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Abstract

This paper examines how assets can be selected based on independence structures for extreme

values to form a well-diversified portfolio. The independence structures are found through

two approaches: Hüsler-Reiss graphical model based on Lasso regularisation and spherical

k-means. Both methods confirm that the assets in the same industry (group) are often

dependent when extreme values occur. In addition, we find that the diversification level and

performance of the portfolio constructed with peripheral assets for non-extreme times, are

better compared to the other data-driven portfolios. Nevertheless, we do not find that the

difference in performance is significant. In addition, it is evaluated whether the performance

of the portfolios resulting from the graphical model is robust regarding the estimation of

the regularisation parameter. It is found that their composition changes slightly and their

performance does not change significantly.
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1 Introduction
The objective of investors is to make a high return on their portfolio while they consider the

risk that they are willing to take. Investors can incorporate risk by diversifying their portfolio

by increasing the assets that they hold. Holding multiple assets, a shock in a risk factor may

not impact the returns of all assets in a similar way and with the same magnitude. In addition,

a positive mean excess return is observed for many equity portfolios as a result of holding more

than one asset, i.e. because of diversification (Bessembinder, 2018).

Despite diversifying a portfolio, asset returns are generally influenced by the same risk factors

(Fama and French, 1993). In addition, investors may want to take into account how returns

behave during a crisis. In this paper, we seek to compose a well-diversified portfolio that is still

resistant in times of extreme negative returns to avoid abrupt decrease in value. Diversification

is determined by the number of assets on the one hand and their weights on the other hand. One

may want to build a portfolio that also performs acceptably on a rainy day. To find which assets

an investor should incorporate in this portfolio, she/he can examine the extremal dependency

structure between assets. Here, two methods are used to evaluate the dependence structures of

the tail of losses.

The first way to measure this dependence is by means of a graphical network. A network consists

of nodes, the companies, which are connected through edges, their dependencies. To illustrate,

when company A has few edges with low dependencies with other companies, this may indicate

that it faces different risk sources than other companies. As a result, company A should be a

good addition to diversify the investor’s portfolio. On the contrary, when company B has many

edges with high dependencies with its neighbouring companies, the impact on the diversification

of the portfolio will be relatively small when the investor already holds companies that company

B is connected to.

Engelke and Hitz (2020) propose a network for extreme observations that is based on a theory

of conditional independence for multivariate Pareto distributions. This method results in a

graphical model that allows sparsity for extreme return data. Whereas Engelke and Hitz (2020)

find a sparse variogram through block-wise estimation of a minimum spanning tree, this paper

imposes sparsity in the underlying dependency structure by means of the data-driven graphical

lasso regularisation. A data-driven method is especially useful when estimating for large data

sets as it is more time efficient. To evaluate the resulting graphical network and dependencies of

the assets, the metrics closeness centrality and betweenness centrality are used to select assets

for a central and peripheral portfolio.
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The portfolios resulting from the parametric graphical model are compared to portfolios that

follow from non-parametric spherical k-means clustering, which is the second method that is

evaluated in this paper to determine tail dependence structures. This unsupervised learning

method is a good candidate for pattern detection in high dimensional data. Janßen and Wan

(2020) propose a clustering method to reduce the complexity of extremal observations. When

the assets are split into clusters, a portfolio is created by assigning weights to the assets based

on the cluster they are in. Compared to a graphical model, the independence structure of

spherical k-means is less informative. The latter only indicates which assets are asymptotically

independent of each other whereas a graphical model also gives the level of the dependence when

assets are conditionally dependent. In addition, two benchmark portfolios are constructed that

do not make use of information regarding the dependence structure of the data. The evaluation

of the resulting portfolios is based on their out-of-sample diversification level and performance

measured by Sharpe ratio.

The contribution of this paper is twofold. The existing literature does not estimate the extremal

conditional dependency structure in a graph in a data-driven way. Engelke and Hitz (2020)

suggest that this is a direction of high practical potential and they are already researching this

extension themselves, however their research has not yet been published. Moreover, this paper

extends the literature by proposing methods to make portfolio management decisions based

on extreme returns using graphical models and k-means clustering. There is existing research

that uses graphical models for portfolio decisions, however these networks are mostly based on

correlation and do not investigate extreme returns (Peralta and Zareei, 2016; Onnela et al., 2002).

We find that the graphical model approach confirms that the assets in the same industry (group)

are often dependent when extreme values occur. In addition, we find that the portfolio containing

assets that are in the periphery of the Hüsler-Reiss graphical model is well-diversified compared to

the portfolios that were constructed based on extremal independence. Concerning performance,

there is no portfolio that statistically outperforms the others.

The remainder of this paper is organised as follows. Section 2 discusses the existing literature.

Thereafter, the data that is used for the empirical analysis is introduced in Section 3. The

methodological approach and evaluation metrics of the graphical models and k-means clustering,

together with the construction of the portfolios, are outlined in Section 4. In Section 5, an

overview of the results is presented. Finally, Section 6 concludes this paper.
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2 Literature
How investors can optimally allocate their wealth across a set of assets originated in Markowitz’

mean-variance portfolio and is still the foundation for modern portfolio theory (Markowitz, 1952).

Nevertheless, a portfolio that is constructed using sample moments often involves extreme posi-

tions, which may not be favourable when constructing a diversified portfolio (Green and Hollifield,

1992). Imposing additional constraints on the weights such that they cannot be negative can

reduce the risk in the resulting Markowitz portfolio even when those constraints are wrong (Ja-

gannathan and Ma, 2003). But, mean-variance efficient portfolios are often outperformed by the

less complex equally weighted portfolio (DeMiguel et al., 2009). The equally weighted portfolio

presents a simple way of diversification and will be used in the formation of the portfolios in this

paper.

Portfolio management decisions can be based on network structures. The current literature

mostly focuses on correlation based networks (Onnela et al., 2002; Pozzi et al., 2013; Clemente

et al., 2021; Zaheer et al., 2022). Onnela et al. (2002) find that the optimal Markowitz portfolio

has larger weights in assets that are in the peripherals of a graphical tree. This means that

peripheral assets empower low volatility in a portfolio. Moreover, Peralta and Zareei (2016)

sustain this empirical finding by providing a link between the Markowitz framework and the

financial network, proving that there is a negative relationship between the optimal weights

under the Markowitz framework and the centrality of an asset in a correlation based network.

Furthermore, they show that a network is a useful device to improve the portfolio selection

process by targeting a group of assets according to their centrality.

Extreme value theory (EVT) is concerned with the asymptotic distribution of extreme events.

These extreme events happen with low frequency and have a very large impact compared to

other observations (Rocco, 2014). The models that have been derived to analyse these events,

extrapolate beyond the existing data range and estimate returns for periods of events that have

never yet been observed (Engelke and Ivanovs, 2021). For portfolio selection, it is important

to consider tail events as they have a large effect on the portfolio’s performance. Mainik et al.

(2015) propose a portfolio optimisation strategy based on an Extreme Risk Index, which uses

EVT to minimise the probability of large losses. They find that their strategy outperforms the

minimum-variance and the equally weighted portfolio for assets with heavy tails.

Another challenge in portfolio management is when the number of assets increases. As a re-

sult, the total number of parameters to be estimated increases quadratically and the resulting

sample covariance matrix is prone to error, which will lead to an incorrect optimisation of port-
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folio weights (Michaud, 1989). To decrease the number of parameters, alternative estimators or

shrinkage can be used to get a better estimate (Ledoit and Wolf, 2004, 2012). Another way of

reducing the number of estimated parameters is through the notion of sparsity. Sparse struc-

tures for multivariate extremes can be achieved by means of graphical modelling and clustering

(Engelke and Ivanovs, 2021).

The graphical models that are used in this paper to generate sparse structures build further on

the approach of Engelke and Hitz (2020), who introduce a theory of conditional independence

that uses the perspective of threshold exceedances. This notion applies to multivariate Pareto

distributions by combining graphical models and extreme value theory. The advantage of this

method is that it produces a simple and sparse structure. In addition, graphs are conveniently

interpretative.

The Pareto distribution that Engelke and Hitz (2020) use is the Hüsler-Reiss distribution, charac-

terised by a variogram matrix which can be seen analogously to a covariance matrix of a Gaussian

distribution, but then in the world of extremes (Engelke and Hitz, 2020). They impose sparsity in

this matrix by finding the underlying minimum spanning tree. This method requires a relatively

simple tree to estimate the parameters of the variogram in a block-wise manner, whereas the real

structure may be more complex. In addition, it is based on a maximum likelihood estimation

which can become computationally expensive when the graph increases.

Alternatively, graphical lasso can be used to disclose the underlying structure and allows for

a more advanced network by building a graph via a data-driven approach. Friedman et al.

(2008) estimate a sparse inverse covariance matrix using an ℓ1-penalty through a simple and

fast algorithm. However, during the iterations of the algorithm of Friedman et al. (2008), the

covariance matrix is estimated, but this method does not guarantee that the covariance matrix

is positive definite for every step along the iterations. Nevertheless, in convergence it is positive

definite, thus convergence is essential here. In addition, solving the dual problem does not

necessarily secure a sparse precision matrix. Mazumder and Hastie (2012) identify this problem

and develop a primal approach where the precision matrix is the optimisation target that secures

sparsity and positive definiteness of the precision matrix even when convergence has not yet been

reached. In the current research, the inverse of the variogram matrix is estimated with graphical

lasso and Section 4.3 describes how we make sure that this matrix is invertible.

Sparse structures can also be found by means of spherical k-means clustering. This approach

is able to identify groups of concomitant extremes in high dimensions effectively (Fomichov

and Ivanovs, 2022). Spherical k-means clustering, similar to other clustering techniques, groups
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objects together such that the intra-cluster similarity is maximised while minimising the inter-

cluster similarity (Babu et al., 2012). The resulting centres of each estimated cluster characterise

the underlying structure of the data. A cluster with one asset entails asymptotic independence,

while clusters with multiple assets indicate asymptotic dependence (Janßen and Wan, 2020).

León et al. (2017) use this principle to build diversified portfolios using correlation-based cluster-

ing. They construct a portfolio by selecting the best asset within each cluster based on Sharpe

ratio. Their cluster based portfolios show lower volatility compared to the mean variance port-

folio and they conclude that this attributes to the stability and diversity of a portfolio.

3 Data
The data that is be used in the empirical analysis is daily closing price data of N = 72 American

companies ranging from December 30st 2005 until April 1st 2022 which results in 4092 obser-

vations. For estimation and portfolio selection, the in-sample data until April 1st 2018 is used

(Tin = 3082 observations). To evaluate the portfolios, we work with data of the final four years

(Tout = 1010 observations). The companies are selected based on industry group and all compa-

nies have return data in the before-mentioned time horizon. The Global Industry Classification

Standard (GICS) identifies 24 industry groups. Of each group, three companies are selected, two

large cap companies and one small cap company. The first large cap company in each industry

group has a market capitalisation of around 100B$. The second large cap company has a market

cap of around 20B$. The small cap companies have a market cap of around 1B$. Information

on the companies, categorised by industry group, can be found in Appendix A. Data is retrieved

from the database Refinitiv Eikon.

The closing prices of the assets are transformed into log returns by taking the log of the differences

and multiplying them by 100 as follows

Rt = 100 ∗ ln
(

Pt

Pt−1

)
, (1)

for t = 1, . . . , T , where T is the total number of return observations. Financial return data often

exhibit excess kurtosis, therefore a normal distribution cannot be assumed. This can also be seen

in the Q-Q plots in Figure 1, which show the in-sample returns of four randomly chosen assets.

When the data would follow a Gaussian distribution, the returns should follow the straight

line. However, the returns in Figure 1 have an s-shape, which implies that they are not normally

distributed. To verify this, a Jarque-Bera test is performed. Table 1 shows that the test statistics

are very high indicating that normality cannot be assumed at any reasonable significance level.
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(a) F (b) NKE

(c) STE (d) IMAX

Figure 1: Q-Q plots of returns of four assets, namely, XOM, F, NKE and IMAX.

Table 1: Jarque-Bera test results to confirm non-normality for four asset returns

JB-statistic

F 45124

NKE 16396

STE 9583

IMAX 279057

4 Methodology
In this section, the methodological approach to construct well-diversified portfolios is explained.

First, some theoretical background regarding multivariate extreme value theory and conditional

independence is described. Thereafter, the method to estimate a sparse graph is discussed and

it is outlined how the metrics for graph evaluation will be the basis for portfolio selection.

Subsequently, the method for spherical k-means clustering is explained and how a diversified

portfolio may result from this method. Finally, the construction of the portfolios is described in

detail and the evaluation measures regarding diversification and performance are presented.
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4.1 Data preparation

A fundamental assumption in EVT is that the data is independent and identically distributed.

In order to obtain this, the approach of Engelke and Volgushev (2020) is followed, who remove

temporal dependence. This is necessary as with the expansion of companies, often their stock

price grows too. As a result, the price of the stock may be very different at the beginning

of the period compared to the end. In addition, the returns as calculated in Equation 1 are

multiplied by -1 as we are interested in the left tail for the analysis. The serial dependence is

removed by filtering the univariate series through ARMA-GARCH processes, which is proposed

by Hilal et al. (2014). Models with various numbers of parameters are compared by their AIC.

An ARMA(p,q)-GARCH(r,s) model for a univariate series of company log losses (Lt) for every

company can be formulated as follows

Lt = µt + σtXt

µt = µ+

p∑
i=1

ψiLt−i +

q∑
i=1

θiεt−i

σ2t = ω +
r∑

i=1

αiε
2
t−i +

s∑
i=1

βiσ
2
t−i

εt = Lt − µt = σtXt

Xt ∼ i.i.d.

(2)

where |ψi| < 1 and |θi| < 1 for stationarity of the conditional mean. In addition, for the GARCH

part of the model, we assume that ω > 0, αi ≥ 0, βi ≥ 0 and
∑r

i=1 αi+
∑s

i=1 βi < 1 to guarantee

that σ2t is positive and stationary. The parameters in the model are estimated by maximum

likelihood such that no distribution on the shocks Xt needs to be assumed. The resulting filtered

losses of a company j are then

X
(j)
t =

L
(j)
t − µ̂

(j)
t

σ̂
(j)
t

(3)

where µ̂(j) and σ̂(j) are the estimated mean and standard deviation of the model estimated

in Equation 2. The data X = (X1, . . . , XN ) is approximately independent and identically dis-

tributed and their tail dependence can be modelled using an extreme graphical model or spherical

k-means clustering.

4.2 Multivariate extreme value theory

Extreme value theory is about modelling the tail of a distribution. In a multivariate case, the

model also takes into account the dependence in the univariate extremes. The tail behaviour of
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the random vector X can be described through two methods: the component-wise maxima and

the threshold exceedances approach. The modelling strategy that is used to study multivariate

dependencies in graphical models is the threshold approach (Engelke and Hitz, 2020). For this

method, it is common to standardise the data to multivariate Pareto scale. The exceedances of

data X over a high threshold u→ ∞ converges to limit Y (Resnick, 2007),

P(Y ≤ z) = lim
u→∞

P
(
X

u
≤ z

∣∣∣∣∥X∥∞ > u

)
, (4)

such that the random vector Y is multivariate Pareto distributed on the L-shaped space L =

{x ≥ 0, ∥x∥∞ ≥ 1}. Here, the assumption is made that Y has a positive and continuous density

fY on L. The density of Y is then

fY(y) =
λ(y)
Λ(1)

, (5)

where Λ is the exponent measure of the max-stable distribution (Engelke and Hitz, 2020), 1 is

a vector of ones and Λ(1) is a normalisation constant. Thus, the density fY is proportional

to the density λ(y) of the exponent measure Λ. In practice, the columns of the data are first

transformed to standard Pareto distributions by means of

X̃j =
1

1− F (Xj)
, (6)

where F (Xj) is the uniform distribution of asset j. Then the data of the time points that contain

no extreme values are disregarded from the data, i.e. there is no extreme return in observation i if

for every asset j in X̃ij is smaller than the quantile threshold. Finally, the remaining observations

are standardised by dividing them by the quantile threshold. The extremes in the resulting data

X̃ then have a value higher than 1 and non extreme returns are smaller than 1.

Because some components of X may not have converged to the limiting distribution of Y, it has

become common practice to censor the data when estimating the likelihood in order to avoid

biased estimates of the parameters (Engelke and Hitz, 2020). This censoring entails that when

there is a data point X̃ that exceeds a high threshold, simultaneously there may be data points

that do not exceed this threshold. The latter points are censored such that their value is set

to 1. In this way, the information that is used about these points entails the fact that they are

smaller than the threshold instead of their exact value.
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4.3 Graphical model for extremes

4.3.1 Conditional independence for graphical models

A graph G = (V,E) is composed of a nodes set V = {1,. . . ,d}, also called vertices, and a set

of edges E ⊂ V × V \ (i, i) which connects the vertices. In the case of our data, the vertices

represent the assets and the edges their dependence. A (sub)set of nodes of which all vertices

are connected such that (i, j) ∈ E is called complete.

The notion of conditional independence for multivariate Pareto distributions is necessary to

reduce the number of parameters to be estimated. Engelke and Hitz (2020) exploit this notion in

extreme value theory. As it is only defined on product spaces, they come up with a new insight of

conditional independence for a multivariate Pareto distribution and restrict Y to product spaces.

They show this by considering Yj , which is Y conditioned on the event that {Yj > 1} for any

vertex j ∈ V . The resulting Yj has support on a product space.

Given that random variable Y follows a multivariate Pareto distribution and has positive and

continuous density, and A,B,C ⊂ V are non-empty disjoint subsets whose union is V . When

YA is conditionally independent of YC given YB, it can be written as

YA ⊥e YC |YB. (7)

For graphical models, conditional dependence means that vertices are connected. Contrary, when

two vertices i and j in V are not connected in graph G, then Yi and Yj are said to be conditionally

independent. For conditional independence there are two underlying assumptions. One is that

Y has a density and the second assumption is that there is no asymptotic independence. When

one asset would be asymptotically independent of all other assets, the graph would become

disconnected.

4.3.2 Graphical models and Hüsler-Reiss distribution

The graphical model G = (V,E) can be identified by a Hüsler-Reiss Pareto distribution. The

density of the exponent measure for every root node r = 1, . . . , N , i.e. every asset, is

λ (y) = y−2
r

∏
i ̸=r

y−1
i ϕN−1

(
ỹ\r; Σ

(r)
)
, (8)
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where ỹi =
log(yi)
log(yr)

+ Γir/2. In addition, ϕN−1(·; Σ(r)) is a (N − 1)-dimensional centred normal

distribution with covariance matrix Σ(r), which is constructed as follows

Σ(r) =
1

2
{Γir + Γjr − Γij}i,j ̸=r ∈ R(N−1)×(N−1). (9)

The R(N−1)×(N−1) covariance matrix Σ(r) is strictly positive definite and contains the graphical

structure of a Hüsler–Reiss Pareto distribution. The dimension is (N − 1) because the row and

column of the root node r are omitted. Although r is fixed, the distribution does not depend on

the arbitrary choice of r. The distribution has the advantageous characteristic of stable marginals

and is therefore a good candidate for graphical models. These marginals are required for the

density of the exponent measure.

To estimate the covariance matrix, we need the negative definite variogram matrix Γ (N ×N),

which is symmetric and has zeros on its diagonal. The empirical Γ̂ matrix can be estimated by

averaging the Γ̂(r) matrices for every root node r. For a root node, the Γ(r) matrix is created

out of a special covariance matrix (Σ(r)
ex ). This latter matrix is formed using the log of the

observations when asset r exceeds a threshold. The relationship between Γ(r) and Σ
(r)
ex is as

follows

Γ̂ =
1

N

N∑
r=1

Γ(r),

Γ̂(r) = 1 diag(Σ(r)
ex )

T + diag(Σ(r)
ex )1

T − 2Σ(r)
ex

Σ(r)
ex = Var( log Y |Yir > 1, for i = 1, . . . , T )

(10)

The variogram matrix can only be estimated if there is no asymptotic independence, i.e. the

graph must be connected. Using the estimate, the covariance matrix can be estimated as in

Equation 9. The inverse of this covariance matrix, Θ(r) = (Σ(r))−1, also known as the precision

matrix, determines the graph structure. It then holds for i, j ∈ V with i ̸= j and for any r ∈ V

Yi ⊥e Yj |YV \{i,j} ⇐⇒


Θ

(r)
ij = 0 if i, j ̸= r∑
l ̸=Θ

(r)
lj = 0 if i = r, j ̸= r,∑

l ̸=r Θ
(r)
il = 0 if j = r, i ̸= r.

(11)

Thus, the vertices i and j are not connected, i.e. conditionally independent, if there is a zero in

the (ij)th element of the precision matrix, given that the precision matrix is estimated with a

root node that is not equal to either node i or j. Alternatively, there is no connection between
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i and j if the sum of the row or column is equal to zero when one of them is equal to the root

node.

4.3.3 Graphs based on ℓ1-regularisation

When the graph is known and decomposable, the Hüsler-Reiss distribution can be estimated by

means of the likelihood of the cliques (Engelke and Hitz, 2020). However, such a graph structure

is mostly not known beforehand, especially in risk analysis of financial networks. In these net-

works, there is no explicit spatial structure between institutions. One way to estimate the graph

structure is by means of minimum spanning trees, as is done by Engelke and Hitz (2020). A

downside of the approach is that trees are somewhat simplistic structures and some information

may get lost due to this. In addition, this method becomes computationally expensive when the

data set is large (N > 40). Alternatively, a more general underlying structure can be learned in

a data-driven way.

To estimate a sparse graph, Engelke and Hitz (2020) suggest in their discussion to use graphical

lasso for extremes as an alternative to their block-wise estimation method. The approach would

be similar to graphical lasso of Friedman et al. (2008), however the main difference between

the two methods is that extremal graphical lasso makes use of empirical estimates of Γ and

Σ(r), whereas the original method makes use of the empirical covariance matrix of a multivariate

normal distribution.

With the empirical Σ̂(r) and Γ̂ of Equations 9 and 10, for some root node r ∈ V , extremal

graphical Lasso can be performed. For a tuning parameter ρ, this is equivalent to solving the

convex problem

Θ̂(r)
ρ = argmax

Θ⪰0
log(det(Θ))− tr(Σ̂(r)Θ)− ρ

∑
i ̸=j,i,j ̸=r

|Θij | . (12)

The optimisation is repeated N times, such that every vertex is once the root node. This will

result in N graphs structures for every value for ρ. The overall graph structure for each ρ can be

extracted from the extremal graphical lasso estimates by means of a majority vote, i.e. if there

is an edge between vertices i and j in the majority of the N graph estimates, this edge is also

present in the final graph structure. Mathematically this results in

(i, j) ∈ Êρ ⇐⇒ 1

N − 2
#{r ∈ V \{i, j} : (Θ̂(r)

ρ )ij ̸= 0} ≥ 1

2
. (13)

When the graph structure is discovered, the variogram matrix and covariance matrix can be

estimated as a second step. The optimal value for ρ is chosen by evaluating the graph for each
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ρ by means of the Bayesian Information Criterion (BIC). This model selection criterion has the

following formula

BIC = |E| · T − 2 · log(L) (14)

where |E| is the cardinality of the edges set, i.e. the number of edges in a graph, T is the number

of in-sample observations and L is the censored likelihood estimate of the graph

f(y,Γ) =
1

Λ(1,Γ)

T∏
i=1

λ (y,Γ) , (15)

where Λ(1,Γ) is the exponent measure and λ (y,Γ) the density of the exponent measure.

4.3.4 Graph evaluation

When a graph has been estimated, it is analysed in more depth such that portfolio decisions can

be made based on the graph. First of all, more or less sparse graphs are estimated as a result of

a varying parameter ρ. Where a higher value of ρ results in a more sparse graph. Having a graph

for every ρ, they can be compared based on their log likelihood to find the optimal graphical

structure and its corresponding tuning parameter.

Given the best graph, individual nodes are examined more closely. Popular measures for graphs

are closeness and degree centrality (Freeman, 1977). Closeness centrality is the sum of the short-

est distance in the graph, d(i, j), between node i and j measured through correlation (Mantegna,

1999). This distance can be retrieved by weighting the edges of the graph by their correlation.

The measure reflects the importance of node i relative to the others and can be computed as

Cc(i) =
N − 1∑N
i=1 d(i, j)

. (16)

A central asset is likely to have a short distance to all other assets. Since closeness centrality is

defined by the inverse of the distance between the assets multiplied by a constant, a central asset

has a relatively high closeness centrality level. In addition, degree centrality measures the number

of edges connected to a node, or the number of direct neighbours a node has. Mathematically

degree centrality is

Cd(i) =
deg(i)
N − 1

, (17)

where N − 1 normalises the degree. An asset that is connected to many other assets, i.e. its

degree centrality measure is relatively high, is characterised as a central asset. Assets that have

a high degree are more likely to have a shorter distance to all the other assets. Yet, the two

measures are both considered because not all information regarding centrality is captured in
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either. To find which assets are the most central and which are the least central, we create two

rankings of the assets based on the separate measures. Their final centrality rank is the average

of the previous two.

4.3.5 Robustness analysis

With the ℓ1-regularisation, a graph can be found for optimal ρ. For this value of ρ, the graph is

theoretically optimal, however this graph may not reflect what exactly happens in reality. The

optimal ρ is based on the BIC, which in general favours more parsimonious models over more

complex models. Yet, an edge between two assets may be important even if it is small and will

disappear with higher values of the regularisation parameter. Therefore, as a robustness analysis,

we will construct graphs with a higher and lower value of the regularisation parameter as well.

Evaluating these graphs gives us the opportunity to review whether central and non-central

assets are also categorised as such in more and less dense graphs. Furthermore, the performance

of the central and peripheral portfolios will be determined again and it is shown what impact on

performance is when the portfolio selection is based on non-optimal graphs.

4.4 Spherical k-means clustering

An alternative method to estimate the dependence between extreme observations, or rather

their independence, is k-means clustering. This machine learning method partitions data in a

predefined number k clusters where each asset is assigned to a cluster. The clusters can be seen

as subsets holding observations such that the observations in one subset are more similar to

each other than to observations in other subsets. For k-means clustering, the optimal solution

is found by minimising the distance between the observations Y = (y1, ...,yN )T and a set of

cluster centres or prototypes, P = {p1, ...,pk},

W (P, S) :=

∫
Rd

min
p∈P

d(y,p)S(dy) ∈ [0,∞], (18)

where S is a probability measure (Janßen and Wan, 2020). Often the squared Euclidean distance

is used for d(y,p), however when data is multivariate it can be interesting to incorporate the

angles between the observations such that more information regarding the data can be used.

As there are 72 assets in the data set for the empirical evaluation, we will continue with the

spherical k-means. This method finds clusters based on cosine dissimilarity and prototype-based

partitioning, and is therefore able to include these angles by means of

d(y,p) = 1− cos(y,p) = 1− ⟨y,p⟩
∥y∥∥p∥

. (19)
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It is also standard approach to standardise the observations when using empirical data when

using this method. Similar to the data used to estimate the graphs, the data is standardised

to have standard Pareto marginals. In addition, the data is normalised to one such that the

magnitude of the observations is less influential for the optimisation.

In the skmeans R-package, there are multiple built-in methods for computing the spherical

k-means partitions. In this research, the pclust method is used, which iterates between deter-

mining optimal memberships for fixed prototypes, and computing optimal prototypes for fixed

memberships. In addition, we make use of hard partitions, meaning that an asset can only belong

to one cluster at a time.

4.5 Portfolio formation

Now that we have explained two methods to identify the dependence structure of assets for

extreme values, a way to transform this information into portfolio selection is required. Below, it

is described how benchmark portfolios are formed. In addition, the portfolio formation methods

for graphical model and spherical k-means and their corresponding weights are explained.

4.5.1 Benchmark portfolios

To compare the portfolios based on complex models, two benchmark portfolios are formed with-

out making use of the information from the dependence structures of the assets. The first port-

folio is constructed by combining all 72 assets in an equally weighted portfolio. The choice for

a simple 1/N portfolio is that its out-of-sample Sharpe ratio outperforms various sample-based

mean-variance strategies (DeMiguel et al., 2009).

In addition, a second portfolio is created to have maximum diversification. Whereas Choueifaty

and Coignard (2008) find a maximum diversification portfolio as a result of establishing the

weights based on the diversification ratio (which is explained below in Section 4.6.1), here the

asset selection is based on this ratio together with the portfolio’s standard deviation of the

marginal risk contribution. The reason for this approach is that this portfolio is built to hold

24 assets with equal weights. Thus, the maximum diversification portfolio here does not seek

weights such that there is maximum diversification, but tries to find the combination of 24 assets

in an equally weighted portfolio that maximises diversification based on the two measures.

Testing all combinations of 24 out of the 72 assets entails evaluating 7.95E18 portfolios, which

is very computationally expensive. Therefore, the maximum diversification portfolio is approx-

imated by finding a combination of 24 assets out of 100,000 possible portfolios, which is most

diversified for in-sample data according to the measures described in Section 4.6.1. As a result,
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the most diversified portfolio is the combination of assets with the highest diversification ratio

and lowest standard deviation of the marginal risk contribution. To find this portfolio, we do a

double sort on these two measures as they may not be of the same magnitude. For the out-of-

sample evaluation, the 24 assets are again combined in an equally weighted portfolio. The assets

that make up this portfolio can be found in Appendix B.

4.5.2 Portfolio based on graphical model

Given the optimal graphical model, two portfolios containing assets based on their centrality are

constructed. For these portfolios, we need to specify the number of assets contained by them.

One condition of these portfolios is that one asset should not be simultaneously categorised as

central and non-central. Since the data consists of 72 assets, we choose that the number of assets

in the portfolios is 24. In this way, there are still assets that can be defined as neither central

nor non-central. In addition, there are also exactly 24 industry groups.

The first portfolio based on the graphical model, the central portfolio, contains assets that are

ranked the most central. This portfolio holds assets which are expected to have more dependence

in their extreme losses, and therefore, it may perform badly in times of financial distress. To

contrast the central portfolio, a peripheral portfolio is created from the assets that have the lowest

centrality scores. Onnela et al. (2002) find that combining companies from the peripherals leads

to a diversified portfolio. Both portfolios are evaluated for out-of-sample data with equal weights.

4.5.3 Portfolio based on spherical k-means

For the spherical k-means portfolio, first the number of clusters should be determined. Too few

clusters would entail that there can still be considerable differences between the assets in one

cluster. On the other hand, too many clusters may result in clusters that still depend on each

other when extreme values occur. To establish a suitable number of clusters, an elbow plot is

built which shows the minimum distance between the observations and the cluster centres for a

range of values of k.

Given a value of k, the assets in each cluster hold extremal dependencies. In order to create a

diversified portfolio, each cluster has a weight of 1
k , and the assets within a cluster hold equal

weights. To illustrate this, if assets are part of cluster k with a cardinality of |Ck| = Nk, the

weights of these assets equal 1
k · 1

Nk
.
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4.6 Portfolio evaluation technique

4.6.1 Portfolio diversification technique

Having a method that presumably produces diversified portfolios, we need to measure diversity

of the portfolios, to verify our assumptions. Two measures will be regarded, the diversification

ratio (DR) and the marginal risk contribution (MRC). The DR is the ratio of the weighted

average of volatilities divided by the portfolio volatility and was introduced by Choueifaty and

Coignard (2008). It measures how much the volatility decreases by building a portfolio instead

of holding separate assets. The measure is calculated as

DR(w) =

∑N
i=1wiσi
σp

, (20)

where wi is the weight in each asset i, σi is the standard deviation of each asset i in the portfolio

and σp is the volatility of the portfolio. A large value of DR implies a low portfolio volatility.

This means that it is enhances diversification by putting these assets together in a portfolio

instead of holding the assets separately. In addition, the MRC, ∂wσp, measures how much each

asset in the portfolio contributes to the total risk of the portfolio (Maillard et al., 2010). The

MRC is computed as follows

∂wσp =
∂σp
∂w

=
wiσ

2
i +

∑
j ̸=iwjσij

σp
, (21)

where σ2i is the variance of asset i and σij the covariance between assets i and j. A well-diversified

portfolio is one where all assets contribute to the same extent to the total risk. In the analysis,

the standard deviation of the marginal risk contributions is evaluated such that a low volatility

indicates a well-diversified portfolio.

4.6.2 Portfolio performance technique

In addition to their diversification level, the portfolios are evaluated regarding their performance.

The performance metric that is used to compare the portfolios is the Sharpe ratio (SR), which

can be interpreted as the portfolio return corrected for volatility. The SR is computed as follows

SR =
µexp
σp

∗
√
252 (22)

where µexp is the mean of daily excess return of the portfolio and σp is the standard deviation of

the daily gross returns. The Sharpe ratio is annualised by multiplying it with
√
252. A higher

SR can be due to high returns or low volatility. To break this down and find the source of a high
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SR, the portfolio mean and variance are also investigated separately. To evaluate whether the

Sharpe ratios of one portfolios is significantly higher than that of another portfolio, the Sharpe

ratios are tested. The null hypothesis is that the Sharpe ratio of one portfolio is equal to the

Sharpe ratio of another (Ledoit and Wolf, 2008). The test statistic is the difference between the

Sharpe ratios of two portfolios p1 and p2

∆̂ = ŜRp1 − ŜRp2 =
µ̂exp1
σ̂p1

−
µ̂exp2
σ̂p2

. (23)

Through the application of the Delta method, we can find convergence in distribution, namely

√
T (∆̂−∆)

d→ N
(
0,∇′f(v)Ψ∇f(v)

)
(24)

where ∇f(v) is a gradient. For a consistent estimator Ψ̂, of Ψ, we use a heteroskedasticity and

auto-correlation robust (HAC) kernel estimation. The kernel that is used here is the commonly

used Parzen kernel. HAC inferences are often liberal when applied to small to moderate sample

sizes (Ledoit and Wolf, 2008). However, here the Sharpe ratio is computed and tested for the

out-of-sample data which consists of 1010 observations, which we believe is sufficiently large.

The resulting standard errors, s(∆̂), for ∆̂ and the p-values are calculated as

s(∆̂) =

√
∇′f(v̂)Ψ̂∇f(v̂)

T
p̂ = 2Φ

(
− |∆̂|
s(∆̂)

)

where Φ(·) is the CDF of the standard normal distribution.

5 Results
In this section, the empirical results are discussed. First, the results of the graphical model

approach are elaborated on and it is investigated which assets will be part of the central and

peripheral portfolios. To estimate the graphs, the R package graphicalExtremes of Engelke

and Hitz (2020) is used. Thereafter, the portfolios based on the k-means clustering approach

is outlined. For the implementation of spherical k-means clustering, the R package skmeans

is utilised. The resulting portfolios are compared regarding the portfolios’ diversification and

performance for out-of-sample data.
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5.1 Generate i.i.d. data

To apply multivariate EVT, the assumption of independent and identically distributed data is

required. In order to be able to assume that the data is approximately i.i.d., the ARMA(1,1)-

GARCH(1,2) model was applied to the data as it had the lowest AIC score. An overview of

various ARMA-GARCH models and their AIC score are attached in Appendix C.

5.2 Graphical model based portfolio

After the i.i.d. data has been transformed to have Pareto margins following Equation 6, the

extremal conditional dependence between the assets can be estimated. For a threshold u equal

to 90% the number of observations for which at least one asset return exceeds this threshold

remains T = 2715. Thereafter the empirical variogram is estimated. For every root node k a

variogram matrix is estimated using data of the time points where the return of asset k exceeds

one. The empirical variogram matrix is calculated as the element-wise average of the k variogram

matrices.

The empirical variogram is then used in the graphical lasso method to estimate sparse graphs.

In Figure 2 the BIC of graphs for ρ = (0, 0.005, . . . , 0.050, 0.055) is presented. The figure shows

that an optimal graph has a ρ of around 0.050. This is the global minimum since for ρ much

larger than 0.055 the graph becomes disconnected and it is not possible to estimate a variogram

matrix anymore. In addition, the figure shows that a sparser graph does not necessarily entail a

better fit. This phenomenon highlights that some connections between nodes are essential to a

better fit. To get a more precise insight into which ρ is optimal, we zoom in and review a smaller

Figure 2: BIC results for a range of different values for tuning parameter ρ and the corresponding
number of edges of the graph.
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Figure 3: BIC results for specific values for tuning parameter ρ and the corresponding number of edges
of the graph.

range of ρ. These results can be seen in Figure 3. The latter figure shows that the optimal

value for ρ equals 0.053 with a BIC measure of 207904. The corresponding optimal graph has

176 edges and a figure of this graph can be found in Figure 4. The red and yellow vertices are

the central and peripheral assets respectively, the grey vertices do not belong to either of these

categories. As one edge connects two assets, on average one asset is connected with 4.88 other

assets. In this graph, the most central assets are connected with 10 other assets and the least

connected asset has 2 edges.

From the graph that is estimated with the optimal ρ, the closeness and degree centrality are

calculated. Recall that a central asset is likely to have a short distance to all other assets and

is expected to be connected to many other assets. Since the portfolios that are made contain

24 assets, Table 2, shows the central assets, ranked as 1-24, and the peripheral assets, ranked as

49-72, that will make up the central and peripheral portfolio respectively. The rank of the assets

is the result of the average of the rank of the closeness and degree centrality. In Appendix D,

the ranks of the two centrality measures are given separately. They are not exactly equivalent

to each other in terms of ranking the assets, but they do hold strong similarity. Of the 24 most

central assets, the two measures have 17 overlapping assets. This number is 16 out of 24 for the

peripheral assets. In addition, non of the assets that is characterised as a central asset is labelled

peripheral by the other measure and vice versa.

From Table 2 we learn that stocks that are found to be central are often part of the same industry.

Industries that have a lot of central stocks are the consumer staples, financial, materials and

utilities industry. In addition, all assets of the industry group telecommunication services are
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labelled as central. This result is quite surprising as these sectors provide services or goods

that are always in demand. Especially the consumer staples sector companies, a sector that is

characterised by relatively low volatile assets, are in the centre of the estimated graph. Thus,

we find that in times of crisis the returns of these generally low market beta assets are highly

dependent.

The industry pattern is not discernible for the set of peripheral stocks, in which 18 out of

the 24 industry groups is represented by at least one asset. Yet, the consumer discretionary

Figure 4: Optimal Hüsler-Reiss graphical model for 72 asset for ρ = 0.053, where the red and yellow
vertices indicate the central and peripheral assets respectively and the grey vertices are neither part of
the central nor of the peripheral portfolio.
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industry is represented by seven assets. This is also surprising since companies in this sector

are characterised by producing goods or offering services that are non-essential to enjoy basic

living conditions. These companies are cyclical, meaning that when the economy is growing,

they sell more products and services and if the economy is weakening, these companies sell fewer

Table 2: Lists of assets that are contained in the central and peripheral portfolios

Rank Central Size Industry Rank Peripheral Size Industry

1 (most central) MO L CST 49 CMCO S I

2 SHEN S CSE 50 JBSS S CST

3 BLK L F 51 NFLX L CSE

4 RJF M F 52 SPTN S CST

5 DUK L U 53 BBY M CD

6 IMGN S HC 54 RCL M CD

7 CASY M CST 55 LZB S CD

8 ADP L IT 56 ATEN S IT

9 CLX M CST 57 LUNG S HC

10 AGM S F 58 CAMT S IT

11 C L F 59 NKE L CD

12 LBTY.A M CSE 60 MTB M F

13 CF M M 61 EOG L E

14 MSEX S U 62 F L CD

15 BWA M CD 63 UDR M RE

16 DBI S CD 64 STE M HC

17 CTS S IT 65 BG M CST

18 CSX L I 66 MERC S M

19 USNA S CST 67 CSCO L IT

20 EL L CST 68 PKI M HC

21 FCX L M 69 XPOF S CD

22 SAFT S F 70 GOEV S CD

23 WRLD S F 71 TBI S I

24 T L CSE 72 (least central) AMAT L IT

Note: this table shows the 24 most central assets and the 24 least central assets for a Hüsler-Reiss graphical

model estimated with regularisation parameter ρ = 0.053. The ranking is the average ranking of the closeness

and degree centrality measures. In addition, the market capitalisation is given where S, M and L stand for

small, medium and large market cap. Abbreviations of the industry to which the companies belong are given

in the industry columns. The 11 industries with their abbreviation between parentheses are as follows: Energy

(E), Materials (M), Industrials (I), Consumer discretionary (CD), Consumer staples (CST), Health care (HC),

Financials (F), Information technology (IT), Communication services (CSE), Utilities (U) and Real estate (RE).
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products. Thus, when there occurs a shock in the market or a crisis, the returns of these assets

may represent the decreased demand for these goods and services. However, the returns of these

assets do not show this pattern here. In addition, almost half of the assets that make up this set

has a small market capitalisation whereas the distribution of small, medium and large market

capitalisation is more equally distributed for central stocks. From this we conclude that small

firms are often resilient in times when other assets show extreme losses.

5.3 Spherical k-means based portfolio

To create the spherical k-means portfolio, first the number of clusters must be established. Figure

5 shows an elbow plot for different values of k. The minimised average distance between the

observations and their cluster centre decreases while the number of centres increases. When the

number of clusters would be increased to k = 72, it would mean that each cluster holds exactly

one asset. In Figure 5, there is no distinct value for k such that adding another cluster would

decrease W (P, S) only slightly. Therefore, the analysis is executed for k = 10 and k = 24 and

the resulting clusters are compared.

Figure 5: Elbow plot for different values of k.

For k = 10 clusters, we can find which assets form the clusters. Based on the combination of

assets in a cluster, an underlying characteristic can be uncovered. Figure 6 shows how far the

assets are from the centres of the clusters, where the centres are normalised, such that the asset

that is closest to a centre has value 1 (white box) and assets that are far from a centre have value

0 (red box). Table 3 gives an overview of which asset belongs to which cluster. The assets in a

cluster are asymptotically independent of the assets in other clusters.

When reviewing these results, we see that there are four clusters which only contain one asset.
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Three of them hold an asset with a small market capitalisation. Furthermore, some clusters

are related to industry (groups). Cluster 2 contains three retailing assets, Cluster 8 contains

utilities and real estate assets and Cluster 9 can be characterised by the energy and materials

industry groups. Lastly, Cluster 10 is the largest cluster having a cardinality of 49. There may

still be some independence between the assets in this last cluster when extreme observations

Figure 6: Result for spherical k-means clustering for k = 10. Each row corresponds to a cluster centre.
The lightest colours resemble the assets with the largest value in their clusters.

Table 3: Overview of which asset belongs to which cluster for k = 10

Cluster Companies

1 USNA

2 DBI, COST, TGT

3 MSEX, VFC, SHEN

4 CAMT

5 IMAX

6 IMGN, LUNG

7 NFLX

8 MO, CLX, DUK, CNP, AIV, UDR

9 SFL, CF, EOG, FCX, MRO

10 WM , ATEN, XPOF, CASY, LBTY.A, JBSS, T, PLD, J, BG, ZBRA, NKE, LZB,

WRLD, SPTN, MERC, AMGN, SAFT, AGM, MRTN, BBY, MTB, TBI, GOEV, RCL,

BKNG, PFG, HUBS, SYK, CB, SWKS, CMCO, CTS, C, JBHT, BWA, DOV, CSX, EL,

STE, PKI, ADP, RJF, AMAT, CSCO, BLK, PARA, GE, F

Note: this table shows which asset belongs to which cluster when estimating the independence

structure of extreme returns for spherical k-means for k = 10. Assets that are in different clusters

are asymptotically independent from each other.
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occur. Therefore, we also execute the spherical k-means cluster approach for k = 24 and see

whether Cluster 10 can be divided in more clusters such that an underlying structure of the

assets becomes more apparent.

Figure 7 and Table 4 show which assets belong to which cluster for k = 24. Most clusters contain

only one asset. This means that these individual assets are asymptotically independent from

each other and other clusters containing more assets. Some underlying structure is uncovered

for the largest cluster of the previous estimation, however, Cluster 24 is still quite large with

a cardinality of 37. So, around half of all assets are asymptotically dependent on each other

when extreme observations occur. Furthermore, some clusters can be identified to represent an

industry group, suggesting that assets within an industry group are dependent on each other.

Cluster 17 represents the real estate industry group. Furthermore, two out of three assets in

Cluster 18 are from the utilities sector. Finally, there is again an energy and materials cluster

discernible, this time as Cluster 23.

The asymptotic independence between the clusters can be translated to the estimated graphs in

Section 5.2 in the sense that assets that are not in the same cluster should not be linked with an

Figure 7: Result for spherical k-means clustering for k = 24. Each row corresponds to a cluster centre.
The lightest colours resemble the assets with the largest value in their clusters.
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Table 4: Overview of which asset belongs to which cluster for k = 24

Cluster Companies

1 COST

2 LZB

3 CASY

4 LUNG

5 IMGN

6 NKE

7 USNA

8 JBSS

9 NFLX

10 LBTY.A

11 TGT, AMAT, CSCO

12 RCL

13 IMAX

14 BBY, CLX

15 SPTN

16 MSEX, SHEN

17 PLD, AIV, UDR

18 CNP, MO, DUK

19 WRLD

20 AGM

21 CAMT

22 BG

23 SFL, CF, FCX, EOG, MRO

24 HUBS, PFG, XPOF, BKNG, JBHT, ATEN, SAFT, TBI, DBI, F, J, MERC, VFC,

GE, T, WM, SYK, GOEV, SWKS, AMGN, MTB, CTS, MRTN, C, CMCO, PKI,

BWA, ADP, CB, ZBRA, CSX, PARA, BLK, RJF, EL, DOV, STE

Note: this table shows which asset belongs to which cluster when estimating the independence

structure of extreme returns for spherical k-means for k = 24. Assets that are in different clusters

are asymptotically independent from each other.

edge. However, this cannot hold for all assets since a graph would then disconnect and consist of

separate cliques only and that is why an assumption of the graphical model is that not all assets

are asymptotically independent. In that sense, the spherical k-means approach is more resolute

in claiming dependence between assets.

The independence structures as a result of graphical lasso and spherical k-means overlap to a
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certain extent. We would expect that the peripheral assets in the graph are similar to the assets

in the smaller clusters. Yet, only five assets that are in the periphery of the graph are contained in

clusters other than Cluster 10 when estimating for 10 clusters. This increases when the number

of clusters increases, namely there are 14 assets in the peripheral portfolio that are not in the

largest cluster when estimating spherical k-means clustering for k = 24.

5.4 Portfolio diversification

Now that we know what the portfolios are, it is possible to measure how diverse they are.

In the previous sections, diversification is enhanced by selecting assets that are conditionally or

asymptotically independent from each other when extreme values occur. In addition, we assumed

equally weighted portfolios, which also strengthens the diversification of a portfolio. Now, the

diversification of the portfolios is investigated explicitly by measuring the diversification ratio

(DR) and the standard deviation of the marginal risk contribution (MRC) which were introduced

in Section 4.6.1.

Table 5: Diversification measures of the portfolios

Central Peripheral Skmeans 10 Skmeans 24
Equally

weighted

Maximum

diversification

DR 1.637 1.573 1.794 1.754 1.632 1.653

Std. MRC 0.017 0.013 0.028 0.019 0.004 0.012

Note: here the diversification ratio and standard deviation of the marginal risk contribution of the

assets are given. These measures are estimated using daily out-of-sample returns of the assets that

are contained in the various portfolios.

Table 5 presents the results of these measures. For the DR, the spherical k-means portfolios

give the most diversified result. So, the increase in diversification as a result of combining the

assets in a portfolio is largest for these portfolios. In addition, the peripheral portfolio shows

lowest DR. This may be due to the volatility of the individual assets that are contained in this

portfolio being rather low themselves. The MRC measures that risk is most equally distributed

for the benchmark portfolios. Thereafter, the peripheral portfolio has lowest standard deviation

of MRC. To illustrate this measure in more detail, Figure 8 gives the relative risk of each asset in

percentages for the most and least diverse portfolios, the equally weighted and spherical k-means

for k = 10 portfolios, respectively.
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(a) Equally weighted portfolio (b) Spherical 10-means portfolio

Figure 8: Marginal risk contribution in percentages of the assets in the equally weighted portfolio of all
72 assets and spherical 10-means portfolio

The figure above shows that the risk contributions of each asset in the equally weighted portfolio

are almost all in the range of 0%-4% which is as expected with an equally weighted portfolio

of all assets as the weights in each asset is approximately 1.4%. On the other hand, Figure 8b

shows that one asset makes up for almost 15% of the risk of the whole portfolio whereas another

contributes less than 1%. This is the result of the weights of the assets not being equal, assets

with higher weights will have a relatively higher contribution to the total risk of the portfolio.

A high volatility of the MRC is not desirable for diversification because the portfolio’s risk may

be impacted considerably by a shift in only one or some of the asset returns.

5.5 Portfolio performance

In addition to the portfolios’ diversities, it is also interesting to review how they perform. To

evaluate their performance, the Sharpe ratio for the out-of-sample period is calculated. The

portfolio returns are computed as the asset returns of the portfolio times the weights of that

portfolio. Below in Table 6, the results for the different portfolios are shown.

Taken generally, the portfolios with high excess portfolio return also show relatively high vari-

ance and vice versa, so expected higher returns are associated with higher risk. Except for the

maximum diversification portfolio, which has highest average excess return and lowest portfo-

lio volatility. The runner up regarding Sharpe ratio is the portfolio of peripheral assets. This

portfolio holds a lot of small market capitalisation assets and these assets often show higher

returns than larger firms according to the asset pricing anomaly. To take these numbers into

perspective, a good annual Sharpe ratio is around 1, so the portfolios are not considered very

good investments. In addition, we test whether the Sharpe ratio of, for example, the maximum
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Table 6: Performance for the different portfolios

Central Peripheral Skmeans 10 Skmeans 24
Equally

weighted

Maximum

diversification

µex
p 0.024 0.043 0.031 0.038 0.036 0.047

σp 1.533 1.558 1.582 1.469 1.476 1.458

SR 0.244 0.435 0.308 0.413 0.387 0.511

Note: the table shows the daily mean of the excess returns and the standard deviation of gross returns.

In addition, this table presents the annual Sharpe ratio for the out-of-sample data of each portfolio.

The mean of the excess returns is in percentages, so the central asset has an average daily excess return

of 0.024%.

diversification portfolio is significantly higher than the ratio of the central assets portfolio. It is

found that non of the portfolios significantly outperform another in terms of Sharpe ratio as the

p-values of all tests are all rather large. The exact results can be found in Appendix E.

5.6 Robustness of graphical model

In the previous, the portfolio selection method is executed for the graph with optimal ρ∗. How-

ever, this graph is optimal given that the model assumption is correct. Therefore, we review

other values for ρ to find whether the central and peripheral assets are still the same for more or

less dense graphs. In addition, the performance of these graphs is evaluated and compared to the

graph for optimal ρ∗. Below in Figure 9, the estimated graphs for ρ = 0.045 and ρ = 0.057 are

shown. Again the yellow vertices represent the peripheral assets, the central assets are red and

the assets that do not belong to either of these sets are labelled grey. The graph for ρ = 0.045

is denser with 261 edges, whereas the graph for ρ = 0.057 only has 138 edges.
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(a) Graph for ρ = 0.045 (b) Graph for ρ = 0.057

Figure 9: Hüsler-Reiss graphical model for different values for ρ

The resulting central and peripheral portfolios for the different graphs overlap considerably with

the graph found with the optimal ρ. In Table 7, there is an overview of the assets that belong

to each category. The assets are ordered in such a way that their overlap is more clear and not

ranked as in previous tables. All central portfolios hold the first 13 assets on the left side of

this table. In addition, the central assets as a result of the regularisation parameter equal to

0.045 and 0.057 have two and five additional overlapping assets respectively. For the peripheral

portfolio the first 12 assets overlap for the three graphs. Moreover, the portfolio with optimal

ρ∗ has 15 assets in common with the graph estimated with ρ = 0.045 and 18 mutual assets with

the model estimated with ρ = 0.057.

Yet, moving from a dense to a more sparse graph can also mean that central assets become

peripheral because these assets lose connections in sparser graphs. This is the case for assets

LUNG, RCL and STE which are in the central portfolio for ρ = 0.045 and in the peripheral

portfolio for optimal ρ∗. In contrast, the relative centrality of an asset can increase when a graph

becomes sparser because other assets become less central. This is true for the asset T, which is

in the periphery for the lower value for ρ and is contained in the central portfolio for optimal ρ∗

and ρ = 0.057

Moving on to the performance of the portfolios that result from the less and more sparse graphs,
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Table 7: Overview of assets in the central and peripheral portfolio for various graphs based on different
values for regularisation parameter ρ

Central portfolio Peripheral portfolio

ρ∗ = 0.053 ρ = 0.045 ρ = 0.057 ρ∗ = 0.053 ρ = 0.045 ρ = 0.057

1 ADP ADP ADP AMAT AMAT AMAT

2 AGM AGM AGM ATEN ATEN ATEN

3 BLK BLK BLK BG BG BG

4 BWA BWA BWA CSCO CSCO CSCO

5 CASY CASY CASY EOG EOG EOG

6 CLX CLX CLX F F F

7 DBI DBI DBI GOEV GOEV GOEV

8 DUK DUK DUK MERC MERC MERC

9 MO MO MO MTB MTB MTB

10 MSEX MSEX MSEX NKE NKE NKE

11 SHEN SHEN SHEN TBI TBI TBI

12 USNA USNA USNA XPOF XPOF XPOF

13 WRLD WRLD WRLD BBY BBY BKNG

14 IMGN IMGN AMGN NFLX NFLX DOV

15 LBTY.A LBTY.A CNP UDR UDR IMAX

16 C AMGN C CMCO BKNG CMCO

17 CSX CB CSX JBSS SWKS JBSS

18 FCX COST FCX LZB MRO LZB

19 SAFT DOV SAFT PKI GE PKI

20 T IMAX T RCL T RCL

21 CF LUNG COST STE TGT STE

22 CTS RCL GE CAMT AIV PARA

23 EL STE MRO LUNG CNP SFL

24 RJF WM PLD SPTN SFL ZBRA

Note: this table shows the assets that are contained in the central and peripheral portfolios for

values of the regularisation parameter equal to ρ = 0.045 and ρ = 0.057 in the graphical lasso

estimate in addition to the theoretically optimal value for ρ∗. Assets are not ranked as in previous

tables, to highlight the overlap the portfolios have.

the daily excess mean and standard deviation together with the yearly Sharpe ratio of the three

central and three peripheral portfolios are given in Table 8. This table shows that the Sharpe

ratios of the portfolios for various values of the regularisation parameter differ somewhat, yet

there are no large differences. For the sake of completeness, it is tested whether the Sharpe ratios

are significantly different with the test from Section 4.6.2. We find that there is no portfolio
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Table 8: Performance of the central and peripheral portfolios that result from less and more dense
graphs

Central Peripheral

ρ∗ = 0.053 ρ = 0.045 ρ = 0.057 ρ∗ = 0.053 ρ = 0.045 ρ = 0.057

µex
p 0.024 0.027 0.024 0.043 0.027 0.032

σp 1.533 1.434 1.479 1.558 1.543 1.653

SR 0.244 0.301 0.261 0.435 0.281 0.309

Note: the table shows the daily mean of the excess returns and the standard deviation of gross

returns. In addition, this table presents the annual Sharpe ratio for the out-of-sample data

of the central and peripheral portfolios with various values for the regularisation parameter.

The mean of the excess returns is in percentages, so the central asset has an average daily

excess return of 0.024%.

that significantly outperforms the other based on Sharpe ratio. Thus, when the regularisation

parameter is slightly different, this does not have a large impact on the performance of the

resulting portfolios. For the exact results, see Appendix E.

6 Conclusion
To summarise, in this paper, two data-driven methods to evaluate the dependence structures for

extreme asset losses have been examined. Firstly, we have investigated a graphical model based

on ℓ1-regularisation and found the optimal graphical dependence between the assets. Secondly,

the independence structure of the assets was found with the spherical k-means approach. The

methods were the foundation for the asset selection to build a well-diversified portfolio.

We have found that the underlying independence structures of both approaches are related to

the GICS industry (group) categorisation to some extent. Assets from the same industry (group)

were found to be closely connected in the graphical model and they were also observed to form

clusters. In addition, the assets that were estimated to have low conditional dependence or those

that are asymptotically independent of each other as a result of graphical lasso and spherical k-

means overlap moderately. Namely, of the peripheral assets, five assets formed one-asset-clusters

for the spherical 10-means estimation, for the spherical 24-means estimation this number is 14.

Furthermore, we have found that the distribution of marginal risk contribution of the peripheral

portfolio is rather good compared to the maximum diversification portfolio, which is constructed

to optimise the diversification measures. On the other hand, although the spherical k-means

portfolios have high diversification benefits from combining the assets in a portfolio, the risk
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coming from the assets is not very equally distributed. This is due to the fact that these portfolios

do not hold equal weights among the assets it holds.

Regarding out-of-sample performance, the portfolios do not have a very high Sharpe ratio.

Among the data-driven portfolios, the peripheral portfolio shows the best Sharpe ratio, how-

ever it is not statistically different from the other ratios. So, we cannot say that it outperforms

the other portfolios concerning this measure.

In addition, when the graphical model is not evaluated with the optimal value for the regulari-

sation parameter, it has been shown that the central and peripheral portfolios of more and less

dense graphs still hold the majority of assets that is held by the portfolios that follow from the

graph with optimal ρ. The changes that do result from the other estimates do not influence the

performance of the portfolios significantly. Therefore, we conclude that asset selection based on

graphical models is robust regarding the specification of the regularisation parameter.

The research is limited regarding two aspects. Firstly, the data consists only of 72 companies,

whereas a real-world investor would have a much wider range of assets to invest in to diversify

their portfolio, including alternative investment opportunities than stocks. However, including

many more will make the empirical analysis more time consuming. In addition, all companies are

US originated and therefore may have higher dependencies, moreover no foreign assets were used

to diversify. The methods that are used may be susceptive to changes in the data, so switching

some companies with new data will result in different graphical structures and clusters and this

may produce different asset selection decisions.

Secondly, the asset selection procedures are based on extreme values, however for the portfolio

evaluation, also non-extreme data is included since real-life data does not only exist of extreme

data. The reason for doing it in this way, is that investors do not know when a crisis will occur

and thus they cannot switch beforehand to a portfolio that is resilient in turbulent times. A way

to encompass this may be to use an extreme observations indicator that signals when to use a

strategy for extremes and when to work with another investment strategy that works well during

non-extreme times.

Topics of further research may include tackling these challenges. For example, one may execute a

robustness analysis on the assets that are included in the data set and how the portfolio changes

when certain assets are left out of the data set. Moreover, a direction of further research may

be to find more dependency structure in the large clusters that remain after spherical k-means

clustering, such that the weights in this large cluster can be sustained on something else than

equal weights. For example, by only applying this method to the assets that are in this cluster.
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Now the cardinality of the large clusters implies that a lot of assets are driven by the same risk

factor when extremes occur. Another way to find more structure in these clusters is thus to find

these risk factors and correct for them in the returns filtering process.
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A Company information

Table 9: Overview of industries, industry groups and companies used for estimation together with their
market capitalisation and stock symbol (ticker)

Sector Industry group Company Market cap ($B) Ticker

Energy Energy

EOG Resources, Inc. 72.3 EOG

Marathon Oil Corporation 19.1 MRO

SFL Corporation Ltd. 1.3 SFL

Materials Materials

Freeport-McMoRan Inc. 71.9 FCX

CF Industries Holdings, Inc. 22.8 CF

Mercer International Inc. 1.1 MERC

Industrials

Capital Goods

General Electric Company 100.0 GE

Dover Corporation 20.8 DOV

Columbus McKinnon Corporation 1.1 CMCO

Commercial &

Professional

Services

Waste Management 66.3 WM

Jacobs Engineering Group Inc. 18.5 J

TrueBlue, Inc. 1.1 TBI

Transport

CSX Corporation 76.0 CSX

J.B. Hunt Transport Services, Inc. 18.0 JBHT

Marten Transport, Ltd. 1.4 MRTN

Consumer

Discretionary

Automobiles &

Components

Ford Motor Company 62.3 F

BorgWarner Inc. 9.3 BWA

Canoo Inc. 1.2 GOEV

Consumer

Durables &

Apparel

Nike, Inc. 174.2 NKE

V.F. Corporation 22.0 VFC

La-Z-Boy Incorporated 1.2 LZB

Consumer

Services

Booking Holdings Inc. 91.6 BKNG

Royal Caribbean Cruises Ltd. 20.9 RCL

Xponential Fitness, Inc 1.1 XPOF

Retailing

Target Corporation 108.1 TGT

Best Buy Co. 21.4 BBY

Designer Brands Inc. 1.1 DBI

Consumer

Staples

Food &

Staples

Retailing

Costco Wholesale Corporation 201.5 COST

Casey’s General Stores, Inc. 7.9 CASY

SpartanNash Company 1.2 SPTN

Food,

Beverages &

Tabacco

Altria Group, Inc. 99.3 MO

Bunge Limited 17.3 BG

John B. Sanfilippo & Son, Inc. 1.0 JBSS

Household &

Personal

Products

The Estée Lauder Companies Inc. 95.6 EL
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The Clorox Company 17.9 CLX

e.l.f. Beauty, Inc. 1.3 ELF

Health Care

Health Care

Equipment &

Services

Stryker Corporation 102.0 SYK

STERIS plc 25.0 STE

Pulmonx Corporation 1.0 LUNG

Pharmaceuticals,

Biotechnology &

Life Sciences

Amgen 136.4 AMGN

PerkinElmer, Inc. 20.1 PKI

ImmunoGen, Inc. 1.1 IMGN

Financials

Banks

Citigroup Inc. 98.9 C

M&T Bank Corporation 20.6 MTB

Federal Agricultural

Mortgage Corporation
1.2 AGM

Diversified

Financials

BlackRock, Inc. 108.6 BLK

Raymond James Financial, Inc. 22.8 RJF

World Acceptance Corporation 1.2 WRLD

Insurance

Chubb Limited 90.2 CB

Principal Financial Group, Inc. 19.3 PFG

Safety Insurance Group, Inc. 1.3 SAFT

Information

Technology

Software &

Services

Automatic Data Processing 96.7 ADP

HubSpot, Inc. 22.1 HUBS

A10 Networks, Inc. 1.0 ATEN

Technology

Hardware &

Equipment

Cisco Systems, Inc. 216.6 CSCO

Zebra Technologies Corporation 20.1 ZBRA

CTS Corporation 1.1 CTS

Semiconducters &

Semiconductor

Equipment

Applied Materials, Inc. 103.2 AMAT

Skyworks Solutions, Inc. 19.8 SWKS

Camtek Ltd. 1.3 CAMT

Communication

Services

Telecommunication

Services

AT&T 139.1 T

Liberty Global plc 13.5 LBTY.A

Shenandoah Telecommunications 1.1 SHEN

Media &

Entertainment

Netflix, Inc. 96.9 NFLX

Paramount Global 21.1 PARA

IMAX Corporation 1.0 IMAX

Utilities Utilities

Duke Energy Corporation 88.6 DUK

CenterPoint Energy, Inc. 20.3 CNP

Middlesex Water Company 1.7 MSEX

Real Estate Real Estate

Prologis, Inc. 124.2 PLD

UDR, Inc. 19.6 UDR
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Apartment Investment and

Management Company
1.0 AIV

Note: Overview of the 72 American companies which asset returns are used for the empirical analysis.

They are selected such that there are three companies from each industry group. One with small

(around 1$B), one with medium (around 20$B) and one with large (around 100$B) market

capitalisation. The last column shows the ticker symbols, these abbreviation are used throughout

the paper to refer to the companies.

B Assets in the maximum diversification portfolio

Table 10: Assets that are in the maximum diversification portfolio

ADP CAMT GE JBSS NFLX STE

AMGN COST HUBS LUNG PFG SWKS

BBY CSX IMAX MRO PKI USNA

BLK EL IMGN MTB SPTN XPOF

Note: The assets of the maximum diversification portfolio are found through finding the portfolio that

performs best regarding the diversification ratio and the volatility of marginal risk distribution among

100,000 unique random combinations of 24 assets.
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C ARMA-GARCH result

Table 11: Overview of fit for various (p,q)ARMA-(r,s)GARCH models based on the total AIC, the best
fit is in bold

p q r s AIC

0 0 1 1 287.867

0 1 1 1 287.760

1 0 1 1 287.766

1 1 1 1 287.725

0 0 1 2 287.852

0 1 1 2 287.748

1 0 1 2 287.753

1 1 1 2 287.714

0 0 2 1 287.915

0 1 2 1 287.808

1 0 2 1 287.814

1 1 2 1 287.775

0 0 2 2 287.893

0 1 2 2 287.787

1 0 2 2 287.792

1 1 2 2 287.754

Note: in order to transform the in-sample asset returns into approximately i.i.d. returns, an (p,q)ARMA-

(r,s)GARCH model is used. To find the best fit, various models with different values for the parameters

are tested and evaluated regarding their AIC score.
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D Centrality measures

Table 12: Separate results of the closeness and degree centrality measures of the graphical model for
optimal ρ

Rank Closeness Degree Rank Closeness Degree

1 (most central) MO MO 49 HUBS BBY

2 SHEN DUK 50 F MRTN

3 AGM SHEN 51 IMAX DOV

4 CASY RJF 52 MERC SFL

5 BLK BLK 53 LUNG EOG

6 IMGN C 54 JBSS UDR

7 CLX FCX 55 AIV CAMT

8 RJF LBTY.A 56 PLD CSCO

9 ADP ADP 57 MTB MTB

10 USNA IMGN 58 CAMT PKI

11 CF CLX 59 VFC LUNG

12 EL CASY 60 BBY STE

13 DUK DBI 61 EOG BG

14 CTS BWA 62 BG SPTN

15 SWKS CSX 63 STE XPOF

16 MSEX CF 64 NFLX RCL

17 LBTY.A MSEX 65 ATEN NKE

18 C PFG 66 UDR GOEV

19 SAFT WRLD 67 XPOF F

20 COST AGM 68 TBI CMCO

21 BWA TGT 69 GOEV AMAT

22 CB JBHT 70 PKI LZB

23 DBI MRO 71 CSCO TBI

24 T T 72 (least central) AMAT MERC

Note: to select the assets that belong to the peripheral and central portfolio, the assets are ranked

according to their closeness and degree centrality. This table shows the separate rankings of the two

measures. On the left side of the table, the assets are shown that are most central according to the

measures. On the right side the least central assets are ranked according to their closeness and degree

centrality.
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E Significance tests of the portfolios’ Sharpe ratios

Table 13: p-values of the significance tests for portfolios’ Sharpe ratios

Central Peripheral Skmeans 10 Skmeans 24
Equally

weighted

Maximum

diversification

Central -

Peripheral 0.301 -

Skmeans 10 0.733 0.483 -

Skmeans 24 0.252 0.864 0.395 -

Equally

weighted
0.209 0.619 0.622 0.807 -

Maximum

diversification
0.195 0.607 0.179 0.477 0.401 -

Note: this table represents the p-values of the test that find whether the out-of-sample Sharpe ratios of

the portfolios are significantly different from each other. The p-values are found using HAC inference

with Parzen kernel.

Table 14: p-values of the significance tests for Sharpe ratios of the portfolios resulting from the robustness
analysis

Central Peripheral

ρ∗ = 0.053 ρ = 0.045 ρ = 0.057 ρ∗ = 0.053 ρ = 0.045 ρ = 0.057

Central

ρ∗ = 0.053 -

ρ = 0.045 0.301 -

ρ = 0.057 0.733 0.483 -

Peripheral

ρ∗ = 0.053 0.252 0.864 0.395 -

ρ = 0.045 0.209 0.619 0.622 0.807 -

ρ = 0.057 0.195 0.607 0.179 0.477 0.401 -

Note: this table represents the p-values of the test that find whether the out-of-sample Sharpe ratios of

the central and peripheral portfolios for different values of ρ are significantly different from each other.

The p-values are found using HAC inference with Parzen kernel.
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