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Abstract. In this paper, I model the health outcomes of the pandemic in the hypothetical scenario where no 

countermeasures are taken to limit the spread of COVID-19. This means no lockdown, no social distancing, no 

working from home, or any other organised response. However, this puts many with existing diseases at an additional 

risk, and places a heavy strain on healthcare capacity.  I specifically model how these two factors affect the outcomes 

of this scenario.  

Method. I estimate the number of infections in this hypothetical scenario with an SEIR model. I then estimate the 

number of deaths using data from the ICU monitoring body NICE, as well as the total years of life lost by calculating 

the remaining life expectancy for deaths based on age and comorbidity.  

Results. My model estimates 279,619 deaths in this scenario (sensitivity range 138,275 - 365,338). The total loss of 

life years I estimate to be 3 million years (Range1 – 5 million). This would in turn translate to between 13,050 and 

60,446 full lives lost (of 82.37 years each). The average remaining life years would be 10.7 years (range 7.8 – 13.6). 
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Introduction 

At the time of writing, many western countries are reaching the 

presumable end of the COVID-19 pandemic. With vaccination 

efforts increasing, public measures and lockdowns are gradually 

eased and lifted across the world. Hopefully the return to normalcy 

will soon reach all corners of the globe so people everywhere can 

pick up their normal lives again. With the “wartime” of the 

pandemic drawing to a close, it can be easy to forget the delicate 

balance between public health and private freedoms every 

government has had to protect.  

There is a strange paradox that the most successful policies in 

combatting the pandemic have the unfortunate side-effect in that 

they reduce the public perception of how dangerous it truly was. 

Threats to public health which are successfully mitigated are easily 

overshadowed by other threats. While it is tempting to think of 

infectivity and mortality as inherent properties of the disease, they 

are also partially determined by human behaviour; as the 

population socially distances themselves, infections drop, and the 

quality and capacity of healthcare can have a strong impact on the 

mortality. In short, a pandemic could play out in many different 

ways, depending on how we, the people, respond to it.  

In this thesis I model what would have happened in one of such 

possible responses, namely one where no individual or public 

measures are taken, not even from common sense. Contextually, 

this could be because nobody is aware of the disease, or perhaps 

people have simply resigned to the fact that the disease is there, 

similarly to the flu. Regardless, in this hypothetical scenario the 

government instigates no lockdowns or procedures, and people do 

not socially distance themselves; everybody continues their 

ordinary lives. In modelling this, I pose the question: what are the 

health outcomes in this scenario? How many people would die as 

a result, and what is the associated loss of life years?  
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This question is partially shaped by the public debate surrounding 

the pandemic. Lockdown-sceptics have posted claims that suggest 

that the number of deaths is inflated, or that the deaths do not 

represent a serious loss of potential life-years. For example, 

PolitiFact (2020) discussed one particularly popular social media 

post which claimed among other things that only ‘bad healthcare 

and weak immune systems’ cause COVID-19 deaths. Another 

website called VirusWaarheid (Virus Truth) propogates many 

articles along similar lines. One such article (2020) claims that only 

those with severe pre-existing morbidities, or aged above 70 die 

from the disease. A direct line from this article claims that ‘even 

with these pumped up numbers (fatalities), the virus is no worse 

than a flu-season’.There is a lot to say about such claims, from the 

perspective of ethics and ableism (the notion that less healthy 

people are implicitly less valuable), the perspective from effective 

public governance, or techno-sociological of how such claims 

proliferate through social media. In this thesis, I will focus on 

estimating the health costs, e.g. the number of deaths and the 

resulting loss of life years, that could have resulted from an absence 

of public and private response. In this hypothetical worst case 

scenario, I will account for both the age of people who died, their 

comorbidities (concurrent diseases such as cancers, lung disease, 

etc), and the healthcare capacity. 

Likewise, framing the pandemic around health care capacity is 

often found in news articles, and was implicitly placed on the 

centre stage from the earliest moments in the pandemic. In March 

2020 the ‘flattening the curve’ strategy became the dominant 

ideology when containment of the virus was no longer possible. 

(NOS, 2020). This strategy was directly aimed at maintaining the 

demand for healthcare below the available supply. This was also 

accompanied with a public interest in how the available supply (of 

ICU beds) could be scaled up (Klaassen, 2021). Implicitly and 

explicitly, healthcare capacity was often an important indicator of 

the pandemic’s dangers.   
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These factors are mostly selected by the public debate. At the start 

of the pandemic, governmental health officials have repeatedly 

stated the need to “flatten the curve” in order not to overwhelm the 

healthcare system. In modelling this healthcare capacity, I can 

estimate how much mortality increases if this capacity is exceeded. 

At the same time, by considering the comorbidities of patients this 

paper can be critically contrasted with such statements claiming 

that ‘only sick people die from COVID-19’ or that ‘it is no worse 

than the flu’.  

This thesis is structured as follows. In the first section I discuss the 

other studies that have described the COVID-19 pandemic along 

the mortality, the loss of years of life lost (e.g. the hypothetical life 

potential), and the infectivity. The second section discusses my 

methodology and data selection. In this thesis I use a SEIR model 

to estimate the number of infections, from which I estimate 

mortality. I rely on reported data from healthcare organisations to 

estimate the probabilities of disease outcomes. In the third section 

I discuss the results of this model. First I will describe the number 

of deaths that occur according to the model, as well as the years of 

life lost (YLL). I also present the sensitivity of this model to 

comorbidity, healthcare capacity, and infectivity, among other 

things. Lastly, I present my conclusions in the fourth section. I will 

also discuss the limitations of this study, such as the restrictive 

assumptions that are in my model. I also discuss some broader 

policy implications in this section.  
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Background 

In this paper, I attempt to estimate the number of deaths and the 

loss of life years that would have occurred in the Netherlands if no 

measures had been taken by the state or the public during the first 

wave of the COVID-19 pandemic. By looking at both the number 

of deaths, as well as the number of Years of Life Lost (YLL) this 

counterfactual should give some idea on what the true impact could 

have been. In this section, I discuss some other articles and studies 

that have looked at the number of deaths, as well as the number of 

infections. This background helps to decide on a good 

methodology to estimate the counterfactual. The health outcomes 

(e.g. deaths) come from the interplay between biological factors 

(how COVID for example interacts with existing diseases) and 

psycho-social factors (state policy, medical treatments, etc). For 

this reason, I will specifically discuss some articles that deal with 

such factors.  

Estimating the number of deaths 

Estimating the number of deaths is not an easy task. Even counting 

the number of actual deaths has proved difficult in the real world. 

There are different ways to define COVID-19 deaths, and different 

ways to count or estimate them. For example, the economist 

published an article that highlights this difficulty (The economist, 

2021). The official reported deaths due to COVID-19 globally was 

over 3 million, but the reported excess mortality over the pandemic 

was over 4 million. Moreover, their own estimation of the excess 

mortality was over 10 million, roughly 2.5 times as much (The 

economist, 2021). This number however includes both direct and 

indirect deaths, i.e. deaths in patients who did not have COVID-

19. Still, numbers like these can be hard to interpret, as nobody can 

be sure that such excess mortality is truly due to COVID, nor how 

many people would have died in that timespan without COVID. In 

the case of the Netherlands, the official death toll was 16,622 at the 

end of March. However, there is also an excess mortality over and 
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above the reported COVID-19 deaths (CBS, 2021). There is 

another pattern that is also important to note from this data. Periods 

with high excess mortality (observed deaths from any cause – 

expected deaths for that period) are followed by a period with less 

than expected mortality. This is true for the whole of Europe as 

well (EUROMOMO, 2021). This could mean that COVID may 

have ‘hastened’ mortality for some people that might otherwise 

have died weeks later. This is always difficult to account for in 

models, but it is one of the reasons why studies also look at YLL. 

Second, it also possible that official figures underreport COVID-

19 deaths. This is also noted in other global studies, for example 

by I Arolas et al (2020), who speak of ‘systemic undercounting’. 

This can be explained by inadequate testing materials, or time 

constraints in healthcare settings. The number of deaths however 

is crucial for determining the mortality rate of COVID-19. 

One measure of reporting the mortality rate is the Case Fatality 

Rate (cfr). This is chance of death, conditional on being infected. 

It is calculated by dividing the number of deaths by the number of 

cases. Unsurprisingly, many studies attempted to estimate this rate 

in the early days of the pandemic, because it plays a crucial role in 

planning the governmental response. Verity et al (2020) discussed 

the cfr for all countries in April 2020. From their data, they 

estimated a global cfr between 0.87% and 9.26%. In the initial 

phases of the pandemic, the cfr was incredibly high, reaching as 

high as 14% in Italy and 11% in Spain for May 2020. Of course, 

both of these countries were experiencing exceptionally high first 

waves of the pandemic. The world average meanwhile was around 

7% for this period, but is now around 2% (Ritchie, 2021). All this 

is to say that the cfr varies over time, as well as between countries.  

This can be partially explained by how ‘we’ got better at 

identifying and treating COVID over time. Better treatments 

reduce the cfr by reducing the number of deaths, while better 

testing reduces the cfr by dividing the number of deaths with a 

greater number of cases. Sorci et al (2020) also discuss why the cfr 
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differs between countries by using an autoregressive model on 

different national variables. The results indicate that the cfr is 

strongly associated with population morbidities, such as 

cardiovascular disease, cancer, and chronic respiratory diseases. It 

was meanwhile negatively associated with the healthcare capacity. 

These same factors are also noted by Verity et al, as well as the 

demographic composition of countries. For example, countries 

with older populations, or with higher rates of smoking also 

frequently observed higher case fatality rates. In this thesis, I will 

primarily use rates based on the officially reported COVID-19 

deaths, as these rates are generally reported with less uncertainty. 

In the introduction, I have noted that some of the public debate 

centres around these factors as well, in the form of ‘flattening the 

curve’ and claims about the comorbidity levels of deaths. It is 

widely reported that comorbidity (secondary diagnoses) does play 

an important role in determine patient outcomes. For example, an 

article by the Economist (2021) discusses a list of 29 comorbidities 

that all the risk of hospitalisation, as well as the case fatality rate. 

The article noted that the added risk of comorbidities was similar 

for both the risk of death and the risk of hospitalisation. (For 

example, chronic heart conditions was the second strongest 

predictor for both hospitalisations and risk of death.) Such 

comorbidities could, depending on age and gender increase such 

risks by a factor of 1.5 to 5, Another article published in the Lancet 

by Bhaskaran et al (2021) provide further evidence, controlling for 

many other health and social factors such as BMI, Smoking, 

Ethnicity, and different comorbidities. Here, Malignancies, 

Diabetes, Respiratory disease, Cardiovascular disease, Kidney 

disfunctions, and autoimmune disorders are particularly noted as 

both very prevalent (occurring often in the observed COVID-19 

patients) as well as significantly diminishing the patient outcome 

of COVID-19. However the bulk of the results are published as 

odds ratios, which cannot be easily quantified into more 

meaningful risks.  
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Ji et al (2020) note a different important factor which partly 

determines the cfr. The availability of healthcare resources, e.g. 

mediations, beds, and personnel, also has a substantial impact on 

mortality rates. This resource availability can vary strongly 

between and within countries, and is strongly associated with the 

overall affluence of the country. In the studies by I Arolas et al 

(2020, 2021) this can be observed as well.  Namely, in more 

affluent countries (with presumedly better developed health care 

systems) median the age-at-death due to the disease lies primarily 

above 70 years. In many countries in the Latin Americas, Asia, and 

Africa, with less developed health care systems this is different. 

Here, significant portions of mortality (more than 60% in some 

cases) occurs in those under 55 years old. This could also be due 

to differences in the demographics the population, but I speculate 

that the health outcomes of younger individuals (around 55) is tied 

to the available healthcare. In simple terms, I expect that older 

patients have substantially lower chances for survival irrespective 

of available healthcare, and younger patient’s survival rates are 

more responsive to the amount of available care they can receive. 

This would explain why in countries where there is presumably 

more healthcare scarcity, there are significantly more deaths at 

younger ages.  

Based on this, I include both population morbidity and healthcare 

capacity in my models. Population morbidity however also plays 

an important role in estimating the years of life lost, as it lowers 

the life expectancy.  

Years of Life Lost estimations 

In order to calculate the YLL, we would need to estimate what the 

remaining lifespan would have been for each COVID-19 death. 

This is an often used measurement of the pandemic impact on a 

given region. Quast et al (2020) have done precisely this for the 

(actual) COVID-19 deaths in the USA, by taking the remaining life 

years per age-group and gender. Rommel et al (2021) used this 
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method as well for Germany. Both these studies draw the 

remaining life years from the Global Health Observatory (GHO) 

life tables for the respective countries. I Arolas et al (2021) use the 

same framework, using the observed deaths by COVID-19 to 

estimate the loss of life years, across a total of 81 countries. They 

have done an earlier study in 2020, where they compare the YLL 

for 42 countries. In their latest study, they have studied over 

1,279,866 deaths, which are responsible for a total of 20,507,518 

lost life years.  

These studies have not taken pre-existing morbidities of patients 

into account. In many cases, this was not possible with the amount 

of available data. Rommel et al (2021) argue that these pre-existing 

morbidities are already implicitly applied in the average remaining 

life. This may however be insufficient in the case of COVID-19, 

as COVID deaths may substantially impact specific comorbidities. 

Hanlon et al (2020) do take the comorbidity of patients implicitly 

into account, albeit at a flat rate (in the form of a reduction on the 

life expectancy). They note that this only had a limited effect on 

the YLL; accounting for the comorbidity in patients and the 

resulting loss of remaining life expectancy reduces the average 

YLL per patient with one year. Devleesschauwer et al (2020) note 

that the method by Hanlon et al could be made more accurate by 

using life tables based on mortality risks to estimate the effect of 

comorbidity on the remaining life years. A study by Ferenci (2021) 

using such morbidity adjusted lifetables to estimate the impact of 

comorbidity, and finds an overall reduction in average YLL of 

about 2 years. Wouterse et al (2021) do model the specific impacts 

of comorbidities on mortality and loss of life years using this 

method. This study is aimed at the Dutch population, which makes 

it very applicable to this model. Their results indicate a larger 

impact of comorbidities: from an average of 8.72 years without 

accounting for comorbidity, 7.4 when adjusting for comorbidity, 

and 5.53 years when considering selective comorbidities in long-

term care facilities where a lot of deaths take place.  
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While it may initially seem surprising, both Devleesschauwer et al 

and Green (2021) comment on finding very different average 

YLLs. In the selected literature I have discussed, the range is 

certainly considerable: I Arolas (2021) suggest the highest 

unadjusted average of 16 years, while Wouterse et al provide an 

adjusted average of 5.53 years. Green notes that the decision to 

include or omit different social and health related factors can create 

significant differences in the estimates. Adjusting for comorbidity 

also captures the implicit effect of healthcare which is apt to be 

different between countries. I would also add to this that this 

difference also captures the succes of healthcare. This is the 

paradox I have mentioned in the introduction: successful strategies 

lower the impact of the pandemic, and thus lower statistics that 

measure the ‘seriousness’ of the disease. Devleeschauwer et al 

meanwhile note that even when the same methodology is used, 

there are likely to be significant differences between the average 

YLLs of different cities within the same country. All this suggests 

that we should not be too quick in comparing YLLs directly. Small 

differences can have large impacts on the outcome, potentially 

voiding many insights that stem from a direct comparison.  

Stichting NICE, reporting specifically on the situation in Dutch 

hospitals, have reported on 5 different comorbidities: lung disease, 

kidney disfunction, cardiovascular disease and malignancy, as well 

as immunodeficiency. Their report (2021) notes these 

comorbidities for their pronounced effect on mortality, as well as 

provide statistics on adjusted risk ratios and bed occupancy rates. 

While there are other comorbidities that have been noted (diabetes 

mellitus, obesity, and others) the impact of these is harder to 

quantify in a model, especially given the unclear comorbidity 

between these and other comorbidities. The report by NICE also 

highlights the key role of healthcare capacity, as patients with 

COVID-19 can stay on ICU wards upwards of 19 days. This is 

substantially longer than the non-COVID average of 6.3 days.  
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Predicting the counterfactual number of infections 

This leads to the last piece of the puzzle, namely how many people 

would become infected in the absence of any public policy or 

private behavioural response to the pandemic. This counterfactual 

scenario where everyone carries on ‘business as usual’ determines 

primarily the number of infections, with disease outcomes such as 

deaths being the secondary outcomes. So I would argue that this is 

a natural place to start modelling the counterfactual; by modelling 

the number of infections.  

While there are several mathematic models, delineating the 

different merits of each type of model is outside of the scope of this 

paper.  However, out of several model types a SEIR model seems 

most suitable. This is a compartmental model that can estimate 

infection curves with relatively little data, which makes it well 

suited for simulating epidemics. It is also self-limiting by taking 

the amount of un-infected people into account (e.g. when there are 

not enough susceptible people left, the spread halts). It is also a 

predictive model, meaning that it is often applied to predict how 

large an infective disease can spread.  

Certainly, these SEIR has been applied many times in the COVID-

19 pandemic (Anderson et al, 2020; Fan et al, 2020; He et al, 2020; 

Tang et al, 2020). These studies all predicted how the pandemic 

would develop if no further actions are taken at the time of their 

model. Based on the model inputs, these models have predicted 

infection levels reaching between 60-95% of the population. 

Usually these models do not become reality, as further measures 

are generally taken to further limit the spread.  

These models are also highly dependent on the initial inputs. Small 

changes in for example the time someone stays infectious, or how 

long the incubation takes all influence the outcome of such models. 

In the next section, I will discuss this methodology further. 
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SEIR MODEL

Table 1: Mathematical structure of the SEIR MODEL 

Methodology 

In this section, I will detail the methodology I employ to estimate 

a counterfactual of an unchecked spread of COVID-19. First, I will 

be discussing the SEIR model which produces the number of 

infections per day. From the number of infections, I estimate 

disease outcomes with reported mortality rates. In the second part 

of this chapter, I discuss how I take the number of infections and 

calculates the total number of deaths, and the resulting years of life 

lost. I will also discuss how I take comorbidities and the available 

healthcare capacity into account. Lastly I will discuss how data on 

comorbidities, hospitalizations, mortality, and life expectancy.  

 

 

The SEIR Model – Predicting infections 

As I discussed in the previous chapter, to estimate the number of 

infections (in the scenario where no individual or public 

preventative measures are taken) I will be using a SEIR model. In 

its simplest form, the SEIR model estimates the number of newly 

exposed on (t + 1) based on the number of infected at day t with 

rate β. These newly exposed individuals become infectious with 

rate f, which is simply the inverse of the incubation period. Finally, 

these infectious individuals stop being infected with rate R, which 

includes both those recovered and those who die as a result of the 

disease. Table 1 shows the set of equations that make up the model.   

It is important to note one disadvantage of this method however. I 

have not been able to model ‘asymptomatic’ carriers. While the 

SEIR model allows for a latency period, effectively every infection 

is at least a symptomatic case.    
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Table 2: SEIR Model inputs (baseline scenario) 

It is worth noting that the β-rate in this model is closely tied to the 

basic reproductive number, or R0. The reproductive number is 

typically calculated as follows:  

 

The average probability that a given contact results in a successful 

disease transmission is typically denoted with φ. φ multiplied by 

the average daily contacts results in the β-rate for the SEIR model. 

Multiplying this by the average time an infectious individual 

remains infectious results finally in the R0, e.g. the average number 

of infections a new case would infect in a given susceptible 

population.  

The most important inputs for the SEIR equations I have taken 

from the RIVM reports. The R0 that was being reported in the early 

days of the pandemic ranged between 1 and 4 (RIVM, 2021), 

usually clustering somewhere around 2. This is likely a range that 

comes near the scenario in this paper, e.g. one where no public or 

individual measures have been taken. Reported estimates for the 

time until an infected individual becomes infectious (the 

incubation period) and the time they are then infectious vary 

between sources and times. A relatively early report (RIVM, 2020) 

gives the estimate of a 5.6 day incubation period (f-rate) and an 

infectious period of 10 days (δ). The average daily contacts (γ) that 

could allow for infection was pre-pandemic estimated at 16 per day 

(De Fada et al, 2020). Finally, for simplicity, I have rounded the 

country population to 17.000.000. These inputs for the baseline 

scenario are shown in the table below.  
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Graph 1: Number of infections predicted by SEIR model in the baseline scenario  

These inputs have pronounced effects on the ‘shape’ of the 

pandemic, e.g. the curve of the infections. The previous R0 

estimates from the RIVM data between 4 and 1.5 will not be fully 

discarded however. I will use these two values to also generate a 

range for the final results. An R0 of 2 will however function as my 

‘best estimate’ of what would have happened without measures. As 

can be seen in the bottom graph, around 95% of the population 

becomes infected in the first 300 days.  

 

 

 

 

 

 

After this point, the virus cannot find enough susceptible 

individuals and dies out. This model provides not only the total 

number of infected people, but crucially also the timeframe of 

when they become infected. This timeframe ultimately determines 

if and when healthcare will be at capacity. In the next section I 

discuss how these infections are used to calculate concrete health 

outcomes for the population.  
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Translating infections into YLL  

The SEIR model estimates the total number of infections, but does 

in itself not specify how many deaths will occur. The main results 

of this paper will be the total number of deaths, and the number of 

years of life lost. To estimate this, I will need to transform the 

number of infections from the SEIR model into these outcomes. To 

do this, I assign each state a set of probabilities (based on empirical 

estimates). This method effectively ‘sorts’ the number of infections 

into states. Such states can be intermediary (e.g. admitted to a 

hospital) or final (e.g. recovery or death). Key here is the scalability 

of probabilities: if it is observed that 10 out of 1000 infected 

individuals get admitted to the hospital, we assume that that 1% 

also scales to a population of 17 million. That is essentially how 

the model works: on t=100 there are 9.000 new cases. Of these 

cases, 13.5 will be admitted to the hospital, 2.9 to the ICU, and of 

these some will die depending on their age and comorbidities. This 

methodology of course misses a lot of nuances that determine 

disease outcomes and is only as good as the data that feeds into it.  

Regardless of the initial simplicity of the method, the number of 

states in which infected individuals are sorted increases with the 

desired level of complexity. For example, to estimate the YLL, the 

number of infections need to be distributed across age groups. I 

have opted to group these ages as follows: 0-19, 20-24, 25-29, 30-

34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 

80-84, and >85. Then, to include the effects of comorbidities, I 

stratify every intermediary state for these. E.g. a substate for the 

number of infected at t=x who are: Infected, aged between 40-44, 

have a prior lung condition, AND are sent to the ICU, and so forth. 

The following page shows a diagram that shows the different states 

and their corresponding equations.  
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Diagram 1: Abstract representation of how infections are translated into number of deaths 

 

 

 

 

 

 

 

 

Starting with the number of infections, I distribute these across age 

(g) and 4 different types of comorbidity (i): Malignancy, Kidney 

disfunction, Chronic lung conditions, and Cardiovascular disease. 

There is also some overlap in comorbidities, which I correct for 

with K1. This correction (as well as K2) is a flat rate correction that  

 

 

 

 

 

 

 

 

I apply to reduce ‘double counting’, e.g. overestimating the total 

morbidity level of the population. Additionally, this group with 

more than one comorbidity also has an increased mortality rate, 

which I have estimated with NICE data on plural comorbidities. 

Next, each state is sorted into another intermediate compartment 
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based on the type of care they will receive based on their age and 

morbidity. Again, there is some overlap between types of care, 

which I correct for with K2. Effectively, this correction accounts 

for patients that have been in both wards, otherwise inflating the 

hospitalization rates. Finally, each state empties into either 

recovery (not shown in diagram) or death (compartments μ 1 to 3). 

However, as patients are admitted into either general wards or the 

ICU, these capacities start to fill. At a certain point, no additional 

patients can be admitted until beds become free again. Starting with 

the ICU, once all beds are full, patients will be admitted into non-

ICU beds instead. It is reasonable to assume that this will worsen 

the outcome of the patient; ICU admitted patients have a roughly 

20% fatality rate (unweighted average, NICE 2021). When the ICU 

beds are at capacity, new ICU patients will not have access to that 

level of care. ICU patients that cannot get to an ICU bed will  

 

receive an additional mortality rate (γ1).  At this point regular 

wards will start to fill at an increased rate. When all other beds are 

also full, no patients will be admitted into healthcare at all. This too 

comes with an additional mortality rate (γ2). Finally, there is also 

mortality outside of hospital care. This mostly includes long-term 

care facilities, and is effectively 0 at ages below 50. (note. This 

does not mean that there is no mortality at all below age 50. Only 

that all fatalities below that age have occurred in hospitals and ICU 

beds.) I discuss this in more detail in the next section.  

The result is the number of deaths that accounts for age, 

comorbidity, and care required and received. This same framework 

also serves to estimate the YLL per death. The same grouping of 

age-group and comorbidity is relevant to estimate the  
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Table 3: Equations to calculate morbidity (i) adjusted life expectancy at age of death x. 

remaining life lost due to COVID-19. To estimate this YLL, I use 

the same methodology as Briggs et al (2020) and Wouterse et al 

(2020). To start, I collected data from the Global Health Estimates 

(Published by the WHO, 2016) on age and cause specified 

mortality in the Netherlands. I could have also used data from the 

Dutch CBS, as counts are almost identical. Starting with age 

specified mortality, I calculate the per-age probability of dying for 

any cause (q(x)). Then, for every age year x I take the product of 

the preceding probability of surviving to age x+1.  Doing this for 

all age groups until the maximum lifespan of 82.37 years, yields 

the life expectancy (LE) at each age group. This remaining life 

years at a certain age are however not adjusted for morbidity. 

 

 

 

To adjust this remaining life expectancy downwards for groups 

with comorbidity i I calculated Standardized Mortality Ratios 

(SMR) for four groups of comorbidity as shown in the equations 

below. This is essentially a disease-specific per-year mortality risk 

increase. Summing the product of the instantaneous death rate, 

adjusted for this SMR then provides the remaining life expectancy 

LE at age x for comorbidity i.  

The equations at the bottom of this page shows in depth how I have 

calculated these morbidity adjusted life expectancies.  
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The only remaining step is to sum up the lost life years for every 

death z at age x (age at death) as follows: 

The resulting sum represents the total loss of potential years of life. 

Additionally, the average of this sum represents how many years 

of life the average COVID-19 fatality lost. In Appendix A , I show 

the resulting remaining life expectancies.  

A final note on a factor not included in this model. I have opted not 

to include gender in this model. The main reason was because not 

all the important data and figures were separated by gender. I will 

address this in more depth in the discussion section.  

 

 

 

Modelling different scenarios 

To show the effect of the R0, as well as some other factors, I use a 

multivariate sensitivity matrix, the inputs of which are shown in 

the table below. In total, I create 9 different scenarios. Scenario A, 

the ‘Baseline scenario’ consists of an R0 of 2, the frequencies for 

the comorbidities and the excess mortality from capacity 

constraints (the mortality ‘penalty’ for not getting the right care 

because no hospital beds are available) are the best estimates as 

discussed in the following section.  

  

Table 4: Different modelling scenarios with varying inputs. (x:  factor change of the inputs)  

Scenario R0

Excess mortality from 

capacity constraints
Comorbidity factor

A - Baseline Scenario 2.0 x 1 x 1

B - Lower Infectivity 1.5 x 1 x 1

C - Higher Infectivity 4.0 x 1 x 1

D - No capacity mortality 2.0 x 0 x 1

E - Double capacity mortality 2.0 x 2 x 1

F - No Comorbidity prevalence 2.0 x 1 x 0

G - Double Comorbidity prevalence 2.0 x 1 x 2

Min - All inputs low 1.5 x 0 x 0

Max - All inputs high 4.0 x 2 x 2
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Data and probabilities 

In this section, I discuss which data I have used to estimate state 

probabilities. For example, the risk of being admitted to the ICU, 

and the risk of then dying in that ICU. Some distributions, such as 

the age-group distribution in the Netherlands, are relatively 

straightforward. I have applied the age-group structure of the year 

2018, from the Dutch office for Statistics (CBS, 2020).  

While I discuss mortality rates in more detail later,  I had to decide 

early on how to model healthcare efficacy over time. As discussed 

previously, the cfr has started out high and then decreased over 

time. Similarly, hospital admission rates have fluctuated over time. 

It is hard to pinpoint the reasons for this. It is likely that there was 

perhaps initial confusion in testing and treatment, as well as a 

‘learning’ effect. However, the reduced testing capacity in the early 

days of the pandemic also mean that the mortality rates are possibly 

upwardly biased as well. In the end I decided to simply use the 

average rates over the first year of the pandemic (until the end of 

march, 2021).  This could potentially result in an underestimation 

of the number of deaths, because as I will show later, a substantial 

number of deaths occur early in the pandemic. In this, as with many 

other variables, I prefer to base my model on data that could 

potentially lead to an underestimation, as opposed to 

overestimations.   

In the remainder of this section I first discuss the data I have used 

to estimate comorbidity levels. Then, I discuss healthcare 

admission rates, e.g. the likelihood that someone with COVID-19 

is admitted to the hospital. Lastly, I also discuss the data mortality 

rates both inside and outside hospitals. 
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Graph 2: distribution of the four selected comorbidities across the age groups 

Comorbidities in the population.  

To start, I found comorbidity distributions for the Dutch 

population, which are shown in the graph below. In this section, I 

will briefly discuss the sources for these comorbidities.  

Starting with malignancy, it was reported that in 2020 roughly 

604.000 people (or 3.5%) in the Netherlands had some form of 

cancer. I have opted to simply take the overall prevalence, which 

was reported by the IKNL (2021), which was also reported 

stratified by age.  

 

 

 

 

 

For lung diseases, I looked at the VTV (2020), which provides a 

ranked list of the most common diseases in the Netherlands. An 

article in The Lancet (Aveyard et al, 2021) reported that while data 

was still scarce, COPD, Asthma, and airway infections were 

notably linked to increased mortality rates. They also report that 

the severity of these conditions play an important role. Based on 

this, I only look at the prevalence for asthma classified as ‘severe’ 

(3.6% of cases) and COPD grade 3 and 4 (severe and very severe, 

15% and 3% of cases respectively). I also correct for the fact that 

around 32% of these patients have both Asthma and COPD, to 

avoid double counting. I further look at the incidence of lower 

airway infections, which appear to further cause severe 

complications. All three of these rates have been found in the VTV 

for the year 2018. Only COPD and Asthma were stratified 

according to age, and I proportionally distributed the incidence of 

lower airway infections.  
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For kidney disfunction I found that there were a large range of 

diseases responsible. To overcome this, I took aggregate data on 

kidney disfunction rates from the Nierstichting (2019). While this 

provided me with the total prevalence of kidney disfunction (rated 

severe or very severe) of 210,000, this was not stratified according 

to age. This was solved imperfectly by taking the age-stratified 

prevalence of Chronic Kidney Disease (CKD) (only grade 3 and 

higher) from the U.S. veteran affairs department (Korshak et al, 

2019). I used these proportions to distribute the prevalence found 

in the Nierstichting data across the age-groups.  

Cardiovascular diseases presented the largest overall prevalence, 

with also a large set of different diseases responsible. For 

practicality, I only looked at strokes, Coronary Heart disease, and 

heart failure. However, as there was not a lot of data comparing 

different cardiovascular diseases and the effect on COVID-19, I 

based this on general severity and prevalence. Again, there was a 

notable overlap of patients having both diseases. Data on the 

incidences came from the VTV, however I could only partially 

estimate the overlap in patients with data from the Hartstichting 

(2018), which ranged between 0.26 and 0.42.  

Healthcare occupancy, admission, and mortality rates 

There are many sources reporting on the various statistics of 

COVID patients, such as the RIVM, the GGD, Stichting NICE, and 

others. For tracking the healthcare aspect NICE produced the most 

complete range of statistics for the purposes of this study. Their 

reported data provided estimates of the average number of 

available beds (e.g. free beds that are not occupied by other non-

COVID patients), age-stratified admission rates for both general 

wards and the ICU wards, and importantly mortality rates adjusted 

for comorbidity.  

First I used data on the absolute number of positive tests by the 

GGD and the RIVM for the period up to February 2021. Using a 

higher number of positive cases when calculating healthcare 
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admission rates reduces any potential upwards bias so I ended up 

using the GGD data. I then used the NICE data on hospitalizations 

and ICU admissions, which divided by the number of positive tests 

produces the general healthcare admission rates per positive test.  

Lastly, I have used outcome data on mortality by comorbidity to 

extract the baseline (without comorbidity) mortality rates per ward, 

as well as mortality risk ratios for the 4 comorbidities. All these 

rates per age group are shown in Appendix B.  

There also exists mortality outside of the hospital-care setting I 

have previously discussed. While I do not pinpoint this to the exact 

origins in this paper, I suspect that the majority of these deaths 

occur in long-term care facilities. This is corroborated by the fact 

that outside hospitals and ICUs no mortality in the ages below 50 

is reported in the period up to February 2021 (RIVM, 2021). I have 

taken these figures, deflated them for underlying comorbidities, 

and age-distributed these across the age-groups (see Appendix B 

for these figures).  

The final source of COVID-19 deaths in the model comes from 

patients requiring care when there are no more beds available. 

There is no immediate precedent which gives a good quantification 

of what mortality is involved with foregone care, so I have applied 

a flat mortality inflation factor. Effectively, when a patient requires 

care but is unable to receive it, I apply the ordinary mortality rates 

for that type of care multiplied by this factor. The main benefits of 

this method are transparency and proportionality. First, the method 

is clear for any reader to follow into the final results. Second, the 

method is proportional to the underlying risks, e.g. the additional 

mortality is proportional to the age, comorbidity, and type of 

foregone care.  

I have settled on a factor of four as the lowest reasonable factor. 

This is an exceedingly conservative estimate, giving someone 

between 55 and 59 a 50% chance of survival when they go without 

the intensive care. I will however show the effects of this inflation 

factor in the sensitivity analysis later on.  
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 Table 5: The model results for all 9 scenarios. Full lives are calculated by dividing total YLL by 82.37 years, e.g. the maximum life expectancy at birth.  

Scenario Deaths (% of population) Case fatality rate Total YLL (Average) Full lives lost

A - Baseline Scenario 279,619 (1.65%) 1.79% 3,002,130 (10.7) 36,447

B - Lower Infectivity 253,172 (1.49%) 1.73% 2,621,576 (10.4) 31,827

C - Higher Infectivity 291,604 (1.72%) 1.72% 3,202,266 (11.0) 38,877

D - No capacity mortality 152,105 (0.89%) 0.97% 1,189,642 (7.8) 14,443

E - Double capacity mortality 348,816 (2.05%) 2.23% 4,630,933 (13.3) 56,221

F - No Comorbidity prevalence 275,601 (1.62%) 1.76% 4,826,017 (10.8) 58,589

G - Double Comorbidity prevalence 283,638 (1.67%) 1.81% 4,938,443 (10.6) 59,954

Min - All inputs low 138,275 (0.81%) 0.88% 1,074,962 (7.8) 13,050

Max - All inputs high 365,338 (2.15%) 2.34% 4,978,916 (13.6) 60,446

Results  

In this section, I will discuss the results of this model in terms of 

the number of deaths, as well as the years of life lost (YLL). In 

Appendix C I show specifically the SEIR model results. In the table 

at the bottom of this page the results are shown in absolute and 

relative terms. They may at first glance seem either substantially 

lower or substantially higher than one would first assume. In a 

timespan of 300 days an unchecked pandemic could, according to 

this model, have produced anywhere between 138,275 and 365,338  

 

 

 

 

 

 

deaths (0.813% - 2.149% of the total population), with the best 

estimate landing on 279,619. This is a very substantial number of 

deaths for any country, especially so in a country with a population 

of 17 million. The case fatality rates in this model are however low 

compared to what has been reported by the global monitoring 

bodies (ranges between 1% – 5.6%, COVID-19 Health System 

Response Monitor 2020). Total loss of life years falls between 1 

and 5 million years, with an average of 7.8 – 13.6 years per death.  
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The results also suggest that, ceteris paribus, the comorbidity level 

(F and G) has the smallest impact on the total number of deaths. 

This too might seem initially very surprising, given the increased 

mortality rates associated with the comorbidities. While mortality 

and hospitalization rates are a lot higher for these individuals, they 

only make up a small number of the population. For example, the 

total number of cancer patients in the Netherlands comprise 3.5% 

of the population. In other words, the comorbidity effect is 

marginalized when the entire population gets infected.   

The R0 (B and C) has a larger impact. Doubling the R0 increases 

the number of deaths by slightly less than 12,000, while decreasing 

it to 1.5 reduces the number of deaths with over 26,000. This too is 

related to the total population, which in both cases reaches 

infection levels of 90% to 99% of the country. There is however an 

asymmetry in the reduction and increase. A reduction of 25% in R0 

has a larger effect on the number of deaths than an increase of 

100%. This is mostly due to the most important factor: healthcare. 

By far the largest impact on the number of death is the available 

healthcare (or the excess mortality resulting from capacity 

constraints). There is a difference of almost 197,000 between 

scenario D ( no excess mortality from foregone care), to scenario 

E. This highlights the key role that available healthcare has on 

mortality. In the model, healthcare becomes completely 

overwhelmed: 22 thousand people die within hospital settings, 

while the remaining 259,000 die elsewhere. This is due to both the 

extreme long time COVID-19 patients are stay in hospitals (ICU 

stays last 19 days on average). 

Lastly, I have also calculated the full lives lost. This is simply to 

give the total YLL a more intuitive interpretation. It is the total 

YLL divided by the maximum life expectancy, hence ‘full lives 

lost’.  

Lastly, it is worth mentioning the average years of life lost. At the 

end of the simulated pandemic, the Best Estimate scenario predicts 
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Graph 3: Proportional mortality over 3 scenarios. unequally sized bands for an age-group 

indicates that this age-group has more marginal benefits from healthcare capacity 

a loss of life years of 3,000,000 years. The sensitivity analysis 

estimates a range from 1,075,000 up to almost 5,000,000 years. 

The average YLL per death for the different scenarios is indicative 

of the remaining life the ‘average’ person who died has lost. Here, 

a higher number represents that a person had more years to live, 

and is a larger loss of potential life. The average YLL of the best 

estimate is around 10.74 years, with a range from 7.77 to 13.63 

years. 

Varying the R0 and the comorbidities a limited effect on the 

average YLL. Again, the greatest impact can be seen by capacity 

constraint related mortality (D and E). This shows the huge impact 

healthcare has on saving life potential. Those patients who can be 

saved through medical interventions generally have more than 

average remaining life years. This can further be seen in graph 3, 

which shows the relative portions of deaths by age group for 3 

scenarios: one with unlimited healthcare capacity, the Best 

Estimate, and with no available beds at all. If the portions are 

roughly equal for an age group, the number of available beds has a 

limited impact on the relative mortality for that group. This graph 

further shows that healthcare has the most pronounced effect on 

(saving) younger age groups. In other words, a lower healthcare 

capacity would ultimately increase the average YLL, because less 

younger patients are saved.  

 

 

 

 

 

 

The next page shows several complimenting graphs, which I will 

also discuss in more depth.  
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Graph 7: This graph shows where, over time the deaths occur 
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The top two graphs show the progression of deaths over time. The 

first graph shows how daily deaths rise exponentially over time, 

before quickly peaking and subsiding. One feature to note are the 

points where a sudden increase in deaths occur such as at day 45. 

This happens when one of the hospital wards reaches capacity. 

Depending on the scenario, this happens once for the ICU, and in 

the worse cases again for the general wards. Looking at cumulative 

deaths, we can see the influences of the variables on the timeline. 

The R0 (B and C) has the strongest effect on when the deaths occur, 

while capacity mortality (D and E) significantly impact the total 

number of deaths most substantially. Meanwhile comorbidities 

seems to have only marginal effects on the number of deaths 

compared to the best estimate.  

Graph 5 shows the contribution of each age-group to the total YLL. 

Different from the number of deaths, this shows that all age-groups 

substantially contribute to the total loss of life years. This can be 

contrasted against table 6, which shows the number of deaths per 

age-group. Essentially, while mortality 

is comparatively much lower among the 

younger ages, they have longer life 

expectancies that substantially 

contribute to the total YLL. Overall 

however, the age-group between 70 to 

75 has the largest impact on YLL.  

Finally, graph 7 gives another insight. 

The large majority of deaths occur 

outside hospitals. The largest number of deaths occur outside 

hospitals, firstly (presumedly) in long-term care facilities. Then, as 

the healthcare capacity is reached, there is an almost equal number 

of deaths from people who couldn’t get COVID treatment when 

they needed it. This further indicates the key role that available 

healthcare capacity plays in reducing the number of deaths. In the 

following section, I will present my conclusions and discuss this 

the limitations and implications in depth.   

Age-group Deaths

20-25 1,551

25-30 1,413

30-35 1,295

35-40 2,787

40-45 2,588

45-50 4,123

50-55 7,258

55-60 8,264

60-65 16,606

65-70 22,256

70-75 55,038

75-80 42,552

80-85 70,608

>85 19,680

Table 6: Number of deaths by age 

(0-20 omitted for balance) 
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Conclusion and Discussion 

In this study, I set out to model the health costs that could have 

occurred in the scenario where no public or private measures are 

taken against the COVID-19 pandemic. This is meant to portray an 

worst case scenario. Specifically, I estimate how many people 

could have died, and what the YLL then would have been.  

As previously discussed, my best estimate scenario predicts 

279,619 deaths due to COVID-19, with a sensitivity range of 

138,275 to 365,338. The total loss of life years I estimate to be 

3,002,130 years with a range between 1,074,962 - 4,978,916 years. 

This would in turn translate to  between 13,050 and 60,446 

complete lives lost (of 82.37 years each). The average remaining 

life years would be 10.7 years, with a sensitivity range between 7.8 

and 13.6 years. Of course, this is a prediction based on very strict 

assumptions, but it is safe to say that these numbers are shockingly 

high. And yet, the estimations do not appear to be outlandish or 

anomalous. The case fatality rate based on these outcomes falls 

between 0.813% and 2.149%. This is actually on the lower end of 

the reported spectrum of fatality rates, which have been reported 

as high as 14% in the earliest stages of the pandemic (but more 

commonly between 1 and 5% worldwide). It is hard to say if this 

makes the number of deaths more plausible, given that the resulting 

cfr is on the lower end of the spectrum. I do however feel that it 

suggests that I have been conservative in my estimations.  

The average YLL too falls within the spectrum of other reported 

averages (between 5.5 and 16 years). The average from my 

estimation is somewhere in the middle of this spectrum. This of 

course does not indicate that the results themselves are valid, 

something I will discuss more deeply in the limitations.   

Limitations 

We should be careful in making too direct comparisons with real 

life, because the model I have used is built upon very stringent 
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assumptions. While every mathematical model always abstracts 

away realistic complications to a certain degree, it is important to 

note that this is specifically true in this paper.  

To start, I have used a modified SEIR model to estimate the number 

of infections. This assumes a freely mixed, homogeneous 

population. E.g. everybody travels freely, randomly, and 

everybody has an equal chance to become infected. I also could not 

include asymptomatic carriers in the model, a group that is 

substantially less susceptible to worse health outcomes. It accounts 

for exactly none of the psycho-social complexities that make up 

modern society, nor the spatial dynamics that allow for disease 

transmission. These are also strengths, depending on the 

circumstance, but these assumptions primarily mean that reality 

will always be different from the SEIR predictions.  

In the next step in my study, I have used these infections to estimate 

the number of deaths. I think that I have been fortunate in the data 

I have been able to use, which are all based on Dutch observations 

(e.g. it comes from the same population), and reported with a 

relatively high degree of certainty. However, my method extracts 

static average rates from the empirical data, which further removes 

complexity. For example, the mortality rate in ICU wards is the 

average mortality rate over the entire year in the Netherlands. In 

reality, the mortality rate has decreased over time, as medical staff 

becomes better adapted to combat this disease. My model however 

just assumes a static rate. In other words, in my model medical 

professionals are completely consistent over time in treating 

patients. This may not be realistic, especially when we see that the 

timeline of the disease can vary between scenarios.  

In estimating the deaths and YLL, I have also not accounted for the 

specific mortality in long time care facilities. This was partly 

because this was not compatible with the SEIR model as far as I 

am aware off, but it does pose a significant limitation in this paper. 

LTC facility inhabitants are living closely together, which makes 
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it likely that they will all get infected in short succession. They are 

generally also at a higher risk for mortality. At the same time, the 

remaining life expectancy is generally lower for somebody in an 

LTC facility, as compared to someone with a similar age not in 

such a facility. The study by Wouterse et al for example 

particularly notes how strong the YLL decreases when one 

accounts for this lower remaining life expectancy. I also have not 

accounted for gender. This can also lead to biases, as men have 

been observed as being more vulnerable to the disease, while also 

having a lower life expectancy.  

Finally, the scenario itself was unrealistic. I have modelled a 

population which is either completely unaware of, or completely 

unwilling to measures that combat the disease. While there have 

been countries where the government has not imposed any strict 

public measures, my model goes still further than that. It assumes 

that people will not even self-quarantine, nor will they avoid the 

infected. It is very unlikely that societal behaviour as such will ever 

be observed in real life. All this is simply to say that this model is 

very abstract. While I think that the method and data are 

structurally sound, it does not present a ‘true’ prediction of the 

counterfactual of what would have happened.  

Discussion 

Still, even with these limitations it is interesting to discuss the 

implications of this model. Especially since some of these 

implications match so very closely with the official narrative of 

flattening the curve. I think first and foremost, these estimations 

give an impression of the difference between what has happened in 

the Netherlands, and what could have happened. As I mentioned 

earlier, public measures can become a victim of their own success. 

As measures slow down the spread and mortality of the virus, and 

mostly healthy people are being saved by healthcare, the pandemic 

may seem like it was ‘not so bad after all’. Of course, this is 

because measures have been taken and sacrifices have been made. 
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It is precisely the point that predictions such as the model I have 

created do not come true. And it is by our measures and behaviours 

that we have, in real life, possibly staved off much, much worse.  

Another thing we can learn from this model which fits the narrative 

of the public debate is the crucial role of healthcare. This can be 

noted in terms of the number of deaths, which sharply increases 

when healthcare capacity is exceeded. In my model, I have been 

conservative in how strong the “mortality penalty” is when you 

cannot get the care you need. Anecdotally, many healthcare 

professionals I have spoken to mention that it would have likely 

been between 90% and 100%, in the case of the ICU. And even 

with this conservative estimate of excess mortality, a substantial 

increase in mortality occurs when every ICU bed is filled.  

At the same time, this also leads to a higher average YLL. 

Specifically, the average YLL from my estimations rises 

proportionally with the number of deaths. Or, put differently, as the 

number of deaths increases, more and more younger people end up 

dying. This suggests that as capacity is reached, fewer younger 

patients can be saved. This all leads to larger average YLLs. This 

indicates the important role that healthcare plays in this pandemic 

in keeping the death toll low, and the YLL proportionally lower. In 

real life, we have skirted against this threshold several times, but 

we have been able to avoid a collapse of the healthcare system.  

This shows from the official death count over a similar period, 

16,662. This pandemic has been tragic and devastating, for both 

the victims and the survivors, mentally and physically. But it seems 

that it could have been much worse, by a factor between 8 and 22. 

If these numbers are realistic, they suggest that the bulk of our 

public health measures have been exceedingly successful in 

reducing the death toll and overall loss of life substantially. This 

does not reduce the tragedy that has occurred and indeed is still 

occurring in many places, but at least we can be sure that our efforts 

are not in vain.  
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Graph A1: Different remaining life expectancies for the selected comorbidities 

APPENDIX A – Comorbidity levels 

 

 

 

 

 

 

 

This graph shows the resulting morbidity adjusted remaining life years for the ages 60 to >85, based on the methodology discussed on pg. 

21. It gives a good indication of the relative effects of each comorbidity on the remaining life expectancy, and as such, on the years of life 

lost.  
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APPENDIX B – mortality and admission rates 

This table shows the age-stratified hospital admission rates and corresponding mortality rates as discussed on pg. 25 and pg. 26. The rates 

are not always strictly increasing between age groups, but I have decided to use them as-is, without further adjustments.  

 

This table shows the risk ratios of the four comorbidities. This can be read as ‘a risk ratio of 2 doubles the mortality risk on the ICU’.  

 

 

 

 

Age group 0-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >85

Positive tests 114122 36509 109528 28937 86811 31379 94137 35611 106834 20842 62528 12671 38013 8903 39039

ICU admission rate 0.0002 0.0009 0.0006 0.0034 0.0014 0.0059 0.0043 0.0195 0.0095 0.0626 0.0226 0.1257 0.0262 0.0339 0.0014

GW admission rate 0.0078 0.0080 0.0045 0.0244 0.0094 0.0344 0.0191 0.0815 0.0342 0.1942 0.0657 0.4265 0.1527 0.6138 0.1350

ICU mortality 0.0540 0.0458 0.0360 0.0229 0.0699 0.0691 0.0816 0.1046 0.1253 0.1862 0.2616 0.3437 0.3983 0.4859 0.4762

GW Mortality 0.0034 0.0026 0.0031 0.0053 0.0075 0.0056 0.0088 0.0151 0.0192 0.0346 0.0720 0.1124 0.1755 0.2281 0.2614

Lung disease Kidney disfunction CVD Malignancy

RR 1.36 1.98 1.89 1.81

Table A1: Hospital admission rates and the corresponding mortality rates, stratified by age. 

Table A2: Risk Ratios (RR) for death for the four selected comorbidities. 

Table A3: Mortality rates outside the hospital setting.  
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Graph A3: Total number of infections for three different R0 values. 

APPENDIX C – SEIR MODELS 

 

 

 

  

  

 

Different R0 values would result in different infection curves. An R0 of 4 (the highest estimation by the RIVM) would result in a steep rise 

in infections. With this R0 the disease is capable of spreading faster, which would infect (nearly) the entire population, with 16,976,217 

becoming infected. An R0 of 1.5 however is still able to spread exponentially, albeit at a slower pace. Not only does the pandemic take longer, 

the decreased speed also causes it to ‘die out’ before the entire population can become infected. This would result in 14,671,629 becoming 

infected. For my main scenario, I will model a pandemic with an R0 of 2, as a middle ground. This results in a total number of 15,637,206 

infections over the course of the pandemic.    
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Graph A2: daily infections for three different R0 values.   


