𝑖

𝐶𝑖
) ~ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑁𝑜𝑟𝑚𝑎𝑙 ((
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𝜇𝐶,𝑖
) , 𝑆) 
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Table 6: legend of model variables and parameters 

 Name in DAG and equations Name in code Description 

Variables 
(data) 

𝐸 effects Incremental 
effects 

𝐶 costs Incremental 
costs 

𝑊 weight Weight change 
parameter 

𝑃𝑑𝑎𝑝𝑎𝑔𝑙𝑖𝑓𝑙𝑜𝑧𝑖𝑛 ,  𝑃𝑠𝑢𝑙𝑓𝑜𝑛𝑦𝑙𝑢𝑟𝑒𝑎 ,  𝑃𝑚𝑒𝑡𝑓𝑜𝑟𝑚𝑖𝑛 p_dapa, p_SU, 
p_met 

Drug prices 

Parameters 𝛼𝐸 , 𝛼𝐶  alphaE, alphaC Intercepts 

𝛽𝑊𝐸 betaE_weight Effect of weight 
change on 
incremental 
effects 

𝛽𝑊𝐶 betaC_weight Effect of weight 
change on 
incremental 
costs 

𝛽𝑑𝑎𝑝𝑎𝑔𝑙𝑖𝑓𝑙𝑜𝑧𝑖𝑛 ,  𝛽𝑠𝑢𝑙𝑓𝑜𝑛𝑦𝑙𝑢𝑟𝑒𝑎,  𝛽𝑚𝑒𝑡𝑓𝑜𝑟𝑚𝑖𝑛 betaC_dapa, 
betaC_SU, 
betaC_met 

Effects of prices 
on incremental 
costs 

𝜎𝐸 , 𝜎𝐶 sigma[1], sigma[2] Standard 
deviations 

𝑅 Rho Correlation 
matrix 

Transformed 
parameters5 

𝜇𝐸 , 𝜇𝐶  muE, muC Means 

𝜌 - Correlation 
coefficient 

𝑆 -  Covariance 
matrix 

The mathematical model definition comprises the likelihood of the Bayesian model (see section 4.1). 

Each of the parameters is assigned a prior distribution. Bayesian inference is about estimating the 

joint distribution of parameter values that is most consistent with the prior distributions, the 

likelihood and the observed data. The specific prior distributions are discussed in section 4.6. 

4.4.3. Technical implementation 
The data processing and model specifications are done in R. Model and data input are then passed to 

Stan via the RStan package [41]. Stan will produce a distribution of samples for each parameter in the 

defined surrogate model; all of these sample distributions combined comprise the posterior 

distribution. The sampled parameters can be used to simulate new cost-effectiveness pairs, 

 
5 Transformed parameters are a deterministic implication of other parameters. Therefore they do not have a 
prior distribution. 



dependent on the defined inputs for costs and clinical affects. Processing and visualization of the 

obtained samples happen again in R. 

As recommended in the Stan User’s Guide, the data are standardized before the parameters are 

estimated [42]. The posterior distribution therefore includes both standardized and unstandardized 

parameters. The primary reason for doing this is that it that even though the standardized 

parameters are not used for any of the further analyses, they are helpful for interpretation. 

Additionally, it makes the Stan program run faster.  

Since the correlation coefficient 𝜌 is invariant to scale, it can be ignored when rescaling the other 

parameters. The two mean equations in the previous sections are of the form 

𝑦𝑖 =  𝛼 + 𝛽 ∗ 𝑥𝑖 + 𝑒 

Where 𝑦 is the outcome, 𝑥 is the predictor and 𝑒 is the stochastic deviation from the mean: 

𝑒 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎) 

For brevity I will use this generic form instead of the full form of the equations. It can be transformed 

by inserting the respective outcomes, predictors and parameters. The standardized value of any 

observed outcome 𝑦𝑖  is defined as  

 

𝑧𝑦(𝑦𝑖) =  
𝑦𝑖 − �̅�

𝑠𝑑(𝑦)
 

The sample mean �̅� and standard deviation 𝑠𝑑(𝑦) are calculated as follows: 
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1

𝑁
∑ 𝑦𝑖

𝑛

𝑖=1

 

𝑠𝑑(𝑦) = ( 
1

𝑁
∑(𝑦𝑖 −

𝑛

𝑖=1
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1
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The calculations for the predictor 𝑥 are analogous. Since the data are standardized, the parameters 

are estimated on the standardized scale as well, and the regression equation turns to 

𝑧𝑦(𝑦𝑖) =  𝛼′ + 𝛽′ ∗ 𝑧𝑥(𝑥𝑖) + 𝑒′ 

The unstandardized parameters are recovered in the following manner: 

𝛼 = 𝑠𝑑(𝑦) (𝛼 − 𝛽′
�̅�

𝑠𝑑(𝑥)
) + �̅� 

𝛽 = 𝛽′
𝑠𝑑(𝑦)

𝑠𝑑(𝑥)
 

𝜎 = 𝑠𝑑(𝑦)𝜎′ 

 

For a derivation of these calculations see the Stan User’s guide [42]. 



4.5. Simulating data sets 
This section deals with the creation of adequate training data which the metamodel can be trained 

on. As explained earlier, the Cardiff model has the option to perform a probabilistic sensitivity 

analysis (PSA). In order to determine the impact that the input parameters have, they have to be 

varied and the results stored together with the input values used. The basic workflow looks like this: 

• Randomize parameters 

• Run health economic model 

• Store results together with inputs used 

The first step is to randomize the input values put into the original model. Most parameters in a 

model have no logical boundaries: a price for instance, can range from 0 to infinity. Thus we have to 

decide on a range for each input which constraints the simulation to meaningful values. 

Furthermore, in order to produce useful training data, it has to be ensured that each region in the 

parameter space defined by these boundaries is adequately represented in the simulation. 

If the model is directly coded in a high-level programming language like Python or R, it is usually easy 

to define a loop which runs the model many times with randomized parameters and store the results 

together with the inputs used for each simulation run. In that case, for each input a random value 

within the defined range is drawn for each simulation run in the loop, independently of the other 

inputs. Given enough runs, this is guaranteed to cover the entire parameter space well. Figure 5 

(right) shows an example for two generic parameters that are varied between 0 and 1, 2000 times.  

However, if the model is accessed through a visual interface (e.g. spreadsheet software like Microsoft 

Excel or a dashboard of some sort), the process is more challenging and can usually not be 

automated. We have to manually change the input parameters and store the results for each 

simulation. Doing this for thousands of times is obviously not feasible. Instead, a limited number of 

input scenarios has to be defined; then the model is run multiple times for each of these. In order to 

minimize the time spent on this, we need to reach an accurate representation of the model with as 

few experiments as possible. Degeling et al [12] recommend 10 experiments per input parameter 

involved, which leads to 20 experiments for the two-parameter example. The actual case study 

includes more parameters and experiments (see next section). 

Simply sampling random values within the parameter ranges is not a good option anymore, since it is 

inevitable that certain regions of the parameter space will be underexplored while others will be 

overrepresented and therefore redundant. The larger the number of dimensions (parameters), the 

more severe this problem becomes. See Figure 5, left. 



 

Figure 5: 20 and 2000 parameter combinations, obtained through random sampling using uniform distributions 

The input values thus have to varied in a manner which covers the parameter space as well as 

possible, given the limited number of experiments. A useful method to achieve this is Latin 

Hypercube Sampling (LHS) [43]. The LHS package for the R language provides an interface. LHS 

requires the user to define a number of N experiments (combinations of parameter values) and a 

range for each parameter, within which the parameter will be varied. The algorithm then returns N 

combinations of all parameters. In the aggregate, these parameter combinations cover the 

parameter space as well as possible, given the number of experiments. Figure 6 shows 20 random 

samples for two parameters obtained through LHS. 

 

Figure 6: 20 parameter combinations obtained through LHS sampling 

The method can be extended to more than two dimensions (parameters). For three dimensions we 

would have a cube instead of a square, and for more dimensions a hypercube (multidimensional 



generalization of a cube). This is where the name of the method is derived from. Dimensions higher 

than two are difficult to visualize, but work analogously to the two-dimensional example. 

4.5.1. Application to the case study 
Four input parameters and thus four dimensions are involved in the analysis: 

• Annual price of dapagliflozin 

• Annual price of sulfonylurea (SU) 

• Annual price of metformin 

• Annual weight change associated with dapagliflozin 

For the prices, I defined the range to be between 0 and the current price times 2. Even if substantial 

cost increases seem unlikely in the current situation, the model should nevertheless be able to 

provide meaningful approximations for situations with higher prices. The clinical parameter (weight 

change of patients receiving dapagliflozin) was varied between 0 and the currently estimated mean 

value times 2.  

In line with the recommendations by Degeling et al, I used 40 experiments, so 40 different input 

combinations (10 per parameter involved). For each experiment I simulated 250 cohorts of 1000 

patients from the Cardiff model, resulting in a total of 10000 observations. The appendix includes a 

detailed list of the input parameters used, as well as a plot of the obtained training data. 

4.6. Priors 
The prior parameters are unstandardized according to the formulas introduced in section 4.4.3, 

which can only happen after the data is collected. This is why the priors are discussed here and not in 

the model definition section (4.4.2). The following priors (on the standardized scale) were chosen for 

the model parameters: 

𝛼𝐸  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝛼𝐶  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝛽𝑊𝐸  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝛽𝑊𝐶  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝛽𝑃𝑗
 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝜎𝐸  ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

𝜎𝐶  ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

𝑅 ~ 𝐿𝐾𝐽𝐶𝑜𝑟𝑟(2) 

Since the data set used is large relative to the model (10000 observations versus 10 parameters), the 

Bayesian inference is highly insensitive to the choice of prior distributions (see the example in section 

4.1). Nevertheless, it is considered good practice to set sensible prior distributions which assign more 

probability mass to more reasonable parameter values, and less to extreme and unrealistic ones [7]. 

Thus, the prior distributions for all parameters are mildly informative, which means that they are 

skeptical of extreme and unrealistic values. For instance, it seems unlikely that an increase of one 

standard deviation in the price of metformin leads to a change of more than one standard deviation 

in the incremental treatment costs, in either direction. The prior distribution for the metformin 𝛽-

parameter expresses this belief.  



The slightly exotic “LKJCorr” distribution (proposed by Lewandowski et al [44]) deserves a short 

explanation: it serves as a prior for the correlation matrix 𝑅, parameterized by a set of correlation 

coefficients. For the given model, there are two outcomes whose correlation is to be estimated, and 

therefore is only one coefficient 𝜌. For values higher than 1, the distribution puts more probability 

mass on small correlations near 0, and vice versa. 𝐿𝐾𝐽𝐶𝑜𝑟𝑟(2) is thus a mildly informative prior in 

favor of smaller correlations. 

Figure 7 visualizes the prior distribution of the slope parameters. This plot by itself is not very 

interesting, but it allows to directly compare the prior distribution to the posterior distribution in 

Figure 9. 

 

Figure 7: standardized prior distribution of beta-parameters. 

Using the model definition and the prior parameters, we can simulate outcomes. This is helpful to 

determine whether the priors are sensible: the simulated values should focus on areas which are 

deemed to be realistic based on prior knowledge, but also not totally exclude extreme outcomes. 

Figure 8 shows 4000 simulated cost-effectiveness pairs based on the unstandardized prior 

parameters. Because the parameters are unstandardized using the collected data, the alpha 

parameters are centered around the sample mean of the simulated data. The parameters are 

however not conditioned on the data yet, they are random draws from the prior distributions.  



 

Figure 8: prior predictive distribution 

Again, Figure 8 should be compared to the posterior predictive distribution in Figure 10.  

5. Results 

5.1. Parameter estimates 
As motivated earlier, one of the motivations for building a metamodel is to uncover the precise 

impact that individual inputs in the original model have on the results. One can get an idea about this 

by investigating the regression coefficient estimates of the model (see model definition).  

Table 7 and Table 8 summarize the unstandardized and standardized estimates, respectively. They 

are summarized in terms of mean, standard deviation and 90% credibility interval. All these reported 

values are merely descriptive statistics summarizing the distribution of values per coefficient, 

intended to ease interpretation. When simulating new observations from the metamodel, all of the 

coefficient samples are used. The correlation between the two outcomes, incremental costs and 

effects, is reliably negative. 

Unstandardized coefficients are always sensitive to scale, which can make them difficult to interpret 

if they relate to variables of different magnitude. This becomes obvious when investigating the 

coefficients for the prices of dapagliflozin and the comparator, SU. Since the price of dapagliflozin is 

generally much higher, the coefficient will be smaller relative to the price, compared to SU. This is 

why the coefficient of SU has a higher absolute value. When investigating the standardized 

coefficients (Figure 9) it is immediately obvious that the dapagliflozin price has a much larger impact 

on the incremental costs.  

Table 7: unstandardized joint posterior distribution of all parameters 

Coefficient Mean Standard 
deviation 

HPDI – 5% 
bound 

HPDI – 95% 
bound 

alphaC -1233.02 91.90 -1383.94 -1082.27 

betaC_dapa 4.55 0.09 4.39 4.70 

betaC_SU -6.51 2.19 -10.09 -2.90 



betaC_met 1.75 2.21 -1.83 5.38 

alphaE 0.51 0.01 0.50 0.53 

betaE_weight -0.03 0.00 -0.03 -0.03 

betaC_weight 20.06 12.77 -1.02 41.06 

sigma[1] 0.51 0.00 0.50 0.51 

sigma[2] 2389.32 16.72 2361.58 2416.78 

Rho      -0.14 0.01 -0.15 -0.12 
Table 8: standardized joint posterior distribution of all parameters 

Coefficient Mean Standard 
deviation 

HPDI – 5% 
bound 

HPDI – 95% 
bound 

alphaC_std 0.00 0.01 -0.01 0.01 

betaC_dapa_std 0.45 0.01 0.43 0.46 

betaC_SU_std -0.03 0.01 -0.04 -0.01 

betaC_met_std 0.01 0.01 -0.01 0.02 

alphaE_std 0.00 0.01 -0.02 0.02 

betaE_weight_st
d 

-0.11 0.01 -0.13 -0.09 

betaC_weight_st
d 

0.01 0.01 0.00 0.03 

sigma_std[1] 0.99 0.01 0.98 1.01 

sigma_std[2] 0.89 0.01 0.88 0.90 

Rho      -0.14 0.01 -0.15 -0.12 

We can investigate the standardized estimates visually, in order to compare the relative impact that 

each parameter has. Figure 9 illustrates the posterior density of the standardized beta-parameters, 

with the credibility interval indicated in light blue. The price of dapagliflozin has by far the strongest 

impact on the resulting treatment costs, while the impact of the other two prices is small. The price 

of SU has a small but credible negative effect on the incremental costs, as is to be expected. The 

price effect of metformin is not credibly different from 0.  

The weight change parameter has a credible negative impact on the incremental effects and a very 

small positive impact on costs. The weight change increment is expressed in kilogram per year, and 

weight loss is associated with utility gain, while weight gain is associated with utility loss. Since 

dapagliflozin leads to a reduction in bodyweight, the weight increment is negative, leading to a 

positive utility increment when multiplied with the negative parameter. The mean unstandardized 



effect of weight change is -0.03 QALYs per kg/year. This means that an increase of the mean weight 

loss per year of one kilogram leads to an increase in incremental QALYs of 0.03.  

 

Figure 9: standardized posterior distribution of beta-parameters  

5.2. Posterior predictive simulation and model validation 
 After the metamodel has been trained, the predictions it makes can be compared to output samples 

from the original model which the surrogate has not been trained on (Figure 10). For demonstration, 

10000 new samples are drawn from the Cardiff as well as from the surrogate model and visually 

compared. Figure 10 shows the draws from the Cardiff model on the left and those from the 

metamodel on the right. Lighter areas indicate higher density. The inputs used represent the Dutch 

situation as of April 2021 (see Table 9). 

Table 9: Input values used for validation of the metamodel's performance 

Input Value 

Price dapagliflozin 459.85€ 

Price metformin 18.26€ 

Price sulfonylurea 33.46€ 

Effect of dapagliflozin on patients’ bodyweight  -3.3 kg / year 



 

 

Figure 10: comparison of the metamodel’s predictions with a new dataset obtained from the Cardiff model, which the 
metamodel has not been trained on 

Table 10: mean predictions by the Cardiff model and the metamodel 

 Mean 
incremental costs 

Mean 
incremental 
effects 

Incremental costs 
– standard 
deviation 

Incremental 
effects – 
standard 
deviation 

Cardiff model 694.52 0.60 2655.10 0.68 

Metamodel 645.27 0.61 2414.53 0.51 

Table 10 compares the predictions made by the Cardiff model with those of the metamodel. The 

metamodel predicts slightly lower mean incremental costs. Furthermore, it underestimates the 

uncertainty of predicted costs and effects compared to the original model. The two results are 

certainly not identical. However, this is not necessarily a problem: the goal of a metamodel is not to 

reconstruct the original model, but rather to provide an approximation which is good enough to 

answer all questions of interest. In the context of the study, the two main questions are:: 

• What are the expected incremental costs caused and QALYs gained by a patient starting 

dapagliflozin treatment? 

• What is the probability that the treatment is cost-saving and/or cost-effective? 

The first question is adequately answered by the fact that the metamodel and the Cardiff model 

predict near identical mean values. We can investigate question 2 by looking at the cost-

effectiveness acceptability curve (CEAC), shown in Figure 11. The curve for the predictions of the 

Cardiff model is indicated in black, and that for the metamodel in blue. I would like to draw special 

attention to two points in the chart: 

• X = 0, which shows the probability that the treatment is cost-saving 



• X = 20000, which shows the probability that the treatment is cost-effective, given the 

customary ICER-threshold of 20000€ per incremental QALY 

 

Figure 11: cost-effectiveness acceptability curve (CEAC) for the metamodel (blue) and the Cardiff model (black) 

The curves are almost identical, which indicates that the metamodel captures the behavior of the 

original model well. Thus, the minor differences in the estimates have no distinct impact on the 

probability that dapagliflozin treatment is cost-saving or cost-effective at any threshold. The Cardiff 

model and metamodel are interchangeable when it comes to decisions based on estimated costs and 

effects.  

5.3. Model application 
In the previous section, one simulation of 10000 cost-effectiveness pairs was performed, using a 

single set of input parameters. The following analyses are of the same nature, but instead of only one 

simulation, a large number of different simulations is performed with different input values.  

5.3.1. Impact of changes in drug prices and effects 

5.3.1.1. Prices 

In the dapagliflozin case study, one of the main interests is what the consequences of price changes 

are on the treatment’s costs and cost-effectiveness. To investigate the impact of the dapagliflozin 

price in isolation, a grid is defined, with evenly spaces input values from € 0 to € 1000. The other 

input parameters are kept constant at the level defined in Table 9. 

Table 11: illustration of input grid used for price variations 

 Simulation 1 Simulation 2 Simulation 3 … Simulation 
999 

Simulation 
1000 

Price 
dapagliflozin 

€ 1.00 € 2.00 € 3.00 … € 999.00 € 1000.00 

Price 
metformin 

18.26€ 18.26€ 18.26€ … 18.26€ 18.26€ 



Price 
sulfonylurea 

33.46€ 33.46€ 33.46€ … 33.46€ 33.46€ 

Effect of 
dapagliflozin 
on patients’ 
bodyweight  

-3.3 kg / year -3.3 kg / year -3.3 kg / year … -3.3 kg / year -3.3 kg / year 

For each of these input combinations, 10000 samples are drawn and summarized in terms of mean, 

50% credibility interval and 90% credibility interval (Figure 12). Due to stochastic variance in the 

simulations, the graphs are slightly wiggly. As is to be expected, the price of dapagliflozin has a strong 

positive impact on the incremental costs of the dapagliflozin treatment arm. Figure 12 shows the 

predictive distribution of incremental costs at each value of the price grid. The current price of 

459.85€ is indicated by the vertical dashed line. 

 

Figure 12: predictive cost distribution for different dapagliflozin prices 

Furthermore we can calculate the probability that the treatment is cost-effective and cost-saving at 

each value of the defined input-grid (Figure 13). The impact on the treatment’s cost-effectiveness at 

a threshold of € 20000 per QALY is small: even at a yearly price of € 1000, dapagliflozin would still 

have a chance 92% to be cost-effective. This probability would drop if the price was further 

increased, but such large price increases are unrealistic. The price does have a strong impact on the 



probability that the treatment is cost-saving. In order for it to be cost-saving on average, the 

dapagliflozin price would need to fall below € 360 per year. 

 

Figure 13: probability that dapagliflozin is cost-effective and cost-saving at different price levels 

Analogous plots could be created for the other price parameters involved. However, as can be seen 

from the parameter distributions in Figure 9, their impact on the incremental costs is small and the 

mean lines and credibility intervals would be approximately horizontal. Therefore they are omitted 

for the sake of brevity.  

5.3.1.2. Clinical effects 

According to the model definition, the weight change parameter is assumed to affect the 

incremental effects as well as the incremental costs. Similarly to the previous section, I defined an 

evenly spaced grid of 1000 values from -6.6 (double the effect that is currently known) and 0 

(dapagliflozin has no effect on bodyweight), while keeping the other inputs constant.  

From the parameter estimates in section 5.1 we know that the weight effect has virtually no impact 

on the incremental costs, which is why the graph regarding costs (Figure 14, top) is almost horizontal. 

More surprisingly, the impact on quality of life is fairly small as well: if the yearly weight loss 

associated with dapagliflozin were double of what is currently known, the incremental QALYs would 

only be 0.1 higher than they are now. If it had no effect on bodyweight at all, dapagliflozin would still 

have chance of more than 99% to be more effective than SU. This is surprising and counter-intuitive, 

since according to earlier research [30, 31], weight loss is one of the main drivers of improved quality 

of life in dapagliflozin patients. According to the predictions of the Cardiff model, this is not the case. 

As such, the clinical parameter investigated in this study has a negligible effect on the probability of 

the treatment being cost-effective or cost-saving (Figure 15). The issue is further discussed in section 

6.1.2. 



 

Figure 14: predictive distribution of incremental costs and effects for different values of the weight increment associated 
with dapagliflozin treatment 

 

Figure 15: probability that dapagliflozin is cost-effective and cost-saving at different values of the weight increment 



5.3.2. Timeline 

The prices in the reference countries in the near future are known [45-47] and can be used to 

anticipate the price of dapagliflozin in the Netherlands (see Table 12, until 2027). Additionally, 

dapagliflozin’s patent was filed in 2008 and will therefore expire in 2028 [29], which will allow 

generics to enter the market. Unfortunately, the literature provides little information regarding the 

price development in European countries for drugs which lose their patent protection. In a 

comprehensive literature review from 2018, Vondeling et al [48] found that while prices generally 

tend to drop after patent loss, the estimated amount varies a lot both by country and by 

investigating study. The price development of dapagliflozin is therefore highly speculative.  Based on 

internal forecasts at AstraZeneca, the following price development scheme was assumed. It assumes 

a sharp initial price drop after patent loss, which then slows down over the course of five years 

(column 4 in Table 12). 

The patents of metformin and the commonly used sulfonylurea have expired a long time ago [49], 

and therefore no significant price changes are to expected in the coming years. As previously 

discussed, small price changes of both drugs have a negligible impact on the incremental costs of 

dapagliflozin treatment. Thus the prices of both are assumed to stay constant. 

Table 12: assumed price development of dapagliflozin 

date price_dapa price_met price_SU Price drop due to 
patent loss, 
relative to 
previous year 

1-apr-21 € 487.85 € 18.26 € 33.46 - 

1-okt-21 € 527.18 € 18.26 € 33.46 - 

1-apr-22 € 527.18 € 18.26 € 33.46 - 

1-okt-22 € 527.18 € 18.26 € 33.46 - 

1-apr-23 € 522.31 € 18.26 € 33.46 - 

1-okt-23 € 522.31 € 18.26 € 33.46 - 

1-apr-24 € 517.44 € 18.26 € 33.46 - 

1-okt-24 € 517.44 € 18.26 € 33.46 - 

1-apr-25 € 517.44 € 18.26 € 33.46 - 

1-okt-25 € 517.44 € 18.26 € 33.46 - 

1-apr-26 € 517.44 € 18.26 € 33.46 - 

1-okt-26 € 517.44 € 18.26 € 33.46 - 

1-apr-27 € 517.44 € 18.26 € 33.46 - 

1-okt-27 € 517.44 € 18.26 € 33.46 - 

1-apr-28 € 258.72 € 18.26 € 33.46 -50% 

1-okt-28 € 129.36 € 18.26 € 33.46 -50% 

1-apr-29 € 109.95 € 18.26 € 33.46 -15% 

1-okt-29 € 101.16 € 18.26 € 33.46 -8% 

1-apr-30 € 96.10 € 18.26 € 33.46 -5% 

1-okt-30 € 91.30 € 18.26 € 33.46 -5% 

1-apr-31 € 86.73 € 18.26 € 33.46 -5% 

1-okt-31 € 84.13 € 18.26 € 33.46 -3% 

1-apr-32 € 81.61 € 18.26 € 33.46 -3% 

1-okt-32 € 79.16 € 18.26 € 33.46 -3% 

In order to analyze which impact this price development will have on the estimated costs in the 

coming years, the methodology is analogous to the previous sections. For each point in time, 10000 



cost-effectiveness pairs are simulated and then summarized in terms of mean, 50% credibility 

interval and 90% credibility interval (Figure 16

). The minor price changes up until 2027 have only a negligible impact: the expected incremental 

costs hover around € 1100 and the chance of the treatment being cost-saving is approximately 30%. 

After the loss of exclusivity, the costs associated with the treatment decline, culminating in mean 

incremental savings of € 510 and a probability of 59% of being cost-saving. 

 

Figure 16: distribution of incremental costs as time passes 



 

Figure 17: probability that dapagliflozin is cost-saving as time passes 

As we saw in the previous section, dapagliflozin’s price has very little impact on the treatment’s cost-

effectiveness. Versions of the above plots for cost-effectiveness are therefore not shown. 

Obviously the forecasts are highly dependent on the assumptions made about the price 

development. However, once more concrete information becomes available, it can very easily be 

incorporated in the analysis. The price forecasts are not part of the metamodel, but are simply 

passed to the model as inputs for the simulation. Thus the same model can be used for different 

price developments.  

5.4. Computation/running time 
As indicated in the methods section, one of the advantages of a metamodel is the greatly increased 

computation speed compared to the original model. Simulating the validation dataset from the 

Cardiff model (10000 observations, Figure 10, left) took roughly one hour. The metamodel took less 

than five seconds to simulate and graph the 10000 observations on the left. The metamodel thus 

makes it possible to simulate outcomes for arbitrary input values in a fraction of the time it takes the 

original model. Of course this comes at the expense of being limited to the inputs that the surrogate 

has been trained on, while the original model allows for adjustment of all input factors.  

The further simulations in section 5.3.1 took between one and five minutes each. The simulations are 

of the same type as the one illustrated in Figure 10, but then applied iteratively over the defined grid 

of different input values. This means that for Figure 12, 10000 cost-effectiveness pairs were 

simulated 1000 times, resulting in a total of 10 million simulated pairs.  

6. Discussion 
After presenting the insights that can be produced through the use of a statistical metamodel, I 

would like to critically discuss how these results can be used, as well as the trade-off between the 

additional value and additional workload associated with the creation of a metamodel. 



6.1. Applications 

6.1.1. Incorporation of price-changes into health economic evaluations 
In section 5.3.2 I forecasted the development of dapagliflozin’s incremental costs compared to SU as 
the price decreases over time. According to the estimates, dapagliflozin is cost-effective with a very 
high probability, even if the price were much higher that it is now. Price drops therefore hardly affect 
the probability of cost-effectiveness. I thus focused on the probability that the treatment is cost-
saving. An equivalent analysis can be performed for cost-effectiveness (it would just not be very 
interesting in the context of the case study). 

Such a forecast could be included in health technology appraisal submissions and their evaluation by 
the respective authorities. A drug might not be cost-effective or cost-saving yet, but may be in the 
near future with a high probability. In that case the drug should be reimbursed right away, so that 
when it becomes cost-effective, it is already established on the market. Not incorporating a forecast 
of this sort will lead to a time-lag between market changes and efficient reimbursement: a formerly 
not cost-effective drug may become cost-effective, but is only reimbursed years later or not at all, 
because the decision-maker’s policy is based on old, outdated cost-effectiveness evaluation. 

An obvious implication of such a procedure is that drugs which are closer to patent expiry have a 
higher chance of reimbursement. The incentives in pharmaceutical lifecycle management would thus 
be affected: under usual circumstances, a manufacturer wants to introduce a drug as quickly as 
possible, in order to sell the drug under patent protection [50]. However, for drugs whose cost-
effectiveness is doubtful, the manufacturer might delay the market entry on purpose, in order to 
have a stronger claim on cost-effectiveness in the future (as the loss of exclusivity and anticipated 
price drop will be closer). 

We see that the incorporation of pricing forecasts has potential benefits, but might also lead to 
perverse incentives and manufacturers withholding viable drugs from the market. How this will play 
out in reality cannot be answered from this study alone, and further research is necessary.  

6.1.2. Incorporation of new clinical studies 
Compared to drug prices, the incorporation of clinical data is not as straightforward: any published 

study will provide information not only about a specific input that is included in the metamodel (e.g. 

weight change), but will also potentially differ in patient population and other factors. Selectively 

taking certain inputs from a new study while ignoring those which the metamodel has not been 

trained on will potentially lead to biased results.  

Thus, it is vital that the new study results are incorporated into the original model and (as far as 

possible) into the metamodel and then compared (i.e. the metamodel has to be validated again, see 

section 5.2). If the metamodel continues to make accurate predictions, we can continue to use it and 

analyze the impact of the new clinical data. However, if the predictions of the two models are 

different, the metamodel has to be trained on new simulated data by the original model. The 

number and constellation of inputs do not necessarily have to change. 

We see that the metamodel can never completely replace the original model: the latter is needed to 

validate outputs of the former and produce new training data if necessary. The more different inputs 

are incorporated into the metamodel, the more flexible the model becomes, and thus the probability 

that will be able to usefully incorporate future information increases. However, increasing the 

number of inputs is not trivial; see section 6.2.2 for further discussion. 

Note that this section was strictly concerned with whether the metamodel accurately approximates 

the estimates of the original model when incorporating new evidence. Whether these estimates 

make sense or not is a different question, which is discussed in section 6.2.1. 



6.1.3. Value-based payments 
In the introduction, I alluded to the possibility of applying the estimates of a metamodel in the design 

of value-based payments and risk-sharing agreements. Out of the factors I investigated, the price of 

dapagliflozin was by far the most impactful, while the one clinical parameter and the prices of other 

drugs involved turned out to not have a strong association with incremental costs or effects. Thus I 

will focus on financial-based risk-sharing agreements, and how the price of dapagliflozin can be used 

in the context of these.  

Using the analysis shown in Figure 12, we can quantify the expected distribution of costs per patient 

at any price. If a payer is trying to contain costs, they might be hesitant to have a large number of 

patients switch from SU to dapagliflozin, even though the latter is more effective and leads to a 

higher quality of life. Payer and manufacturer could then agree on a price at which there is an 80% 

chance that the incremental costs are lower than 2000€. If the costs are higher than that, the 

manufacturer pays the exceeding amount. Such an agreement allows the payer to contain costs, and 

the manufacturer will still generate profit in the long run, assuming that the profit margin of 

dapagliflozin is high enough to cover for the cases where costs exceed the 2000€ threshold. 

There are two main challenges to this kind of approach: first off, incremental costs cannot be directly 

measured in the real world, since patients either receive dapagliflozin or SU, and there is no reliable 

way to estimate what the costs would have been if the patient had received the other medicine 

instead. The costs instead have to be averaged out over the entire Dutch patient population. I am 

assuming that health insurers have access to databases which make this possible in principle. The 

method only works if in the future both dapagliflozin and SU are reimbursed at a large scale, as this is 

a precondition to calculate incremental costs between the two groups. Instead of using a threshold 

for incremental costs, it would in theory also be possible to use a threshold for absolute costs that 

dapagliflozin patients cannot exceed. This would make it unnecessary to track SU patients. However, 

this approach brings its own challenges, since the market as a whole changes over time. Thus the 

absolute cost distribution of dapagliflozin patients will likely be different in five years from what it is 

today. The incremental costs (after adjusting for the prices of dapagliflozin and SU themselves) can 

be assumed to stay roughly constant, since most market changes will likely affect both treatment 

lines in a similar manner.   

Secondly, the costs estimated by the Cardiff model (and therefore also the metamodel) are based on 

a lifetime horizon. Any threshold that could be applied to these costs will also have to be based on a 

lifetime horizon (i.e. the average costs of a patient over the entire treatment duration). If the costs 

for any patient exceed the threshold, it will likely only happen after many years. As a consequence, 

the threshold mechanism provides little protection against high short-term costs: a patient might 

experience many expensive complications early on; the expenses will be much higher than average, 

but not high enough to reach the threshold right away. The payer thus has to bear the costs and will 

only get them paid back in the future by the manufacturer. 

A possible solution to this second challenge is to not use a lifetime horizon when simulating training 

data from the original model, but instead set a short time horizon, like five years. This would allow 

better use of the results for financial value-based agreements, since spending caps or rebates can be 

better set for a shorter timeframe. On the other hand, many medicines are valuable because of their 

long-term effects and only become cost-effective when using a lifetime horizon. NICE and other 

health technology assessment agencies would likely not accept studies based on such short time-

horizons (at least not by themselves), since this contradicts the requirements for cost-effectiveness 

studies [51]. 



Of course one could also train two versions of the metamodel, one with a short-term and one with a 

lifetime horizon. However, since the generation of training data is inherently problematic with many 

health economic models (see section 6.2.2), this will often be unfeasible.  

6.2. Limitations and unresolved issues 

6.2.1. Manipulation of clinical parameters 
The estimates of any model are only as valid as the data it was trained on. Therefore, any insights 

gained from using a metamodel are conditional on the assumption that the original model produces 

valid outputs. If the original model produces unrealistic estimates (at least partly depending on the 

precise inputs used for producing the training data), the metamodel will replicate these errors. 

Worse, since the metamodel omits most of the more detailed outputs included in the original model 

(e.g. rates of adverse events, in the case of this study), obviously false estimates are more difficult to 

identify.  

To illustrate this, I would like to critically discuss the results in section 5.3.1.2. It turned out that 

modifying the bodyweight change parameter of dapagliflozin had a comparably small impact on the 

incremental QALYs in the dapagliflozin-SU comparison. This is surprising; the Cardiff model includes a 

sophisticated mechanism to simulate the development of the patients’ bodyweight and its impact on 

the risk for heart failures (see e.g. McEwan et al. for an explanation [30]). According to the DECLARE 

study, which the risk equations in the current version of the Cardiff model are based on, dapagliflozin 

is directly associated with lower heart failure rates. It also decreases patients’ bodyweight, which 

indirectly leads to lower rates of heart failure in the long-term. However, the latter effect is actually 

very small. 

The incremental QALYs predicted by the Cardiff model are driven primarily by differences in the 

number of hypoglycemic episodes, utility associated with the weight loss and temporarily lower 

weight of patients in the dapagliflozin group, and finally differences in the occurrence of heart 

failures unrelated to the patients’ bodyweight.  

This was confirmed by a manual sensitivity analysis, using the Cardiff model instead of the 

metamodel (results in Table 13). Even when setting the weight change associated with dapagliflozin 

to 0 (i.e. it does not lead to weight loss at all), the difference in the incremental number of heart 

failures is minimal compared to the base scenario. The miniscule effect of the weight increment on 

rates of heart failure can potentially be explained by the fact that the weight difference between 

dapagliflozin and SU patients is only temporary and patients gain the lost weight back quickly, once 

they switch to insulin treatment.  

Table 13: results of the manual sensitivity analysis. Incremental incidence is the number of events in the dapagliflozin group 
minus the number of events in the SU group 

Dapagliflozin weight 
change 

SU weight 
change 

Incremental 
QALYs 

Incremental incidence of heart 
failures (events per cohort of 1000 
patients) 

-3.3 1.36 0.61 -8.1 

0 1.36 0.50 -7.3 

If accurate, these findings would contradict earlier research claiming that the weight loss associated 

with dapagliflozin is a major driver of its effect on patients’ quality of life [30, 31]. Unfortunately, 

there is no way to validate the findings, since there is of course no clinical evidence for a situation 

where dapagliflozin does not lead to weight loss, but has otherwise identical effects to those that are 



currently known. This uncovers a potential flaw in the methodology of this study: when the original 

model is passed input parameters which are far from the available clinical evidence, it might produce 

unrealistic estimates, which the metamodel will reproduce. Usually there is no way to determine 

how valid the results are, apart from expert judgement.  

The problem is not specific to metamodeling per se: the metamodel will still accurately estimate the 

behavior of the original model, and as such serve its intended purpose. Rather, the issue is whether 

applying inputs without clinical evidence to the original model is a sensible thing to do.  

6.2.2. Time investment 
I previously emphasized the massive decrease in computation time needed to simulate results from 

the metamodel compared to a PSA in a conventional health economic model (section 5.4). While the 

creation of the metamodel itself took many hours, the vast majority of this time was spend on 

research and development of a suitable metamodeling method. The coding and execution of the 

metamodel in R or another programming language is fairly simple and straightforward. A reasonably 

experienced R programmer with an established methodology to build on could probably program a 

functional model within a day. For reference, the entire R code used in this thesis is around 700 lines 

long (including the Stan code, which is integrated into the R code as a character string).  

Far more problematic is the generation of representative training data from the original model, 

which will most often be coded in spreadsheet software like Microsoft Excel. The drawbacks of using 

Excel for health technology assessment have been discussed elsewhere [52], and I will focus only on 

one particular aspect: spreadsheet models make it difficult to automatically run the model with 

varying input values and store the results. In the case of this study, running 40 experiments and 

documenting the results took roughly four hours and involved lots of manual, error prone work. This 

effectively limits the number of inputs that can be incorporated into the metamodel, since each 

additional parameter significantly increases the amount of manual work involved.  

If the model were coded in a proper programming language, this would be far less of a problem. In 

that case, it is easy to write a loop which repeatedly runs the model with randomized inputs and 

stores the results. There is then no real limit to the number of inputs used: the computation time will 

increase with each input (in the case of this study, the time which the Stan model takes to produce 

an adequate number of parameter samples); however, this is less of a problem, since this process 

requires no supervision by the user.  

Unfortunately, the use of modern programming languages for health economic modelling is not 

widespread yet. The problem of having to work with spreadsheet models will persist for the time 

being. I see this as the major limitation of my methodology: with the time-consuming and error-

prone work involved in producing adequate training data, the creation of a metamodel may not be 

worth the effort in many otherwise promising use-cases. 

6.2.3. Timeline 
The timeline analysis in section 5.3.2 models the incremental costs of dapagliflozin treatment 

compared to SU treatment at different points time. Specifically, it models the cost-effectiveness 

evaluation at each point in time (i.e. what the Cardiff model would put out, given that exact scenario) 

(Figure 16) and the probability that the treatment will be cost-saving or not (Figure 17). This is not 

the same as the lifetime costs of a patient starting at a particular time, since the simulation assumes 

that once a patient started treatment, the price of dapagliflozin stays constant. For instance, if a 

patient starts treatment in 2027, the price remains fixed at € 517.44, even though it actually falls 



shortly after. This means that the lifetime costs for that patient would actually be slightly lower. The 

modelled estimates are not “wrong”, but they answer a different question than one might expect. 

The actual lifetime costs of a patient are arguably more relevant in the context of value-based 

payments. However, the current version of the Cardiff model does not allow to calculate this. It 

would require to pass an entire timeline of prices to the model (instead of just a single price) and 

then have patients start treatment at different points on that timeline. Implementing this requires 

modifying the VBA and C++ code of the model, which I was unable to do due to my limited 

proficiency in these languages. The calculated estimates would also be fundamentally different from 

and incomparable to ordinary cost-effectiveness evaluations. Nonetheless, such an analysis might 

produce very useful results especially in the context of value-based payments, and should be 

explored in future research. 

6.2.4. (Un-)normality of the original model’s distribution 
The approximation via a multivariate normal distribution assumes that the distribution of cost-

effectiveness pairs simulated by the original model is approximately Gaussian, or normally 

distributed. A strong correlation between costs and effects is not problematic. However, if the 

distribution is multimodal6 or otherwise irregularly shaped, the approximation will be inaccurate and 

produce potentially biased and misleading results.  

Figure 18 provides a visual illustration: examples 1 and 2 are approximately Gaussian, therefore they 

can be approximated well through a multivariate normal distribution. Example 3 has an irregular and 

asymmetric shape; it is not well approximated with a normal distribution. Example 4 has two 

separate modes around which the cost-effectiveness pairs cluster. It is not well approximated either.  

Note that these are extreme examples  - in many cases a normal approximation will still provide 

useful results, even when the target distribution has an irregular shape. As discussed earlier, the goal 

of metamodeling is not to reproduce the original model, but to approximate it well enough to 

accurately answer all questions of interest. Proper model validation is therefore crucial. 

 
6 A multimodal distribution has more than one maximum. 



 

Figure 18: different shapes that the distribution of simulated cost-effectiveness pairs could take. Simulated data, not 
connected to the case study. 

6.3. Conclusion and recommendations 
I hope that my research report demonstrated the functionality and validity of applying the 

metamodel technique to health economic simulation models. The implementation is relatively 

straightforward, and the results add a valuable perspective to the cost-effectiveness of dapagliflozin 

treatment in the Netherlands. I can give an unconditional recommendation to use metamodeling for 

estimating the consequences of price changes, as long as careful model validation is included in the 

analysis. For changes in clinical effectiveness, metamodeling can in principle also be used, but the 

results have to be critically examined on a case-by-case basis. Even if the metamodel accurately 

approximates the estimates of the original model, the estimates should be evaluated in the light of 

available clinical evidence and not be taken at face-value. 

The main practical challenge is the generation of suitable training data for the metamodel. As 

indicated earlier, this is far less of a problem when the original model is coded in a proper 



programming language instead of a spreadsheet. I thus support calls for the widespread adoption of 

modern programming languages in health technology assessment [52]. The process could be sped up 

even further if there was some kind of standardized framework regarding the construction of health 

economic models in R or Python. For ideas of what such a framework could look like, I refer the 

reader to a series of publications by Alarid-Escudero and Krijkamp et al, providing general coding 

guidelines [53] as well as specific tutorials for cohort-state transition models [54] and patient 

microsimulation models [55].  

For the case study at hand, the metamodel demonstrated a good predictive accuracy despite the 

assumption that the predictors have linear effect on the outcomes. This will not always be the case. 

Gaussian process regression is a candidate for a more general metamodeling method which can 

approximate arbitrary nonlinear effects. Many authors (e.g. Gramacy [56]) have written about the 

use of Gaussian processes for metamodeling of simulation experiments, and I see no reason why 

such methods could not be adapted to health economic models. It has to be noted, however, that 

Gaussians processes are more difficult than ordinary regression methods. Learning to use them 

requires dedicated research and practice. An accessible introduction to Gaussian processes with 

applications in health economics would thus be a valuable addition to the literature.  

 

  



7. Appendix 
7.1.1. Cardiff model inputs 

7.1.1.1. Health economic assumptions 

• Model: Cardiff model using UKPDS 68 risk equations and DECLARE data. 

• Cohort size for simulations: 250 for training data, 10000 for test data, 1000 for manual 
sensitivity analysis (Table 13) 

• Time horizon: lifetime (implemented as 40 years). 

• Cycle length: 6 months. 

• Perspective: societal 

• Discount rates: 4% for costs, 1.5% for effects. 
 

7.1.1.2. Patient population 

• T2DM patients with insufficient glycemic control on metformin alone. The model cohort was 
considered representative of Dutch patients who would be eligible to receive dapagliflozin 
added to metformin. Table 14 shows the precise inputs. 

• In case SE was not reported and could not be calculated, it was assumed to be 1% of the 
mean.  

 
Table 14: Cardiff model inputs, patient characteristics and clinical risk factors 

Demographics Source 

Age 58.40 0.32 Nauck et al. 2014[57, 58] 

Proportion female (%) 0.448 0.02 Nauck et al. 2014[57, 58] 

Diabetes duration (Years) 6.32 0.19 Nauck et al. 2014[57, 58] 

Height (m) 1.67 0.0167 Nauck et al. 2014[57, 
58], SE assumed 

Proportion Afro-Caribbean (%) 0.062 0.00062 Nauck et al. 2014[57, 
58], SE assumed 

Proportion Indian (%) 0.076 0.00076 Nauck et al. 2014[57, 
58], SE assumed 

Proportion smokers (%) 0.176 0.00176 Nauck et al. 2014[57, 
58], SE assumed 

Clinical risk factors 

HbA1c (%) 7.72 0.025 Nauck et al. 2014[57, 58] 

Total-Cholesterol (mg/dL) 182.91 1.829 Nauck et al. 2011[58], SE 
assumed 

HDL-Cholesterol (mg/dL) 46.02 0.46 Nauck et al. 2011[58], SE 
assumed 

LDL-Cholesterol (mg/dL) 103.25 1.033 Nauck et al. 2011[58], SE 
assumed 

SBP (mmHg) 133.30 1.333 Nauck et al. 2011[58], SE 
assumed 

DBP (mmHg) 80.6 0.806 Nauck et al. 2011[58], SE 
assumed 

Weight (Kg) 88.02 0.88 Nauck et al. 2014[57, 
58], SE assumed 

eGFR (ml/min/1.732) 89.95 0.9 Nauck et al. 2014[57, 
58], SE assumed 

Haemoglobin (g/dl) 13.71 0.137 Hayes et al 2013[59], SE 
assumed 

Albuminuria (mg/l) 47.00 0.47 Hayes et al 2013[59], SE 
assumed 

White blood cell count (106) 6.80 0.068 Hayes et al 2013[59], SE 
assumed 

Heart rate (bpm) 72.00 0.72 Hayes et al 2013[59] 



Glucose variability 37.26 0.19 DECLARE baseline[38, 
60] 

Haematocrit (%) 41.12 0.17 Nauck et al. 2011[58] 

Ischemic heart disease 0.09375 0.009 Nauck et al. 2011[58] 
based on % with prior 
history of CVD, 
distributed equally over 
ischemic heart disease 
and myocardial 
infarction (assumption) 

Myocardial infarction 0.09375 0.009 Nauck et al. 2011[58] 
based on % with prior 
history of CVD, 
distributed equally over 
ischemic heart disease 
and myocardial 
infarction (assumption) 

Retinopathy 0.058 0.0058 Nauck et al. 2011[58] 

All other history 0 0 Assumption 

All medication use 0 0 Assumption 

Abbreviations: HDL, high-density lipoprotein; kg, kilogram; LDL, low-density lipoprotein; m, meter; mmHg, millimeter of 
mercury; mmol/L, millimole/liter; SBP, systolic blood pressure. 
 

7.1.1.3. Treatment profiles 

• HbA1c threshold for therapy change: 8% (assumed Dutch clinical practice).  

• In case SE was not reported and could not be calculated, it was assumed to be 10% of the mean.  
 
Table 15: Cardiff model inputs, treatment profiles 

 1st line 2nd line 3rd line 

 Comparat
or: 
MET + SU 
Mean (SE) 

Source Interventi
on:  
MET + 
dapaglifloz
in 
Mean (SE) 

Source Interventi
on 1: 
MET + 
insulin  
Mean (SE) 

Source MET 
+ 
Insuli
n + 
Bolus 
Mean 
(SE) 

Source 

ΔHbA1c in 
year 1 (%) 

-0.67 
(0.0638) 

Barnett et 
al. 
2016[61] 

-0.67 
(0.1582) 

Barnett et 
al. 
2016[61] 

-0.13 
(0.5230) 

Lozano-
Ortega et al. 
2016[62] 

-1.68 
(0.16
8) 

Hollander 
et al. 
(2008)[63
] 

HbA1c 
months 
benefit in 
year 1 

12.00 
(0.00) 

Assumpti
on 

12.00 
(0.00) 

Assumpti
on 

 
12.00 
(0.00) 

Assumption 12.00 
(0.00) 

Assumpti
on 

ΔSBP 
(mmHg) 

0.90 (0.09) Nauck et 
al. 
2014[57] 

-3.80 
(0.38) 

Nauck et 
al. 
2014[57] 

1.31 
(2.1990) 

Assumed 
equal to MET 
+ SU + insulin, 
Lozano-
Ortega et al. 
2016[62] 

0.00 Hollander 
et al. 
(2008)[63
] 

ΔDBP 
(mmHg) 

-0.40 
(0.04) 

Nauck et 
al. 
2011[58] 

-1.60 
(0.02) 

Nauck et 
al. 
2011[58] 

0.00 
(0.00) 

Assumption 0.00 
(0.00) 

Assumpti
on 

ΔTotal 
Cholesterol 
(mg/dL) 

-0.50 
(0.05) 

Nauck et 
al. 
2011[58] 

1.27 (0.13) Nauck et 
al. 
2011[58] 

0.00 
(0.00) 

Assumption 0.00 
(0.00) 

Assumpti
on 

ΔHDL 
Cholesterol 
(mg/dL) 

-0.034 
(0.003) 

Nauck et 
al. 
2011[58] 

1.26 (0.13) Nauck et 
al. 
2011[58] 

 
0.00 
(0.00) 

Assumption 0.00 
(0.00) 

Assumpti
on 



ΔWeight (kg) 1.36 (0.09) Barnett et 
al. 
2016[61] 

-3.30 
(0.90) 

Barnett et 
al. 
2016[61] 

3.20 
(1.8546) 

Lozano-
Ortega et al. 
2016[62] 

4.20 
(0.42) 

Hollander 
et al. 
(2008)[63
] 

Years of 
maintained 
weight loss 

2.00 (0.00) Nauck et 
al. 
2014[57], 
Charokop
ou et al. 
2015[64] 

2.00 (0.00) Nauck et 
al. 
2014[57], 
Charokop
ou et al. 
2015[64] 

 
1.00 
(0.00) 

Assumption 1.00 
(0.00) 

Assumpti
on 

Natural 
annual 
weight gain 
(kg) 

0.00 (0.00) Nauck et 
al. 
2014[57] 

0.00 (0.00) Nauck et 
al. 
2014[57] 

 
0.1 (0.01) 

Assumption  
0.1 
(0.01) 

Assumpti
on 

Years to loss 
of weight 
effect 

0.00 (0.00) Assumpti
on 

1.00 (0.00) Assumpti
on 

 
0.00 
(0.00) 

Assumption 0.00 
(0.00) 

Assumpti
on 

Glucose 
variability 
change 

0.00 (0.00) Assumpti
on 

0.00 (0.00) Assumpti
on 

0.00 
(0.00) 

Assumption 0.00 
(0.00) 

Assumpti
on 

Haematocrit 
change 

0.390 
(0.130) 

Nauck et 
al. 
2011[58] 

2.860 
(0.140) 

Nauck et 
al. 
2011[58] 

0.00 
(0.00) 

Assumption 0.00 
(0.00) 

Assumpti
on 

Annual 
number of 
symptomatic 
hypo 

0.408  
(0.082) 

Charokop
ou et al. 
2015 [30] 

0.035 
(0.006) 

Charokop
ou et al. 
2015 [30] 

0.011 
(0.0022) 

Charokopou 
et al. 2015 
[30] 

0.616 
(0.12
3) 

Charokop
ou et al. 
2015 [30] 

Annual 
number of 
severe hypo 

0.007 
(0.001) 

Charokop
ou et al. 
2015 [30] 

0 (0) Charokop
ou et al. 
2015 [30] 

0.037 
(0.0074) 

Charokopou 
et al. 2015 
[30] 

0.022 
(0.00
4) 

Charokop
ou et al. 
2015 [30] 

Annual 
probability 
of UTI 

0.064 
(0.0064) 

Nauck et 
al. 
2014[57] 

0.108 
(0.0108) 

Nauck et 
al. 
2014[57] 

0.00 
(0.00) 

Assumption 0.00 
(0.00) 

Assumpti
on 

Annual 
probability 
of GI 

0.027 
(0.0027) 

Nauck et 
al. 
2014[57] 

0.123 
(0.0123) 

Nauck et 
al. 
2014[57] 

0.00 
(0.00) 

Assumption 0.00 
(0.00) 

Assumpti
on 

Annual 
probability 
of 
discontinuati
on 

0.0515 
(0.00515) 

Nauck et 
al. 
2014[57] 

0.00246 
(0.000246) 

Nauck et 
al. 
2014[57] 

0.042 
(0.0042) 

Assumed 
equal to 
MET+SU+insu
lin. Holman et 
al. 2007[65] 

0.00 
(0.00) 

Assumpti
on 

Abbreviations: BMI, body mass index; Dapa, dapagliflozin; DPP-4i, dipeptidyl peptidase-4 inhibitors; GI, genital infection; 
HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; hypo, hypoglycemia; kg, kilogram; MET, metformin; mmHg, 
millimeter of mercury; mmol/L, millimole/liter; SBP, systolic blood pressure; SU, sulfonylurea; UTI, urinary tract infection; 
Y1, year 1; Y1>1, subsequent years; Y1≥1, year 1 and subsequent years. 
 

7.1.1.4. Costs 
Table 16: calculation of baseline SU price. The weighted mean is calculated by multiplying each price with the respective 
market share and then summing everything up. 

   Costs per day Market share Source 

Glibenclamide € 0.10 0.01 CIBG [36] 

Tolbutamide € 0.11 0.16 CIBG [36] 

Gliclazide (Diamicron) € 0.11 0.63 CIBG [36] 

Glimepiride (Amaryl) € 0.02 0.20 CIBG [36] 

Mean (weighted) SU € 0.09 1.00  

 



Table 17: Cardiff model inputs, non-treatment costs 

Direct costs of disease and treatment-related events, 2019 price level 

Hospitalisation for angina €2,700 in Y1, €666 in Y>1 Soekhlal et al. 2013[66] 

Myocardial infarction (incl. Y1 cost 
of subsequent events) 

€20,389 in Y1, €1,239 in Y>1 Greving et al. (2011)[67] 

Myocardial infarction (fatal) €18,146 in Y1  Greving et al. (2011)[67] 

Congestive heart failure €11,280 in Y≥1 Postmus et al. (2011)[68] 

Congestive heart failure (fatal)‡ €10,039 in Y1 Assumption 

Stroke (incl. Y1 cost of subsequent 
events) 

€39,349 in Y1, €4,947 in Y>1 Baeten et al. (2010)[69] 

Stroke (fatal) €22,429 in Y1 Baeten et al. (2010)[69] 

Amputation (incl. Y1 cost of 
subsequent events) 

€17,261 in Y1, €647 in Y>1 Niessen et al. (2003)[70] 

Amputation (fatal)§ €9,839 in Y1 Assumption 

Blindness €2,737 in Y≥1  Niessen et al. (2003)[70] 

End-stage renal disease €91,074 in Y≥1 De Vries et al. (2016)[71] 

Ulcer €2,383 in Y1 Redekop et al. 2003[72] 

PCI €18,583 in Y1, €1,519 in Y>1 Osnabrugge et al. 2015[73] 

CABG €22,166 in Y1, €1,278 in Y>1 Osnabrugge et al. 2015[73] 

Non-coronary revascularisation €2,561 in Y1 Spronk et al. 2008[74] 

Severe hypo event €522 De Groot et al. 2018[75] 

Symptomatic hypo event €3 De Groot et al. 2018[75] 

UTI and GI €46.50 from a health care perspective, 
€88.18 from a societal perspective 

NHG (2013)[76] and Hakkaart-van 
Roijen et al. (2016)[77] 

Discontinuation €35.25 from a health care perspective, 
€76.92 from a societal perspective 

Hakkaart-van Roijen et al. 
(2016)[77] 

Annual indirect costs of disease and treatment-related events, 2019 price level¶ 

Ischaemic heart disease €0 in base case, €1,153 in scenario Clarke et al. (2008)[78] 

Myocardial infarction €0 in base case, €8,699 in scenario Isaaz et al. (2010)[79] 

Congestive heart failure €0 in base case, €8,699 in scenario Ericson et al. (2011)[80] 

Stroke €0 in base case, €8,699 in scenario Lindgren et al. (2008)[81] 

Amputation €0 in base case, €6,423 in scenario Fisher et al. (2003)[82] 

Blindness €0 in base case, €8,699 in scenario Frick et al. (2003)[83] 

End-stage renal disease €0 in base case, €8,699 in scenario Naim et al. (2010)[84] 

‡ Costs for fatal congestive heart failure are unknown. The ratio of costs for fatal compared with non-fatal congestive heart 
failure was assumed to be equal to the ratio of costs for fatal compared with non-fatal myocardial infarction.   
§ Costs for fatal amputation are unknown. The ratio of costs for fatal compared with non-fatal amputation was assumed to 
be equal to the ratio of costs for fatal compared with non-fatal stroke.   
¶ Productivity losses are applied below the age of 66. 

7.1.1.5. Utilities 
Table 18: Cardiff model inputs, utilities 

Disutilities 

Diabetes-related event disutilities 

Ischaemic heart disease 0.042 (0.008) Sullivan et al. (2016)[85] 

Myocardial infarction 0.047 (0.005) Sullivan et al. (2016)[85] 

Congestive heart failure 0.050 (0.007) Sullivan et al. (2016)[85] 

Stroke 0.060 (0.007) Sullivan et al. (2016)[85] 

Amputation 0.095 (0.040) Sullivan et al. (2016)[85] 



Blindness 0.045 (0.009) Sullivan et al. (2016)[85] 

End-stage renal disease 0.038 (0.011) Sullivan et al. (2016)[85] 

Ulcer 0.042 (0.007) Sullivan et al. (2016)[85] 

PCI 0.042 (0.008) Sullivan et al. (2016)[85], assumed equal to ischemic heart disease 

CABG 0.042 (0.008) Sullivan et al. (2016)[85], assumed equal to ischemic heart disease 

Non-coronary revascularisation 0.045 (0.013) Sullivan et al. (2016)[85] 

Treatment-related event disutilities 

Symptomatic hypo 0.014 (0.0014) Currie et al. (2006)[86] 

Nocturnal hypo 0 Assumed 

Severe hypo 0.047 (0.0047) Currie et al. (2006)[86] 

UTI 0.025 (0.0025) Sullivan et al. (2016)[85] 

GI 0.038 (0.0038) Sullivan et al. (2016)[85] 

BMI disutilities 

BMI (per unit increase) 0.017 (0.005) Grandy et al. (2014)[87]  

BMI (per unit decrease) -0.047 (0.005) Grandy et al. (2014)[87] 

Abbreviations: BMI, body mass index; Dapa, dapagliflozin; DPP-4i, dipeptidyl peptidase-4 inhibitors; GI, genital infection; 
HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; hypo, hypoglycemia; kg, kilogram; MET, metformin; mmHg, 
millimeter of mercury; mmol/L, millimole/liter; SBP, systolic blood pressure; SU, sulfonylurea; UTI, urinary tract infection; 
Y1, year 1; Y1>1, subsequent years; Y1≥1, year 1 and subsequent years. 
 

7.1.2. Training data 
Table 19: input parameters obtained through LHS sampling 

Index weighteffect met dapa SU met_dapa met_SU met_ins met_ins_bolus 

1 -5.48 24.69 412.82 25.2 493.51 105.89 365.59 1220.27 

2 -3.91 28.12 599.36 7.19 683.48 91.31 369.02 1223.7 

3 -1.76 13.39 155.41 12.4 224.8 81.79 354.29 1208.97 

4 -3.79 11.27 763.65 24.45 830.92 91.72 352.17 1206.85 

5 -4.28 6.49 491.94 3.25 554.43 65.74 347.39 1202.07 

6 -0.6 20.75 751.89 11.77 828.64 88.52 361.65 1216.33 

7 -4.06 30.64 374.06 22.65 460.7 109.29 371.54 1226.22 

8 -1.32 3.94 844.87 4.89 904.81 64.83 344.84 1199.52 

9 -2.01 23.77 668.57 21.62 748.34 101.39 364.67 1219.35 

10 -5.38 16.49 630.04 13.47 702.53 85.96 357.39 1212.07 

11 -2.24 34.42 177.96 26.85 268.38 117.27 375.32 1230 

12 -6.04 31.81 316.66 15.95 404.47 103.76 372.71 1227.39 

13 -2.72 21.11 290.53 7.74 367.64 84.85 362.01 1216.69 

14 -1.57 12.41 700.81 31.65 769.22 100.06 353.31 1207.99 

15 -4.35 4.88 221.97 26.45 282.85 87.33 345.78 1200.46 

16 -1.43 35.81 822.72 8.76 914.53 100.57 376.71 1231.39 

17 -2.51 5.76 334.43 36.38 396.19 98.14 346.66 1201.34 

18 -3.6 29.34 437.06 32.57 522.4 117.91 370.24 1224.92 

19 -2.33 10.51 76.69 19.39 143.2 85.9 351.41 1206.09 

20 -4.5 9.86 557.48 30.19 623.34 96.05 350.76 1205.44 

21 -5.75 19.66 187.61 35.1 263.27 110.76 360.56 1215.24 

22 -0.09 18.12 45.7 28.69 119.82 102.81 359.02 1213.7 

23 -2.86 3.24 352.26 6.12 411.5 65.36 344.14 1198.82 

24 -1.85 16.03 548.81 20.47 620.84 92.5 356.93 1211.61 



25 -4.86 18.56 125.1 18.39 199.66 92.95 359.46 1214.14 

26 -0.37 35.36 525.85 16.47 617.21 107.83 376.26 1230.94 

27 -5.25 23.02 652.96 28.34 731.98 107.36 363.92 1218.6 

28 -3.38 26.38 588.41 9.96 670.79 92.34 367.28 1221.96 

29 -6.26 0.4 461.27 17.54 517.67 73.94 341.3 1195.98 

30 -0.69 15.07 245.47 0.11 316.54 71.18 355.97 1210.65 

31 -3.14 14.32 57.16 37.42 127.48 107.74 355.22 1209.9 

32 -4.72 8.87 873.8 11.23 938.67 76.1 349.77 1204.45 

33 -1.14 26.52 792.12 30.73 874.64 113.25 367.42 1222.1 

34 -6.37 33.1 253.66 33.44 342.76 122.54 374 1228.68 

35 -5.88 7.75 98.13 4.09 161.88 67.84 348.65 1203.33 

36 -6.49 28.55 735.07 1.39 819.62 85.94 369.45 1224.13 

37 -0.32 2.69 451.66 22.97 510.35 81.66 343.59 1198.27 

38 -0.93 22.01 905.15 2.66 983.16 80.67 362.91 1217.59 

39 -4.99 1.17 888.5 35.47 945.67 92.64 342.07 1196.75 

40 -3.03 32.52 11.89 14.77 100.41 103.29 373.42 1228.1 

 



 

Figure 19: visualization of training data obtained from the Cardiff model. Each of the 40 sets was obtained by putting the 
respective inputs from Table 19 into the Cardiff model and drawing 250 samples from the Cardiff model 
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7.1.4. Code 
#### Packages #### 
library(rstan) 
library(rethinking) 
library(tidyverse) 
library(bayesplot) 
bayesplot_theme_set(theme_minimal()) 
library(MASS) 
library(readxl) 
library(ggpointdensity) 
library(LHS) 
 
#### Section 4.1: A short introduction to Bayesian statistics #### 
 
# small sample  
y <- 15 
x <- 20 
 
n_samples <- 101000 
p <- rep( NA , n_samples ) 
p[1] <- 0.5 
 
for ( i in 2:n_samples ) { 
  p_new <- rnorm( 1 , p[i-1] , 0.1 ) 
  if ( p_new < 0 ) p_new <- abs( p_new ) 
  if ( p_new > 1 ) p_new <- 2 - p_new 
  q0 <- dbinom( y , x , p[i-1] ) * dbeta(p[i-1], 8, 8)  
  q1 <- dbinom( y , x , p_new ) * dbeta(p_new, 8, 8)  
  p[i] <- ifelse( runif(1) < q1/q0 , p_new , p[i-1] ) 
} 
 
p_small <- data.frame(p = p[1001:n_samples], source = "small sample") 
 
# Table 1 
precis(p, prob = 0.9)     
 
# large sample  
y <- 75 
x <- 100 
 
n_samples <- 101000 
p <- rep( NA , n_samples ) 
p[1] <- 0.5 
 
for ( i in 2:n_samples ) { 
  p_new <- rnorm( 1 , p[i-1] , 0.1 ) 
  if ( p_new < 0 ) p_new <- abs( p_new ) 
  if ( p_new > 1 ) p_new <- 2 - p_new 
  q0 <- dbinom( y , x , p[i-1] ) * dbeta(p[i-1], 8, 8)  
  q1 <- dbinom( y , x , p_new ) * dbeta(p_new, 8, 8)  
  p[i] <- ifelse( runif(1) < q1/q0 , p_new , p[i-1] ) 



} 
 
p_large <- p 
p_large <- data.frame(p = p[1001:n_samples], source = "large sample") 
 
# Figure 1  
p <- rbind(p_small, p_large) 
 
ggplot(p) + 
  geom_function(fun = function(x) dbeta(x,8,8), aes(colour = "Prior"), size = 1) + 
  geom_density(aes(p, colour = "Posterior"), size = 1) + 
  scale_x_continuous(limits =  c(0,1)) + 
  scale_color_manual(name = "", values = c("Prior" = "blue", "Posterior" = "red")) + 
  xlab("proportion male patients") + 
  ylab("probability density") + 
  geom_vline(xintercept = mean(p), linetype = 2, size = 1, color = "grey") + 
  geom_vline(xintercept = 0.5, linetype = 2, size = 1, color = "grey") + 
  facet_wrap(. ~ source) + 
  theme_minimal() + 
  theme( text = element_text(size = 12)) 
 
# Section 4.5: simulating data sets #### 
 
price_met <- 18.26 
price_dapa <- 459.85 
price_SU <-33.46 
 
dispensing_fees <- 4*7 
consumables_ins <- 284.9 
consumables_ins_bolus <- 1139.58 
weighteffect <- -6.6 
 
price_met + price_dapa + 2*dispensing_fees 
price_met + price_SU + 2*dispensing_fees 
price_met + 2*dispensing_fees + consumables_ins 
price_met + 2*dispensing_fees + consumables_ins_bolus 
 
# Table 17 
N <- 40 
sim_factors <- maximinLHS(N, 4) 
 
sim_params <- data.frame(index = 1:N) 
sim_params$met <- round( sim_factors[,1] * price_met * 2 , 2) 
sim_params$dapa <- round( sim_factors[,2] * price_dapa * 2 , 2) 
sim_params$SU <- round( sim_factors[,3] * price_SU * 2 , 2) 
sim_params$met_dapa <- sim_params$met + sim_params$dapa + 2*dispensing_fees 
sim_params$met_SU <- sim_params$met + sim_params$SU + 2*dispensing_fees 
sim_params$met_ins <- sim_params$met + 2*dispensing_fees + consumables_ins 
sim_params$met_ins_bolus <- sim_params$met + 2*dispensing_fees + consumables_ins_bolus 
sim_params$weighteffect <- round( sim_factors[,4] * weighteffect , 2) 
 
 



sim_random20 <- data.frame(X1 = runif(20, 0, 1), 
                           X2 = runif(20, 0, 1), 
                           source = "20 simulations") 
 
sim_random2000 <- data.frame(X1 = runif(2000, 0, 1), 
                             X2 = runif(2000, 0, 1), 
                             source = "2000 simulations") 
 
sim_random <- rbind(sim_random20, sim_random2000) 
 
# Figure 5 
ggplot(sim_random, aes(X1, X2)) +  
  geom_point(size = 2) + 
  facet_wrap(source ~ .) + 
  theme_grey() + 
  theme( text = element_text(size = 14)) 
 
N <- 20 
sim_factors <- maximinLHS(N, 2) 
 
sim_factors <- data.frame(sim_factors) 
sim_factors$source <- "LHS" 
 
# Figure 6 
ggplot(sim_factors, aes(X1, X2)) +  
  geom_point(size = 2, fill = "black") + 
  theme_grey() + 
  theme( text = element_text(size = 14)) 
 
#### Load training data #### 
 
df <- read_excel("[…]", sheet = 1) %>% # insert path to training data here 
  rename("effects" = 1, 
         "costs" = 2) 
 
dlist <- list(effects = df$effects, costs = df$costs, weight = df$weighteffect, 
              pDapa = df$dapa, pMet = df$met, pSU = df$SU, N = nrow(df)) 
 
#### Section 7.2: training data #### 
 
# Figure 19 
ggplot(df) +  
  geom_point(aes(effects, costs), size = 1, color = "blue", alpha = 0.5) + 
  facet_wrap( ~ index, ncol = 5) + 
  geom_vline(xintercept = 0) +  
  geom_hline(yintercept = 0) + 
  theme_minimal() 
 
 
 
#### Section 4.6: Priors #### 
 



## Prior model, unconditioned on the data ## 
prior_model <- stan(model_code =  
                            "data { 
    int N;  
    vector[N] costs; 
    vector[N] effects; 
    vector[N] weight; 
    vector[N] pDapa; 
    vector[N] pMet; 
    vector[N] pSU; 
                             } 
 
  generated quantities { 
    real alphaC; 
    real betaC_dapa; 
    real betaC_SU; 
    real betaC_met; 
    real alphaE; 
    real betaE_weight; 
    real betaC_weight; 
    vector<lower=0>[2] sigma; 
     
    real muE; 
    real muC; 
    vector[2] MU; 
    vector[2] y_sim; 
       
    real alphaE_std = normal_rng(0, 0.5); 
    real betaE_weight_std = normal_rng(0, 0.5); 
    real betaC_weight_std = normal_rng(0, 0.5); 
    real alphaC_std = normal_rng(0, 0.5);  
    real betaC_dapa_std = normal_rng(0, 0.5); 
    real betaC_SU_std = normal_rng(0, 0.5); 
    real betaC_met_std = normal_rng(0, 0.5); 
    matrix[2,2] Rho = lkj_corr_rng( 2, 2 ); 
    vector[2] sigma_std;  
    sigma_std[1] = exponential_rng(1); 
    sigma_std[2] = exponential_rng(1); 
 
 
    alphaC = sd(costs) * (alphaC_std - betaC_weight_std * mean(weight) / sd(weight) - 
betaC_dapa_std * mean(pDapa) / sd(pDapa)  
            - betaC_SU_std * mean(pSU) / sd(pSU) - betaC_met_std * mean(pMet) / sd(pMet)) 
            + mean(costs); 
    betaC_dapa = betaC_dapa_std * sd(costs) / sd(pDapa); 
    betaC_SU = betaC_SU_std * sd(costs) / sd(pSU); 
    betaC_met = betaC_met_std * sd(costs) / sd(pMet); 
 
    alphaE = sd(effects) * (alphaE_std - betaE_weight_std * mean(weight) / sd(weight)) + 
mean(effects); 
    betaE_weight = betaE_weight_std * sd(effects) / sd(weight); 
    betaC_weight = betaC_weight_std * sd(costs) / sd(weight); 



    sigma[1] = sd(effects) * sigma_std[1];     
    sigma[2] = sd(costs) * sigma_std[2]; 
 
      muE = alphaE + betaE_weight * ( - 3.3) ; 
      muC = alphaC + betaC_weight * ( - 3.3) + 
                     betaC_dapa * 459.85 + betaC_SU * 33.46 + betaC_met * 18.26 ; 
      MU = [muE, muC]'; 
     
 
    y_sim = multi_normal_rng( MU , quad_form_diag(Rho , sigma) ); 
     
}", data = dlist , chains = 4, cores = 4, warmup = 500, iter = 3000, algorithm = "Fixed_param") 
 
prior <- rstan::extract(prior_model) 
prior.matrix <- as.matrix(prior_model) 
 
# Figure 7 
mcmc_areas(prior.matrix, 
           pars = c("betaC_dapa_std", "betaC_SU_std", "betaC_met_std", 
                    "betaE_weight_std", "betaC_weight_std"), 
           prob = 0.9) + 
  scale_x_continuous(limits = c(-2.5, 2.5)) + 
  theme( text = element_text(size = 14)) 
 
mcmc_areas(prior.matrix, 
           pars = c("Rho[1,2]"), 
           prob = 0.9) 
 
sim_df <- data.frame(effects = prior$y_sim[,1],  
                     costs = prior$y_sim[,2]) 
 
# Figure 8 
ggplot(sim_df) + 
  geom_pointdensity(aes(effects, costs), size = 1.5, alpha = 0.75, show.legend = FALSE) + 
  geom_hline(yintercept = 0) + 
  geom_vline(xintercept = 0) + 
  theme_minimal() + 
  theme( text = element_text(size = 14)) + 
  xlab( "Incremental effects" ) + 
  ylab( "Incremental costs" ) 
 
#### Section 5.1: Parameter estimates #### 
 
## Actual model, conditioned on the data ## 
 
multinormal_model <- stan(model_code =  
                          "data { 
    int N;  
    vector[N] costs; 
    vector[N] effects; 
    vector[N] weight; 
    vector[N] pDapa; 



    vector[N] pMet; 
    vector[N] pSU; 
                             } 
  transformed data { 
    vector[N] costs_std; 
    vector[N] effects_std; 
    vector[N] pDapa_std; 
    vector[N] pMet_std; 
    vector[N] pSU_std; 
    vector[N] weight_std; 
     
    costs_std = (costs - mean(costs)) / sd(costs); 
    effects_std = (effects - mean(effects)) / sd(effects); 
    pDapa_std = (pDapa - mean(pDapa)) / sd(pDapa); 
    pMet_std = (pMet - mean(pMet)) / sd(pMet);   
    pSU_std = (pSU - mean(pSU)) / sd(pSU);  
    weight_std = (weight - mean(weight)) / sd(weight);  
  } 
  parameters { 
    real alphaC_std; 
    real betaC_dapa_std; 
    real betaC_SU_std; 
    real betaC_met_std; 
    real alphaE_std; 
    real betaE_weight_std; 
    real betaC_weight_std; 
    corr_matrix[2] Rho; 
    vector<lower=0>[2] sigma_std; 
  } 
  model {  
    vector[N] muE; 
    vector[N] muC; 
    // priors 
    alphaE_std ~ normal(0, 0.5); 
    betaE_weight_std ~ normal(0, 0.5); 
    betaC_weight_std ~ normal(0, 0.5); 
    alphaC_std ~ normal(0, 0.5);  
    betaC_dapa_std ~ normal(0, 0.5); 
    betaC_SU_std ~ normal(0, 0.5); 
    betaC_met_std ~ normal(0, 0.5); 
    Rho ~ lkj_corr( 2 ); 
    sigma_std ~ exponential(1); 
     
    // sampling of incremental effects 
    for (i in 1:N) { 
      muE[i] = alphaE_std + betaE_weight_std * weight_std[i] ; 
      muC[i] = alphaC_std + betaC_weight_std * weight_std[i] + 
                     betaC_dapa_std * pDapa_std[i] + betaC_SU_std * pSU_std[i] + betaC_met_std * 
pMet_std[i] ; 
    } 
     
    { 



    vector[2] YY[N]; 
    vector[2] MU[N]; 
    for ( j in 1:N ) MU[j] = [ muE[j] , muC[j] ]'; 
    for ( j in 1:N ) YY[j] = [ effects_std[j] , costs_std[j] ]'; 
    YY ~ multi_normal( MU , quad_form_diag(Rho , sigma_std) ); 
    } 
} 
  generated quantities { 
    // unstandardized parameters 
    real alphaC; 
    real betaC_dapa; 
    real betaC_SU; 
    real betaC_met; 
    real alphaE; 
    real betaE_weight; 
    real betaC_weight; 
    vector<lower=0>[2] sigma; 
 
    alphaC = sd(costs) * (alphaC_std - betaC_weight_std * mean(weight) / sd(weight) - 
betaC_dapa_std * mean(pDapa) / sd(pDapa)  
            - betaC_SU_std * mean(pSU) / sd(pSU) - betaC_met_std * mean(pMet) / sd(pMet)) 
            + mean(costs); 
    betaC_dapa = betaC_dapa_std * sd(costs) / sd(pDapa); 
    betaC_SU = betaC_SU_std * sd(costs) / sd(pSU); 
    betaC_met = betaC_met_std * sd(costs) / sd(pMet); 
 
    alphaE = sd(effects) * (alphaE_std - betaE_weight_std * mean(weight) / sd(weight)) + 
mean(effects); 
    betaE_weight = betaE_weight_std * sd(effects) / sd(weight); 
    betaC_weight = betaC_weight_std * sd(costs) / sd(weight); 
    sigma[1] = sd(effects) * sigma_std[1];     
    sigma[2] = sd(costs) * sigma_std[2]; 
}", data = dlist , chains = 4, cores = 4, warmup = 500, iter = 3000) 
 
# Table 7 and Table 8 
precis_model <- as.data.frame( precis(multinormal_model, 3, prob = 0.9, digits = 4) ) 
 
post <- rstan::extract(multinormal_model) 
post.matrix <- as.matrix(multinormal_model) 
 
# Figure 9 
mcmc_areas(post.matrix, 
           pars = c("betaC_dapa_std", "betaC_SU_std", "betaC_met_std", 
                    "betaE_weight_std", "betaC_weight_std"),  
           prob = 0.9) + 
  legend_text(size = 14) 
 
 
#### Section 5.2: posterior predictive simulation and model validation #### 
N <- 10000 
price_met <- 18.26 
price_dapa <- 459.85 



price_SU <- 33.46 
weight <- -3.3 
 
sim <- matrix(NA, nrow = 2, ncol = N) 
for (i in 1:N) { 
  mu <- c( 
    (post$alphaE[i] + post$betaE_weight[i] * weight), 
    (post$alphaC[i] + post$betaC_weight[i] * weight + 
       post$betaC_dapa[i] * price_dapa + post$betaC_SU[i] * price_SU + post$betaC_met[i] * 
price_met)) 
  Sigma <- matrix( c( post$sigma[i,1]^2, post$Rho[i,1,2]*post$sigma[i,1]*post$sigma[i,2], 
post$Rho[i,1,2]*post$sigma[i,1]*post$sigma[i,2], post$sigma[i,2]^2 ), 2, 2) 
  sim[,i] <- mvrnorm(1, mu, Sigma) 
} 
 
sim_df <- data.frame(effects = sim[1,], 
                     costs = sim[2,], 
                     source = "Metamodel") 
 
Cardiff_model_df <- read.csv2("[…]") %>% # insert path of validation data here 
  rename("effects" = 1, 
         "costs" = 2) %>%  
  dplyr::select(1:2) %>% 
  mutate(source = "Cardiff model") 
 
sim_df <- rbind(sim_df, Cardiff_model_df) 
 
# Table 10 
sim_df_summary <- sim_df %>% group_by(source) %>% 
  summarise(costs_mean = mean(costs), effects_mean = mean(effects), cost_sd = sd(costs), 
effects_sd = sd(effects)) 
 
CEAC <- data.frame( threshold = seq(0, 50000, length.out = 1000) ) 
CEAC$P_Metamodel <- rep(0, 1000) 
CEAC$P_Cardiff_model <- rep(0, 1000) 
for (i in 1:1000) { 
  CEAC$P_Metamodel[i] <- sum (sim_df[sim_df$source == "Metamodel",2] / sim_df[sim_df$source 
== "Metamodel",1] < CEAC$threshold[i] ) / N 
  CEAC$P_Cardiff_model[i] <- sum (sim_df[sim_df$source == "Cardiff model",2] / 
sim_df[sim_df$source == "Cardiff model",1] < CEAC$threshold[i] ) / N 
} 
 
# Figure 10 
ggplot(sim_df) + 
  geom_pointdensity(aes(effects, costs), size = 1.5, alpha = 0.75, show.legend = FALSE) + 
  geom_hline(yintercept = 0) + 
  geom_vline(xintercept = 0) + 
  facet_wrap(. ~ source) +  
  xlab( "Incremental QALYs" ) + 
  ylab( "Incremental costs" ) + 
  theme_minimal() + 
  theme( text = element_text(size = 14)) 



 
# Figure 11 
ggplot(CEAC) +  
  geom_line(aes(threshold, P_Metamodel, color = "Metamodel"), size = 1) + 
  geom_line(aes(threshold, P_Cardiff_model, color = "Cardiff model"), size = 1) + 
  geom_vline(xintercept = 20000, linetype = 2, size = 1, color = "grey") + 
  ylab( "Probability cost-effectiveness") + 
  xlab( "Cost-effectiveness threshold") + 
  theme_minimal() + 
  scale_color_manual(name = "", values = c("Metamodel" = "blue", "Cardiff model" = "black")) + 
  scale_y_continuous(limits = c(0, 1)) + 
  theme( text = element_text(size = 14)) + 
  theme(legend.position="bottom") 
 
## Price dapa variation ## 
M <- 1000 
N <- 10000 
price_met <- 18.26 
price_dapa <- seq(0,1000, length.out = M) 
price_SU <- 33.46 
weight <- -3.3 
 
 
sim_eff <- matrix(NA, nrow = N, ncol = M) 
sim_costs <- matrix(NA, nrow = N, ncol = M) 
ICER <- matrix(NA, nrow = N, ncol = M) 
for (j in 1:M) { 
  for (i in 1:N) { 
    mu <- c( 
      (post$alphaE[i] + post$betaE_weight[i] * weight), 
      (post$alphaC[i] + post$betaC_weight[i] * weight + 
         post$betaC_dapa[i] * price_dapa[j] + post$betaC_SU[i] * price_SU + post$betaC_met[i] * 
price_met)) 
    Sigma <- matrix( c( post$sigma[i,1]^2, post$Rho[i,1,2]*post$sigma[i,1]*post$sigma[i,2], 
post$Rho[i,1,2]*post$sigma[i,1]*post$sigma[i,2], post$sigma[i,2]^2 ), 2, 2) 
    sim <- mvrnorm(1, mu, Sigma) 
    sim_eff[i,j] <- sim[1] 
    sim_costs[i,j] <- sim[2] 
    ICER[i,j] <- sim[2] / sim[1] 
  } 
} 
 
mean_costs <- apply(sim_costs, 2, mean) 
 
 
ci50 <- apply(sim_costs, 2, PI, prob = 0.5) 
ci90 <- apply(sim_costs, 2, PI, prob = 0.90) 
 
pred <- data.frame(price_dapa = price_dapa,  
                   mean_costs = mean_costs, 
                   ci50_lower = ci50[1,], 
                   ci50_upper = ci50[2,], 



                   ci90_lower = ci90[1,], 
                   ci90_upper = ci90[2,]) 
 
# Figure 12 
ggplot(pred) + 
  geom_line(aes(price_dapa, mean_costs), size = 1) + 
  geom_ribbon(aes(x = price_dapa, ymin = ci50_lower, ymax = ci50_upper, alpha = "50% credibility 
interval"), fill = "blue") + 
  geom_ribbon(aes(x = price_dapa, ymin = ci90_lower, ymax = ci90_upper, alpha = "90% credibility 
interval"), fill = "blue") + 
  scale_alpha_manual(name = "", values = c("50% credibility interval" = 0.4, "90% credibility interval" 
= 0.2) ) + 
  ylab("Incremental costs") + 
  xlab( "Price dapagliflozin" ) + 
  geom_vline(xintercept = 459.85, linetype = 2, size = 1, color = "grey") + 
  geom_hline(yintercept = 0, linetype = 2, size = 1, color = "grey") + 
  theme_minimal() + 
  theme(legend.position="bottom") + 
  theme( text = element_text(size = 14)) 
 
 
P_costsaving <- rep(NA, M) 
P_costeffective <- rep(NA, M) 
for (i in 1:M) { 
  P_costsaving[i] <- sum( ICER[,i] <= 0) / N 
  P_costeffective[i] <- sum( ICER[,i] <= 20000) / N 
} 
 
CEAC <- data.frame(price_dapa = price_dapa,  
                   P = c( P_costsaving, P_costeffective ), 
                   source = c( rep("cost-saving", M), rep("cost-effective", M) ) ) 
 
# Figure 13 
ggplot(CEAC) +  
  geom_line(aes(price_dapa, P), size = 1) +  
  ylab( "Probability") + 
  xlab( "Price dapagliflozin" ) + 
  facet_wrap(. ~ source, dir = "v") + 
  theme_minimal() + 
  geom_vline(xintercept = 459.85, linetype = 2, size = 1, color = "grey") + 
  geom_hline(yintercept = 0.5, linetype = 2, size = 1, color = "grey") + 
  scale_y_continuous(limits = c(0, 1)) + 
  theme( text = element_text(size = 14)) 
 
## weight parameter variation ## 
M <- 1000 
N <- 10000 
price_met <- 18.26 
price_dapa <- 459.85 
price_SU <- 33.46 
weight <- seq( -6.6, 0, length.out = M) 
 



 
sim_eff <- matrix(NA, nrow = N, ncol = M) 
sim_costs <- matrix(NA, nrow = N, ncol = M) 
ICER <- matrix(NA, nrow = N, ncol = M) 
for (j in 1:M) { 
  for (i in 1:N) { 
    mu <- c( 
      (post$alphaE[i] + post$betaE_weight[i] * weight[j]), 
      (post$alphaC[i] + post$betaC_weight[i] * weight[j] + 
         post$betaC_dapa[i] * price_dapa + post$betaC_SU[i] * price_SU + post$betaC_met[i] * 
price_met)) 
    Sigma <- matrix( c( post$sigma[i,1]^2, post$Rho[i,1,2]*post$sigma[i,1]*post$sigma[i,2], 
post$Rho[i,1,2]*post$sigma[i,1]*post$sigma[i,2], post$sigma[i,2]^2 ), 2, 2) 
    sim <- mvrnorm(1, mu, Sigma) 
    sim_eff[i,j] <- sim[1] 
    sim_costs[i,j] <- sim[2] 
    ICER[i,j] <- sim[2] / sim[1] 
  } 
} 
 
# costs 
mean_costs <- apply(sim_costs, 2, mean) 
ci50 <- apply(sim_costs, 2, PI, prob = 0.5) 
ci90 <- apply(sim_costs, 2, PI, prob = 0.90) 
 
pred_costs <- data.frame(weight = weight,  
                   mean = mean_costs, 
                   source = "incremental costs", 
                   ci50_lower = ci50[1,], 
                   ci50_upper = ci50[2,], 
                   ci90_lower = ci90[1,], 
                   ci90_upper = ci90[2,]) 
 
# effects 
mean_eff <- apply(sim_eff, 2, mean) 
ci50 <- apply(sim_eff, 2, PI, prob = 0.5) 
ci90 <- apply(sim_eff, 2, PI, prob = 0.90) 
 
pred_eff <- data.frame(weight = weight,  
                       mean = mean_eff, 
                       source = "incremental effects", 
                       ci50_lower = ci50[1,], 
                       ci50_upper = ci50[2,], 
                       ci90_lower = ci90[1,], 
                       ci90_upper = ci90[2,]) 
 
pred <- rbind(pred_eff, pred_costs) 
 
# Figure 14 
ggplot(pred) + 
  geom_line(aes(weight, mean), size = 1) + 



  geom_ribbon(aes(x = weight, ymin = ci50_lower, ymax = ci50_upper, alpha = "50% credibility 
interval"), fill = "blue") + 
  geom_ribbon(aes(x = weight, ymin = ci90_lower, ymax = ci90_upper, alpha = "90% credibility 
interval"), fill = "blue") + 
  scale_alpha_manual(name = "", values = c("50% credibility interval" = 0.4, "90% credibility interval" 
= 0.2) ) + 
  ylab( "Incremental QALYs" ) + 
  xlab( "Weight increment" ) + 
  geom_vline(xintercept = -3.3, linetype = 2, size = 1, color = "grey") + 
  facet_wrap(. ~ source, dir = "v", scales = "free") + 
  theme_minimal() + 
  theme(legend.position="bottom") + 
  theme( text = element_text(size = 14)) 
 
 
# CEAC 
P_costsaving <- rep(NA, M) 
P_costeffective <- rep(NA, M) 
for (i in 1:M) { 
  P_costsaving[i] <- sum( ICER[,i] <= 0) / N 
  P_costeffective[i] <- sum( ICER[,i] <= 20000) / N 
} 
 
CEAC <- data.frame(weight = weight,  
                   P = c( P_costsaving, P_costeffective ), 
                   source = c( rep("cost-saving", M), rep("cost-effective", M) ) ) 
 
# Figure 15 
ggplot(CEAC) +  
  geom_line(aes(weight, P), size = 1) +  
  ylab( "Probability") + 
  xlab( "Weight increment" ) + 
  facet_wrap(. ~ source, dir = "v") + 
  theme_minimal() + 
  geom_vline(xintercept = -3.3, linetype = 2, size = 1, color = "grey") + 
  geom_hline(yintercept = 0.5, linetype = 2, size = 1, color = "grey") + 
  scale_y_continuous(limits = c(0, 1)) + 
  theme( text = element_text(size = 14)) 
 
# timeline 
price_forecast <- read_excel("[…]", sheet = 3) # insert path to price forecast here (table 11) 
price_dapa <- price_forecast$price_dapa 
price_met <- price_forecast$price_met 
price_SU <- price_forecast$price_SU 
weight <- -3.3 
N <- 10000 
 
sim_eff <- matrix(NA, nrow = N, ncol = nrow(price_forecast)) 
sim_costs <- matrix(NA, nrow = N, ncol = nrow(price_forecast)) 
ICER <- matrix(NA, nrow = N, ncol = nrow(price_forecast)) 
for (j in 1:nrow(price_forecast)) { 
  for (i in 1:N) { 



    mu <- c( 
      (post$alphaE[i] + post$betaE_weight[i] * weight), 
      (post$alphaC[i] + post$betaC_weight[i] * weight + 
         post$betaC_dapa[i] * price_dapa[j] + post$betaC_SU[i] * price_SU[j] + post$betaC_met[i] * 
price_met[j])) 
    Sigma <- matrix( c( post$sigma[i,1]^2, post$Rho[i,1,2]*post$sigma[i,1]*post$sigma[i,2], 
post$Rho[i,1,2]*post$sigma[i,1]*post$sigma[i,2], post$sigma[i,2]^2 ), 2, 2) 
    sim <- mvrnorm(1, mu, Sigma) 
    sim_eff[i,j] <- sim[1] 
    sim_costs[i,j] <- sim[2] 
    ICER[i,j] <- sim[2] / sim[1] 
  } 
} 
 
mean_costs <- apply(sim_costs, 2, mean) 
ci50 <- apply(sim_costs, 2, PI, prob = 0.5) 
ci90 <- apply(sim_costs, 2, PI, prob = 0.90) 
 
pred <- data.frame(date = price_forecast$date,  
           mean_costs = mean_costs, 
           ci50_lower = ci50[1,], 
           ci50_upper = ci50[2,], 
           ci90_lower = ci90[1,], 
           ci90_upper = ci90[2,]) 
 
# Figure 16 
ggplot(pred) + 
  geom_line(aes(date, mean_costs)) + 
  geom_point(aes(date, mean_costs)) + 
  geom_ribbon(aes(x = date, ymin = ci50_lower, ymax = ci50_upper, alpha = "50% credibility 
interval"), fill = "blue") + 
  geom_ribbon(aes(x = date, ymin = ci90_lower, ymax = ci90_upper, alpha = "90% credibility 
interval"), fill = "blue") + 
  scale_alpha_manual(name = "", values = c("50% credibility interval" = 0.4, "90% credibility interval" 
= 0.2) ) + 
  ylab("Incremental costs") + 
  xlab( "Date") + 
  geom_hline(yintercept = 0, linetype = 2, size = 1, color = "grey") + 
  theme_minimal() + 
  theme(legend.position="bottom") + 
  theme( text = element_text(size = 14)) 
 
P_costsaving <- rep(NA, nrow(price_forecast)) 
P_costeffective <- rep(NA, nrow(price_forecast)) 
for (i in 1:nrow(price_forecast)) { 
  P_costsaving[i] <- sum( ICER[,i] <= 0) / N 
  P_costeffective[i] <- sum( ICER[,i] <= 20000) / N 
} 
 
CEAC <- data.frame(date = price_forecast$date,  
                   P = c( P_costsaving, P_costeffective ), 



                   source = c( rep("cost-saving", nrow(price_forecast)), rep("cost-effective", 
nrow(price_forecast)) ) ) 
 
# Figure 17 
ggplot(CEAC[CEAC$source == "cost-saving",]) +  
  geom_line(aes(date, P), size = 1) +  
  ylab( "Probability cost-saving") + 
  theme_minimal() + 
  geom_hline(yintercept = 0.5, linetype = 2, size = 1, color = "grey") + 
  scale_y_continuous(limits = c(0, 1)) + 
  theme( text = element_text(size = 14)) 
 
#### Section 6.2.4: 6.2.4. (un-)normality of the original model’s ditribution #### 
 
# 1 
rho <- 0.5 
x <- mvrnorm(1000,  
             mu = c(0.5, 2500),  
             Sigma = matrix( c(0.3^2, 0.3 * 2500 * rho, 0.3 * 2500 * rho, 2500^2), ncol = 2 
             )) 
 
df1 <- data.frame(effects = x[,1], 
                  costs = x[,2], 
                  sim = 1) 
 
 
# 2 
rho <- -0.5 
x <- mvrnorm(1000,  
             mu = c(0.5, 2500),  
             Sigma = matrix( c(0.3^2, 0.3 * 2500 * rho, 0.3 * 2500 * rho, 2500^2), ncol = 2 
             )) 
 
df2 <- data.frame(effects = x[,1], 
                  costs = x[,2], 
                  sim = 2) 
 
 
# 3 
 
x <- matrix(NA, nrow = 1000, ncol = 2) 
x[,1] <- rnorm(1000, 0.5, 0.4) 
x[,2] <- rnorm(1000, x[,1] * 2000, (exp(x[,1])) * 1000) 
 
df3 <- data.frame(effects = x[,1], 
                  costs = x[,2], 
                  sim = 3) 
 
 
 
# 4 
 



random = runif(1000, 0, 1) 
x <- matrix(NA, nrow = 1000, ncol = 2) 
x[,1] <- rnorm(1000, 0.4, 0.3) 
x[,2] <- rnorm(1000, x[,1] * 1000 + ifelse(random < 0.6, 0, 1) * 5000, 1000) 
 
df4 <- data.frame(effects = x[,1], 
                  costs = x[,2], 
                  sim = 4) 
 
df_total <- as.tibble(rbind(df1, df2, df3, df4)) 
 
# Figure 18 
ggplot(df_total) + 
  geom_pointdensity(aes(effects, costs), size = 1.5, alpha = 1, show.legend = FALSE) + 
  geom_hline(yintercept = 0) + 
  geom_vline(xintercept = 0) + 
  facet_wrap(. ~ sim) + 
  theme_minimal() + 
  theme( text = element_text(size = 12)) + 
  xlab( "Incremental effects" ) + 
  ylab( "Incremental costs" ) 


