
ERASMUS UNIVERSITY ROTTERDAM

MASTER THESIS

The Effectiveness of Transformer and
Recurrent Neural Networks in Providing

Session-based Recommendations

Name Student:
Rowan DOESBURG

Student ID number:
457229

Supervisor:
Luuk van MAASAKKERS

Second Assessor:
Clement BELLET

A thesis submitted in fulfillment of the requirements
for the degree of

MASTER IN DATA SCIENCE AND MARKETING ANALYTICS

Erasmus School of Economics

April 29, 2022

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second
assessor, Erasmus School of Economics or Erasmus University Rotterdam.

i

ERASMUS UNIVERSITY ROTTERDAM

Abstract

Erasmus School of Economics

Master in Data Science and Marketing Analytics

The Effectiveness of Transformer and Recurrent Neural Networks in Providing
Session-based Recommendations

by Rowan DOESBURG

As scenarios in which companies only have access to session-based information are becom-
ing more prevalent, the importance of adequate session-based recommendation systems is
rising. The aim of this study is to examine how Transformer neural networks perform in pro-
viding session-based recommendations compared to recurrent neural networks (i.e, LSTM)
and other popular recommendations algorithms, such as k-Nearest Neighbour approaches.
By bench marking the effectiveness of Transformers in a business context, we contribute to
the literature on session-based recommendation systems and the use of Transformers in busi-
ness in general. In this study, we used transactional data containing over 3 million shopping
sessions sourced from Instacart, an online grocery delivery service. We found that, simi-
lar to the developments in Natural Language Processing, both Transformers trained with an
MLM objective (e.g., BERT) and an RTD objective (e.g., ELECTRA) are an improvement over
recurrent neural networks (i.e., LSTM) in providing session-based recommendations. How-
ever, they still appear to experience difficulties in steadily outperforming simpler k-Nearest
Neighbour algorithms. Also, the importance of positional encoding for the Transformer ar-
chitecture is emphasized and proven to gain significance as the length of a session increases.
Lastly, we have proven the added value of contextual information for the performance of
Transformer session-based recommendation systems.

ii

Contents

1 Introduction 1

2 Related Work 4
2.1 Recommendation Systems . 4

2.1.1 Content-based Filtering . 4
2.1.2 Collaborative Filtering . 5
2.1.3 Limitations of Current Recommendation Systems 5

2.2 Session-based Recommendations . 6
2.2.1 Filtering Methods for Session-based Recommendations 6
2.2.2 Advanced Methods for Session-based Recommendations 7

2.3 Neural Networks . 7
2.3.1 Recurrent Neural Networks . 8
2.3.2 Transformer Neural Networks . 10

3 Data 13
3.1 Data Source . 13
3.2 Data Processing . 13

4 Research Methodology 15
4.1 Problem Definition . 15
4.2 Neural Networks . 15

4.2.1 Long-Term-Short-Memory Networks 15
4.2.2 Transformer Networks . 18

4.3 Implementation and Training . 22
4.3.1 LSTM Training Objective . 22
4.3.2 Transformer Training Objectives . 22

Masked Language Modeling . 22
Replacement Token Detection . 23

4.3.3 Test Objective and Performance Metrics 24
4.3.4 Enriched Information and Positional Encoding 25
4.3.5 Models Configurations . 25
4.3.6 Benchmark Algorithms . 25

5 Results 27
5.1 Model Performance . 27
5.2 Robustness of Models . 28

5.2.1 Popularity . 29
5.2.2 Session Length . 32

6 Discussion 35
6.1 Interpretation of Results . 35

6.1.1 Transformer and Recurrent Neural Networks 35

iii

6.1.2 Effect of Training Objective, Positional Encoding and Enrichment . . . 36
6.2 Implications . 38

6.2.1 Academical Implications . 38
6.2.2 Managerial Implications . 38

6.3 Limitations and Future Research . 39
6.4 Conclusion . 40

iv

List of Figures

2.1 Recurrent Neural Network (Left) and Feed Forward Neural Network (Right)
(Eliasy and Przychodzen, 2020) . 9

2.2 Unrolled Recurrent Neural Network (Olah, 2015) 10
2.3 Long-Term-Short-Memory Neural Network (Olah, 2015) 10
2.4 Overview of the Transformer Neural Network Architecture (Vaswani et al.,

2017). 11

3.1 Distribution of Purchase Frequencies (Log scale) 14

4.1 Training Process of Long-Term-Short-Memory Networks 16
4.2 Long-Term-Short-Memory Cell (Geron, 2019) 16
4.3 Adjusted Encoder Architecture (Left) and Multi-Head Attention (Vaswani et al.,

2017) (Right) . 21
4.4 Masking Procedures of Transformer Networks 24

1

1 Introduction

In the last decade, there has been an immense increase in online business activities world-
wide. Due to an increased usage, the Internet has developed into a global marketplace for
various goods and services, so-called ‘electronic markets’ (Javadi et al., 2012). Even tradi-
tional retailers have begun to develop, add and offer online components of their business.
As a result of the abundance of choice and relatively low search and switching costs in the
online environment (Zhang et al., 2011), companies have experienced increased competition
of global competitors. Hence, various studies (e.g., Krizanova et al., 2019; Schwarzl and
Grabowska, 2015; Lissitsa and Kol, 2016) have emphasized the crucial importance of distinct
digital marketing strategies for both online and traditional businesses.

A well-established and traditional element of a digital marketing strategy is the creation of
online advertising campaigns to reach specific target audiences. Previous research (Schwarzl
and Grabowska, 2015) confirms the beneficial nature of these activities by emphasizing the
importance of timing and targeting for the effectiveness of these campaigns. In contrast to
the traditional offline markets, customers in the online environment are presented with an
immense, almost infinite number of alternatives and choice (Dimoka et al., 2012). Due to
our bounded rationality, we are not able to trade-off all the benefits and disadvantages of
all alternatives, making us prone to information overload. Therefore, a number of studies
(e.g. Haubl and Trifts, 2000; Sahoo et al., 2012) have identified the importance of interactive
tools (e.g., personalized recommendations) that assist customer decision making for both
the quality and efficiency of their purchase decision and the corresponding satisfaction with
it. In particular, personalized recommendation systems help customers by narrowing down
more than thousands of products to a smaller selection of items that they are likely to prefer
(Sahoo et al., 2012). These assumptions about the customer are often based on a customer’s
previous interactions with, and purchase behaviors on the particular website (Lops et al.,
2010).

Due to the increased availability of online customer data, a growing number of companies
(e.g., Amazon, Netflix and Spotify) have attempted to improve these product recommen-
dations by applying increased personalization (Xiao and Benbasat, 2007). Similarly, the in-
creased usage and availability of customer data has also resulted in the personalization of
advertisements (e.g., on Youtube and Facebook) and even discounts (e.g., Albert Heijn). The
importance and potential of personalization was emphasized by strategy consultancy giant
Accenture in a research conducted in 2017 (Wollan et al., 2017). By applying personalization
technologies, companies are able to target their audiences how, when and with what the
customer would most likely prefer (Thirumalai and Sinha, 2013). Logically, increased per-
sonalization has become an even more essential element of the digital marketing strategy
of companies (Arora et al., 2021). However, it can be challenging to identify these individ-
ual customer preferences as, with the current state-of-the-art recommendation systems, it
requires a considerable amount of information about a customer (Ricci et al., 2011). As a re-
sult, when no or little previous information about a customer is available, the current recom-
mendation systems can experience difficulties in providing high quality recommendations.

Chapter 1. Introduction 2

With the introduction of the General Data Protection Regulation (GDPR) in the European
Union in 2018 and the increasing awareness on online privacy and data protection among
customer (Boerman et al., 2021), the odds of experiencing this information shortage has in-
creased. Hence, the necessity for recommendation systems that can handle small amount of
session-based customer information for generation of so-called session-based recommenda-
tions has increased.

As the absence of a considerable amount of data increases the complexity of recommen-
dation task (Geron, 2019), it might be interesting to consider more advanced techniques
(e.g., deep learning) that were previously used in other ’regular’ recommendation systems
(Covington et al., 2016). One of these techniques are neural networks, a supervised ma-
chine learning technique that maps linear and non-linear relationships and patterns in data
(Geron, 2019). A special type of neural network called recurrent neural networks (RNN)
have the capacity to perform well in modeling complex sequence or time-varying data
(Fausett, 1994; Medsker and Jain, 1999). Hence, these models are applied in a wide range
of technologies and problems, such as speech and text recognition and generation (Li and
Yang, 2017). Recently, developments in Natural Language Processing (NLP) has inspired re-
searchers to experiment with these techniques in business contexts. For example, Gabel et al.
(2019) mimicked the rationale behind word embeddings (i.e. numerical representations of
the semantic meaning of words) in a marketing context by creating product embeddings
(i.e. numerical representations of the products). Similar to human language, in which the
meaning of words are derived from the context in the sentence, the embedding (meaning)
of a word is derived from the relationship to the embeddings of other words in the sentence
(Li and Yang, 2017). On a similar note, product embeddings derive meaning from their con-
text (e.g., products bought together in the same session). In Natural Language Processing,
the contextual information of word embeddings is used as input for next word prediction
with the help of neural networks (Li and Yang, 2017). In theory, product embeddings could
be utilized in a similar manner (Hidasi et al., 2015). In Natural Language Processing tasks
including next word prediction, the most dominant and best performing type of neural net-
work in the recent years was the Long-Term-Short-Memory Network (LSTM), a variation of
the recurrent neural network architecture (Hochreiter and Schmidhuber, 1997; Geron, 2019).
However, in 2017, Vaswani et al. introduced the Transformer neural network architecture,
which outperformed the LSTM in most Natural Language Processing tasks. Considering
its outstanding performance in Natural Language Processing, it would be interesting to in-
vestigate how the Transformer performs compared to the more commonly used LSTM (e.g.,
in Zhu et al., 2017; Shafqat and Byun, 2020; Weinzierl et al., 2020; Fuentes et al., 2021) in
business-related contexts and, more specifically, in next item prediction for session-based
recommendations.

Therefore, the aim of this study is to examine how Transformers perform in predicting pur-
chase behavior based on session-based data compared to LSTMs and other popular recom-
mendations algorithms. By bench-marking the effectiveness of Transformers in a business
context, we contribute to the literature on session-based recommendation systems and the
use of Transformers in business in general. Moreover, this paper contributes to the litera-
ture by investigating the effect of various training objectives and the addition of contextual
information on the performance of the Transformer in session-based recommendations. Fur-
thermore, considering that, in online marketing, a small increase in recommendation quality
could yield a significant growth in sales (Arora et al., 2021), the importance of high-quality

Chapter 1. Introduction 3

recommendations in today’s online market has increased. Hence, from a marketing perspec-
tive, it is highly relevant to compare these techniques to investigate the potential of Trans-
formers as session-based recommendation systems and identify the most effective technique
for companies to use.

This paper is outlined as follows. First, related work in (session-based) recommendations
and neural networks is discussed. Second, the processing of the empirical data used in this
study is described. Third, the research methodology and technical details are elaborated on.
At last, the results, findings, academical and managerial implications, and conclusions of
this study are discussed and reviewed.

4

2 Related Work

In this chapter, past related literature on recommendation systems and neural networks is
reviewed to identify the previous and current developments surrounding these subjects.

2.1 Recommendation Systems

In an online environment, it is crucial to learn and predict customer preferences or inten-
tions to provide accurate recommendations. A vast body of research has studied the use of
real-time predictive analytics in marketing in order to predict customer behavior (Shmueli
and Koppius, 2011; Cui and Curry, 2005; Dhar et al., 2014). From a marketing perspective,
promotion activities, such as discount and advertisements, based on these recommendations
could convince the customer to engage in the purchase of a particular item. In this section,
we discuss the two most prevalent techniques currently used to generate recommendations:
content-based filtering and collaborative filtering.

2.1.1 Content-based Filtering

Content-based recommendation systems solely rely on previous purchases of, or ratings
provided by the targeted customer (Lops et al., 2010; Ricci et al., 2011; Adomavicius and
Tuzhilin, 2005b). In essence, it attempts to provide useful recommendations based on their
previous purchases or interactions with the company. For example, a customer who regu-
larly buys organic tomatoes will be given recommendations for other similar organic prod-
ucts and someone who provides a high rating for an action movie will be given recommen-
dations for other similar action movies. In other words, it relies on the similarity between
features of the items and maps that as the preference of the user (Lops et al., 2010; Ricci
et al., 2011; Adomavicius and Tuzhilin, 2005b). There are, however, some limitations to this
method. First, the currently used content-based recommendation systems need sufficient
data to learn a customer preference (Ricci et al., 2011). This data is not always steadily avail-
able. For example, for new customers or guest customers, there might not be sufficient data
to provide useful recommendations. Moreover, in order to select the most effective features
of items, an extensive in-field domain knowledge is required (Lops et al., 2010; Adomavi-
cius and Tuzhilin, 2005a). This makes the quality of the recommendations dependent of the
knowledge of the person selecting the features. In some contexts, it is difficult to assure
high quality feature selection for all products. For example, if a company, such as Amazon,
bol.com or Ebay, allows third-party or private sellers to sell through their platform, there
is often little control over the quality and usefulness of the features added to the product
(description). Moreover, it would be very costly to hire domain experts to manually process
each item’s feature selection. Critics of this technique also argue that the over-reliance on
content-based filtering might lead to customers being stuck in a ‘similarity hole’ in which
they only get similar products recommended (Hurley and Zhang, 2011). For example, when
a customer is searching for a horror movie on Amazon, the algorithm would most likely
recommend other horror movies. The ‘similarity hole’ might weaken the potential and odds

Chapter 2. Related Work 5

of recommendations that were more suitable or compatible to the customer. This is in line
with the study of Park and Han (2013) that argued that, besides similar product recommen-
dations, there is also a great importance of diverse recommendations.

2.1.2 Collaborative Filtering

The second widely used recommendation generating method that will be discussed is collab-
orative filtering (Adomavicius and Tuzhilin, 2005a; Ricci et al., 2011). In contrast to content-
based recommendation systems, the personalized recommendations derived from collabo-
rative filtering are often based on previous purchase behavior of customers that are simi-
lar to the targeted customer, or items similar to the items in question. These systems rely
on the assumption that customers who bought the same products share customer prefer-
ences to some extent. Fundamentally, they mimic customer-to-customer recommendations
by recommending items that similar customers have bought (Ricci et al., 2011). In movie rec-
ommendations, an example of collaborative filtering would be ’other users who also liked
movie A, liked movie B. Therefore, we recommend movie B.’ An advantage of collaborative
filtering over content based filtering is that it is able to provide recommendations without
having access to information on product features (Ricci et al., 2011). Also, there is lower risk
of the similarity hole problem as it recommends items based on others’ preferences. Never-
theless, this is also one of the limitations of collaborative filtering as this method requires an
extensive set of rating information of other customers (Adomavicius and Tuzhilin, 2005b). If
customers do not regularly rate their products, which is not uncommon in some industries,
the system will have insufficient data to provide adequate recommendations. In line with
this, one could also argue that the assumption that customers share customer preferences
might not always be valid. If a customer has a specific taste that is not similar to other cus-
tomers, the recommendations provided through collaborative filtering have a high chance
of being of low quality (Delic et al., 2016; Tran et al., 2018).

2.1.3 Limitations of Current Recommendation Systems

Although the aforementioned methods have different advantages over the other, there are
some common limitations in certain contexts (Jannach et al., 2020). First, both methods
rely on previous information on either the customer’s purchases or ratings. As a result,
the so-called ’cold start’ problem arises, in which recommendation systems have difficul-
ties in providing new customers with qualitative recommendations as there is little to no
information known about the customer (Lops et al., 2010). Second, these methods work best
if one can assume that customer preferences do not change frequently and are context in-
sensitive. However, it may not always be reliable to assume that predictions based on past
purchase behavior or preferences will be an accurate forecast for future behavior as research
shows that customer preferences can change over time (Koren, 2010). Consequently, most
recommendation models that were based on specific prior customer preferences could have
lower predictive power if customer preferences change after the training period (Sahoo et al.,
2012). At last, with the introduction of the General Data Protection Regulation (GDPR) in
the European Union in 2018, consumers have become increasingly aware of online privacy,
data protection and online tracking (Boerman et al., 2021). Consequently, an increasing num-
ber of consumers prefer to browse anonymously or reject cookies used for tracking, which
increases the likelihood of not having access to (sufficient) information about the customer

Chapter 2. Related Work 6

in an online environment (Strycharz et al., 2021). Hence, in order to recommend the ‘right
product to the right customer at the right time’, it would be valuable for companies and mar-
keteers to have predictions of future customer purchase behavior that can handle frequently
changing customer preferences and accurately map the current customer intentions.

2.2 Session-based Recommendations

A way to prevent the aforementioned limitations of the discussed recommendation sys-
tems is by solely using information that is provided by the customer in the current session
(Ludewig and Jannach, 2018). In this sense, a session can be defined as the set of uninter-
rupted interactions of a user with a particular platform or company (e.g., adding product to
the online shopping cart, or a sequence of clicks on the website of an online retailer). This
provides several benefits. For example, by using only information about the current session,
it is possible to make session-based recommendations within the rules of GDPR that reflect
a customer’s current intentions or preferences and that are less sensitive to the cold-start
problem (Ludewig and Jannach, 2018).

2.2.1 Filtering Methods for Session-based Recommendations

It is interesting to discuss if and how adjusted versions of the aforementioned recommen-
dation systems could be used for session-based recommendations. As mentioned before,
content-based recommendation systems use product features to map customer preferences.
However, research shows that these systems often need an extensive amount of data to pro-
vide useful recommendations and that the feature selection requires an in-depth knowledge
of the domain (Ricci et al., 2011). Fundamentally, session-based information often consists
of a smaller sequence of information, which could pose difficulties for content-based filter-
ing. Moreover, the assurance of high quality feature selection is not always easily avail-
able, which decreases the effectiveness and robustness of this method across different con-
texts. Hence, these content-based recommendation systems are deemed to be inadequate
for session-based recommendations. Collaborative filtering uses similarity in ratings or pur-
chases across users to provide recommendations (Adomavicius and Tuzhilin, 2005a). There-
fore, it does not need knowledge about the product itself to provide recommendations, mak-
ing it robust within different contexts (Ricci et al., 2011). In the context of session-based
recommendations, the aforementioned limitations of this method do not necessarily have to
be problematic. Although there is no availability to the previous purchase behaviour of a
particular customer, there is often anonymous purchase information available of previous
customers. This, however, cannot be mapped to anonymous users, which results in treating
every anonymous visiting user as a new customer. In essence, this method could use the
currently selected products or interactions in a session as the variables to calculate similar-
ity to other purchase sessions. Subsequently, the system could recommend items from the
most similar sessions. In previous research, similar filtering approaches yielded promising
results in session-based recommendations (Hidasi et al., 2016; Jannach and Ludewig, 2017;
Kamehkhosh et al., 2017; Hidasi and Karatzoglou, 2018). Hence, an adjusted version of col-
laborative filtering is deemed to be adequate for session-based recommendations.

Chapter 2. Related Work 7

2.2.2 Advanced Methods for Session-based Recommendations

While considering other suitable techniques for session-based recommendations, it is advis-
able to identify what is asked by the task and the information that is available. As mentioned
before, it is crucial to learn and predict customer preferences or intentions to provide accu-
rate recommendations. In other words, in session-based recommendations, we would like
to predict a customer next ’most desired product’ based on the interaction of a user in the
current session. Considering that we also have anonymous previous purchase sessions, we
could find patterns between products within the previous purchases to provide a valid rec-
ommendation.

In the recent years, several studies in (session-based) recommendations have experimented
with machine learning and Natural Language Processing (NLP) techniques, ranging from k-
Nearest Neighbors to (Recurrent) Neural Network architectures (Hidasi et al., 2015; Hidasi
and Karatzoglou, 2018; Hidasi et al., 2016). For example, in Natural Language Processing,
words are often represented as word embeddings. Word embeddings are essentially nu-
merical representations of the semantic meaning of words in the form of vectors. Similar to
human language in which the meaning of words are derived from the context in the sen-
tence, the embedding (meaning) of a word is derived from the relationship to other word
embeddings in the sentence (Geron, 2019). Since the embeddings are numerical represen-
tations of words, it is possible to use them in calculations. A widely used example is that
the word embedding of ’King’ subtracted by the embedding of ’Man’ and added to the em-
bedding of ’Woman’ should result in the embedding of ’Queen’ (Ethayarajh et al., 2019). In
NLP literature, these word embeddings are used as input for neural networks in next word
prediction and in text or speech generation tasks (Li and Yang, 2017). The combined con-
textual information of word embeddings serve as a basis for next word prediction. Inspired
by the use of word embeddings in NLP, Gabel et al. (2019) introduced the P2V-Map model,
which demonstrated its capability of accurately mapping similarities and co-occurrences
between products based on solely transactional basket data. A single observation in trans-
actional basket data is the set of products bought by a customer in a single session and is
thus comparable with the information available in session-based recommendations. In the
process, P2V-Map generates and trains product embeddings, which derive meaning from
their context (a transactional basket) and are therefore similar to the word embeddings seen
in Natural Language Processing (Gabel et al., 2019). These product embeddings can be used
to calculate similarity and co-occurrence between products. Subsequently, one could, in the-
ory, estimate which products might fit in the existing shopping basket of a customer by using
these co-occurrences (Gabel et al., 2019). This is similar to how word embeddings are used
in NLP in next word prediction tasks, in which the embeddings are fed into a (deep learn-
ing) neural network (Li and Yang, 2017). Logically, the use of neural networks has gained
popularity in session-based recommendation literature, showing promising results (Hidasi
et al., 2015, 2016; Hidasi and Karatzoglou, 2018).

2.3 Neural Networks

As the name suggests, (artificial) neural networks are loosely based on the connections be-
tween neurons in our brains. Similar to how neurons are connected through axons and

Chapter 2. Related Work 8

synapses, a neural network consists of connected nodes that pass on information. In ma-
chine learning, neural networks are often used as a supervised machine learning technique
to map linear and non-linear relationships and patterns between two (sets) of variables
(Geron, 2019). A minimal, basic neural network consists of an input layer and an output
layer. Frequently, neural networks also contain one or more hidden layer(s), which are lo-
cated in between the input and output layers. Each of the layers contain nodes that, if pos-
sible, receive information (input) from nodes in the previous layer and pass on information
(output) to nodes in the next layer. Within each node, the input values are multiplied by
weight coefficients to calculate a weighted sum, which is subsequently added to the bias
and then used as input for an activation function to generate an output value. The bias is a
constant, which is moderately comparable to the constant in linear function and can be used
as an extra adaptable parameter to improve model performance (Geron, 2019). The use of
activation functions is inspired by the functioning of neurons in our brains, in which these
’functions’ decide if a neuron will be ‘fired’ to the next neuron or not. Similarly, in artificial
neural networks, an activation function is a mathematical function that decides whether and
in what form the information within a node should be passed onto nodes in the next layer
(Geron, 2019).

A neural network learns by applying a technique called back-propagation (Rumelhart et al.,
1985; Rumelhart et al., 1995). Initially, a preliminary neural network is generated by ran-
domly initializing the parameters (i.e., the weight coefficients and the biases). In back-
propagation, the optimization of these parameters starts at the computed output value (at
the end of the network) by calculating the prediction error term of the current network set-
tings (Rumelhart et al., 1995). Subsequently, the network ‘back propagates’ the error back
through the network to determine how to adjust the weights and biases to minimize the
(aggregated) error term. In short, it calculates to what extent the output of each node in the
previous layer (before the output layer) contributed to the error term. Then, the algorithm
computes to what extent these error contributions were caused by each node in the layer
before. The algorithm repeats this process until it reaches the input layer. In this way, the
algorithm is able to find the gradient of the error term in relation to each parameter. Using
these gradients, the network adjusts the weight coefficients and the biases to minimize the
error term through a gradient descent step (Rumelhart et al., 1995; Geron, 2019). The model
iterates through this process until convergence is reached (i.e., loss moving towards a local or
global minimum). Eventually, this process results in a lower aggregated error term, which
improves the general predictive accuracy of the neural network (West et al., 1997; Geron,
2019).

2.3.1 Recurrent Neural Networks

The simplest form of neural network is the feedforward neural network, which takes an in-
put layer and calculates an output layer. In these neural networks, the data only moves in
one direction (forward), which makes it less suitable for performing tasks on sequential data
(e.g., text, audio and images) as this requires knowledge about previous states of the data
(Geron, 2019). Opposed to feed-forward neural networks, recurrent neural networks (RNN)
have the capacity to perform well in modeling sequence or time-varying data. Hence, these
types of neural networks are applied in a wide range of technologies and problems, such

Chapter 2. Related Work 9

as speech and text recognition, financial (stock) prediction and natural water inflows fore-
casting. In essence, RNNs are feed-forward neural networks with an implemented feedback
loop, in which the input of the network at time step t consist of the input values from the
input layers as well as the output values of the network at timestep t-1 (Fausett, 1994). In
this way, an RNN can use information from a previous timestep as input for the current
timestep, enabling the processing of sequential data.

FIGURE 2.1: Recurrent Neural Network (Left) and Feed Forward Neural Net-
work (Right) (Eliasy and Przychodzen, 2020)

Nevertheless, recurrent neural networks can also experience some difficulties when dealing
with longer sequences (Hochreiter and Schmidhuber, 1997; Bengio et al., 1994). As men-
tioned before, neural networks learn by using back-propagation. The error-minimizing al-
teration of the parameters is based on (steepest) gradient descent optimization. This algo-
rithm calculates a local minimum by using the derivatives of the loss function. The network
computes the gradients of a parameter based on the contribution to the error term of the
nodes in the layer above. In calculating the gradients, it uses the chain rule (Geron, 2019).
In this process, two problems frequently arise. The first one is called the vanishing gradient
problem. As successive gradients are multiplied through the chain rule, gradients tend to
decrease in size as the back-propagation algorithm reaches earlier layers. As a result, the
corrective adjustment done through the gradient descent step will almost be zero in these
early layers, which prevents these layers from ‘learning’ (Bengio et al., 1994). Second, the
gradients also frequently tend to increase immensely in size as the back-propagation algo-
rithm reaches earlier layers. As a result, the corrective adjustment in these layers will be
too large, which makes the network unstable. This is also known as the exploding gradient
problem (Geron, 2019). As a recurrent neural network processes the sequence by using in-
put values and the network’s output of the previous time step as the input for the current
time step, the aforementioned problems can arise in these networks (Bengio et al., 1994). The
error term is often calculated at the end of a sequence and is used as the basis for the back-
propagation process to optimize the network’s parameters (Rumelhart et al., 1995). When
back-propagating, the back-propagation algorithm ‘unrolls’ the RNN, making it essentially
a very deep feed-forward network (Figure 2.2). As a result, the network is more susceptible
of the exploding or vanishing gradient problem as the larger number of layers the network
should back-propagate through increases the risk of vastly increasing or decreasing gradi-
ents (Bengio et al., 1994). Hence, these gradient descent learning algorithms tend to portray
weak performance on problems that require long-term dependencies on inputs derived or
computed in the past (Medsker and Jain, 1999).

Chapter 2. Related Work 10

FIGURE 2.2: Unrolled Recurrent Neural Network (Olah, 2015)

To solve this problem, Long Short-Term Memory based neural networks (LSTM) were in-
vented (Hochreiter and Schmidhuber, 1997). These are recurrent neural networks with ad-
ditional operators, also referred to as ‘gates’, that determine which information from the
previous time state should be transferred over to the current one. By implementing these
gates in the architecture, the chain rule is circumvented, resulting in the avoidance of the
vanishing gradient problem (Hochreiter and Schmidhuber, 1997). Consequently, these type
of networks are the most commonly used neural networks in which long-term sequences are
important (e.g., speech, text and image recognition or next word prediction) (Geron, 2019).
Similar to ’basic’ recurrent neural networks, every output in the LSTM depends on the out-
put of the previous time step. The input data can therefore only be ‘fed’ to these models in a
sequential manner, which results in a relatively long training time for LSTMs.

FIGURE 2.3: Long-Term-Short-Memory Neural Network (Olah, 2015)

In the context of session-based recommendations, the information in a session (e.g., interac-
tions happening in a particular session) could be considered as a sequence of actions. In that
sense and taking into account the good performance of the LSTM in next word prediction
tasks, some researchers have experimented with the LSTM (or recurrent neural networks in
general) for next-item prediction and session-based recommendations (e.g., Zhu et al., 2017;
Shafqat and Byun, 2020; Weinzierl et al., 2020; Fuentes et al., 2021; Hidasi et al., 2015, 2016;
Hidasi and Karatzoglou, 2018)

2.3.2 Transformer Neural Networks

In 2017, Vaswani et al. introduced their transformer neural network architecture, which
has gained a lot of popularity since its introduction. The Transformer is able to process
data in a non-sequential manner (e.g., in parallel instead of word by word). As a result,
the Transformer allows for a high training speed and lower training time. Moreover, the
most differentiating element of this architecture is the attention mechanism in the multi-
headed self-attention sub-layers (see Figure 2.4). In short, self-attention allows the model to
consider other relevant items in the input to improve the encoding or ’understanding’ of the

Chapter 2. Related Work 11

current item (Geron, 2019). For example, in the sentence "Chris smiled at Anna because he
was happy", self-attention allows the model to learn that ’he’ is referring to ’Chris’ and not
to ’Anna’, giving ’Chris’ higher attention when learning the representation of ’he’. Multi-
headed attention allows the model to have ’multiple attentions’, meaning that the model
can base each attention on a different set of characteristics of the word of interest (Vaswani
et al., 2017).

In essence, due to the added attention mechanism and non-sequential data processing, trans-
former networks are better capable to ‘memorize’ earlier information compared to LSTMs as
they cannot ‘forget’ information. Moreover, the attention mechanism allows the Transformer
to ‘pay attention’ to particular relevant prior observations despite their potential early posi-
tion in the sequence (Vaswani et al., 2017). Theoretically, this should allow the Transformer
to adequately process long-term sequences in a more time-efficient manner.

FIGURE 2.4: Overview of the Transformer Neural Network Architecture
(Vaswani et al., 2017).

Since its introduction in 2017, many variations and improvements on the original Trans-
former (as proposed by Vaswani et al. (2017)) have appeared (e.g., Devlin et al., 2018; Dai
et al., 2019; Yang et al., 2019; Clark et al., 2020). For example, in 2018, Google developed
BERT (Bidirectional Encoder Representations from Transformers), an encoder-only language
model that uses a slightly modified encoder architecture of the original transformer as its
base (Devlin et al., 2018). BERT is trained through a training objective called masked lan-
guage modeling (MLM), which will be discussed in Chapter 4.3.2. Several variants of BERT
have surfaced since then (e.g., RoBERTa and ALBERT). In 2020, Clark et al. developed ELEC-
TRA, a Transformer architecture that uses Replacement Token Detection (RTD) as training
objective, which will also be discussed in Chapter 4.3.2. Considering the outstanding perfor-
mance of these transformer neural networks architectures in Natural Language Processing,

Chapter 2. Related Work 12

it is interesting to investigate how these architectures perform in a business or marketing re-
lated context (i.e., session-based recommendations) in comparison with the state-of-the-art
LSTM neural network and the adjusted collaborative filtering recommendation system. In
particular, in this study, we investigate how Transformer architectures inspired by BERT (as
in Sun et al., 2019) and ELECTRA perform in providing session-based recommendations.

13

3 Data

In this chapter, the processing of the data is elaborated on.

3.1 Data Source

The data that was used in this study is provided by Instacart, an online grocery delivery
service in the United States (Instacart, 2017), and is freely available on Kaggle.com. The orig-
inal data set contains over 34 million in-cart shopping item observations of approximately
3.3 million shopping baskets of 206,209 unique users. The original in-cart shopping items
consist of around 49,000 distinctive products of 134 product categories.

3.2 Data Processing

Considering the fact that machine learning algorithms require a sufficient number of oc-
currences of each class to adequately learn (Geron, 2019), we decided to aggregate (low-
frequency) products in subsets of products to ensure each product class contains enough ob-
servations. In particular, we manipulated the data as follows. First, we checked the number
of distinctive products each category contained. For each category containing over 50 dis-
tinctive products, we selected 25 distinctive products with the highest purchase frequency
per category. All other products were aggregated into sub-categories within their main cate-
gory based on their textual product name. For example, in the category ’Cereal’, all remain-
ing cereal products containing (derivatives of) the word ’oat’ in their product name were
aggregated into the sub-category ’Other Cereal: Oats’. If the product name contained mul-
tiple categories (e.g., ’rice’ and ’oat’), the product was categorized in the most popular of
these subcategories. Subsequently, these sub-categories were treated as distinctive products
in the data. This resulted in 6175 distinctive ’products’. In the original data, there was no
information about how frequently the same product occurred in a single session. Therefore,
if after aggregation an order contained duplicate values of a sub-category, these duplicate
values were removed. In Figure 3.1, the log of the purchase frequency of each product is
plotted. We notice that, before and after processing, the purchase frequencies are highly
imbalanced across products, meaning that there are high differences between products in
terms of purchase frequency. However, after processing, the data seems to be slightly more
balanced. Second, a minimum and maximum session length filtering process was applied
to the data. In particular, all sessions containing only one purchased item were removed as
a minimum sessions of two is needed to create input and output for the model. Moreover,
as approximately 90 percent of the sessions contained less than 25 items, all sessions with a
session length of more than 25 items were also removed from the data to limit the training
time while maintaining a sufficient share of information in the data. After applying the filter,
the final data set consisted of 3,053,549 sessions.

Chapter 3. Data 14

Sessions Mean Length Min-Max Length Items

Before 3,346,083 10.107 1-145 49,685
After 3,053,549 9.365 2-25 6,175

TABLE 3.1: Data Statistics Before and After Processing

At last, we created extra variables that might enrich the information in the data. There-
fore, we constructed several binary variables based on the products: ’vegan’, ’lactose-free’,
’organic’ and ’gluten-free’. These variables were created as they reflect dietary preferences
of customers, which could contribute to the prediction of their next purchase. In order to
train the models, we performed a 95-2.5-2.5 random split of the data into a training, test and
validation set, respectively.

(A) Before Processing (B) After Processing

FIGURE 3.1: Distribution of Purchase Frequencies (Log scale)

15

4 Research Methodology

In this chapter, the research methodology is discussed. First, the problem definition, the
technical details of the LSTM and the technical details of the Transformer are elaborated on.
Next, the training procedures, the performance metrics, the configurations of the models,
and the benchmark algorithms are discussed.

4.1 Problem Definition

As mentioned before, the aim of this study is to assess how various neural network archi-
tectures provide session-based recommendations. In particular, we evaluate and compare
the performance of the Transformer and LSTM architecture in predicting the next product
in a shopping cart based on the contextual information in a single session. Considering this
problem, each session is defined as the collection of Ni products purchased by a particular
anonymous consumer in a single uninterrupted shopping session. The products in each ses-
sion are represented by their corresponding product IDs and the order of the products in a
session are based on the original add-to-cart order. Hence, a session is formally denoted as

Si = {pj=1, pj=2, pj=3, ..., pj=Ni}

where pj is the product ID of the product on the j-th posistion in session i of length Ni.

Hence, for instance, session i that consists of five items with product IDs 751, 1523, 2675, 169
and 3616 would be represented as Si = {751, 1523, 2675, 169, 3616}.

4.2 Neural Networks

4.2.1 Long-Term-Short-Memory Networks

As mentioned before, the LSTMs were invented to solve the short-term memory problem of
standard recurrent neural networks in sequence-to-sequence tasks (Hochreiter and Schmid-
huber, 1997). In essence, the LSTM network consists of an input layer, a recurrent LSTM
layer and an output layer. Within the recurrent LSTM layer, there are two states and mul-
tiple gates. The states entail a cell (ct) and hidden state (ht), which could be described as
’short-term’ and ’long-term’, respectively (Geron, 2019). The multiple gates entail an input
(it), forget (ft), cell (gt) and output (ot) gates. The rationale behind the different gates and
states and the corresponding calculations are discussed below.

In the LSTM architecture, the problem is represented as a sequence-to-sequence task, in
which an input sequence (X) is mapped to a target sequence (Y). In this study, the target
variable is the next product added to the shopping cart after a certain sequence of prod-
ucts in a single session. Logically, this is represented by the last product added in the ses-
sion. Therefore, the input sequence of a shopping session consist of the products in that
shopping session without the last product. In contrast, the target sequence of a shopping

Chapter 4. Research Methodology 16

session consist of the products in that session without the first product. Considering the
aforementioned session i that consisted of product IDs 751, 1523, 2675, 169 and 3616, the
input sequence would be denoted as X = {751, 1523, 2675, 169} and the target sequence as
Y = {1523, 2675, 169, 3616}.

FIGURE 4.1: Training Process of Long-Term-Short-Memory Networks

As seen in Figure 4.2, we have input xt, which is the input value at time step t. For the first
time step (t = 0) in our example, this would be the vector (embedding) representing the
product with product ID 751. Along with the previous hidden state (ht), the input vector
(xt) is sent to four separate layers, which compute the input (it), forget (ft), cell (gt) and
output (ot) gates, respectively (Geron, 2019).

FIGURE 4.2: Long-Term-Short-Memory Cell (Geron, 2019)

At the left-hand side of Figure 4.2, we notice information flowing in from the previous cell
state (ct−1). The cell state (ct) moves the information from previous state (t − 1) to the
current one (t), enabling the model to transfer knowledge from previous states (i.e., long-
term knowledge). Logically, at time step 0, the information from the previous cell state (ct−1)

will be zero. The cell state is formally notated as

ct = ft ⊙ ct−1 + it ⊙ gt

where ⊙ is the element-wise product, and ft, it and gt are the outputs of the forget gate,
input gate and cell state at time step t, respectively.

Chapter 4. Research Methodology 17

With the help of the forget gate (ft), the cell state is able to memorize or forget information
(Hochreiter and Schmidhuber, 1997). For example, assume the first product (ID: 751) was
an organic vegan chicken substitute. From this first step of the sequence, the model would
’learn’ that this customer only buys vegan and organic products, giving non-organic animal
products a low probability. However, the second product (ID: 1523) is organic eggs. Based
on the current input of the second product, the model should adjust its assumptions on the
customer preferences to ’not only vegan, but still organic’. At first, the model should ’forget’
the ’vegan only’ preferences of the customer. In practice, this ’forgetting’ of information is
done by element-wise multiplication of the forget gate (ft) and the previous cell state (ct−1).
The forget gate (ft) is essentially calculated through a neural net layer with a logistic function
(σ), which takes the weights of the current input (xt) and the previous hidden state (ht−1) as
input. As output, this logistic layer computes numbers between 0 and 1 for all the numbers
in the previous cell state (ct−1), where 0 indicates information that will be totally forgotten
and 1 indicates information that will be totally remembered (Geron, 2019). The forget gate is
formally notated as

ft = σ(Wx f xt + Wh f ht−1 + b f)

where b f is the bias of the forget gate, and Wx f and Wh f are the matrices of the weight
coefficients associated with the input and previous hidden state at time step t, respectively.

Once a part of the information is ’forgotten’ by the cell state, we may also need to ’add’ new
information to it. In our example, the purchase of organic eggs could inform the model that
the customer also has a preference for ’organic’, ’protein rich’ and ’vegetarian’ products. As
seen in the formula of the cell state, the addition of the information to the cell state happens
by adding the values of element-wise multiplication of the cell gate and input gate to the
element-wise multiplication of the forget gate and previous cell state (Geron, 2019). The cell
gate is a vector containing new potential values that might be incorporated into the current
cell state (Geron, 2019). In other words, this gate holds the new information that could be
added to the model. It is calculated through a neural net layer with a tanh function, which
takes the information of the input vector and previous hidden state as input and is formally
notated as

gt = tanh(Wxgxt + Whght−1 + bg)

where bg is the bias of the cell gate, and Wxg and Whg are the matrices of the weight coeffi-
cients associated with the input and previous hidden state at time step t, respectively.

The decision on which part of the new information of the cell gate will be stored in the
cell state is controlled by the input gate (Geron, 2019). Similar to the forget gate, the input
gate (ft) is calculated through a neural net layer with a logistic function (σ), which takes
the weights of the current input (xt) and the previous hidden state (ht−1) as input and is
formally notated as

it = σ(Wxi xt + Whi ht−1 + bi)

Chapter 4. Research Methodology 18

where bh is the bias of the input gate, and Wxi and Whi are the matrices of the weight coeffi-
cients associated with the input and previous hidden state at time step t, respectively.

Next, the output gate (ot) controls what part of information of cell state will be used as both
the hidden state (ht) and output (yt) of the cell at time step t (Geron, 2019). It is calculated
through a neural net layer with a logistic function (σ), which takes the weights of the current
input (xt) and the previous hidden state (ht−1) as input and is formally notated as

ot = σ(Wxo xt + Who ht−1 + bo)

where bo is the bias of the input gate, and Wxo and Who are the matrices of the weight
coefficients associated with the input and previous hidden state at time step t, respectively.

At last, the new hidden state (ht) and output (yt) are calculated through the element-wise
multiplication of the output gate (ot) and the tanh function of the cell state (ct) (Geron,
2019), which is formally notated as

yt = ht = ot ⊙ tanh(ct)

where ⊙ is the element-wise product.

4.2.2 Transformer Networks

In the paper ‘Attention Is All You Need’ (Vaswani et al., 2017), the original Transformer
architecture consists of an Encoder and Decoder block. However, depending on the task,
the employment of solely the Encoder block of the Transformer could be sufficient (Devlin
et al., 2018). Considering next purchase prediction as a generative task, we argue that the
implementation of the Decoder is not necessary, and an adjusted version of the Encoder is
adequate (see Figure 4.3) (Devlin et al., 2018). Therefore, in this section, we only focus on the
methodology of the Encoder.

The encoder itself consists of l identical layers stacked on top of each other. As seen in Figure
4.3, the Encoder consists of two main elements: a Multi-Head Attention and a Feed Forward
Layer (Vaswani et al., 2017). Consider the aforementioned example of session i consisting
of product IDs 751, 1523, 2675, 169 and 3616. In contrast to the LSTM, the Transformer is
capable to process the entire sequence at once. Therefore, the input (Si) consists of all the
product IDs in the session, resulting in Si = {751, 1523, 2675, 169, 3616}. The target depends
on the objective used to train the model. In this study, we use two variations of Masked Lan-
guage Modeling (MLM), which will be discussed in detail in Chapter 4.3.1. Fundamentally,
the rationale behind Masked Language Modeling is that a certain percentage of the products
in a shopping session is replaced with a special token, which is frequently referred to as the
MASK token and has its own embedding in the model (Devlin et al., 2018). Subsequently, the
model is asked to predict which products belong on the positions of the replaced token. As
a result, the model learns to recognize patterns, relationships and co-occurrences between
products (Devlin et al., 2018).

Chapter 4. Research Methodology 19

First, similar to the LSTM, the input is converted into input embeddings, so that each prod-
uct (in the session) has its own vector representation (Geron, 2019). Considering our exam-
ple, we would have the embeddings x1, x2, x3, x4 and x5 representing product IDs 751, 1523,
2675, 169 and 3616, respectively.

As mentioned before, the implementation of positional encoding allows the Transformer to
simulate ‘order of interactions’ in the session. Considering the nature of our problem, one
should question if the order of interactions or selected products in a session entails more
information on customer preferences than if the order was random. In other words, there
can be cases in which the customer’s order of interactions or selected products does not
contain any additional information on their preferences. For example, if the website of an
online supermarket has the vegetable department as starting page, a customer might first
add products from this department. In this case, the order of the products in the session
contains more information about the website design than about the purchase intentions of
the customers. Although this information could contribute to the prediction at a certain
time step (e.g., if the fruit department comes after the vegetable department, there is a high
probability that often fruits is bought after vegetables), it still does not provide the model
with greater knowledge of the customers true preferences. Hence, it would be interesting to
see to what extent the performance differs between a Transformer model with and without
positional embedding. Based on the model configuration (i.e., positional encoding or not),
we add positional encoding to the input embeddings before transferring into the encoder
block. In this study, we use sinusoidal positional embeddings as seen in Vaswani et al.
(2017).

As mentioned in Chapter 2, self-attention allows the model to consider other relevant items
in the input to improve the encoding of the current item (Geron, 2019). To calculate self-
attention, we use three inputs, namely the Query, Keys and Values (Vaswani et al., 2017).
For each product in the session, we create a query (qj), key (kj) and value (vj) vector by
multiplying the input vectors by three trained matrices (Wq, Wk, Wv). Normally, this would
be formally notated as

qj = xjWq

kj = xjWk

vj = xjWv

where j is the position of the item in the session.

Next, considering the current item of interest, the score of each item in the session in refer-
ence to the item of interest is calculated by taking the dot product of the query vector of the
current item and the key vector of the other items (Vaswani et al., 2017). In our example,
if we consider the first item in the session (ID: 751) as the current item of interest (q1), the
score of the each item would be calculated as

scorej = q1kT
j

where j is the position of the item in the session.

Chapter 4. Research Methodology 20

In order to stabilize the gradients in the model, the scores are divided by the square root of
the dimension of the key vectors and, subsequently, normalized through a softmax operation
(Vaswani et al., 2017), which is formally notated as

so f tmaxscorej = so f tmax(
q1kT

j√
dk

)

where j is the position of the item in the session and dk is the dimension of the key vectors.

Next, the softmax score of each product is multiplied by each value vector in order to only
’focus’ on the important products as the unimportant products will be multiplied by low
values (e.g., 0.01) and important products by higher values (e.g., 0.90). Logically, the highest
attention would be on the product of interest itself. However, other relevant items will most
likely also receive a high attention score. The use of the softmax operation is slightly com-
parable to the forget gate in the LSTM architecture, in which softmax operations are used to
’forget’ information. At last, the outcome of multiplications are summed up to calculate the
output of the self-attention for the current product of interest (q1) (Vaswani et al., 2017). The
complete operation is formally notated as

sel f attention1 =
Ni

∑
j=1

so f tmax(
q1kT

j√
dk

)vj

where j is the position of the item in the session, Ni is the number of items in the session and
dk is the dimension of the key vectors.

Following Vaswani et al. (2017), we decrease computation time by using matrix calculation
of self-attention. More specifically, we transform the input embeddings of the products in
our session into one matrix (Xi), in which every row represents a certain product of the
session. Subsequently, this matrix (Xi) is multiplied by the three trained weight matrices
(WQ, WK, WV). This results in matrices for Query (Q), Keys (K) and Values (V). To compute
the self-attention matrix, we use the following formula:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V

where dk is the dimension of the key vectors (Vaswani et al., 2017).

Moreover, we implemented Multi-Headed Attention. Vaswani et al. (2017) argue two major
benefits of using Multi-Headed Attention. First, it improves the model’s capacity to concen-
trate on various positions with ‘infinite’ memory and, second, it allows the attention layer to
consist of various ’representation subspaces’. In Multi-Headed Attention, there are multiple
sets of the aforementioned Query, Keys and Values weight matrices. Each set is initialized at
random. According to Vaswani et al. (2017), these sets allow the attention layer to consist of
various ’representation subspaces’. In other words, as the multiplication of the input embed-
dings with the different weight matrices in each set results in h different Scaled Dot-Product
Attention matrices, all of these matrices could potentially ’focus’ on different characteristic
of the products. Consider our session i that consists of ’an organic vegan chicken substitute’
and ’organic eggs’ and assume that the other products in the session are ’vegan pasta sauce’,
’organic pasta’ and ’organic toilet paper’. In the LSTM, the preferences of the customer were

Chapter 4. Research Methodology 21

updated with ’organic’, ’protein rich’ and ’vegetarian’ products after the second time step.
In contrast, the Transformer uses the various matrices to focus on various aspects of the cus-
tomer’s preferences (e.g., ’organic’, ’protein rich’ and ’vegetarian’) in parallel. For example,
when encoding the first product (organic vegan chicken substitute), the subspace that entails
’organic’ would give the highest attention to ’organic vegan chicken substitute’, ’organic toi-
let paper’, ’organic eggs’ and ’organic pasta’. In contrast, the subspace that entails ’vegan’
would most likely have a high attention score for only ’organic vegan chicken substitute’
and ’vegan pasta sauce’.

Due to the fact that the Feed-Forward Layer is not capable of processing multiple matri-
ces, we concatenate the multiple matrices into one matrix and multiply with another weight
matrix (WO) (see right-hand side of Figure 4.3) (Vaswani et al., 2017). Before feeding the
output of the Multi-Head Attention into the Feed-Forward Layer of the encoder, we add
the ‘original’ input embeddings to the output of the Multi-Head Attention and apply nor-
malization (Vaswani et al., 2017). After passing the data through the Feed-Forward Layer,
we add the normalized output from the previous step to the output of the Feed-Forward
Layer and, again, apply normalization (Vaswani et al., 2017). As our model only consists of
an encoder block (see left-hand side of Figure 4.3), we pass the output of the Feed-Forward
Layer directly through a linear layer and, subsequently, apply softmax to derive the output
probabilities.

FIGURE 4.3: Adjusted Encoder Architecture (Left) and Multi-Head Attention
(Vaswani et al., 2017) (Right)

Chapter 4. Research Methodology 22

4.3 Implementation and Training

In this subsection, we discuss the training processes, implementations and performance met-
rics of the models. Also, the benchmark algorithms are presented.

4.3.1 LSTM Training Objective

As mentioned before, the target variable for the LSTM during training is the next product
added to the shopping cart after a certain sequence of products in a single session. Log-
ically, this is represented by the last product added in the session. For each session, we
eventually calculate a vector of probabilities (ŷ) containing the probabilities of each unique
product being the last product in the sequence. As the problem is presented as a multi-class
classification problem, Cross Entropy Loss is used as loss function and is formally defined
as

L(ŷ, y) = −
N

∑
j=1

yi,j log(ŷi,j)

where N is the number of unique classes (products), log is the natural log, y is a binary value
indicating if the predicted product j is the target product in session i and ŷ is the predicted
probability of product j being the target product in session i (Geron, 2019).

4.3.2 Transformer Training Objectives

In the Transformer architecture, we used two different training objectives, creating two sep-
arate Transformer models (see Figure 4.4).

Masked Language Modeling

In the first model, we represent the problem as a Masked Language Model (MLM) objective
as used in the BERT paper (Devlin et al., 2018). In order to train the model in recogniz-
ing patterns, relationships and co-occurrences between products, we use Masked Language
Modeling, which entails that a certain percentage of the products in a shopping session is
replaced with a special token. The token is frequently referred to as the MASK token and
has its own embedding in the model (Devlin et al., 2018). In contrast with the original BERT
paper, which masked 15% of the words in each sentence, we follow the best practices of
Bianchi et al. (2020) and Sun et al. (2019) that recommended masking a higher portion of
the products when dealing with relatively shorter sequences. Considering that shopping
sessions in our data had an average length of 10, we choose to mask 25% of the products in
each session (as in Bianchi et al., 2020). Subsequently, the model is asked to predict which
product originally was replaced by the MASK token. During this task, the model has access
to all non-masked products in the session as input. Hence, the input sequence consists of
the products in a session with 25% of these products replaced by the MASK token (see Fig-
ure 4.4) and the target is to predict the original products that were replaced by the MASK
token. In this case, the self-attention mechanism would only focus on the current product
of interest and the other non-masked products. In other words, masked products other than
the product of interest would not be considered for self-attention. For each MASK token in a
session, we calculate a vector of probabilities (ŷ) containing the probabilities of each unique
product being the originally masked product. For the MLM Transformer, as the problem is

Chapter 4. Research Methodology 23

presented as a multi-class classification problem, Cross Entropy Loss is used as loss function
and is formally defined as

L(ŷ, y) = − 1
Mi

Mi

∑
m=1

N

∑
j=1

yi,j,m log(ŷi,j,m)

where N is the number of unique classes (products), Mi is the number of MASK tokens in
session i, log is the natural log, y is a binary value indicating if the predicted product j is
the mth originally masked product in session i and ŷ is the predicted probability of product
j being the mth originally masked product in session i (Geron, 2019).

Replacement Token Detection

In the second model, we represent the problem as a Replacement Token Detection (RTD)
objective, inspired by the ELECTRA paper (Clark et al., 2020). In the ELECTRA paper, RTD
consists of two parts: a (MLM) generator and a discriminator (Clark et al., 2020). First, a
certain percentage of the tokens or words in a session or sequence is replaced by a MASK
token. Next, the generator (an MLM model) is asked to predict which tokens or words orig-
inally were replaced by the MASK token. Subsequently, the MASK tokens in the session or
sequence are replaced with the predicted tokens of the generator (Clark et al., 2020). Af-
terwards, the ’updated’ sequence (i.e., containing the predicted tokens of the generator) is
used as input for the discriminator, which is asked to indicate for each token if it has been
replaced or not, making it a binary classification task. As the discriminator model calculates
loss over all tokens, Clark et al. (2020) argue that it allows the model to learn from each token
in the sequence instead of only the masked ones.

By using an MLM model as generator to generate the input sequence for the discriminator,
Clark et al. (2020) hoped to provide more plausible replacement words to the discriminator,
potentially helping its learning process. However, one could argue that in language mod-
eling, due to the grammatical rules and structure, the plausibility of words might be easier
to predict than the plausibility of products in (grocery) purchase sessions (Sun et al., 2019).
This, in turn, could limit the benefits of using an MLM generator in an online grocery shop-
ping context. Therefore, in contrast to the original ELECTRA paper (Clark et al., 2020), we
have chosen to simplify the model and shorten training time by only using the discriminator
part of the original ELECTRA implementation and replace the generator’s predictions with
random products. In others words, instead of training an MLM model to generate the input
sequence of the discriminator, the input is generated by replacing 25% of the products in an
input shopping session with random products. Subsequently, the model (discriminator) is
asked to indicate which of the products in the session were replaced. During this task, the
discriminator has access to all other products in the session. In essence, although simplified,
this approach still allows the model to learn from all products in the session, securing the
main benefit from the RTD objective (Clark et al., 2020). Hence, the input sequence consists
of the products in a session with 25% of these products replaced by random products (see
Figure 4.4) and the target is to predict, for each product, if it is the original product or a
corrupted product. In this case, the self-attention mechanism would focus on the current
product of interest and all other products as it does not know which ones are corrupted or
not. For the RTD Transformer, as the problem is presented as a binary classification problem,

Chapter 4. Research Methodology 24

Binary Cross Entropy Loss is used as loss function and is formally defined as

L(ŷ, y) = − 1
Ni

Ni

∑
j=1

yi,j log(ŷi,j) + (1 − yi,j) log(1 − ŷi,j)

where Ni is the number of products in session i, log is the natural log, y is a binary value
indicating if product j in session i is replaced and ŷ is the predicted probability of product j
in session i being replaced (Geron, 2019).

Moreover, to minimize the loss, ’Adam’ (as proposed by Kingma and Ba (2014)) was used as
optimization algorithm in all models.

FIGURE 4.4: Masking Procedures of Transformer Networks

4.3.3 Test Objective and Performance Metrics

To make a good comparison between LSTM and the Transformers, the target variable in the
test phase is the next item added to the shopping session after a certain sequence (i.e., the last
product added to the session). For the MLM Transformer, this entails that the MASK token
will be placed on the last item in the session. For the RTD Transformer, since the underlying
Transformer architecture of the discriminator is similar to the architecture used in the MLM
Transformer, it is possible to use this model in a similar fashion as an MLM model by chang-
ing the prediction task. Hence, in the test phase, we change the prediction task of the RTD
Transformer to an MLM objective and place the MASK token on the last item in the session.
In this sense, for each session, the models predict the probability of each distinctive product
being the next product in the session. Subsequently, the products with the highest predicted
probabilities will be presented as recommendations in a recommendation list, which will be
used for evaluation as discussed in detail below.

Following previous literature (e.g., Ludewig and Jannach, 2018; Sun et al., 2019), the evalu-
ation metrics used in this study are hit rate (HR), coverage (COV) and average rank. HR@n
indicates the percentage of observations in which the correct target product is among the
top n predicted products of the recommendation list. For example, a HR@20 of 0.10 indi-
cates that the correct target product is within the top 20 products of the recommendation list
for 10% of the observed sessions. COV@n indicates to what extent the model recommends
various products in the top n of the recommendation list. This is important as it shows the
models capacity to provide diverse recommendations (Ludewig and Jannach, 2018). It is
calculated by diving the number of distinct products in all recommendation lists of a model
by the total number of distinct products in the data. As the selection of the cutoff point is de-
pendent on the context in which the recommendations are given, we use several values for
n when assessing the models. First, following common practice in recommendation system

Chapter 4. Research Methodology 25

literature, we use n = 10 and n = 20. Moreover, we also use 1% and 2.5% of the total number
of unique products in the data, resulting in n = 62 and n = 155, respectively. Moreover, for a
more refined evaluation, we also use average rank as an evaluation metric. In contrast with
hit rate, average rank considers the rank of the target product in the entire recommendation
list (n = 6175) and essentially indicates the average quality of recommendations. Also, to
determine the stability of the model performance between sessions, we report the standard
deviation of the rank.

4.3.4 Enriched Information and Positional Encoding

Inspired by Mizrachi and Levin (2019), we trained an RTD Transformer and an MLM Trans-
former with enriched information, creating ’RTD+’ and ’MLM+’, respectively. As mentioned
before, this enriched information entailed the product category and the several binary vari-
ables (vegan, lactose-free, organic and gluten-free). This information was added to the
model through concatenation of the embeddings of product, product category, and the bi-
nary variables. Subsequently, to reduce the size of the model, the concatenated embeddings
were projected onto the same dimension size as the initial product embeddings through a
linear layer. For equal comparison between the LSTM and Transformer, we also added en-
riched information to the LSTM in a similar manner, creating ’LSTM+’ (Mizrachi and Levin,
2019). For Transformers, it is important to note that the addition of extra information hap-
pens before the positional embedding is added. Moreover, as discussed in section 4.2.2, we
also implemented two versions of the Transformer without positional embedding (NP-RTD
and NP-MLM). As we aim to compare the isolated effects of positional encoding and the
addition of extra information, the hyper-parameters of LSTM+, RTD+, MLM+, NP-RTD and
NP-MLM are identical to the optimized hyper-parameter settings of their original counter-
parts. In others words, the hyper-parameters of these adjusted models are not separately
tuned from their original implementation.

4.3.5 Models Configurations

We have trained and evaluated multiple configurations of the models. We trained all models
for 10 epochs with a batch size of 128. For all models, we experimented with various sizes
of the embedding dimension and hidden dimension, both ranging from d = 64 to d = 512.
Moreover, we tried multiple values for the number of layers, ranging from l = 1 to l = 8.
For the Transformer models, we also tried several number of attention heads, ranging from
h = 2 to h = 8. Based on the performance on the validation set, we present the best hyper-
parameter configurations of each model in Table 4.1. Please note that the configurations
of the hyper-parameters of the LSTM+, RTD+, MLM+, NP-RTD and NP-MLM Transformers
are identical to the optimized hyper-parameter settings of their original counterparts (LSTM,
RTD and MLM).

4.3.6 Benchmark Algorithms

In this study, a simpler algorithm is used as benchmark to assess and put the performance
of the neural models into perspective. In particular, we use the aforementioned adjusted
session-based collaborative filtering algorithm (see Chapter 2), which uses the currently se-
lected products or interactions in a session as the variables to calculate similarity to other

Chapter 4. Research Methodology 26

Model MLM RTD LSTM

Input Dimension Size 256 256 256
Hidden Feed-Forward Size 1024 1024 -

Hidden State Size - - 256
h 8 8 -
l 2 2 2

Dropout Rate 0.05 0.05 0.05

TABLE 4.1: Model Configurations

purchase sessions. In practice, similar to previous literature (Bonnin and Jannach, 2014),
each session is portrayed as a binary vector with the size of the number of unique prod-
ucts N. Subsequently, we used a k-Nearest Neighbours algorithm, in which the similarity
between sessions is measured by the Cosine similarity between these two binary vectors
corresponding to the sessions in question. The Cosine similarity between two sessions is
calculated as shown in following formula:

CosineSimilarity(a, b) =
∑n

j=1 ajbj√
∑n

j=1 a2
j

√
∑n

j=1 b2
j

where aj and bj are the binary values for product j in the two separate vectors (sessions), and
N is the number of unique products in the data.

This way, similar sessions (i.e., sessions with similar products) result in greater Cosine simi-
larity. As recommendations, the algorithm provides items with the highest frequency in the
k most similar sessions. In this study, we evaluated several values of k on the validation set
ranging from 50 to 5000.

In the validation set, we noticed that the performance of the k-NN algorithm in the multiple
metrics is highly dependent on k. Considering the practical relevance of the metrics, we
used HR@20 as the decision criteria as a recommendation list of 20 items is more common
and seems more practical than a list of 62 or 155 items (Jannach and Ludewig, 2017). We
found the optimal value for HR@20 at k = 200.

27

5 Results

In this chapter, the results of the tested recommendation models are presented. First, based
on the introduced metrics, we discuss the performance of the models on the complete test set.
Moreover, to investigate the robustness of the models, we explore how the models perform
in different contexts by splitting the test set on characteristics of the sessions. In particular,
we split the test set based on popularity and session length.

5.1 Model Performance

The results of the models on the test set are provided in Table 5.1. The best model is dis-
played in bold and the second best model is underlined. In general, based on the perfor-
mance of the popularity benchmark, we can conclude that all models have an added pre-
dictive power over recommending based on product popularity. Moreover, the use of the
k-NN algorithm as a benchmark enables us to put the performance of the neural models into
perspective.

To gain insight in the quality of the models, we use multiple performance metrics. In terms
of Hit Rate, we notice that the k-NN algorithm performs best at the cutoff points 10 (HR@10)
and 20 (HR@20) with 0.172 and 0.239, respectively. However, when increasing the cutoff
point to 62(HR@62) and 155 (HR@155), the enriched MLM Transformer (MLM+) seems to
perform best with 0.369 and 0.525, respectively. In terms of Transformer models, we observe
that the Transformers suffer a decline in Hit Rate performance when positional encoding is
not implemented. Moreover, considering the overall better performance of the other Trans-
former models compared to the LSTM, it is interesting that the Transformers without po-
sitional encoding (NP-MLM and NP-RTD) score lower than the LSTM for HR@10 and that
NP-RTD even scores lower for HR@20. Furthermore, we only observe a positive effect of
enriched information for both Transformers (MLM+ and RTD+), although this effect seems
to be slightly greater for RTD Transformers than for MLM Transformers with an increase in
HR@10 of 0.009 and 0.004, respectively.

In terms of coverage, the popularity benchmark scores the lowest at all cutoff points as it
only recommends the most popular products, resulting in non-diverse recommendations.
The greater coverage scores of the other models suggest that these models do not solely
recommend based on product popularity. The k-NN algorithm has highest coverage at all
cutoff points, followed by the enriched MLM Transformer. When comparing coverage of the
neural models, there are some interesting observations. First, it is notable that, compared to
the other neural models, the Transformer models without positional encoding (NP-MLM
and NP-RTD) seem to have a relatively low coverage at all cutoff points with, for exam-
ple, a COV@10 of 0.314 and 0.213, respectively. This is a decrease in COV@10 of 0.111 for
NP-MLM and 0.100 for NP-RTD compared to their positional encoded counterparts (MLM
and RTD). Second, we notice that all MLM Transformers (MLM, MLM+ or NP-MLM) have
a higher coverage than their RTD counterpart (RTD, RTD+ or NP-RTD). At last, we observe
that, compared to the original RTD and MLM, the addition of enriched information in RTD+

Chapter 5. Results 28

and MLM+ has a greater positive effect for the RTD Transformer than for the MLM Trans-
former. For example, the increase in COV@10 for MLM+ (compared to MLM) and for RTD+
(compared to RTD) are 0.053 and 0.100, respectively.

In terms of rank, the k-NN algorithm also has the highest average rank and the highest
standard deviation of the rank. Taking into account the performance of the k-NN algorithm
for HR@10 and HR@20, the relatively high average and standard deviation of rank seems
to suggest that this algorithm is either very confident or totally clueless about which items
to recommend. This, in turn, could be an explanation of the high coverage of the k-NN as
it will recommend items from non-similar sessions if there are not enough similar sessions.
Since non-similar sessions have a relatively high probability of containing items that have
weak co-occurrence with the products in the session of interest, the absence of sufficient
similar sessions might introduce a level of randomness in the recommendations, resulting
in a ’clueless’ recommendation. In contrast, all neural models, especially the Transformer
models, have a relatively low average rank and standard deviation of the rank compared to
the k-NN and the popularity benchmark. In particular, the best performing models in terms
of rank are the enriched Transformers (MLM+ and RTD+) with an average rank of 416 and
422, respectively. Similar to hit rate and coverage, the positive effect of enriched information
on rank seems to be greater for RTD Transformers than for MLM Transformers. However,
the negative effect of the absence of positional encoding on rank seems to be equal between
the two Transformers.

Metric Hit Rate Coverage Rank

n 10 20 62 155 10 20 62 155 Mean Std

POP 0.077 0.113 0.210 0.342 0.002 0.003 0.010 0.025 805 1037
k-NN 0.172 0.239 0.365 0.473 0.717 0.836 0.968 0.995 1424 1914
MLM 0.151 0.216 0.362 0.519 0.425 0.533 0.688 0.792 427 672
RTD 0.144 0.207 0.354 0.509 0.339 0.445 0.617 0.736 441 689

LSTM 0.130 0.186 0.312 0.451 0.386 0.483 0.634 0.735 590 874
MLM+ 0.155 0.221 0.369 0.525 0.478 0.585 0.726 0.821 416 661
RTD+ 0.153 0.218 0.365 0.522 0.439 0.547 0.693 0.796 422 670

LSTM+ 0.130 0.185 0.310 0.450 0.368 0.468 0.619 0.729 591 875
NP-MLM 0.127 0.187 0.330 0.491 0.314 0.416 0.603 0.734 449 682
NP-RTD 0.123 0.181 0.325 0.484 0.239 0.331 0.508 0.659 462 697

TABLE 5.1: Model performance on test set (best model in bold and second-
best model is underlined)

5.2 Robustness of Models

In order to investigate how the models perform in different scenarios, we looked at the
results from different angles by splitting the test set based on different criteria. Robustness
is measured as the percentage-wise change in model performance between different sets.
For completeness, the absolute performance of each model in each set is also assessed.

Chapter 5. Results 29

5.2.1 Popularity

As mentioned before, one could argue that in certain contexts the value of recommending
popular items is lower than recommending mid-popular or long-tail items. For example, if
the 300 most popular items of an online retailer account for more than 50 percent of the pur-
chases, it is likely that customers will find these items on their own. Therefore, the value of
recommending these items is lower and it would be more valuable to recommend long-tail
products. However, in a repetitive purchase context (e.g., grocery shopping), if a company
uses the real-time predictions to provide real-time offers to nudge the customer into pur-
chase, it might still be valuable to ’remind’ them of popular compatible products. This is
already partially measured by coverage as it shows the diversity in the recommendation list.
However, coverage does not indicate the quality of ’long tail’ recommendations. Given that
popular products are more likely to be rated highly by recommendation systems, we did
a popularity split on the test set based on the popularity level of the target product in the
session. The popularity level of a product was determined based on the frequency of each
product in the training set. By determining the split based on the 25th percentile, 50th per-
centile and 75th percentile of cumulative purchases, four levels of product popularity were
created. To clarify, this means that popularity level 1 consists of products with the highest
purchase frequencies that entail 25 percent of the total number of purchases. In contrast,
popularity level 4 consists of products with the lowest purchase frequencies that entail 25
percent of the total number of purchases. Logically, this results in popularity level 1 contain-
ing fewer products than popularity level 4. Subsequently, based on the target product in the
test set, the different sessions were divided into the subsets, resulting in a separate test set
for each popularity level with level 1 being the most popular items. In this way, we are able
to identify the performance of each model for different popularity levels. Please note that
the results of POP will not be included in the comparison given that it is self evident that its
performance is highly dependent on the popularity of the set. The results of the models on
the popularity-based sets is presented in Table 5.2.

For sessions with popularity level 1, the best performing model in HR@10 is k-NN with
only a slight advantage over RTD+. In contrast, MLM+ has the best performance in HR@20
and HR@62. Furthermore, the LSTM achieves the highest HR@155 and performs the best
in rank with an average rank of 38. For the sessions with popularity level 2, we find results
similar to the complete test with the highest HR@10 and HR@20 for k-NN and the highest
HR@62 and HR@155 for MLM+. Moreover, among the models, MLM+ has the best average
rank. For the sessions with popularity level 3, the k-NN scores the highest HR@10, HR@20
and HR@62. Again, MLM+ yields the best performance in HR@155 and the average rank.
For the least popular items (popularity level 4), the k-NN outperforms all other models at all
cutoff points of HR. However, in terms of rank, the regular MLM scores the best average and
MLM+ has the most stable ranking. Again, the neural models seem to strongly outperform
the k-NN in the average rank with MLM+ as the best model. This pattern is similar to the
aforementioned findings on the complete test set, in which the k-NN performance deviates
highly between sessions.

Besides the absolute performance in each set, it is interesting to investigate the changes in
model performance between sets. Overall, we observe that performance in hit rate and rank
of all models is proportional to the popularity of products (i.e., recommendations are more
accurate when dealing with popular items). A reason for this could be that the models are

Chapter 5. Results 30

biased to popular products as it sees these products more frequently in training, making the
prediction of popular items easier while making the prediction of less popular items more
difficult (Geron, 2019). Moreover, this change in performance is greatest for HR@10 and at-
tenuates as the cutoff point (n) increases. For model comparison of robustness, we look at
the percentage decrease in HR@10 and HR@20 from popularity level 1 to level 4. The model
that is least affected by the change in product popularity is the k-NN with a percentage de-
crease in performance of 85.5% and 82.2%, respectively. From the neural models, the least
affected model is LSTM+ with a decrease of 88.3% in both HR@10 and HR@20. The least
robust models (i.e., with the highest decline in performance) are the two Transformer with-
out positional encoding. In particular, NP-MLM decreases 96.2% and 94.1% in performance,
and NP-RTD decreases 96.4% and 95.2% in HR@10 and HR@20, respectively. Furthermore,
it is noteworthy that the relative difference in performance between the Transformers with
and without positional encoding increases as popularity decreases. For example, for pop-
ularity level 1, the percentage-wise decline in HR@10 and HR@20 from MLM to NP-MLM
was 1.2% and 1.1%. In contrast, the decline was 57.9% and 48.4% for popularity level 4. As
the general difficulty of the prediction task seems to increase as popularity decreases, a po-
tential explanation for the increasing relative difference could be that the extra information
provided by positional encoding is relatively more valuable when predicting less popular
items compared to predicting popular items. Hence, the absence of positional encoding has
a higher impact on performance when predicting less popular items.

Chapter 5. Results 31

Metric Hit Rate Coverage Rank

n 10 20 62 155 10 20 62 155 Mean Std

POP - - - - - - - - - -
k-NN 0.433 0.551 0.707 0.802 0.502 0.659 0.880 0.968 456 1252
MLM 0.423 0.570 0.818 0.950 0.313 0.418 0.593 0.718 41 85
RTD 0.420 0.567 0.822 0.951 0.252 0.346 0.527 0.668 41 83

LSTM 0.358 0.520 0.811 0.967 0.321 0.418 0.569 0.687 38 59
MLM+ 0.430 0.576 0.823 0.951 0.346 0.459 0.629 0.742 40 85
RTD+ 0.432 0.576 0.820 0.949 0.319 0.427 0.603 0.718 41 88

LSTM+ 0.359 0.520 0.806 0.965 0.313 0.407 0.563 0.681 38 59
NP-MLM 0.418 0.564 0.815 0.944 0.226 0.320 0.505 0.660 43 94
NP-RTD 0.413 0.564 0.824 0.950 0.171 0.254 0.427 0.594 41 89

(A) Popularity level 1

Metric Hit Rate Coverage Rank

n 10 20 62 155 10 20 62 155 Mean Std

POP - - - - - - - - - -
k-NN 0.153 0.229 0.393 0.537 0.552 0.698 0.904 0.979 1266 1902
MLM 0.130 0.197 0.411 0.680 0.346 0.451 0.625 0.742 157 218
RTD 0.124 0.190 0.403 0.676 0.279 0.375 0.555 0.689 160 221

LSTM 0.106 0.148 0.308 0.591 0.341 0.436 0.594 0.704 179 207
MLM+ 0.134 0.205 0.418 0.688 0.385 0.494 0.660 0.767 155 218
RTD+ 0.131 0.200 0.416 0.683 0.355 0.462 0.625 0.741 156 220

LSTM+ 0.104 0.147 0.307 0.592 0.334 0.429 0.583 0.702 179 208
NP-MLM 0.095 0.163 0.379 0.661 0.251 0.349 0.535 0.682 169 229
NP-RTD 0.088 0.154 0.377 0.662 0.197 0.282 0.455 0.617 168 225

(B) Popularity level 2

Metric Hit Rate Coverage Rank

n 10 20 62 155 10 20 62 155 Mean Std

POP - - - - - - - - - -
k-NN 0.097 0.150 0.266 0.374 0.559 0.707 0.916 0.981 1643 1968
MLM 0.074 0.113 0.211 0.368 0.352 0.461 0.636 0.753 384 428
RTD 0.065 0.102 0.199 0.353 0.285 0.386 0.567 0.700 394 432

LSTM 0.066 0.091 0.147 0.240 0.344 0.440 0.598 0.705 506 471
MLM+ 0.077 0.119 0.217 0.376 0.395 0.505 0.670 0.758 375 424
RTD+ 0.074 0.117 0.215 0.373 0.365 0.474 0.641 0.754 378 425

LSTM+ 0.065 0.089 0.145 0.239 0.333 0.432 0.589 0.703 507 473
NP-MLM 0.044 0.075 0.168 0.334 0.258 0.356 0.545 0.695 405 432
NP-RTD 0.040 0.067 0.154 0.317 0.201 0.281 0.462 0.618 412 434

(C) Popularity level 3

Metric Hit Rate Coverage Rank

n 10 20 62 155 10 20 62 155 Mean Std

POP - - - - - - - - - -
k-NN 0.063 0.098 0.178 0.266 0.619 0.747 0.929 0.987 2075 1969
MLM 0.038 0.064 0.121 0.198 0.384 0.491 0.662 0.774 938 942
RTD 0.030 0.052 0.106 0.179 0.304 0.411 0.589 0.717 1021 926

LSTM 0.042 0.061 0.098 0.139 0.366 0.466 0.612 0.720 1429 1165
MLM+ 0.041 0.067 0.128 0.206 0.428 0.540 0.698 0.802 955 931
RTD+ 0.038 0.063 0.121 0.202 0.396 0.506 0.666 0.777 971 943

LSTM+ 0.043 0.061 0.097 0.139 0.354 0.453 0.603 0.717 1432 1163
NP-MLM 0.016 0.033 0.078 0.155 0.275 0.376 0.568 0.710 1030 939
NP-RTD 0.015 0.027 0.068 0.135 0.215 0.301 0.478 0.637 1071 951

(D) Popularity level 4

TABLE 5.2: Model performance on test sets per popularity level

Chapter 5. Results 32

5.2.2 Session Length

As previous research shows that there are differences between models in the capability of
providing recommendations for different lengths of sessions (Tan et al., 2016; Sun et al.,
2019), it is interesting to explore how the models perform in sessions with different lengths.
To facilitate this process, we split the data in four separate sets. The ’small’ set consists of
sessions with 2 to 5 items, the ’low-medium’ set of sessions with 6 to 10 items, the ’high-
medium’ set of sessions with 11 to 15 items, the ’large’ set of sessions with 16 to 20 items
and the ’extra large’ set of session with 21 to 25 items. The results of the models on the
length-based sets is presented in Table 5.3.

Similar to the main results, we notice that, for each session length, the neural models con-
sistently outperform the benchmarks (k-NN and POP) in terms of average rank with MLM+
as the best model. Among the neural models, MLM+ also seems to be the best performing
model in terms of hit rate at every session length. However, it does not always outperform
the strongest benchmark (k-NN). In particular, MLM+ has a 6.9% and 15% advantage over
the k-NN benchmark in HR@62 and HR@155 in small sessions. In contrast, in HR@10 and
HR@20, it seems to be at a 10.2% and 3.8% disadvantage compared to the k-NN. We observe
similar results in the low-medium set with MLM+ as the best performing model in HR@62
(+0.6%) and HR@155 (+11.9%), and k-NN as the best performing model in HR@10 (-12.2%)
and HR@20 (-10.0%). In the high-medium and large sets, the MLM+ only outperforms the
k-NN in HR@155 (+8.7% | +3.8%) and gets outperformed by the k-NN in HR@10 (-10.0%
| -4.2%), HR@20 (-10.9% | -6.1%) and HR@62 (-3.0% | -5.1%). For sessions with a length
greater than 21, the MLM+ outperforms the k-NN for HR@10 (+5.3%), HR@20 (+1.5%) and
HR@155 (+5.3%) and is only slightly outperformed in HR@62 (-0.9%).

Overall, similar to popularity level, we observe that the session length is negatively corre-
lated with performance (i.e., most models have higher accuracy in shorter sessions). This
seems counter-intuitive as generally greater length means more information, which should
decrease the difficulty of the prediction task (Geron, 2019). However, considering the con-
text of online grocery shopping, one could argue that smaller sessions might consist of more
targeted purchases, resulting in more logical product co-occurrences (e.g., only buying pasta
and pasta sauce). In contrast, in longer sessions, customers might do their weekly grocery
shopping, resulting in less logical product co-occurrences (e.g., toilet paper and bread). In
this case, the extra products in the session might introduce noise instead of adding useful
information (Sun et al., 2019). Moreover, we observe that the magnitude of the proportional
decline in performance is not equal for all models. For example, the LSTM seems to rela-
tively gain competitive performance as the session length increases. In others words, while
the LSTM is the least performing neural model in the small set, it starts to minimize the
performance differences with the other models, including the k-NN benchmark, as session
length increases. Moreover, it even gains advantage over the Transformer without posi-
tional encoding in HR@10 and HR@20 from session length greater than 6 and in HR@62
in session length greater than 11. This is also evident from the robustness analysis across
different session lengths of each model. When comparing the performance in the smallest
and largest sets, the LSTM only suffers a slight decrease of 15.8% and 14.1% in HR@10 and
HR@20, respectively. In contrast, the models with the greatest decline in performance are
NP-MLM with 47.9% and 43.9%, and NP-RTD with 49.4% and 43.5%. Furthermore, we ob-
serve that the models with enriched information are more robust against changes in length

Chapter 5. Results 33

than their original counterparts. For example, HR@10 and HR@20 of MLM drop with 23.8%
and 25.1%, while the same metrics of MLM+ decrease with 20.5% and 19.6%. Interestingly,
these differences seem even greater for the RTD Transformers with a drop of 34.5% and
31.1% performance of RTD in HR@10 and HR@20, and only a 24.0% and 22.6% decline in
the same metrics of RTD+. Lastly, in the k-NN benchmark, we notice a decline of 32.1% and
23.8% for HR@10 and HR@20.

Chapter 5. Results 34

Metric Hit Rate Coverage Rank

n 10 20 62 155 10 20 62 155 Mean Std

POP 0.087 0.123 0.214 0.351 0.002 0.003 0.010 0.025 802 1052
k-NN 0.196 0.260 0.378 0.486 0.537 0.681 0.914 0.982 1419 1914
MLM 0.172 0.247 0.400 0.556 0.313 0.420 0.597 0.719 412 699
RTD 0.168 0.241 0.395 0.548 0.253 0.356 0.534 0.672 420 709

LSTM 0.146 0.206 0.336 0.477 0.343 0.444 0.595 0.709 559 863
MLM+ 0.176 0.250 0.404 0.559 0.354 0.470 0.644 0.754 406 697
RTD+ 0.175 0.248 0.402 0.557 0.325 0.437 0.609 0.725 409 700

LSTM+ 0.144 0.204 0.334 0.474 0.329 0.426 0.584 0.703 561 866
NP-MLM 0.165 0.237 0.387 0.547 0.256 0.356 0.540 0.680 421 707
NP-RTD 0.160 0.230 0.383 0.541 0.200 0.281 0.457 0.611 428 713

(A) Small (2-5)

Metric Hit Rate Coverage Rank

n 10 20 62 155 10 20 62 155 Mean Std

POP 0.080 0.118 0.219 0.351 0.002 0.003 0.010 0.025 801 1045
k-NN 0.172 0.240 0.361 0.464 0.589 0.730 0.921 0.984 1427 1907
MLM 0.147 0.211 0.357 0.512 0.351 0.462 0.633 0.751 434 680
RTD 0.142 0.202 0.350 0.505 0.289 0.391 0.568 0.704 449 701

LSTM 0.130 0.187 0.310 0.448 0.355 0.455 0.609 0.715 597 884
MLM+ 0.151 0.216 0.363 0.519 0.402 0.516 0.675 0.784 423 670
RTD+ 0.150 0.214 0.359 0.516 0.366 0.472 0.641 0.754 429 679

LSTM+ 0.130 0.185 0.307 0.449 0.341 0.441 0.597 0.709 600 886
NP-MLM 0.125 0.186 0.330 0.488 0.270 0.370 0.558 0.702 452 687
NP-RTD 0.121 0.180 0.326 0.480 0.209 0.296 0.476 0.633 467 705

(B) Low-medium (6-10)

Metric Hit Rate Coverage Rank

n 10 20 62 155 10 20 62 155 Mean Std

POP 0.072 0.106 0.209 0.338 0.002 0.003 0.010 0.025 804 1014
k-NN 0.160 0.229 0.361 0.471 0.542 0.690 0.895 0.971 1446 1930
MLM 0.140 0.197 0.341 0.503 0.348 0.450 0.624 0.749 426 635
RTD 0.130 0.189 0.332 0.493 0.267 0.365 0.548 0.684 443 655

LSTM 0.125 0.179 0.300 0.443 0.336 0.428 0.587 0.697 582 843
MLM+ 0.144 0.204 0.350 0.512 0.380 0.492 0.655 0.771 412 618
RTD+ 0.141 0.199 0.345 0.506 0.351 0.462 0.626 0.747 419 629

LSTM+ 0.125 0.176 0.298 0.444 0.324 0.421 0.579 0.696 583 842
NP-MLM 0.105 0.158 0.299 0.464 0.218 0.315 0.501 0.657 459 652
NP-RTD 0.099 0.152 0.292 0.455 0.168 0.244 0.422 0.587 475 668

(C) High-medium (11-15)

Metric Hit Rate Coverage Rank

n 10 20 62 155 10 20 62 155 Mean Std

POP 0.062 0.095 0.185 0.313 0.002 0.003 0.010 0.025 824 1020
k-NN 0.144 0.214 0.353 0.472 0.457 0.612 0.842 0.958 1408 1907
MLM 0.132 0.194 0.323 0.483 0.307 0.409 0.589 0.721 440 645
RTD 0.126 0.183 0.312 0.464 0.245 0.338 0.520 0.666 457 665

LSTM 0.120 0.172 0.298 0.431 0.299 0.392 0.548 0.668 597 861
MLM+ 0.138 0.201 0.335 0.490 0.347 0.452 0.626 0.752 423 623
RTD+ 0.134 0.199 0.329 0.485 0.322 0.431 0.598 0.728 434 640

LSTM+ 0.119 0.172 0.294 0.433 0.287 0.386 0.544 0.673 599 861
NP-MLM 0.091 0.134 0.263 0.433 0.175 0.255 0.438 0.607 482 662
NP-RTD 0.088 0.130 0.257 0.424 0.133 0.204 0.362 0.538 496 680

(D) Large (16-20)

Metric Hit Rate Coverage Rank

n 10 20 62 155 10 20 62 155 Mean Std

POP 0.058 0.092 0.184 0.310 0.002 0.003 0.010 0.025 823 1014
k-NN 0.133 0.198 0.346 0.473 0.344 0.489 0.744 0.910 1379 1915
MLM 0.131 0.185 0.338 0.483 0.287 0.391 0.573 0.710 437 645
RTD 0.110 0.166 0.314 0.461 0.213 0.302 0.485 0.638 470 671

LSTM 0.123 0.177 0.303 0.441 0.265 0.356 0.515 0.642 598 868
MLM+ 0.140 0.201 0.343 0.498 0.306 0.417 0.597 0.728 416 618
RTD+ 0.133 0.192 0.340 0.490 0.291 0.398 0.569 0.709 429 639

LSTM+ 0.121 0.174 0.303 0.445 0.255 0.347 0.510 0.645 597 869
NP-MLM 0.086 0.133 0.264 0.420 0.137 0.201 0.368 0.541 483 650
NP-RTD 0.081 0.130 0.253 0.409 0.102 0.155 0.296 0.470 506 678

(E) Extra Large (21-25)

TABLE 5.3: Model performance on test sets per session length

35

6 Discussion

In this chapter, the interpretation of the results, the academical and managerial implications
of the findings and the limitations of this study are discussed. Subsequently, we provide
recommendations for future research.

6.1 Interpretation of Results

6.1.1 Transformer and Recurrent Neural Networks

Inspired by the enhanced performance of Transformer models in Natural Language Pro-
cessing (NLP), the aim of this study was to compare the predictive performance of Trans-
formers in providing session-based recommendations to the performance of recurrent neu-
ral networks (i.e., LSTM). In general, we found that, similar to the developments in NLP,
Transformer models outperform the LSTM in session-based recommendations. A potential
explanation for this could be that, as the Transformer uses bidirectional context, it is able to
learn more combinations of co-occurrences between products, increasing its understanding
of the meaning of the products. In contrast, the LSTM approaches the task as unidirectional
(left to right) and is therefore restricted to the order of previous items when updating its
hidden representations of the current item (Sun et al., 2019). Following this, as the LSTM
is originally a sequential model, it also assumes a natural or logical order in the sequence
(e.g., time series) (Sun et al., 2019). This assumption is, nonetheless, not always valid in
purchase sessions, making the LSTM relatively less suitable for this session-based recom-
mendations than bidirectional Transformers. Moreover, we also benchmark both models
to a k-NN session-based recommendation model, which is inspired by the commonly used
collaborative filtering approach in non-session based recommendation systems in general,
and a popularity-based recommendation model (POP). As seen in Chapter 5, we found that
the Transformers and LSTM consistently outperform POP and k-NN in terms of the average
rank of the correct item in the recommendation list. This entails that, on average, the neu-
ral models are better capable of distinguishing relevant items from irrelevant items than the
k-NN and the popularity-based recommender. Nonetheless, from a practical point of view,
it should be noted that these ranks are relatively high (i.e., a customer will not scan through
a recommendation list of hundreds of products). Therefore, it is also important to take the
hit rates at several cutoff points into consideration as this indicates the percentage of ses-
sions, in which the correct product was among the top recommendations. In this study, we
looked at hit rates in the top 10, top 20, top 62 and top 155 recommendations. In general, the
popularity-based recommender was outperformed by all other models, indicating that there
is added value in personalizing recommendations. Moreover, LSTM was found to yield the
lowest hit rates at all cutoff points compared to the k-NN and the other neural models. The
best Transformer (MLM+) seems to outperform the k-NN algorithm in hit rates in the top
62 and top 155 recommendations and gets outperformed by the k-NN algorithm in hit rates
in the top 10 and top 20 recommendations. It seems that although the k-NN provides more
relevant recommendations in a recommendation list with length 10 to 20, it does not hold

Chapter 6. Discussion 36

that proportion of relevance in a list of length 62 to 155. Considering the relatively high
average rank of the correct item in k-NN recommendations, this suggests that the k-NN al-
gorithm is either very confident or totally clueless in recommending. In contrast, although
the Transformer has more relevant recommendations in general, it has more difficulties in
ranking the most relevant items higher up in the top 10 and top 20 of the list compared to
the k-NN. Therefore, none of the models consistently outperforms its strongest alternative
as the list length of recommendations seems crucial in deciding which algorithm is better.
The findings in our study are in line with previous studies (Latifi et al., 2021; Dacrema et al.,
2019; Ludewig et al., 2021, 2020), in which k-NN methods are able to outperform neural net-
works in providing session-based recommendations on certain data sets. In this sense, k-NN
still seems to be a difficult benchmark to consistently improve upon in recommendations as
previously argued by Bianchi et al. (2020) and Latifi et al. (2021).

6.1.2 Effect of Training Objective, Positional Encoding and Enrichment

In this study, we also explored the effects of different training objectives, positional encoding
and enrichment on the predictive performance and robustness of the models in different
contexts.

In particular, we found that a Transformer trained with an MLM objective slightly outper-
forms an identical Transformer trained with an RTD objective in providing session-based
recommendations. Nevertheless, it should be noted that the difference in performance is
small. An explanation for the difference might be that the MLM objective is closer to the
next item prediction task than the RTD objective. Moreover, during training, we observed
that the RTD Transformer converged more moderately than the MLM objective, which in
turn converged more rapidly. This is, nonetheless, in contrast with the findings in NLP,
in which ELECTRA was found to outperform BERT in shorter training times (Clark et al.,
2020). An explanation for this could be that, in the original ELECTRA implementation, the
input for the discriminator in the RTD task is generated by a small MLM model. According
to Clark et al. (2020), the MLM generator provides ’plausible’ replacement words as input
for the discriminator. As mentioned in Chapter 4, we, nevertheless, chose to replace the
corrupted tokens with random products, which could have resulted in making the learning
process potentially prone to the ’randomness’ of the replacement products. However, con-
sidering that the differences in performance are small, it can still be argued that this version
of RTD is a solid alternative for MLM in this context.

Moreover, we investigated the isolated effect of positional encoding on the performance of
Transformer recommendation systems and if this effect differs between training objectives.
Contradictory to the differences between the two objectives in the ’original’ implementation,
there seems to be no significant differences in the effect of removing positional encoding be-
tween the Transformers. In particular, we found that not implementing positional encoding
decreases the performance of both MLM and RTD Transformers almost equally. This sug-
gests that, in general, the positional encoding is an important part in the Transformer archi-
tecture, despite of the training objective. However, although the importance of positional
encoding does not differ between training objectives, it does seem to differ in different con-
texts. The Transformers without positional encoding proved to be the least robust against
changes in product popularity and session length. As mentioned before, an explanation for
the proneness against changes in product popularity could be that the added information of

Chapter 6. Discussion 37

positional encoding is relatively more valuable when predicting less popular items, resulting
in greater impact on performance. In terms of session length, consistent with the findings
of Sun et al. (2019), we observed that the absence of positional encoding does not lead to
a great decline in performance for smaller session lengths. On the contrary, the decline in
performance was more present in sessions with greater length, suggesting that the impor-
tance of positional encoding is proportional to the length of a sequence (Sun et al., 2019).
One explanation of the increased importance of positional encoding in longer sessions is
that it enables the attention layers in the model to put more emphasis on the products in the
proximity of the target. For example, in our study, we observed that the k-NN algorithm
was often outperformed by the Transformer models (e.g., RTD+ and MLM+) in sessions
with length greater than 20. Moreover, the previously observed differences in performance
between k-NN and LSTM became smaller as the session length increased. In addition, in
terms of hit rate, the LSTM primarily outperformed the Transformers without positional en-
coding in sessions consisting of 16 products or more. Considering that both the LSTM and
the Transformer with positional encoding benefit from information of the sequential order
of interaction in the session, one could argue that the positional information enables these
models to recognize shifts in preferences during the session (Jannach and Ludewig, 2017;
Jannach et al., 2020). The occurrence of these preference shifts are more likely in longer se-
quences. Another reason could be that the positional encoding potentially helps the model
in the training process. Without positional encoding to identify the positions of the products
in the session, the model might experience greater difficulties in learning from simultaneous
masked items as it has no proxy indicator to distinguish between the items (Sun et al., 2019).
Subsequently, the model will treat the masked products as one identical product, increasing
the complexity of the prediction task.

Besides these explanations, it could also be that, as mentioned in Chapter 4, the importance
of positional encoding potentially originates from the possibility that the layout of the com-
pany’s website is reflected in the order of interactions or purchases of the customer. In this
case, the model might improve in predictive performance by learning the underlying web-
site layout instead of improving its understanding of the actual customer preferences. From
a practical marketing point of view in the context of session-based recommendations, one
might argue that the benefits of improved performance outweighs the potential lack of in-
creased knowledge on customer preferences. However, it is important to realize that our
test objective is not identical to a real-life recommendation task. In practice, the main goal of
recommendations is to remind the customer of a product that is a potential great addition or
fit to the current items in their session. As we actually aimed to predict the last product in a
sequence, there might be a bias towards products that, due to the layout of the online store,
are often bought last. This decreases the importance of recommending a ’great fit’ for predic-
tion performance and increases the importance of recommending items that are frequently
bought last. For instance, in practice, when a customer ’forgets’ an item during a shopping
session, the item should not necessarily have a higher chance of being a product that is often
bought last. Nevertheless, our model might be biased towards these products. In this sense,
we can argue that although positional encoding improved our predictive performance for
our test objective, this might not be the case when implemented in practice. Another caveat
of over-reliance on positional encoding is that, if the additional model performance is truly
derived from and dependent on the layout of the website, a change in website layout would
most likely result in a decline of performance.

Chapter 6. Discussion 38

At last, we also attempted to further improve performance by enriching our embeddings
with new contextual information about the products, which was added through concatena-
tion of the embeddings of product, product category, and the binary variables (Mizrachi and
Levin, 2019). Although the LSTM did not benefit from the extra information, all the Trans-
former models did, resulting in a small increase in performance. The small increase suggests
that, although most information is already learned through solely the product embeddings,
the Transformers can still benefit from the extra contextual data. The importance of enriched
information seems to be proportional to session length, meaning that in longer sequences
the effect of enriched information becomes more evident, especially for RTD Transformers.
Therefore, since it improves the overall model performance, it is encouraged to use of addi-
tional contextual data in session-based recommendation systems.

6.2 Implications

In this section, the academical and managerial implications of the findings are discussed.

6.2.1 Academical Implications

With the findings of this study, we contribute to the existing literature in (session-based)
recommendation systems. First, we showed that Transformer neural networks are more ef-
fective in providing session-based recommendation than recurrent neural networks, more
specifically LSTMs. Next, we investigated the use of Replacement Token Detection as a
training objective in session-based recommendation and bench-marked it against the more
commonly used Masked Language Modeling. From this, we found that although, contradic-
tory to Clark et al. (2020), the RTD Transformer did not outperform the MLM Transformer in
terms of computational time and performance, these two training objectives are both capa-
ble of providing session-based recommendation, making RTD a solid alternative for MLM in
this context. Moreover, in accordance with previous research (e.g., Jannach et al., 2020), neu-
ral networks did not consistently outperform the k-Nearest Neighbour approach in session-
based recommendations. Moreover, by experimenting with Transformer without positional
encoding, we add to the work of Sun et al. (2019) that in the absence of positional encoding,
besides the decline in performance of the Transformer trained on an MLM objective, we also
noticed a decline in performance of the Transformer trained on an RTD objective, especially
in longer sequences.

6.2.2 Managerial Implications

In this study, we emphasized the importance of session-based recommendations for online
marketing and online businesses in general. We showed that, even in a highly repetitive
and noisy data landscape, it is possible to provide useful recommendations based on solely
session data. Moreover, we found that there is currently no State-of-the-Art session-based
recommendation model, as all models perform differently per context and goal of the recom-
mendation. With this knowledge, companies can adjust or maintain their current recommen-
dation systems. Considering the financial and computational costs of training deep learning
models and the small increase in performance limited to specific circumstances, it would be
advisable for most companies to refer to cheaper alternatives, such as a k-Nearest Neigh-
bour based algorithms, at this stage in the developments in neural based recommendation

Chapter 6. Discussion 39

systems. Nonetheless, based on the findings for longer sessions in this study, it is advised to
companies working with longer session sequences with sequential preference shifts during
sessions to explore neural based recommendation systems, as k-NN approaches often have
difficulties in recognizing these shifts and patterns (Jannach and Ludewig, 2017). Moreover,
considering the increase in performance due to the extra session-based information, compa-
nies are encouraged to investigate what session-based information they can utilize to enrich
the information currently available for their algorithms.

6.3 Limitations and Future Research

We identify several (potential) limitations of this study. First, there is no certainty on how the
aggregation of data in subcategories has impacted the training process and, subsequently,
the performances of the models. Second, in this study, we did not benchmark the perfor-
mance of the models on multiple data sets. Therefore, it is uncertain if the findings of the
study are data dependent and reproducible on different data sets. Third, we discovered that
not all product classes were represented in training. This is likely due to random splitting
the sessions in train, validation and test sets, in which the loss of training information could
not be prevented as some products only occur in one or two sessions. Fourth, it is unknown
if the website layout of Instacart has changed over the course of the data collection process.
Therefore, it is uncertain if and how this impacted the results of the Transformer. Lastly,
as mentioned before, we evaluated the models in an offline setting instead of in a practi-
cal in-field context (i.e., real recommender intervention). Consequently, our test objective is
not identical to a real-life recommendation task, potentially resulting in different findings in
practice.

For future research, it is recommended to reproduce this study on other data sets to validate
if the findings are robust across different data sets. Furthermore, it is advised to repro-
duce and possibly improve the results of this study with other Transformer architectures
(e.g., TransformerXL, XLNet or RoBERTa). Moreover, we observed a decline in performance
when dealing with less popular items due to class imbalance in the training data. Consid-
ering the importance of recommending ’long-tail’ items, it seems interesting to investigate
the potential impact of implementing different weighting schemes in either the loss func-
tion or as a substitute for masking or corrupting probabilities. The introduction of different
weighting schemes could potentially battle the problem of class imbalance. In line with
this, it seems valuable to compare these weighted neural approaches to simpler algorithms,
such as k-Nearest Neighbours, with implemented weighting schemes. Given the current
state and developments of neural based recommendation systems and their limited advan-
tages and advancements in model performance, it might also be valuable to develop a hy-
brid approach that applies the ’wisdom of the crowd’ principle. In essence, such a model
would, for example, utilize the recommendations from both approaches (k-NN and Trans-
former) by means of a trained weighted average to provide improved recommendations. For
RNN-based recommendations, this combination has shown promising results (Jannach and
Ludewig, 2017). Furthermore, we encourage the exploration of the use of RTD as training
objective in (session-based) recommendation systems and how this differs from MLM-based
Transformer in different contexts (e.g., longer sequences or higher density of data). Also,
considering the advantages of ELECTRA over BERT in both computational time, model size
and performance (Clark et al., 2020), it would be interesting to explore how smaller models

Chapter 6. Discussion 40

of both training objectives perform in a session-based recommendation context. Moreover, it
is interesting to investigate how the implementation of extra contextual information changes
the behaviour of the attention layers in the multi-headed attention of the Transformer. The
acquisition of in-depth knowledge of this process enables us to identify the value and po-
tential of additional session-based data, which can improve the deep learning approaches in
session-based recommendations. Furtermore, due to limited computational resources, we
limited our study to sessions with a maximum length of 25 to improve training speed. It
was, however, noticeable that differences in performances between the LSTM and k-NN de-
creased as the session length increased. It would be interesting to investigate if this trend
continues in session lengths greater than 25 and if this could eventually result in the LSTM
outperforming the k-NN in longer sessions. Lastly, as it is not certain to what extent the
added performance of positional encoding is dependent on the underlying layout of the
website, a potentially interesting (field) study would be to investigate how a sudden change
in layout would impact the performance of a Transformer model trained on data from the
previous layout. In line with this, it is advised to perform a field experiment in which the
various recommendation models are tested in real recommender interventions (i.e., giving
real-time recommendations to real customers).

6.4 Conclusion

In this study, we investigated the effectiveness of Transformers and recurrent neural net-
works in session-based recommendations. In conclusion, we could state that, similar to
findings in Natural Language Processing, both Transformers trained with an MLM objective
(e.g., BERT) and an RTD objective (e.g., ELECTRA) are an improvement over recurrent neu-
ral networks (i.e., LSTM) in providing session-based recommendations. However, they still
appear to experience difficulties in steadily outperforming simpler k-Nearest Neighbour al-
gorithms. In terms of model robustness, we observed that the performance of all models is
proportional with the product popularity of the target product (i.e., better prediction perfor-
mance for popular products) and negatively proportional with session length (i.e., better pre-
diction performance for shorter sessions), although the magnitude of this change is not equal
between models. In general, the k-NN has proven to be the most robust against changes in
product popularity and the LSTM has proven to be the most robust against changes in ses-
sion length, increasing in relative competitiveness as session length increases. Furthermore,
we showed the effectiveness of positional encoding for the Transformer architecture and the
added potential of contextual information for the performance of Transformer session-based
recommendation systems. In particular, the Transformers without positional encoding are
steadily outperformed by their original counterparts and show to be the least robust against
changes in both popularity and session length, emphasizing the importance of positional en-
coding. In contrast, the enriched Transformers generally outperformed their original coun-
terparts in both robustness and absolute performance, showcasing the potential of extra
contextual information.

41

Bibliography

Adomavicius, G. and Tuzhilin, A. (2005a). Personalization technologies. Communications of
the ACM, 48(10):83–90.

Adomavicius, G. and Tuzhilin, A. (2005b). Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions. IEEE transactions on
knowledge and data engineering, 17(6):734–749.

Arora, N., Ensslen, D., Fiedler, L., Liu, W. W., Robinson, K., Stein, E., and Schüler, G. (2021).
The value of getting personalization right—or wrong—is multiplying. In Next in Person-
alization 2021 Report.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

Bianchi, F., Yu, B., and Tagliabue, J. (2020). Bert goes shopping: Comparing distributional
models for product representations.

Boerman, S. C., Kruikemeier, S., and Borgesius, F. J. Z. (2021). Exploring motivations for
online privacy protection behavior: Insights from panel data. Communication Research,
48(7):953–977.

Bonnin, G. and Jannach, D. (2014). Automated generation of music playlists: Survey and
experiments. ACM Computing Surveys (CSUR), 47(2):1–35.

Clark, K., Luong, M., Le, Q. V., and Manning, C. D. (2020). ELECTRA: pre-training text
encoders as discriminators rather than generators. CoRR, abs/2003.10555.

Covington, P., Adams, J., and Sargin, E. (2016). Deep neural networks for youtube rec-
ommendations. In Proceedings of the 10th ACM conference on recommender systems, pages
191–198.

Cui, D. and Curry, D. (2005). Prediction in marketing using the support vector machine.
Marketing science (Providence, R.I.), 24(4):595–615.

Dacrema, M., Cremonesi, P., and Jannach, D. (2019). Are we really making much progress?
a worrying analysis of recent neural recommendation approaches. RecSys ’19, pages 101–
109. ACM.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and Salakhutdinov, R. (2019).
Transformer-xl: Attentive language models beyond a fixed-length context. CoRR,
abs/1901.02860.

Delic, A., Neidhardt, J., Nguyen, T. N., Ricci, F., Rook, L., Werthner, H., and Zanker, M.
(2016). Observing group decision making processes. In Proceedings of the 10th ACM confer-
ence on recommender systems, pages 147–150.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR, abs/1810.04805.

BIBLIOGRAPHY 42

Dhar, V., Geva, T., Oestreicher-Singer, G., and Sundararajan, A. (2014). Prediction in eco-
nomic networks. Information systems research, 25(2):264–284.

Dimoka, A., Hong, Y., and Pavlou, P. A. (2012). On product uncertainty in online markets:
Theory and evidence. MIS quarterly, 36(2):395–426.

Eliasy, A. and Przychodzen, J. (2020). The role of ai in capital structure to enhance corporate
funding strategies. Array (New York), 6:100017.

Ethayarajh, K., Duvenaud, D., and Hirst, G. (2019). Towards understanding linear word
analogies. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3253–3262, Florence, Italy. Association for Computational Linguistics.

Fausett, L. V. (1994). Fundamentals of neural networks. Prentice Hall Internat, Englewood
Cliffs, NJ.

Fuentes, I., Nápoles, G., Arco, L., and Vanhoof, K. (2021). Best next preference prediction
based on lstm and multi-level interactions. In Proceedings of SAI Intelligent Systems Confer-
ence, pages 682–699. Springer.

Gabel, S., Guhl, D., and Klapper, D. (2019). P2v-map: Mapping market structures for large
retail assortments. Journal of marketing research, 56(4):557–580.

Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly
Media, Incorporated, Sebastopol.

Haubl, G. and Trifts, V. (2000). Consumer decision making in online shopping environments:
The effects of interactive decision aids. Marketing science (Providence, R.I.), 19(1):4–21.

Hidasi, B. and Karatzoglou, A. (2018). Recurrent neural networks with top-k gains for
session-based recommendations. In Proceedings of the 27th ACM international conference
on information and knowledge management, pages 843–852.

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. (2015). Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939.

Hidasi, B., Quadrana, M., Karatzoglou, A., and Tikk, D. (2016). Parallel recurrent neural
network architectures for feature-rich session-based recommendations. In Proceedings of
the 10th ACM conference on recommender systems, pages 241–248.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Hurley, N. and Zhang, M. (2011). Novelty and diversity in top-n recommendation–analysis
and evaluation. ACM Transactions on Internet Technology (TOIT), 10(4):1–30.

Instacart (2017). The instacart online grocery shopping dataset 2017.

Jannach, D. and Ludewig, M. (2017). When recurrent neural networks meet the neighbor-
hood for session-based recommendation. RecSys ’17, pages 306–310. ACM.

Jannach, D., Mobasher, B., and Berkovsky, S. (2020). Research directions in session-based and
sequential recommendation. User Modeling and User-Adapted Interaction, 30(4):609–616.

Javadi, M. H. M., Dolatabadi, H. R., Nourbakhsh, M., Poursaeedi, A., and Asadollahi, A. R.
(2012). An analysis of factors affecting on online shopping behavior of consumers. Inter-
national journal of marketing studies, 4(5):81.

BIBLIOGRAPHY 43

Kamehkhosh, I., Jannach, D., and Ludewig, M. (2017). A comparison of frequent pattern
techniques and a deep learning method for session-based recommendation. In RecTemp@
RecSys, pages 50–56.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Koren, Y. (2010). Factor in the neighbors: scalable and accurate collaborative filtering. ACM
transactions on knowledge discovery from data, 4(1):1–24.

Krizanova, A., Lăzăroiu, G., Gajanova, L., Kliestikova, J., Nadanyiova, M., and Moravcikova,
D. (2019). The effectiveness of marketing communication and importance of its evaluation
in an online environment. Sustainability (Basel, Switzerland), 11(24):7016.

Latifi, S., Mauro, N., and Jannach, D. (2021). Session-aware recommendation: A surprising
quest for the state-of-the-art. Information sciences, 573:291–315.

Li, Y. and Yang, T. (2017). Word Embedding for Understanding Natural Language: A Survey,
pages 83–104. Guide to Big Data Applications. Springer International Publishing, Cham.

Lissitsa, S. and Kol, O. (2016). Generation x vs. generation y – a decade of online shopping.
Journal of retailing and consumer services, 31:304–312.

Lops, P., de Gemmis, M., and Semeraro, G. (2010). Content-based Recommender Systems:
State of the Art and Trends, pages 73–105. Recommender Systems Handbook. Springer US,
Boston, MA.

Ludewig, M. and Jannach, D. (2018). Evaluation of session-based recommendation algo-
rithms. User modeling and user-adapted interaction, 28(4-5):331–390.

Ludewig, M., Mauro, N., Latifi, S., and Jannach, D. (2020). Empirical analysis of session-
based recommendation algorithms. User modeling and user-adapted interaction, 31(1):149–
181.

Ludewig, M., Mauro, N., Latifi, S., and Jannach, D. (2021). Empirical analysis of session-
based recommendation algorithms. User modeling and user-adapted interaction, 31(1):149–
181.

Medsker, L. and Jain, L. C. (1999). Recurrent Neural Networks: Design Applications. CRC Press.

Mizrachi, S. and Levin, P. (2019). Combining context features in sequence-aware recom-
mender systems. In RecSys (Late-Breaking Results), pages 11–15.

Olah, C. (2015). Understanding lstm networks. Accessed on Nov 17, 2021 from
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

Park, S.-H. and Han, S. P. (2013). From accuracy to diversity in product recommendations:
Relationship between diversity and customer retention. International journal of electronic
commerce, 18(2):51–72.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to Recommender Systems Handbook,
pages 1–35. Recommender Systems Handbook. Springer US, Boston, MA.

Rumelhart, D. E., Durbin, R., Golden, R., and Chauvin, Y. (1995). Backpropagation: The basic
theory, pages 1–34. Backpropagation: Theory, architectures and applications. Psychology
Press.

BIBLIOGRAPHY 44

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representa-
tions by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science.

Sahoo, N., Singh, P. V., and Mukhopadhyay, T. (2012). A hidden markov model for collabo-
rative filtering. MIS quarterly, pages 1329–1356.

Schwarzl, S. and Grabowska, M. (2015). Online marketing strategies: the future is here.
Journal of International Studies, 8(2).

Shafqat, W. and Byun, Y.-C. (2020). A context-aware location recommendation system for
tourists using hierarchical lstm model. Sustainability, 12(10).

Shmueli, G. and Koppius, O. R. (2011). Predictive analytics in information systems research.
MIS quarterly, pages 553–572.

Strycharz, J., Smit, E., Helberger, N., and van Noort, G. (2021). No to cookies: Empowering
impact of technical and legal knowledge on rejecting tracking cookies. Computers in Human
Behavior, 120:106750.

Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., and Jiang, P. (2019). Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceed-
ings of the 28th ACM international conference on information and knowledge management, pages
1441–1450.

Tan, Y. K., Xu, X., and Liu, Y. (2016). Improved recurrent neural networks for session-based
recommendations. In Proceedings of the 1st workshop on deep learning for recommender systems,
pages 17–22.

Thirumalai, S. and Sinha, K. K. (2013). To personalize or not to personalize online pur-
chase interactions: Implications of self-selection by retailers. Information Systems Research,
24(3):683–708.

Tran, T. N. T., Atas, M., Felfernig, A., Samer, R., and Stettinger, M. (2018). Investigating serial
position effects in sequential group decision making. In Proceedings of the 26th Conference
on User Modeling, Adaptation and Personalization, pages 239–243.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Łukasz Kaiser,
and Polosukhin, I. (2017). Attention is all you need. Advances in neural information process-
ing systems, 30.

Weinzierl, S., Stierle, M., Zilker, S., and Matzner, M. (2020). A next click recommender system
for web-based service analytics with context-aware lstms. In Proceedings of the 53rd Hawaii
International Conference on System Sciences, pages 1542–1551.

West, P. M., Brockett, P. L., and Golden, L. L. (1997). A comparative analysis of neu-
ral networks and statistical methods for predicting consumer choice. Marketing Science,
16(4):370–391.

Wollan, R., Barton, R., Quiring, K., and Ishakawa, M. (2017). Exceed expectations with ex-
traordinary experiences. Dublin: Accenture Strategy.

Xiao, B. and Benbasat, I. (2007). E-commerce product recommendation agents: Use, charac-
teristics, and impact. MIS quarterly, pages 137–209.

BIBLIOGRAPHY 45

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., and Le, Q. V. (2019).
Xlnet: Generalized autoregressive pretraining for language understanding. CoRR,
abs/1906.08237.

Zhang, T. C., Agarwal, R., and Lucas, H. C. (2011). The value of it-enabled retailer learning:
Personalized product recommendations and customer store loyalty in electronic markets.
MIS quarterly, 35(4):859–881.

Zhu, Y., Li, H., Liao, Y., Wang, B., Guan, Z., Liu, H., and Cai, D. (2017). What to do next:
Modeling user behaviors by time-lstm. In IJCAI, volume 17, pages 3602–3608.

	Introduction
	Related Work
	Recommendation Systems
	Content-based Filtering
	Collaborative Filtering
	Limitations of Current Recommendation Systems

	Session-based Recommendations
	Filtering Methods for Session-based Recommendations
	Advanced Methods for Session-based Recommendations

	Neural Networks
	Recurrent Neural Networks
	Transformer Neural Networks

	Data
	Data Source
	Data Processing

	Research Methodology
	Problem Definition
	Neural Networks
	Long-Term-Short-Memory Networks
	Transformer Networks

	Implementation and Training
	LSTM Training Objective
	Transformer Training Objectives
	Masked Language Modeling
	Replacement Token Detection

	Test Objective and Performance Metrics
	Enriched Information and Positional Encoding
	Models Configurations
	Benchmark Algorithms

	Results
	Model Performance
	Robustness of Models
	Popularity
	Session Length

	Discussion
	Interpretation of Results
	Transformer and Recurrent Neural Networks
	Effect of Training Objective, Positional Encoding and Enrichment

	Implications
	Academical Implications
	Managerial Implications

	Limitations and Future Research
	Conclusion

