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Abstract

The goal of this thesis is to check whether PostNL’s current truck loading rules are as efficient

as possible. And if not, whether these rules could be optimized by a mathematical-based al-

gorithm. The optimization problem can be seen as a multi-commodity network flow (MCNF)

with transport schedules and production times of the trolleys to be transported at each sort-

ing centre. In this paper, two possible methods for solving this optimization problem are

discussed. The problem is constructed as an Integer Linear Problem (ILP) and is solved by a

commercial solver as Gurobi. To deal with many variables, a Column Generation method has

been developed for which a Dantzig-Wolfe decomposition is used. For this last decomposition

method, the mathematical model is rewritten into a block-angular structure of the ILP that

often comes with MCNF problems. Finally, the mathematical algorithm is tested by com-

paring the results with the current truck loading rules. Results show that when the number

of variables is too large, the original ILP could not be solved by a complex solver like Gurobi.

However, the Column Generation algorithm with Dantzig-Wolfe as a decomposition method,

lends itself perfectly to solving an MCNF. To speed up the computational time of solving

the several optimization problems that comes along with the column generation algorithm,

a suitable solver like Gurobi is recommended. Due to the column generation algorithm, the

running time is decreased.

Keywords: Multi-commodity, Network Flow Optimization, Integer Linear Programming,

Gurobi, Column Generation, Dantzig-Wolfe decomposition
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1 Introduction

This research is motivated by the need to solve the truck loading and transportation problems

arising in the delivery process of PostNL. Due to the imbalance in the arrival and departure

times of trucks and the production times of the to be transported parcel, the problem of

assigning parcels to suitable transport has to be solved. When loading the parcel into trucks

optimally and satisfying transportation schedules and corresponding truck capacity, as many

packages could be delivered in time at the correct address.

In this thesis, the Truck Loading and Scheduling (TLS) problem is addressed, which is pre-

sented by PostNL. PostNL is the largest universal delivery company in The Netherlands and

is also publicly listed at Euronext.

Due to the increase in online orders nowadays, on an average day, around 1 million parcels are

sent through PostNL’s parcel delivery chain. These parcels have to be sorted and delivered

within 24 hours. That means that around 1 million parcels go into and out of the delivery

chain of PostNL.

Due to this rise it is more and more important that PostNL keeps one’s head above water

when it comes about parcel delivery. The overload of packages must be accommodated by a

precisely optimized process for transporting parcels.

Simplified, this parcel delivery chain exists of a collection of parcels to be sent, a first sorting

process at a local depot followed by the first transport to a central stationed depot called

a ’crossdock’, and a second transport to the destination depot. Here the second sorting is

started followed by a local postman picking up all of the parcels to deliver. With a total of

25 depots, 5 crossdocks and an average of 1 million packages to deliver every day, one can

imagine that this process must be carried out conscientiously.

The PostNL process for the transportation of parcels will be explained further in section

2. The focus of this paper will be to optimize a part of the total delivery chain. By perfectly

loading the trucks with trolleys of pre-sorted parcels, the first and second transportation

schedules could be used as efficiently as possible. To make sure that for both the first trans-

port and the second transport each trolley is assigned to a truck in the best way possible,

an optimization programming tool based on a mathematical model has to be constructed.

To construct this, PostNL provides data of one day of the to be transported trolleys and the
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transport schedules of the trucks driving that same day. With these two datasets a network

will be made, where nodes correspond to arriving trolleys that need to be transported and

arcs correspond to the truck movements belonging to the given transport schedules. Finally,

by optimizing this network, an obtained solution will show which trolley should be trans-

ported by which truck while satisfying the transport schedules in order to deliver as many

trolleys as possible to the right destination depot in time.

This problem is considered as a Multi-Commodity Network Flow (MCNF) problem. To

solve this problem, a well-known linear solver will be used and an algorithm based on a Col-

umn Generation method including a Dantzig-Wolfe decomposition method will be developed.

From the suggested research approaches, I hope some valuable insights can be learned. For

example, which trolleys can be delivered successfully and which not? Also, how far away are

the current load-and-unload rules from the optimum? Could PostNL decrease the number of

used trucks? Probably the most valuable question and therefore the main question that will

be answered is: ’Is a mathematical-based algorithm the best way to determine the loading

rules?’ The goal is to improve the current loading rules by 10%.

I expect all of the methods to provide feasible solutions within an acceptable computation

time. Therefore, all methods could be used for the planning purposes of PostNL. However,

it may be possible that one specific method is the most ideal for PostNL’s purposes. In

this MCNF problem consisting of many constraints, the Column Generation methodology is

expected to be the best working algorithm.

The remainder of this report is organized as follows: A detailed problem description can

be found in Chapter 2. Chapter 3 gives an overview of used literature which laid the basis

for how the algorithm has been built. Chapter 4 contains a description and short analysis of

the provided data. The Integer Linear Program (ILP) is explained in Chapter 5. To improve

the results obtained in 5, using a small example, Column Generation as a solution technique

for solving the MCNF problem is given in Chapter 6. For this solution technique, a Dantzig-

Wolfe decomposition is created later on in this section. Chapter 7 shows the results of the

research and the used algorithms and conclusions can be found in Chapter 8.
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2 Problem Description

The PostNL process for transporting parcels from webshops to consumers, the other way

around, or any parcel that has to be transported, is subdivided into separate processes that

can be studied and optimized more or less independently. These processes are: collection,

first sorting at a local depot (to level of rough destination area), transport through a so-called

crossdocking depot, second sorting at a depot (to consumer addresses) and distribution from

second sorting center to consumer. As mentioned before in the Introduction, we will look at

a specific part of the total delivery chain. This part is called the inter transport.

Each day a different amount of parcel arrives at a depot. On an average day, all depots

combined have 1 million parcels to be sorted at the first sorting. By smart machines and

people these parcels are sorted and dropped into a trolley with a specific final destination

combined with a priority dependent letter and a shift number. The time a trolley is ready

for the first transport is known. These trolleys need to be assigned smartly to trucks with

the right destination depot within the right shift to satisfy the final destination in the end of

the transport. These trucks drive pre-known routes from a depot to a other depot, usually

a so-called crossdock, with a pre-known departure and arrival time. The frequency a given

route is used depends on the transport planning for that day. The number of trucks that

drives the pre-known routes is given in a transport schedule, as are the departure times per

depot. A transportation by a truck will be called a truck movement. This truck movement

has to be done according a strict time-scheme because of the time-dependence deadline of

each trolley. Arriving at the destination of the truck after the first movement, the truck has

to be unloaded after which these trolleys will be given to the next truck to complete the

second truck movement. It is not important to know whether these are the same trucks or

not. The two truck movements of above we will call inter transport 1 and 2 respectively.

The routes that will be driven by these trucks and the departure times are again most im-

portant and known. It is not only the case that a trolley uses just two truck movements.

Sometimes it is better for a trolley to be routed from one crossdocks to another crossdock

in order to be delivered in time at the destination. In this case a trolley did make use of

three different truck movements. After assigning the trolleys to trucks in the same way as for

the first truck movement, the second truck movement will be started followed by the third

truck movement in some cases. After completing the last movement, which leads the trolley

to the correct destination depot, the trucks will be unloaded and the transportation of the
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trolley is finished. The transportation process as above mentioned, is illustrated in Figure

2 below. In this figure, the two grey colored blocks represent the collection process before

the inter transport and the distribution process after the inter transport. The arrows stand

for the truck movements and the different colored trolleys represent trolleys with different

destinations.

To be sure the inter transport processes are connected and the concerned trolleys arrive

in time at the final destination, the assigning procedure has to be considered precisely. To

complete this exercise completely the question ‘Which trolley has to be assigned to which

truck?’ has to be answered at the beginning of both transports. A loading schedule must

be developed for perfectly assigning the trolleys to the trucks, in such a way that all time

constraints, capacity constraints and priority rules are taken into account for both trucks and

trolleys. In the end, all of trolleys have to be assigned to trucks in order to arrive in time at

the final destination depot. Also, we may find out that the amount of used trucks is not ideal

for the company’s current delivery process. In that case we might have to add transports or

better in terms sustainability, we may cancel some truck movements. To succeed in solving

the above problem a mathematical model will be created and optimized.

Figure 2: PostNL’s inter transport process
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3 Literature Study

Over the last few decades, an increasing amount of studies have been conducted on logistic

transportation network systems. This is largely due to the huge impact transport has on

the greenhouse emissions and consequently on climate change (Bauer et al. (2010)). Also

because of the huge raise of online orders our local postal delivery companies need to work

more efficiently every day.

A problem that looks at some points similar to the Truck Loading and Scheduling problem is

the Freight Car Flow problem. This problem deals with determining an optimal flow of empty

and loaded cars in order to maximize profit. Fukasawa et al. (2002) solve this problem given a

fixed train schedule with corresponding train capacities while meeting the required demands.

They succeed in solving this problem to optimality using an integer multi-commodity flow

model and its LP relaxation results in very good upper bounds. This gives rise to applying

such a model representation of Fukasawa et al. (2002) to our alike problem. One of the first

models that appeared for the Multi-Commodity Network Flow problem, in which multiple

commodities need to be transported from source nodes to sink nodes by using arcs while

satisfying capacity constraints, is the linear programming model of Ford1958AFLOW. In

the remainder of this section we review the literature considering the network flow problem

that contributes to our research.

3.1 Multi-Commodity Network Flow problem

Ford and Fulkerson introduced the Multi-Commodity Network Flow problem in the late

fifties, Ford1958AFLOW. Ford and Fulkerson have seen the importance of looking at the

structure of maximal multi-commodity flows in networks. They recognize the loss of com-

binatorial features when looking at multi commodities compared to the single commodity

problem.

Although the MCNF is known as one of the most difficult problems yet in network opti-

mization, it is considered a very efficient model in network design. Because the MCNF

problem is defined over a network where more than one commodity needs to be transported

from source nodes to sink nodes by using arcs while satisfying capacity constraints of these

so-called transportation arcs, this MCNF model appears often in logistic applications. For

example, Rungwanichsu Kanon et al. (2015) combines two transport schedules to obtain the
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optimal path a passenger needs to go through while satisfying capacity constraints.

Not only in the logistics, but also in the telecommunication industry MCNF is a common

model to help solve the problem. When you consider a telecommunication problem as a

problem in which you need to route messages, you may recognize the similarities between

transportation and telecommunication problems. Look for instance at paper Barnhart, Hane,

Johnson, et al. (1995) where a message routing problem in the telecommunication industry

is modeled as a minimum-cost multi-commodity network flow problem. In particular, the

MCNF problem arises when more than one commodity needs to be shipped between specific

node pairs without violating any constraints (such as capacity) associated with the arcs.

3.2 Node-arc formulation

Many economic systems can be visualized as networks where nodes stand for commodities,

and paths stand for simple or complex production processes. The transportation network is

one of the systems that can be described as such a network in the most natural way. Here

nodes stand for cities and arcs for connecting two cities. A certain demand is associated

with every pair of connected nodes of the network. This demand will be distributed among

paths which join the pair of nodes. This gives rise to a traffic pattern. This determination

is known as the Traffic Assignment problem. Considering the Traffic Assignment problem

of Babonneau (2006) one can obtain an MCNF problem for which the special structure

of the constraints is explained in detail. Mathematically, the findings of the optimization

problem in this paper have been clarified resulting in a clear overview of the so-called node-

arc formulation. This node-arc formulation is used as an inspiration for the formulation of

this paper where nodes will stand for the ’production’ of trolleys at a given depot and arcs

will stand for the truck movements between two depots.

3.3 Algorithms for the Multi-Commodity Network Flow problem

Because of the problem’s nature of several constraints and a large number of variables, it is

even for an easy continuous flow network difficult to find the optimal solution (Salimifard

et al. (2020)). It is commonly known that the MCNF problem is hard to solve exactly.

Therefore it may be necessary to use a heuristic to approach a good solution for the problem.

The problem in Bevrani et al. (2020) looks very similar to PostNL’s case. In this article, the
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assessment of transportation system flow is reconsidered and an improved multi-commodity

network flow model is proposed. The objective of the model is to determine the maximum

flows of commodities that a network can sustain. The model makes use of so-called origin-

destination pairs (ODP) in which the commodities are transported between specific pairs of

locations. Different than in their model we are able to define multiple destination nodes,

because we distinguish in time-dependent events at the depots dependent on the shifts.

Trolleys could arrive in several shifts at the same depot and still arrive in time for their own

shift. A detailed description of the nodes which stand for a shift and depot at the same time

can be found in chapter 5.

Also Barnhart, Hane, and Vance (2000) considered a constrained version of linear multi-

commodity flow problem, named the origin-destination integer multi-commodity flow prob-

lem. The problem was solved successfully using a column generation technique.

The problem of having to deal with an intractable large model also arises with the assignment

problem of Cordeau et al. (2001). They solve the problem of simultaneously assigning loco-

motives and cars to passenger trains, using a multi-commodity network flow model. They

take advantage of the fact that the problem can quite easily be decomposed into multiple

components. This results in a network representation per order type. This separation tech-

nique enables them to use a Benders decomposition approach. Their approach results in an

optimal solution to the problem within reasonable computational time for instances of real-

istically large size. The idea of decomposing the multi-commodity flow model into smaller

parts and solve them sequentially can be used in our problem as well.

From paper Dai et al. (2017) there can be obtained column generation turns out to have

good properties for solving MCNF problems. Because of the fact that many constraints do

not contribute to the optimal solution, only the columns that contribute are taken into ac-

count in this solving method. For a new formulation we were inspired by the block angular

structure as in paper Wang (2018), as also seen in paper Dai et al. (2017). By this way of for-

mulating the optimization problem suits perfectly when using the column generation method.

The column generation approach, which will be also used for our research, is mostly based

on the paper Dai et al. (2017). The idea of only looking at the constraints that contribute
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to an optimal solution is developed further. To do so the former MILP formulation has been

updated into a block angular structure. Thanks to this clear formulation this structure serves

perfectly for a Dantzig-Wolfe decomposition. This last decomposition method turns out to

be crucial when using the column generation approach. This approach can be seen as an

exact solution method which can result in an optimal solution instead of an approximation

of the optimal solution.

The way the optimization problem is tackled in this thesis comes down to an exact solu-

tion method instead of a heuristic. namely the column generation method. For the company,

PostNL, if there exists an optimal solution to the problem, the outcome when using this

method is much more meaningful. Due to a limited amount of time reserved for the thesis

project only an exact solving method is developed.
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4 Data Description

This chapter will give an overview of the data used for the problem as described in Chapter

2. It will describe the data needed to solve the problem. In addition, a description of what

both data sets look like will be given.

4.1 Data Description

The data contains information regarding real parcels on an actual, average day that need

to be delivered. Parcels have already been assigned to trolleys. The part of the delivery

process we will look at is the transportation of these trolleys by trucks. Therefore we need to

assign trolleys to the truck movements using up-to-date arrival times of the trolleys. Truck

movements connect a given depot to another depot. There are three types of depots. At the

classic depots, parcels are being sorted and loaded on trolleys followed by the assignment to

truck transports. We will call these classic depots just depots, even though a better name

would be ’a sorting-center’. A central-stationed depot at which parcels will be passed from

one transport to another transport is called a crossdock. A crossdock therefore serves as

an intermediate station. The third type of a depot is called a depot-plus which is a depot

combined with a crossdock. So a depot-plus has both the functions of a depot and crossdock.

There are 30 unique depots, including 3 crossdocks and 2 depot-plus’, in the Netherlands.

One day of the available trolleys and transport schedules are provided in two separate data

sets. These two data sets give useful information about the size of the considered problem.

The first data set includes a number of trolleys, which is equal to 33778. For each trol-

ley the origin depot, destination depot, arrival time at origin depot and the due time in

which at least the trolley has to arrive at the destination are available. This due time stands

for the moment the trolley has to arrive before. On average there are 10 due times in which

a given trolley has to be delivered. To characterize the different trolleys, the origin depot,

destination depot and due time are combined to a type k. We call these different trol-

leys trolley requests. Trolley requests thus consist of origin, destination, quantity and due

time. Because there are 33778 trolleys, many different types can be obtained. These so-called

trolley types are not unique which means that they could appear several times in the data set.

The second data set includes a total of 1492 truck movements. This means, when we distin-
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guish in departure and arrival times, there are almost 3000 different events of the transports.

An event is defined as a time-dependent moment at a given depot and can be seen as a rele-

vant point of time in our network. Therefore an event can represent an arrival or departure

time of a truck movement, but can also stand for the due time. Section 5 will look deeper

into the definition event. For each truck movement, the depots of both begin and end points

are known, as well as the time and thus the due time to which the truck movements belong.

Furthermore it can be seen that there are also truck movements between the crossdocks. This

makes it possible for a trolley request to make use of three truck movements instead of two

which might be efficient for optimal delivery.
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5 Integer Linear Problem

In this section, the Integer Linear Program (ILP) formulation will be elaborated on in a

few steps. First, the sets used for this formulation and the input data will be given in

Section 5.1. Next, some assumptions will be introduced in section 5.2 in order to obtain a

tractable model. In section 5.3, the multi-commodity network flow formulation to create our

mathematical model will be explained.

5.1 Sets and Input Data

Sets

Let K be the set of all commodity types, which means the set of trolley request types that

needs to be transported. The type is based on the destination. So the number of unique

types is equal to the number of different destination depots. For further research, there is

a possibility to extend the meaning of commodity type by defining it as the combination of

destination depot and due time. Let I be the set of all depots including all three different

types. Let P be the set of all truck movements. These truck movements correspond to the

trucks scheduled in both transport schedules that are provided. Truck movements take place

between two depots of all kinds. Also, each truck movement is unique which means that there

is only one transportation by truck p ∈ P for which this origin-destination and departure

and arrival time combination hold. Let Pd and Pa be the set of departures and arrivals of

the truck movements respectively, each consisting of the corresponding time and depot. Let

S be the set of all due times. The lower the due time the earlier a trolley request with this

specific due time has to arrive at the destination depot. It is allowed for a trolley request to

arrive at an earlier due time than its assigned due time.

Input data

– k commodity type index destination

– i depot index

– p index number of transport segment, truck movement p

– n event index (departure or arrival of a truck movement on a given depot)

– s due time index
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– cap capacity of each truck

– Nk
n production of commodity type k at event n

5.2 Assumptions

To obtain a more tractable model, we make several assumptions that will be explained in

this section. Assumption 1 deals with the rounding of relevant time instants.

Assumption 1. Production times that take place before the first event or between two con-

secutive events are merged into one inflow on the relevant event node.

Assumption 2. The network does not contain parallel arcs (i.e., two or more arcs with the

same tail and head nodes).

Assumption 3. All truck movements have arrival times that take place before the first

existing due time.

5.3 Multi-Commodity Network Flow

In a Multi-Commodity Network Flow (MCNF) problem, a commodity is a good that must be

transported from one or more origin nodes to one or more destination nodes in the network.

In practice, these commodities might be packages in a distribution network, messages in a

telecommunication network or airplanes in an airline flight network. Each commodity has a

unique set of characteristics and the commodities are not interchangeable.

In the MCNF problem of this thesis, the set K = 1, 2, . . . , K consists of the commodity

types k. We define a commodity of type k as a trolley request with a specific destination

depot and due time. The commodity of type k has to be transported and arrived at the

right destination depot before the start of the corresponding due time. Each trolley request

has its source node and sink node which correspond to the origin depot and destination

depot of the trolley request respectively. As previously mentioned, the commodity type k

only depends on the destination depot. Therefore we assume that when arriving at the

destination depot, every trolley is on time. From Assumption 3 in 5.2 we get that all truck
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movements have arrival times that take place even before the first existing due time. Because

of this assumption, it is not necessary to distinguish between the various due times.

5.3.1 Time discretization

At each point in time for each location, we have to decide which trolleys to send or not to

send to which destination. The network consists of so-called event nodes which represent

the time-dependent moments at specific locations that influence the network. This is why

our network also can be announced as a spatio-temporal network. There are four different

moments: production time-event of a trolley request of type k at depot i (N), due time of

the trolley request of type k, the departure of a truck movement and the arrival of a truck

movement. When these four types of events are considered as nodes, in a simplified version

the network will look as in Figure 3. In this auxiliary graph, the horizontal arcs between

two events at the same depot imply the stock at this given depot. These arcs are called

stock arcs. Diagonal arcs between two depots represent the truck movements and are called

the truck movement arcs. M denotes the stock of trolley requests with type k between two

events.

Figure 3: Auxiliary graph of a network flow with four types of events
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However, as this is a simplified network, one can imagine that because of the four different

types of events the network consists of a lot of nodes. It even consists of nodes which are not

as necessary as they seem. There is a way to reduce the size of nodes while still taking the

events into account. Instead of adding a node for each production of a trolley, which causes

more than 33000 nodes, one can look at the stock of the trolley requests for each type k every

time just before the departure or arrival of a truck movement. Clearly it is not important

to know if trolleys are produced at the same time or five minutes before the departure of

a truck movement. The only thing that is important to know is the stock right before the

departure of a truck movement. By not taking into account the production nodes anymore,

the number of nodes in our network has decreased to 33000. The same holds for the due

time nodes. When the arrival events of the truck movements are known, it can be checked if

a given trolley request of type k is on time for the corresponding due time s. By removing

these nodes we again reduce the number of nodes in our network. In total, when we only

consider the departures and arrivals of truck movements to be nodes, it differs around the

50000 nodes. Look at Figure 4 for an impression of what this network will look like. Note

that again this network is used as an example and is not based on real data.

Figure 4: Auxiliary graph of a network flow with two types of events

As in Figure 3, the horizontal arcs between two events at the same depot imply the stock at
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this given depot. Diagonal arcs between two depots represent the truck movements. The only

difference between the two networks above is the number of different events and therefore

the number of nodes and arcs in the network. Due to the number of nodes, the network that

will be considered in this thesis looks like Figure 3 with nodes that stand for the arrival or

departure event of a given truck movement p ∈ P .

A solution is defined as a maximum feasible flow through the network. The transported trolley

requests through the network are the most interesting. We want as many trolley requests as

possible to arrive in time at the right destination depot right before the corresponding due

time. Therefore the problem to tackle is

How to decide which trolleys to send from the corresponding origin depot to the

destination depot while satisfying all trolley requests and obeying given joint ca-

pacities on the arcs?

Complicating things

Note that the auxiliary graphs from the above figures become quite large due to the dis-

cretized time horizon. To make a compact mixed-integer programming model we have to

take the following into account:

- for each truck movement arc, how many trucks are used to transport how many trolleys?

- for each stock arc and for each destination, how many trolleys travel along this arc?

- for each location, for each time step and for each purpose, how many trolleys are in stock?

The directed graph G = (V,A) is defined more formally as follows:

Vertices

– Vd = {vdp} : event index nodes standing for departure event of truck movement p ∈ P

– Va = {vap} : event index nodes standing for arrival event of truck movement p ∈ P

– V = Vd
⋃
Vd
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Arcs

– ATM : (vdp , v
a
p) : truck movement arcs from departure event node to arrival event node

corresponding to the combination of departure of truck movement p and arrival of truck

movement p

– AST : (v, w) : stock arcs with v, w ∈ V and v, w are consecutive event nodes at the same

location

– A = ATM
⋃
AST

Other symbols

– ik : index of destination depot corresponding to trolley request with type k

– vi : last event node at depot i

– Nk
v : production of commodity type k at event v

5.3.2 Mathematical Model

In this section, the mathematical model corresponding to the multi-commodity network flow

formulation is explained. The first decision variable xkp denotes the number of commodities

of type k ∈ K that makes use of truck movement p ∈ P and so flows on arc (vdp , v
a
p). The

second decision variable depends on the stock of commodity type k ∈ K right after event

node v ∈ V and therefore denotes the number of commodities of type k ∈ K that flows on

stock arc (v, w) ∈ V , which will be denoted as Mk
v .

Time discretization represented by events n

At each depot, we distinguish arrival and departure times for all truck movements p, which

leads us to the vertices. So each node represents the arrival or departure of a truck p at

a given depot i, which we denote with event n. As given above, the set Nk
v stands for the

number of trolley requests of a specific type k ∈ K that is produced at a depot right before

event v, such that it is ready to be transported away by the next truck. Nk
v can be seen as

the inflow at the network’s event node v of specific trolley type k. Later on in this research,

the inflow is also indicated by the so-called production vector bk. The decision variable Mk
v

denotes the stock of trolley requests of type k right after event v.
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What is important, is the number of trolley requests that is available between two events,

and which type. Therefore constraints need to be build, which denote the stock at a specific

event. These constraints are called the flow conservation constraints. Basically this implies

that the inflow of a node equals the outflow.

These conservation constraints are given in an iterative way:

Mk
u +Nk

v = xkp +Mk
v

Mk
r +Nk

r = −xkp +Mk
q

Note that the used indices are based on the auxiliary graph from Figure 4

Based on Figure 4, the first constraint stands for the flow conservation of the begin node

v of an arc with v ∈ Vd. The second constraint stands for the flow conservation of the end

node r of the same arc with r ∈ Va. Both constraints together imply what enters the flow of

the arc and also leaves the flow of the arc.

The objective is to maximize the total number of correctly positioned trolley requests at the

end of the process, which is only the case when a trolley request of type k is in time, so before

the corresponding due time, and at the right destination depot corresponding to the type k.

This has to be done in a way such that each commodity k will be transported through an arc

of decision variable xkp satisfying capacity constraints and corresponding transport schedules

of transports p. Therefore we define two sets to make this objective easier to formulate.

– Ei = {k|ik = i} : set of trolley requests with destination depot i

By using these sets, we could check which trolley request of type k has arrived at the right

destination depot corresponding to type k. The following summation implies the above:

–
∑

i

∑
k∈Ei

Mk
vi

: number of trolley requests arrived at the right destination depot in time for

their due time

By looking at the intersection of the two defined sets, the number of trolley requests arrived

at the right destination depot corresponding to each type k, can be obtained.

Maximum flow of the MCNF problem

From the above it can be seen that when we are looking for the greatest number of correctly
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delivered trolley requests
∑

i

∑
k∈Ei

Mk
vi

needs to be maximized. Therefore this paper will

focus on this objective.

The Integer Linear Program (ILP) can be formulated as follows:

max
∑
i

∑
k∈Ei

Mk
vi (1)

s.t. Mk
u +Nk

v = xkp +Mk
v ∀u, v ∈ Vd, p ∈ A, k ∈ K (2)

Mk
r +Nk

r = −xkp +Mk
q ∀r, q ∈ Va, p ∈ A, k ∈ K (3)∑

k

xkp ≤ capp ∀p ∈ A (4)

∑
k

Mk
v ≤ capM ∀v ∈ V (5)

xkp ∈ N (6)

Mk
v ∈ N (7)

Objective (1) maximizes the number of trolley requests for each type k that has been

transported to the destination depot within or before the due time corresponding to each

type. The first set of constraints (2) and (3) reflect the flow conservation constraints from

which the number of trolley requests M could be obtained. Constraint (4) states that the

sum of the path flows passing through the arc is at most the capacity of the arc (Ahuja

et al. (1993)). Constraint (5) states that the sum of the path flows passing through this arc

can be no more than the allowed the stock capacity at each depot. Constraint (6) enforces

non-negative and integer values for xkp and constraint (7) enforces non-negative and integer

values for Mk
v .

5.4 Solving the ILP

To solve the ILP from equations (1)-(7), a mathematical model is created in PyCharm which

is a programming environment for the use of the programming language Python. To fulfill

the maximization of the objective, some test nodes and test arcs are created. These test

nodes and test arcs stand for the last moment for each commodity type, which is in our case

a possible destination depot. From these test nodes and arcs useful information about the

success of satisfying the trolley requests can be obtained.

The optimization problem will be solved using the solver Gurobi. Because of the original data
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set size is very large, a test data set has been made. This set consists of less truck movements

and fewer parcels. The results of this test data set are not as expected. The objective is very

low and therefore stands for a small amount of succeeded trolley requests. The most plausible

explanation for this is the choice of the nodes and arcs of the network. The nodes are made

of four depots and two sorting centers. The arcs are all known truck movements between the

possible nodes. After the network has been made, all matching trolley requests are collected

to one data set. These are used as the inflow of the model. In reality, certain trolleys may

be transported via other depots and therefore make use of different truck movements. As

a result, it is possible that while looking at this test network, there is currently no suitable

truck movement, also taking into account the capacity of each arc. This explains that the

size of the objective is too small and therefore the poor outcome. The functioning of the

model must therefore be checked with another data set.

By making another data set containing 24 trolley requests and two movements, it can be

checked whether the objective generated by the Gurobi model is the right objective or not.

In section 6.1, the instance and solution of this example are illustrated. By solving this

problem by hand first and comparing this result with the Gurobi result, the reliability of

the model can be checked. It follows that the objective is indeed the total amount of the 24

trolley requests. Therefore we can conclude that the mathematical model mentioned before

behaves in a good way. In the next chapter, this small example is discussed to illustrate

using a specific solving method.

The original data set is still too large to run. One option is to run the ILP in a cloud

based service such as Amazon Web Services. Another possibility is to divide the solving of

the ILP into smaller parts to solve. This can be done with a heuristic which will bring us to

the next chapter. This approach will take some optimization but seems promising to yield

positive results.
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6 Methodology

As seen in section 5.3.2, the ILP contains two conservation constraints and two capacity

constraints, but at the same time deals with a large number of variables. One can imagine

that taking into account a large computational time, solving subproblems of the original

problem may save some time. Pfetsch et al. (2006) explains that a problem with a network

of 1000 nodes and 10000 edges through which 1000 commodities move, would require at least

80 GB of storage to solve the linear programming model. Our network consists of 3016 nodes,

4470 edges and 33778 commodity types which therefore requires at least 450 GB. Following

the recommendation of Pfetsch et al. (2006), which states that often column generation can

solve a network problem like this with much less storage and time.

Another reason why using a more efficient solving method than just solving the ILP with

Gurobi will be explained by the following small example.

6.1 Small example

A small example that will be discussed as a case study, is shown in Figure 5 and table 1.

There are 5 nodes spread over two different depots, 5 arcs between these nodes and a total

of 24 trolley requests that need to be fulfilled. As can be seen in Figure 5, at nodes 1 and

2 there are inflows of 17 and 7 trolley requests respectively. Because these trolley requests

all have the same destination depot, there has to be dealt with just one commodity type k.

Nodes 3 and 4 correspond with the event nodes, which are arrivals of truck movements from

nodes 1 and 2 respectively. Node 5 is created by the model to make it more obvious to know

whether the trolley requests are fulfilled. The arc connected to this self-created last event

node represents all of the trolleys that are transported to the depot belonging to this last

event node. This arc is therefore not limited to a predefined capacity.

Remark. A commodity type is based on the destination depot of the corresponding trolley

request.

For each trolley request with a specific commodity type k, the production vector bk must be

satisfied. This means that paths between the origin depot of the trolley request with type k

(O(k)) and the destination depot belonging to this type k (D(k)) need to be created. With

the vertical arcs in the direction of nodes 1 and 2, the inflow is indicated. Each number next
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Table 1: Sample commodities

Trolley request with type k O(k) D(k) transportation demand dk

Trolley request 1 1 5 17

Trolley request 2 2 5 7

to the other arcs indicates the number of trolley requests that are being moved along these

arcs. Their total flows are equal to the transportation demand. Because all trolley requests

have the same destination depot -thus the same commodity type k- we want them to be

transported to either event nodes 3, 4 or 5.

The optimal solution of this small problem is obtained using the solver Gurobi and is shown

in table 2. From this table, we could also obtain that the total transportation demand for

each trolley request is fulfilled which implies that our solution is optimal.

The path flows that are used to obtain the solution of Table 2 are shown in Table 3.

Figure 5: Small example

Note that two truck movement arcs are not being used while satisfying all of the trolley
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Table 2: Solution with Gurobi for the small example

Arc Trolley request 1 Trolley request 2

(1,2) 17 0

(1,3) 0 0

(2,4) 17 7

(3,4) 0 0

(4,5) 17 7

Table 3: Solution for the small example with the path flows

Commodity Path

Trolley request 1 1 → 2 → 4 → 5

Trolley request 2 2 → 4 → 5

requests. This means that two arcs do not contribute to an optimal solution. One can

imagine that when using a much larger data set, having unused arcs is, even more, the case.

This property shows the potential for solving MCNF problems in a more efficient way. This

will lead us to the Column Generation method.

6.2 Column Generation method

Column generation is a method to efficiently solve linear programs with a large number of

variables and is therefore commonly used to solve an MCFP problem. The basic idea is that

new columns are added into the solution step by step as necessary to improve the objective

function, which prevents the use of a large number of variables that was looked at before. In

this subsection, the exact solving method will be explained and discussed.

We want to solve an integer linear programming model, called master ILP, and consider

a restricted master problem (RMP), which contains all constraints of the master ILP, but

only a subset of the variables. From this primal problem dual information can be obtained.

This information, in the form of dual variables, is used to generate pricing problems for all the

commodities to try to identify columns with a profitable reduced cost. The subproblem (SP)

is to solve these pricing problems. Because these subproblems have fewer variables included

it makes it easier for the algorithm to solve. While an optimal solution exists to one of these
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subproblems which is equal to a negative number, the column corresponding to this optimal

value needs to be added to the current RMP. Imagine that a column represents a total flow

through the network of a commodity-type k. This while-loop will continue until all of the

pricing problems return positive values and an optimal solution to the original MCNF can

be obtained.

6.2.1 Block-angular structure of the ILP

In this section, the block-angular structure of the MCNF constraints from the paper Wang

(2018) will be elaborated, which suits perfectly when using a decomposition technique such

as Dantzig-Wolfe decomposition as used in paper Dai et al. (2017). Namely, due to the

structure the set of possible outcomes, which are the flows of the commodity types, can be

modeled as the integer points (extreme points) of a polyhedron which is defined using this

specific structure. This will be further explained in section 6.3.1.

The directed graph G = (V,A) as defined in section 5.3 again describes the network. To

simplify some notations, an arc (v, w) can also be announced as arc l. Also, we assume V

to have size n and A to have size m. To reformulate the Integer Linear Program as seen in

constraints (1) - (7), the two types of decision variables are merged into one type of decision

variable x. This new type of decision variable x stands for the flow vector of each edge for

commodity type k with k ∈ K and will be denoted as xk = [xk1, x
k
2, . . . , x

k
m]T . To define

the maximum flow objective in the same way as in paper Dai et al. (2017) we need to find

a cost vector c. Because we only want to take into account the trolleys that have been

transported to the correct destination depot, values 0 and 1 are given to c to check whether

the commodity is placed right. Therefore for each type k the vector c gets value 1 when

the index matches the last moment at the depot corresponding to k. From the test nodes

and test arcs that have been created, we can obtain useful information about the success

of satisfying the trolley requests. So for each commodity type k, which corresponds to a

destination depot, the vector value is 1 for the last event at this depot and 0 otherwise.

The capacity vector is also made by merging the two capacity constraints (4) and (5) and

will be denoted as cap.

The incidence matrix between nodes and arcs is described as n×m matrix B = [Bil]n×m. It

has size n×m with n the number of nodes, m the number of arcs and for the lth arc (i, j),

Bil = 1 and Bjl = −1. In our case, the vector usually known as the demand vector equals
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the production vector bk = [bk1, b
k
2, . . . , b

k
n]T .

Two important constraints need to be considered. The first constraint is the arc capacity

constraint. This means that the flow on each edge can not exceed the flow capacity. The

second constraint can be seen as the transportation demand which means that all commodity

types need to be transported from their origin to their destination. The capacity constraint

considers all commodity types together. However, the transportation constraint is essentially

the sum of a set of single-commodity flow problems.

The new formulation of the LP using the above details is given as follows:

max
∑
k∈K

(ck)Txk (8)

s.t.

K∑
k=1

xk ≤ cap (9)

Bxk = bk ∀k ∈ K (10)

xk ≥ 0 ∀k ∈ K (11)

Equation (8) is the objective function of the total cost. Equations (9) and (10) are the

edge capacity constraint and node flow equilibrium equation, respectively. Equation (11) is a

non-negative constraint. As seen in the small example (section 6.1), there is a lot of potential

for solving the MCNF problem more efficiently.

Consider equations (8) to (11). The flow xk indicates the size of the flow for each arc per

commodity type. When one looks at the zeros in this vector, it becomes clear which arcs are

not used for this xk. The diagonal arcs, which represent the truck movements, for which xk

is equal to 0 for all k ∈ K, actually indicate unnecessary arcs in the network.

6.3 Column Generation as a solution technique

Section 6.2.1 shows that the formulation of the MCNF problem has a structure that could

be exploited during the computation of a solution. Equation (10) can be divided into K

independent sets of equations for each commodity k. In the case that commodities do not

influence each other in this transportation constraint, the MCNF problem can be solved

easily by looking at the independent single-commodity flow problems. We have seen in the
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small example from section 6.1 that most variables do not contribute to the solution, see

table 2. Namely, several arcs are not being used by the commodity-type k. As might be

expected, when considering a larger network, still many arcs will not be used. Based on

this observation a column generation algorithm is obvious to use as a solution technique.

In the equations (8)-(11) there are K × m variables in the model. However, as mentioned

previously, many variables do not contribute to the optimal solution. Therefore, using the

column generation algorithm, new columns are added into the solution step by step when

necessary to improve the objective function. This process is explained below.

First a set of initial columns, which is a set of complete flows of corresponding commodity

types k, is created to construct RMP. The solutions to this primal problem will return dual

variables. This dual information is used to generate pricing problems for all the commodities

to try to identify columns with a profitable reduced cost. If uk? is the optimal objective function

of the kth subproblem following from the pricing problem, then uk? ≥ 0 implies the MCNF

to reach the optimal solution and uk? < 0 implies the solution to the pricing problem has

to be added as a new column into the set of columns of the RMP. Remember, this column

represents a complete flow through the network of corresponding commodity type k. The

algorithm will continue until the optimal solution is reached.

6.3.1 Dantzig-Wolfe decomposition and master problem

In this section, the Dantzig-Wolfe decomposition is described in detail and split into a master

problem and several sub-problems. The master problem consists of active columns.

The constraints (9) and (10) can be written as (13) and (14), respectively:

max
∑
k∈K

(ck)Txk (12)

K∑
k=1

xk + s = cap (13)

Bxk = bk ∀k ∈ K (14)

xk ≥ 0 ∀k ∈ K (15)

Consider the auxiliary set

Gk = {xk ∈ Rm|Bxk = bk,xk ≥ 0}
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which is also a polyhedron. If xk is feasible for the ILP problem then xk ∈ Gk.

For each commodity k, the decision variable vector xk can then be decomposed as

xk =

nk∑
j=1

λkjy
k
j (16)

where yk
j for k = 1, 2, . . . , K and j = 1, 2, . . . , nk are the extreme points of Gk and nk is the

number of extreme point solutions (Tomlin (1966)). The extreme directions of Gk can be

omitted, as discussed in the next section. Now xk can be seen as a convex combination of

the variables yk
j with λkj the coefficients of these convex combinations for j = 1, 2, . . . , nk and

k ∈ K. It holds that λkj are the coefficients of the convex combinations of yk
j satisfying

nk∑
j=1

λkj = 1

λkj ≥ 0

In the LP (8) - (11), we can substitute xk by
∑nk

j=1 λ
k
jy

k
j and add the constraints

∑nk

j=1 λ
k
j = 1

and λkj ≥ 0. Furthermore equations (13) and (14) are used instead of (9) and (10) respectively.

The master problem (master LP) can then be formulated as

max z(λ) =
K∑
k=1

(ck)T
nk∑
j=1

λkjy
k
j (17)

s.t.

K∑
k=1

nk∑
j=1

λkjy
k
j ≤ cap (18)

nk∑
j=1

λkj = 1, ∀k ∈ K (19)

λkj ≥ 0, j = 1, 2, . . . , nk (20)
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and in standard form with slack variable vector s as:

max z(λ) =

K∑
k=1

(ck)T
nk∑
j=1

λkjy
k
j (21)

s.t.
K∑
k=1

nk∑
j=1

Iλkjy
k
j + Is = cap (22)

nk∑
j=1

λkj = 1, ∀k ∈ K (23)

λkj ≥ 0, j = 1, 2, . . . , nk (24)

s ≥ 0 (25)

In the LP problem of constraints (21) - (25) λ is the variable now. This master problem is

called the Dantzig-Wolfe reformulation (DWR).

When the above master problem is solved, a solution to the primal problem can be obtained.

We have to find a variable λ with a positive reduced cost. We reuse the reformulated problem

to a RMP and assign dual variables β to the linking constraints (22) and dual variable µk

is assigned to constraint (23), respectively. Assume that after initializing the Dantzig-Wolfe

algorithm and the corresponding RMP, some columns have been found.

To check the optimality of the LP solution, the reduced costs are considered.

The reduced cost corresponding to a non-basic λkj is:

((ck)T − βT )yk
j − µk,

which is equivalent to

−µk − (βT − (ck)T )yk
j (26)

From these reduced cost the following subproblem follows for k ∈ K:

ρk = max
j=1,2,...,nk

{−µk − (βT − (ck)T )yk
j} (27)

The pricing problem is to solve the above subproblems to find

ρ = max {ρk} (28)
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Note that the following observation can be made:

ρk = max
j=1,2,...,nk

{−µk − (βT − (ck)T )yk
j}

= −µk + max
j=1,2,...,nk

{−(βT − (ck)T )yk
j}

= −µk − min
j=1,2,...,nk

{(βT − (ck)T )yk
j}

(29)

The pricing problem is solved to try to identify columns with a profitable reduced cost. If

such columns are found, the DWR and thus the RMP are reoptimized. The dual variables

that came out the primal problem, will be used as an input for the pricing problems.

6.3.2 Pricing problems

As mentioned previously, the optimal solution to the primal problem from above returns the

optimal value of the dual variables β and µk.

These variables are used as an input for the pricing problems for each commodity type k.

For each commodity k, the pricing problem as described in equation (29) can be decomposed

into subproblems SPk for k = 1, 2, . . . , K, for which each subproblem can be seen as the

following LP.

min u(xk) = (βT − (ck)T )xk (30)

s.t. Bxk = bk (31)

xk ≥ 0 (32)

Where β is the vector with dual variable from the constraints of the RMP. The original

problem is bounded due to the fact that flows can not be negative and that costs and

capacities are finite. Since the original problem is bounded, the subproblems are as well

bounded. This means that the parts in DWR containing extreme directions can essentially

be removed from the problem formulation.

Solving the subproblems shows whether the current master LP problem has to be updated

with new columns or not. We assume that uk? is the optimal value of the above subproblem.

Using the pricing problems from equation (29), it is proven by Ahuja et al. (1993) that when

ρk = −µk − uk? ≤ 0, which is equal to ρk = uk? + µk ≥ 0, an optimal solution for the original

MCNF problem can be obtained. If ρk = −µk − uk? > 0, which is equal to ρk = uk? + µk < 0,

for k = 1, 2, . . . , K, then xk? with k = 1, 2, . . . , K needs to be added as a new column into

the current column set. A new version of the RMP will be solved. These obtained new dual
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variables will be used again as an input for the pricing problems. Again the value of ρk with

the new uk? will be checked. A loop will continue this process until an optimal solution is

reached, which is the case when uk? ≥ 0 is found.

The procedure as above described is schematically represented in the following pseudocode.

Table 4: Pseudocode

Procedure: Column generation with Dantzig-Wolfe decomposition (CGDW)

begin

Initialize the master problem and subproblems

and initialize the RMP.

Assume that the optimal solution of the pricing problem of 29 is equal to uk? + µk < 0.

while (uk? + µk < 0):

do

Solve the RMP and compute dual variables β and µ

Update the Pricing Problem with dual information and solve SPk ((30)-(32))

if there exist a (uk? + µk < 0) for k = 1, 2, . . . , K:

add xk? as a column to the RMP

else:

an optimal solution for the original MCNF is found

end

6.3.3 Initialization of the RMP

As described before, to find a variable λ the Dantzig-Wolfe algorithm has to be initialized.

Therefore, the reformulated problem is reused to an RMP where no variables λkj are included.

In the situation where all λkj ’s are zero in constraints (21) - (25), no choice has to be made for

a certain λkj that deviates from zero in order to satisfy constraint (23). Slack variable vector

s = (s1, ..., sn)T is included and artificial variables t1, t2, . . . tK are introduced to ensure that

a feasible solution exists. The auxiliary variables tk can be added to constraint (23) such

that λkj equals zero and still satisfies this constraint (23).

We choose M so high that the artificial variables are never part of an optimal solution to the

original problem. After trying out different values for M , setting M equal to 10000 turns out

to be large enough.
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After the procedure as described above and setting all λkj ’s equal to zero, the initialization

of the RMP can be written as the following set of constraints:

max −M
K∑
j=1

tj (33)

s.t. s = cap (34)

tj = 1, ∀j ∈ 1, 2, . . . ,K (35)

s, tj ≥ 0 ∀j ∈ 1, 2, . . . ,K (36)

From this, it is clear to see what the optimal solution to this RMP is. Dual variables β

have been assigned to the linking constraints (22) and dual variable µk has been assigned to

constraint (23) respectively. When solving the primal problem from equations (17) - (20) we

get the vectors of the dual variables. Thus, from the primal problem the dual information can

be obtained. To get this information the optimal basis to the RMP from above is used and

the dual variables are acquired. The optimal basis to this RMP is, which follows immediately

from the fixed notation in (33) - (36), (s1, . . . , sK , t1, t2, . . . , tK).

We find the first set of dual variables using standard notation, with I the identity matrix

and cb = [0 . . . 0 −M · · · −M ]:

−→
β = cTb I

−1 = cTb = [0 . . . 0 −M · · · −M ] (37)

6.4 Benchmark

PostNL’s current charging rules are used as a benchmark. The current trolley loading rules

at PostNL are based on the hinterland of the crossdock destination of incoming trucks. Each

crossdock has its own hinterland. This hinterland is the grouping of a certain number of

predetermined depots. Every trolley is sent by trucks to the crossdock, whose hinterland

contains the destination depots of the trolleys. Arriving at the crossdock, after inter trans-

port 1, the trolley enters the truck for inter transport 2, which has the final destination of

the trolley as its destination.

One can imagine that it can be done more efficiently by looking for each trolley and corre-

sponding destination depot, to which truck it should be assigned. In this way the loading

process will be optimized instead of hinterland-based loading. The algorithm developed in
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this thesis that behaves best is expected to be close to the optimal solution in a fraction of

a time. This would improve the current loading planning of trolleys into trucks.

6.5 Extension to the current LP

As announced in Chapter 1, it is also important to look at the number of truck movements

used. In the LP of constraints (8) - (11), the number of correctly transported trolleys is

maximized.

When it is assumed that the trolleys arrive at the correct destination depot, this can be made

into a constraint. Instead of looking at this as an objective, i.e. maximizing the corrected

transported trolley flow, it can now be seen as an objective to minimize the use of the truck

movement arcs. For example, there are certain costs associated with using an arc. These costs

represent the duration of the arc. The longer a truck movement lasts, the more expensive the

arc is. A new cost vector c is created, which consists of the number of time units necessary

for each diagonal arc. Remember that each truck movement is represented by a diagonal arc

in the network. Note that for the horizontal stock arcs the cost vector c contains a zero.

The objective can be seen as the following constraint with xk the flow of commodity type k

and ck the cost vector as described above:

min
∑
k∈K

(ck)Txk (38)

The number of arcs is fixed in PostNL’s current network. With this objective, we create an

overview of the number of necessary time units. From this, we obtain the number of time

units that could be saved.

Applying this extension results in the following new formulation for the LP.

min
∑
k∈K

(ck)Txk (39)

s.t.

K∑
k=1

xk ≤ cap (40)

Bxk = bk ∀k ∈ K (41)

xk ≥ 0 ∀k ∈ K (42)

The results obtained when minimizing the costs flows with CGDW can be seen in Chapter

7.



7 RESULTS 32

7 Results

In this section, the results obtained from the two methods are given. For solving the opti-

mization problems, linear solver Gurobi version 9.1.2 is used together with Python version

3.8. Also, a comparison is made between the methods and the benchmark instance, which

consists of the current truck loading rules of PostNL. Firstly, the different datasets that are

used will be explained. After that, the results of the ILP problem solved with Gurobi are

given. Then, the results generated by the Column Generation method with Dantzig-Wolfe

decomposition are given and lastly, a comparison is made between these two methods.

Due to the limited time for the sorting process, it is important that the algorithm gives good

results in a very short time. Therefore it is assumed that a reasonable computation time is

less than two minutes. To understand the results section well, it is recommended to consider

one more time the data on which the network used in this thesis is based. This is explained

in section 6.1.

7.1 Data sets

Because the original data set consists of more than 30000 trolleys and almost 2000 truck

movements, we deal with a network consisting of many nodes and arcs, not to mention the

number of commodity types moving through it known as the flow. Running this data set

requires a memory of 153 MiB, which therefore causes an error during computation. To suc-

cessfully obtain results for this data set, the code should be executed in a cloud computing

program. For example, PostNL uses Amazon Web Services. However, the behavior of the al-

gorithm could also be checked by looking at smaller versions of this data set. To create these,

depots have been deleted randomly from the data set, just like the truck movements that

took place at one of these depots and the trolleys that have one of these depots as their origin

or destination depot. This process is repeated four times, creating four new different-sized

datasets which will be considered. Data set 1 contains three depots of which one crossdock.

Data set 2 contains six depots of which two crossdocks. Data set 3 consists of 16 depots of

which three crossdocks and data set 4 consists of 22 depots of which four crossdocks. Also,

the small example described in section 6.1 will be considered.
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To be able to say more about the difficulty of the original data set of an average day, the

data from an extra day is simulated. The original data set for this extra day has twice as

many trolleys and 1.5 times as many truck movements. The two groups of data sets that are

considered, are called group 1 and group 2, respectively. This extra day could represent a

day in November in which the hustle and bustle of the coming December month are already

visible. It is expected that the methods for group 2 require a longer runtime and therefore

perform less well than for group 1.

In group 2, the small example from Figure 5, section 6.1 is not considered again. In Tables

5 and 6, the information of the two groups is presented in order of size. The headers of the

columns are the number of trolleys, the number of truck movements, the number of com-

modity types k, the number of nodes in the network, and the number of arcs in the network

respectively.

Data set

group 1

nr. of trolleys nr. of transports nr. of comm. types k nr. of nodes nr. of arcs

Small ex.

Figure 5 24 2 1 5 5

Data set 1 410 48 3 96 144

Data set 2 670 129 6 262 384

Data set 3 12202 437 16 890 1311

Data set 4 22111 939 22 1900 2817

Original 33778 1492 32 3016 4474

Table 5: Information of the used data sets of group 1
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Data set

group 2

nr. of trolleys nr. of transports nr. of comm. types k nr. of nodes nr. of arcs

Data set 1 820 79 3 161 237

Data set 2 1348 199 6 404 597

Data set 3 24403 437 16 1352 2004

Data set 4- 44221 939 22 2860 4257

Original - 67556 2232 32 4524 6736

Table 6: Information of the used data sets of group 2

7.2 ILP model

In this section, the results that follow after solving the ILP program with integer linear solver

Gurobi will be discussed. Table 7 shows the information obtained after running the five

datasets. The headers of the columns are the number of trolleys, the objective obtained after

solving the ILP problem, the runtime of the model in seconds and the transportation score,

which means the percentage of right transported trolleys, respectively. A 100% transportation

score implies that there could not be a better solution and the obtained objective gives the

optimal solution.

ILP group 1

nr. of trolleys objective runtime (seconds) transportation score (%)

Small ex.

Figure 5 24 24 0.0156 100

Data set 1 410 410 0.178 100

Data set 2 670 670 27.1 100

Data set 3 12202 4570 120 37.5

Data set 4 22111 7611 120 34.4

Original 33778 16222 120 48.0

Table 7: Results after solving the ILP problem with Gurobi
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ILP group 2

nr. of trolleys objective runtime (seconds) transportation score (%)

Data set 1 820 820 0.25 100

Data set 2 1348 740 32.9 55.0

Data set 3 24403 8541 120 35.0

Data set 4 44221 12824 120 29.0

Original 67556 18667 120 27.6

Table 8: Results after solving the ILP problem with Gurobi

For a maximisation model, the lower bound is the objective of the best known feasible solu-

tion, while the upper bound gives a bound on the best possible objective.

From Table 7, one can easily see that only for the small example, data set 1 and 2 of group 1

optimal solutions have been obtained. The same holds for the data sets of group 2, see Table

8. This can be assumed because the objective is based on the number of successfully trans-

ported trolleys. When the number of total trolleys in the network is equal to the objective,

an optimal solution is found. For data sets 3, 4 and the original instance, the objective of

the best known feasible solution represents the lower bound to the problem. When looking

at the last column, it becomes clear that the transportation score decreases as the data set

increases. Concluding there could be assumed that solving the problem as an ILP problem

with a linear solver such as Gurobi only works well for relatively small multi-commodity

networks.

The reason why the CGDW algorithm has been developed, is to obtain an optimal solution

in a more reasonable time for all of the data sets. The motivation behind this methodology

is described in section 6.3. The next section will describe the results of using CGDW.

7.3 Column Generation with Dantzig-Wolfe

In this section, the results that follow after using the Column Generation method with a

Dantzig-Wolfe reformulation will be discussed.

As said in 6.2, a column generation method works when dealing with an optimization prob-

lem consisting of many variables. The results that follow this methodology show that this

statement is correct. The results obtained after running the CGDW can be found in Table 9
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and Table 10 for group 1 and group 2 respectively.

The headers of the columns are the number of trolleys, the objective obtained after solving

the optimization problem with CGDW, the runtime of the model in seconds, the number of

iterations - which means the number of times one or more columns have been added to the

RMP - and the transportation score respectively.

Column Generation

with Dantzig-Wolfe

group 1

nr. of trolleys obj
runtime

(s)

nr. of

iterations CG

transportation

score (%)

Small example

Figure 5 24 24 0.141 1 100

Data set 1 410 410 0.178 100

Data set 1 410 410 0.297 5 100

Data set 2 670 670 0.864 8 100

Data set 3 12202 12202 13.0 82 100

Data set 4 22111 22111 57.7 102 100

Original 33778 26544 120
stops after

104 iterations
78.6

Table 9: Results after solving the ILP with Column Generation and Dantzig-Wolfe
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Column Generation

with Dantzig-Wolfe

group 2

nr. of trolleys obj
runtime

(s)

nr. of

iterations CG

transportation

score (%)

Data set 1 820 820 0.826 9 100

Data set 2 1348 1348 2.68 15 100

Data set 3 - 24403 24403 35.06 82 100

Data set 4 - 44221 21774 120
stops after

105 iterations
49.2

Original - 67556 29433 120
stops after

105 iterations
43.6

Table 10: Results after solving the ILP with Column Generation and Dantzig-Wolfe Christ-

mas

Note that from these tables we see that the CGDW returns optimal solutions after reasonable

computation times for datasets 1, 2, 3 and 4 of group 1 and data sets 1, 2 and 3 of group 2.

For the other datasets lower bounds has been found.

For the original data set in group 1, a lower bound has been achieved with the CGDW,

which gives a transportation score of 78%. It means that at least 78% is transported cor-

rectly. Looking at group 2 - due to the limit of two minutes on the runtime - a lower bound

has been found for data set 4. Furthermore, the original data set of group 2 has a much lower

transportation score than that of group 1 due to the doubled amount of trolleys and the one

and a half times as large network. As expected before, transportation scores are worse, and

runtimes are longer.

Another remarkable result that follows from the Tables 9 and 10 above is the fact that the

objectives are integers. Because an LP-relaxation has been created from the ILP problem

in order to be able to solve the ILP problem, integer solutions are not necessarily expected.

The fact that integers have been found can potentially be seen as a coincidence. When the

problem is solved as an ILP problem, the amount of zeros in the solution is ignored. This

is caused by a commodity type not moving over every arc. For this reason, the CGDW is
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still a useful method. In this case, the CGDW is a better alternative to the common simplex

method.

7.4 Comparison ILP and Column Generation

To check whether the ILP method with linear solver Gurobi or the CGDW method performs

better when solving the MCNF problem, a few valuable results are put together for the data

sets of group 1 and group 2 respectively. The original data set and the created data sets 1,

2, 3 and 4 are used.

When comparing the objectives and the corresponding runtimes found for the ILP with

Gurobi and CGDW a few conclusions could be made.

Firstly, a comparison of the methods of group 1 will be handled. After that, the results of

the methods of group 2 will be compared.

7.4.1 Comparison results group 1

Valuable results are put together for the data sets of group 1 in Table 11. The objectives

that are colored orange imply optimal solutions. The underlined objectives represent lower

bounds to the solution.

Comparison of

the methods

for data group 1

obj. ILP
runtime

ILP (s)
obj. CGDW

runtime

CGDW (s)

method with

best performance

Data set 1 410 0.178 410 0.297 CGDW

Data set 2 670 27.1 670 0.864 CGDW

Data set 3 4570 120 12202 13.0 CGDW

Data set 4 7611 120 22111 57.7 CGDW

Original 16222 120 26544 120 CGDW

Table 11: Comparison of the two methods

It can be observed that for every data set the column generation method gives a better per-

formance compared to the ILP method. Also, it can be stated that CGDW always performs
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well as the objectives found all give a 100% transportation score except for the original data

set. When looking at the original data set, it can be seen that the lower bound has improved

compared to the ILP method. The transportation score here has increased from 48% to

78.6%.

To get a better sense of how good the solutions found are, we will look at the so-called

optimality gap. Therefore the optimal objectives, which equal the upper bounds, and lower

bounds as found with ILP and CGDW are compared. When no optimal objective is found,

we assume that the upper bound equals the number of trolleys in the data set. It follows

that the optimality gap only takes values between 0 and 1. The optimality gap is determined

as follows: lower bound
upper bound

. The optimality gaps for group 1 are given in Tables 12 and ??.

Group 1 ILP CGDW

Data set 1 1 1

Data set 2 1 1

Data set 3 0.37 1

Data set 4 0.34 1

Original 0.48 0.79

Table 12: Optimality gaps for group 1

Looking at the results of Table 7, there can be concluded that CGDW performs better than

the ILP. However, it is a quite complex mathematical method to use and therefore for small

instances the ILP solving method works fine and results in good objectives. When using

large data sets, high computation times and no optimal solutions should be expected. With

these, the objectives can be seen as lower bounds to the solution. Lastly, by looking at the

runtimes of the program, it can be seen that CGDW outperforms the linear solving method.

This becomes clearer when a larger data set is used.

7.4.2 Comparison results group 2

In Table 13 objectives of both methods are set out. The orange colored objectives imply

optimal solutions. In the case a lower bound to the solution is found this objective is under-

lined.
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Comparison of

the methods

for data group 2

obj. ILP
runtime

ILP (s)
obj. CGDW

runtime

CGDW (s)

method with

best performance

Data set 1 820 0.25 820 0.826 CGDW

Data set 2 740 31.9 1348 2.68 CGDW

Data set 3 8541 120 24403 35.6 CGDW

Data set 4 12824 120 21774 120 CGDW

Original 18667 120 29733 120 CGDW

Table 13: Comparison of the two methods

The methods for the datasets from group 2 yield less good results than for those from group

1. This is caused by the twice as many trolleys and 1.5 times as many truck movements

contained in the original data set of group 2. As expected, objectives are worse, which imply

lower transportation scores, and runtimes are larger.

As for group 1, the CGDW method gives a better performance compared to the ILP method.

For data sets 1, 2 and 3 an optimal solution is obtained when using CGDW. The optimal

solutions to data set 4 and the original set could not be obtained within the permitted run-

time and therefore these objectives represent lower bounds. However, the lower bounds that

follow from CGDW are much better that the bounds that follow from the ILP.

The optimality gaps for the data sets of group 2 are shown in Table 14. As mentioned before,

when no optimal solution is obtained, the upper bound equals the number of trolleys in the

corresponding data set.
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Group 2 ILP CGDW

Data set 1 1 1

Data set 2 0.55 1

Data set 3 0.35 1

Data set 4 0.29 0.49

Original 0.27 0.44

Table 14: Optimality gaps for group 2

7.5 Benchmark

In this section the transportation score of the current loading rules will be discussed.

According to the current loading rules, one day a percentage of 85 % trolleys are transported

to the correct final destination. This means that an improvement of maximum 15% is possible.

As said in chapter 1, the goal is to improve this percentage by at least 10%.

7.6 Minimization of costs flows by arc costs

The extension to the LP of constraints (8) - (11), as described in section 6.5, is solved with

the second method. This method solves the problem with CGDW for the data sets of group

1. A comparison is made between the number of time units used in the network as described

in equations (8) - (11) and the objective resulting from the modified problem (39) - (42). This

objective represents the minimum number of time units required, assuming that all trolleys

are transported to the correct destination depot. Comparing these two quantities provides

insight into how many units of time in truck movements can be saved. This rate is called the

necessary time unit rate. The results are shown in Table 15.
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Adjusted LP

data group 1
Runtime CGDW (s) Necessary time unit rate

Small example 0.0211 0.96

Data set 1 0.308 0.91

Data set 2 1.23 0.88

Data set 3 17.5 0.86

Data set 4 61.3 0.83

Original 120 -

Table 15: Necessary time unit rate for adjusted LP using the CGDW solving method

As with the previous problem - the maximization of successfully transported trolleys-, the

original data set has a lower bound as an objective after solving with CGDW. Table 9 shows

the results of the previous LP problem. Therefore, no necessary time unit rate can be

calculated for this instance. However, it can be cautiously assumed that, given the rates for

the other data sets, a considerable number of time units can be saved. It can be stated that

there exist unnecessary arcs in the network if the rate value is unequal to 1. This is the case

for the problem considered in this report. The percentage of time units that can be saved in

the original data set is probably between 10% and 20%.
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8 Conclusion

The main goal of this thesis was to develop an algorithm that can be used as a schedul-

ing tool for the truck loading problem of PostNL. Because on an average day, more than 1

million packages pass through the PostNL delivery network, it is important to know which

package should be transported by which truck. This optimization case can be described as

a Multi-Commodity Network Flow problem. In this MCNF problem trolleys can be seen

as commodity-types that flow through a network in which arcs denote truck movements or

the stock of a specific commodity-type and the nodes represent the departures and arrivals

of these truck movements. Nodes are also provided with the inflow of trolleys. To obtain

useful insights, the truck loading problem is solved in two ways. The first one is as an Integer

Linear Programming problem. The second one is by considering its Linear Programming Re-

laxation with a Column Generation technique within a Dantzig-Wolfe decomposition. The

results that follow from these two methods can be seen as extremely useful for PostNL. Not

only for financial purposes but also for sustainable purposes.

When we compare the two methods with the PostNL’s current loading rules, the following

could be concluded. By modeling the algorithm, the measured success of transporting trolleys

could be increased. In addition, the duration of the currently used transports can be reduced

by 10% to 20%. Moreover running both of the methods is less time-consuming and is more

likely to achieve optimal results than when done by manpower. In general, there can be said

that no manpower beats the mathematical power of a good algorithm. Column Generation

has lent itself perfectly for optimizing an MCNF because it returns an optimal solution in a

reasonable time. Even for large data sets, an optimal solution can be obtained. However, this

model requires more mathematical knowledge and could therefore be harder to use in general.

By looking at the use of arcs, a relevant adjustment has been made to the objective. By

turning the problem into a minimization problem in which the costs of using an arc are mini-

mized, it is possible to find out how many time units of truck movements can be saved. Using

this new objective, it follows that for each data set, between 4% and 17% of time units can be

saved. In practice, this means that a reasonable number of transports could be saved. This

is explained by the fact that, when solving the MCNF problem, short routes are more at-

tractive for trolleys to make use of and still fulfill the requested number of trolley assignments.
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It can be stated that for all of the data sets, as for the original data, the CGDW algo-

rithm lends itself perfectly to the maximization of solving the problem. Using this developed

method, it can be concluded that every trolley will be transported successfully. Even though

no results are displayed for the original data set, it can be argued that the use of this algo-

rithm makes sense for PostNL. Not only because the algorithm results in accurate, optimal

solutions and runs in a reasonable time, but it is also because the optimization of this truck

loading case could be done automatically in the near future. The latter is a major advantage

in the rapidly growing digitalization of companies. In addition, adjusting the objective has

provided insight into the efficiency of the use of trucks for PostNL. It has become clear that

costs can also be saved by looking at the inter transports. Of course, this also has a positive

impact on the environment.

8.1 Future Research

Further research may concern environmental considerations. For example, the column gener-

ation method could also be used to see which transports are not being used. This equates to

arcs that are not used in the network and this information could be obtained directly from

the current algorithm. Another potential future research could be expanding the original

mathematical problem by for instance adding the trolleys’ due times.

Sustainability purposes

As already introduced above, the CGDW method used can also be used for sustainability

purposes. PostNL is currently deploying a pre-calculated number of trucks to meet the inter

transport processes. What already followed from the expansion of looking at the costs of

using an arc, is that in any case fewer time units are needed for successfully completing

the transportation of the trolleys. It is still interesting to see which truck movements can

be omitted exactly. Therefore, more attention should be paid to the results that could be

generated by the CGDW algorithm. From the Column Generation method, it is known

that several truck movements do not contribute to the network and therefore do not have to

drive. This saves money and is above all better for the environment. Take equations (8)-(11).

By looking in detail at vector xk unused arcs can be observed. The truck movements that
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correspond to these arcs can therefore be omitted from the transport planning. It should be

clear that this is not only cost-effective, but also better for the environment.

Expansion of the mathematical problem

In this thesis for determining the route of a trolley within the inter transport network, only

the final destination of the trolley was considered. That is, the commodity type k is defined as

the specific destination depot of this trolley. In practice, we see that working with deadlines

is important. PostNL’s trolleys are divided into so-called ’shifts’. As already introduced in

Chapter 2, a possible extension would be to include the shift in the commodity type. Then

each commodity type k becomes a destination depot-shift combination. In the case that

some trucks arrive later than certain shift times start, it is important that earlier shifts are

given higher priority. Integrating this is not as easy as it seems. PostNL currently works with

about ten shifts. In this case, ten new commodity types will replace each current commodity

type. This makes the problem a lot bigger than it already is. The relevance of this also

needs to be considered. It is possible that with the current truck movements, each trolley

will arrive on time at the destination depot for the first shift that starts. In this case, adding

the shift to the commodity type is not necessary.
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