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Abstract

Clustering is a recognised unsupervised learning approach for data analysis. Recently, the

amount of available data has increased exponentially and what corresponds with it, the dimen-

sions of datasets. Big dimensionality is troublesome for the analysis and clustering methods used

alone encounter problems. This paper proposes applying tandem clustering, namely performing

dimension reduction first, before clustering. Cluster analysis is then done on a lower-dimensional

subspace. Firstly, the well-known method called Principal Component Analysis (PCA) is used

for dimensionality reduction. However, since it only focuses on the variability of the data and

is sensitive to data transformations, a new method for multivariate analysis, namely Invariant

Coordinate Selection (ICS), is considered. ICS depends on the joint diagonalization of two

scatter matrices, and its properties of affine invariance and finding Fisher’s linear discriminant

subspace for mixture of elliptical distributions, are advantageous. The fact that ICS can find

groups even without knowing its memberships, enables one to use it for clustering purposes.

This paper aims to improve cluster identification by performing various tandem clusterings. It

compares cluster validity indexes over the original clustering and also the clustering done on

the subspaces obtained by the PCA and ICS methods. A simulation study shows improvement

in cluster identification but not for very high dimensions. The performance of the proposed

approach is also tested on a real dataset.

Keywords: Affine Invariance, Clustering, ICS, PCA, Scatter Matrices, Tandem Clustering
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1 Introduction

Nowadays, the amount of available data brings many challenges. An efficient way of analysing

data by getting insights into their structure groups is clustering. Clustering is a popular unsu-

pervised learning method. Clusters are formed such that the points in one cluster are similar to

each other or dissimilar to observations in other groups. For the datasets with large dimensions,

it is known that some commonly used clustering algorithms (e.g., K-means) can underperform, for

example, due to the local minimum problem (Ding et al., 2002). Different solutions and different

clustering methods were proposed. One of the ideas is using dimension reduction first, ahead of

clustering.

Shrinking the feature space is beneficial for many complex algorithms as it increases accuracy

and efficiency (Anowar et al., 2021). The literature contains various examples of feature reduction

done by Principal Component Analysis (PCA), often followed by the K-means clustering algorithm

(Kaya et al. (2017), Lee et al. (2009)). This approach is called tandem clustering. It has been used

frequently but also criticized (Soete and Carroll, 1994). When tandem clustering uses PCA as the

dimension reduction step, it only considers the subspace explained by the variability, meaning that

finding the structure of the data is limited. Therefore, replacing PCA with another method that can

find structure of the information, is compelling. Among known dimension reduction methods, the

Invariant Coordinate Selection (ICS) method can be of interest. Indeed, it is a modern technique

for multivariate analysis, which has been proven useful for outlier identification and dimensionality

reduction on different types of data (Archimbaud et al. (2018b), Fischer et al. (2017)). In fact,

ICS focuses on finding the structure of the data and it considers the general kurtosis. Unlike PCA,

the ICS method is affine invariant. This property indicates that output is not affected by scale

or units when the data transformation is performed. Among other advantages, as shown by Tyler

et al. (2009), in the context of mixture of elliptically symmetric distributions, the ICS method can

recognise groups, even if the group membership is unknown. By maximizing the general kurtosis,

it finds small clusters, that is useful, for example, for outlier identification. Minimizing the general

kurtosis, on the other hand, finds large groups, which is valuable for clustering. However, this

method has not yet been studied much in the context of cluster analysis. Therefore, we would like

to use its property of identifying groups for clustering.

In this thesis, we aim to improve clustering by extending and evaluating the performance of ICS

for tandem clustering. We want to investigate the idea of doing dimension reduction first, before
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clustering, so that the cluster analysis is done on the low-dimensional subspace. We propose the

following research question:

”Does the ICS dimension reduction before clustering improve cluster identification?”

We answer this question by comparing the performance of ICS and another dimension re-

duction method, namely PCA. The analysis is conducted on simulated data with three different

dimension sizes as well as on a real dataset. After completing the reduction step, we proceed

with cluster analysis. We perform and compare two clustering techniques, the K-means, and the

Expectation-Maximization (EM) algorithm. We find that ICS dimension reduction can improve

cluster identification but it depends on the data design. When the dimension is equal to 10, ICS

does not encounter any problems and the clustering validation index achieves high values. However,

it is not true if the data is split such that one group consists of around 20% of all observations. For

higher dimensions, we obtain worse results.

This paper is organized as follows. In section 2, the literature on the subject is discussed.

Section 3 presents the applied methodology, which consists of dimension reduction and clustering

algorithms, as well as the evaluation methods. Section 4 describes the simulation design and results

per scenario. In section 5, the description and the results of a real dataset are discussed. Lastly,

the conclusion and discussion can be found in section 6.

2 Literature

We first review the existing literature concerning different clustering methods and their compar-

ison. Kaya et al. (2017) define clustering as a process that finds complex data relationships, that are

hidden in data sets, and presents groups of observations with similar characteristics. There are nu-

merous clustering methods, however, K-means and the EM algorithms are mostly used (Kinnunen

et al., 2011). K-means clustering is an unsupervised learning method that aims to divide data

into K clusters where each point belongs to the group with the nearest mean (Kaya et al., 2017).

However, Dempster et al. (1977) state that, unlike K-means, the EM algorithm is an example of a

soft clustering, since clusters are formed based on the membership probabilities.

One of the difficulties with clustering, is to know which approach is best. To compare them, we

can follow Kinnunen et al. (2011). They examine many clustering algorithms, including K-means

and the EM. Their paper on text-independent speaker recognition suggests using the Detection
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Error Tradeoff curve for choosing the right method. It is the compromise between a False Ac-

ceptance Rate and a False Rejection Rate. However, according to Shirkhorshidi et al. (2015), the

Rand Index is the most common index for clustering validity. The Rand Index, introduced by Rand

(1971) , measures similarity between two data groups. The improved version that is adjusted for

the number and size of clusters, the Adjusted Rand Index (Hubert and Arabie, 1985), is frequently

used. Another well-known measure for cluster validity and finding the right choice of groups is the

average silhouette coefficient (Rousseeuw, 1987). It determines how well the data was grouped, and

the results are shown in the silhouette graphs for visual analysis. Rousseeuw (1987) states that one

can avoid clustering on the outliers by considering graphical displays. Additionally, Hennig (2022)

emphasizes that there is no universal definition of a good cluster. As a consequence, he investigates

many criteria of recovering true groups, one of which is the Adjusted Rand Index.

To improve clustering, especially for data with many dimensions, we research the idea of tandem

clustering. Tandem clustering is a method that performs dimension reduction first, before clustering

(Vichi and Kiers, 2001). Having a low-dimensional subspace is beneficial. Such representation of

clusters enables easier identification of the groups, especially for two or three dimensions when the

graphical analysis is possible (Soete and Carroll, 1994).

According to Ma and Yuan (2019), PCA is the most used dimension reduction method. It

projects high-dimensional data into low-dimensional subspace by using linear transformation. Di-

mension reduction is done by keeping components that have the largest variance, which corresponds

to the most amount of information (Hasan and Abdulazeez, 2021). However, Ma and Yuan (2019)

claim that while decreasing dimensions enables computationally tractable and easier analysis, the

PCA, in comparison to other dimension reduction methods, is more time-intensive and requires

large memory consumption. Another drawback is that data standardization is recommended be-

fore using PCA. Performing PCA on unstandardized data would yield different results. PCA cannot

be applied to nonlinear data due to its linear projections.

When PCA is used for tandem clustering, together with K-means, it can underperform. Indeed,

Yeung and Ruzzo (2001) investigate that for gene expression data using PCA before clustering is

not recommended. It is due to the components choice, that is made based on variability but still

might miss some data structure information. However, still, PCA dimension reduction before seg-

mentation is often used in practice, for instance in brain studies, where the data is high-dimensional

(Kaya et al., 2017). Additionally, Soete and Carroll (1994) claim that by looking only at the first

few components, the important structure of the data might be missed. They suggest using an
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alternative method that is not sequential, but simultaneous. Reduced K-means is an approach that

does dimension reduction and clustering at the same time. It recovers the true cluster design and

performs well, also with many noise features.

Dimension reduction can also be done by ICS (Nordhausen and Ruiz-Gazen, 2022). ICS is a

modern method that resembles PCA, but instead of one, it is based on the joint diagonalization

of two scatter matrices, and eigenvalues are interpreted with regard to general kurtosis and not

variance. It is arguable why a new subspace of reduced dimension should be created based on the

large variance, like for PCA. Moreover, concerning the projection pursuit indicators, kurtosis is

the most popular (Nordhausen and Ruiz-Gazen, 2022). It is that the projections of interest are

those that do not resemble a normal distribution. Kurtosis then is useful for the identification of

non-Gaussianity and hence, also for finding groups.

Research shows that the direction of the small kurtosis indicates large clusters and vice versa.

Thus, invariant coordinates can be used for clustering (Fischer et al., 2017). According to Peña

et al. (2010), the idea of minimizing the kurtosis to find clusters is more useful than maximizing the

kurtosis direction, in case of two clusters of the same size. If the observations have the same distance

to the mean, the variance would be almost zero, and the kurtosis would be small. Therefore,

directions minimizing the general kurtosis will find clusters. For instance, Alashwali and Kent

(2016) prove that in the context of the mixture of two groups, the clustering direction is the one

spanned by the eigenvectors that belong to the smallest eigenvalue. Consequently, minimizing the

general kurtosis finds big clusters, which is attractive for the cluster analysis.

3 Methodology

In this thesis, the number of clusters is assumed to be known and equal to K. We first perform

dimension reduction. Dimension reduction is done by two different techniques simultaneously,

namely PCA and ICS. Next, clustering is performed on the obtained subsets. We also use and

compare two methods for cluster analysis: K-means and the EM algorithm. Parallelly, we perform

clustering directly on the original dataset in order to compare findings.

The notation used in this paper is given below.
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Notations

X A p-multivariate real random vector.

Xn A p-multivariate data with n observations.

xi A p-multivariate vector associated with the ith observation.

p Number of dimensions.

n Number of observations.

3.1 Dimension Reduction

Two dimension reduction methods, namely PCA and ICS, are performed to get new subspaces

that can be further used for clustering.

3.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a non-parametric, unsupervised method that com-

presses data into a smaller set of variables that capture the essence of the original data. It is used

to reduce dimensions and get uncorrelated variables (Hasan and Abdulazeez, 2021). PCA outputs

Principal Components (PCs), new variables that are calculated based on the maximum variance.

PCA computes eigenvalues for each component. The number of components equals the number of

features. The PCA algorithm works in the following way:

1. Compute a p x p sample covariance matrix C.

2. Perform an eigenvalue decomposition C = UDUT , where D is a diagonal p x p matrix with

dii > djj , when i > j and eigenvalues on the diagonal; and where columns of U are the eigenvectors

(U is a p x p matrix).

3. Compute Y = UTX, where Y’s are the PCs, and X’s are the features.

PCs are listed decreasingly, namely, the first component explains the most variation and the last

one has the smallest variance. Therefore, PCA indicates that the first new variables are the best

representation of the original data (Hasan and Abdulazeez, 2021). PCs are often chosen based on

the percentage of cumulative variance they explain or based on the scree plots, where one is looking

for the elbow. The elbow is a point at which the variance explained by each consecutive component

reduces significantly. For the regular PCA with standardized data, the PCs with eigenvalues above
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one are chosen. Moreover, since directions are sensitive to the scale of the data, in order to apply

the PCA, data standardization has to be performed beforehand (Anowar et al., 2021).

3.1.2 Invariant Coordinate Selection

Invariant Coordinate Selection (ICS) is often called a generalized PCA (Caussinus and Ruiz-

Gazen, 1995). Two methods are similar, however, instead of diagonalizing the variance-covariance

matrix, ICS is based on the joint diagonalization of two scatter matrices (Nordhausen and Ruiz-

Gazen, 2022).

Scatter Matrices Scatter matrices are the generalization of the covariance matrix. S(Xn) is

called a scatter matrix if it is affine equivariant. So if it follows:

S(XnA+ 1nb
′) = A′S(Xn)A, (1)

for Xn = (x1, ..., xn)
′ p-variate data, where A is a full rank p x p matrix, 1n a n-vector of ones and

b a p-vector. It is true for any p x p S(Xn) matrix that is symmetric and positive-definite. There is

no universal rule on which scatter matrix to use, but it is known that their choice can impact the

outcome. There are different classes of scatter matrices depending on how robust they are. Two

ways of measuring robustness are the breakdown point and the influence function.

In robust statistics, a breakdown point is a point after which an estimator becomes ineffective.

It is a proportion of outliers that the estimator can tolerate. It measures robustness, thus the

higher the breakdown point, the better the estimator. For example, the breakdown point of a

sample mean is 1
n , with an asymptotic breakdown point of 0%. It means that only one outlier can

break the estimator. Meanwhile, the asymptotic breakdown point of a sample median is the highest

possible and equal to 50%. Another measure of robustness is the influence function. It resembles

a derivative equation, but here the derivative is taken of the functional form of the estimator. It

determines the change in the estimator when a small amount of contamination is present. For

robust estimators, the influence function should be bounded (e.g., the influence function of sample

mean is unbounded, but the influence function of sample median is bounded). The three classes of

scatter matrices proposed by Tyler et al. (2009) are:

• Class I: not robust, the breakdown point is zero and the influence function is unbounded;

sample covariance matrix belongs to this class.
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• Class II: more robust than Class I, bounded influence function and positive breakdown point

(but not larger than 1
p+1); M-estimators belong to this class.

• Class III: the most robust class, high breakdown point; S-estimators and Minimum Covariance

Determinant (MCD) estimator belong to this class.

In the presence of outliers, Class II or III scatter pairs would be advised (Tyler et al., 2009). In

most cases, it is recommended to choose one scatter matrix from Class II and the second from

Class III. However, the right choice of scatter matrices continues to be an open question in the

literature. It is advised to try to implement different pairs of scatter matrices and then evaluate

obtained ICS components (Tyler et al., 2009). Especially for outlier identification purposes, the

first matrix has to be more robust. Then, the first components are maximizing the general kurtosis

to find outliers; thus, investigating just the first components is enough. We will consider two cases:

the first one with scatter matrices being COV & COV4, which is a regular covariance matrix and

a scatter matrix of fourth moments. COV4 follows:

COV4(Xn) =
1

(p+ 2)n

n∑
i=1

d2i (xi − x̄)(xi − x̄)′, (2)

where x̄ is the empirical mean and d2i = (xi − x̄)′COV (Xn)
−1(xi − x̄) is the squared Mahalanobis

distance. For the second case, we take more robust scatter matrices: MCD & COV . Minimum

Covariance Determinant (MCD) is a highly robust and affine equivariant estimator of location and

scatter. It uses a subset of data that obtains the smallest determinant of the covariance matrix.

The scatter estimate is the covariance matrix taken on a subset, multiplied by a Fisher consistency

correction (Hubert et al., 2018).

We choose those scatter pairs so that the first matrix per pair is more robust. Even though in the

first case, the selected scatter matrices are from Class I, so not robust, there are many theoretical

properties described in the literature that can be insightful (Tyler et al. (2009), Archimbaud et al.

(2018b)).

ICS Fundamentals ICS aims to find a p x p transformation matrix W (Xn) such that:

W (Xn)S1(Xn)W (Xn)
′ = Ip (3)
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and

W (Xn)S2(Xn)W (Xn)
′ = B(Xn). (4)

S1(Xn) and S2(Xn) are scatter matrices and B(Xn) is a diagonal matrix with eigenvalues in de-

creasing order on the diagonal. The rows of W (Xn) are the equivalent eigenvectors. When all

elements of B(Xn) are different, the following equivariance property holds:

W (Xn)A
−1 = JW (XnA

′ + 1nb
′), (5)

where J a p x p diagonal matrix that has ±1 on its diagonal. By using a location functional T , we

get:

W (Xn)(xi − T (Xn)) = JW (XnA
′ + 1nb

′)((Axx + b)− T (XnA
′ + 1nb

′). (6)

Thus, zi = W (Xn)(xi − T (Xn)) are the ICS components that are affine invariant. The affine

equivariance property of ICS means that the data can be rotated, scaled and such transformation

will not affect the outcome. Hence, ICS components present the structure of the original data

regardless of its initial coordinate system. This advantageous property makes ICS superior to

PCA, which does not have such ability. PCs are invariant under orthogonal transformations but

not under other affine transformations.

ICS for clustering In the context of clustering, we examine ICS property that enables finding

groups in the data. First, the process of obtaining a lower-dimension subspace after transformation

is explained. Once having selected the components, ICS can be used for cluster analysis.

After choosing the scatters, the ICS transformation is performed. The obtained diagonal el-

ements of B(Xn) matrix are the generalized kurtosis values of the ICS components. According

to Tyler et al. (2009), the first and last eigenvalues of the transformation represent the general

measurement of maximal/minimal kurtosis. We assume that the first and the last components

that are not normally distributed, are of interest. To choose the components, we generalize the

approach proposed by Archimbaud et al. (2018b), which considers normality tests. For each chosen

pair of scatter matrices, we carry out the ICS transformation and then perform the D’Agostino test

(DA) (Archimbaud et al., 2018b). Further, with the obtained p-values of the test, we start looking

at the first and the last one, then comparing the second and one before the last, et cetera. It is

based on the above-mentioned fact that the first and the last eigenvalues correspond to maximal

and minimal generalized kurtosis, respectively. It differs from the component selection for outlier
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identification purposes. When the outlier contamination is small, the components of interest are

only the first ones (Archimbaud et al., 2018b). Maximizing the general kurtosis allows to find

small clusters. Minimizing the general kurtosis indicates big clusters and the last components can

display the structure of the data well. When choosing the components, we stop when the p-values

are insignificant or when we know the number of true groups in the data. In that case, we stop

with K − 1 components. Thus, when investigating the components, we do not only start from the

first ones, but at the same time, we check and compare the last components, and we go inwards.

The resulting lower-dimensional subspace resembles Fisher’s linear discriminant subspace in the

context of mixture of elliptical distributions, and thus can be used for clustering. Recalling the

Theorem 3 (Tyler et al., 2009), when the data comes from the mixture of two multivariate normal

distributions, with unequal means (µ1 ̸= µ2) and with two proportional covariance matrices, that

is Γ and λΓ (where λ > 0 and Γ belongs to symmetric positive matrices) we have three different

cases after performing ICS transformation:

1. The first eigenvalue is larger than the others, and the other eigenvalues are equal to each

other,

2. The first p− 1 eigenvalues are equal and larger than the last eigenvalue,

3. All eigenvalues are equal.

When p > 2 and the first case is true, then the first eigenvector is proportional to Γ−1(µ1 − µ2).

When the second case is true, the last eigenvector is proportional to Γ−1(µ1 − µ2). If the first

eigenvalue is larger than the second for p = 2, then either the first or the last eigenvector is

proportional to Γ−1(µ1 − µ2).

In all the above cases, mentioned eigenvectors resemble the Fisher’s linear discriminant function.

It is true, even when the class membership is unknown and it is generalized to a mixture of many

elliptically symmetric distributions (Tyler et al., 2009). It allows us to find groups in the data.

Thus, it is valuable for cluster identification purposes.
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3.2 Clustering

We focus on two clustering methods, the K-means and the EM algorithm.

3.2.1 K-means

K-means is a simple, easy and fast to implement method. The name was firstly introduced by

MacQueen (1967), but in fact, the method was discovered by Steinhaus (1956), under a different

name: bagging predictors. It is an example of hard partitional clustering, namely it aims to divide

the data into K partitions. The partitions are made based on the similarity measure (Euclidean

distance). K is chosen in advance and it indicates the number of clusters. There are numerous

ways to choose the K, one of which uses the elbow plot. The elbow is a point at which the within

cluster sum of square obtained by each consecutive K reduces significantly. The assumptions of

K-means are such that clusters have similar sizes and are spherical.

The objective of the K-means is to minimize the summed squared distance within clusters. Let

C be the set of clusters, C = C1, C2, ..., CK , we then aim to minimize:

argmin
C

K∑
i=1

∑
x∈Ci,

||x− µi||2, (7)

for (x1, x2, ..., xn) observations and for µi being the cluster Ci’s center. The algorithm selects

points for which it calculates the distance to other observations, it assigns the point to the nearest

cluster and calculates the center of each cluster. Next, it reclusters and the process is repeated.

Thus, the assignment step and the update step (means recalculation) are repeated until the cluster

assignments do not change anymore (Likas et al., 2003).

3.2.2 Expectation Maximization

Expectation-Maximization (EM) is another clustering algorithm, firstly given its name and pre-

sented by Dempster et al. (1977). Unlike in the K-means, instead of selecting clusters to maximize

the differences in the means, the EM algorithm computes membership probabilities. The method

is based on two steps. The estimation step (E-Step) and the maximization step (M-Step). The E-

step estimates the expected value of the latent variable and M-Step optimizes the parameters using

maximum likelihood. The algorithm iterates until convergence. The EM clustering uses Gaussian

probability distributions and is an example of soft clustering (Dempster et al., 1977).

10



Let X = (x1, x2, ..., xn) and Z = (z1, z2, ..., zn), Z being the latent variable (the unobserved

variable that indicates group membership). If we have three clusters, as it is in our case of GMM we

have: Xi|(Zi = 1) ∼ N(µ1,Σ1), Xi|(Zi = 2) ∼ N(µ2,Σ2) and Xi|(Zi = 3) ∼ N(µ3,Σ3), where the

membership probabilities are: P (Zi = 1) = π1, P (Zi = 2) = π2 and P (Zi = 3) = π3 = 1− π1 − π2.

The aim of the algorithm is to estimate unknown parameters θ = (π1, π2, π3, µ1, µ2, µ3,Σ1,Σ2,Σ3).

The E-step follows:

Θ(θ|θ(t)) = EZ|X,θ(t)[logL(θ;X,Z)]. (8)

Next, the M-step is performed such that:

Π(t+1) = argmax
θ

Θ(θ|θ(t)). (9)

The logL(θ;X,Z) used in equation 8 is the complete likelihood function:

logL(θ;X,Z) =
n∏

i=1

3∏
j=1

[f(xi;µj ,Σj)]
I[zi=j], (10)

where f is the multivariate normal density function and I is the indicator function. The indicator

function takes the value equal to one if the equation zi = j is satisfied for a particular i and j, or

zero otherwise. The algorithm iterates until convergence and the best fit values of the Gaussian

parameters are achieved. If we know the parameters of the particular Gaussian, we can get the

probabilities of coming from this or another Gaussian. Based on that we know which point came

from where and the membership probabilities are obtained.

3.3 Evaluation

Two evaluation methods are used for cluster validation. An external validation ARI and an

internal validation, the average silhouette coefficient.

3.3.1 ARI

Adjusted Rand Index (ARI) is a validation index that measures the similarity between two

clustering results (Hubert and Arabie, 1985). To understand how it is computed, we first make

use of the confusion matrix (Table 1). A confusion matrix, also called an error matrix, is used as

a performance measure and shows the summary of predicted results of a classification task. TP

indicates a positive prediction which in fact was true, thus TP is the number of true positives.
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FP means that the prediction was positive while the actual value was negative. Hence, FP is

the number of false positives (also known as Type 1 Error). Consequently, TN is the number of

true negatives and FN false negatives (Type 2 Error). In the context of classification, a Positive

condition means 1 (the same cluster) and a Negative means 0 (different cluster).

Predicted Values

Positive Negative

Actual Values
Positive TP FN

Negative FP TN

Table 1: Confusion matrix.

ARI is an adjusted version of the Rand Index (RI). RI can be shown as a percentage of correctly

clustered observations:

RI =
TP + TN

TP + FP + TN + FN
. (11)

RI can also be represented by a formula:

RI =
a+ b(

n
2

) , (12)

where a is the count of pairs of points that belong to the same cluster in two clustering approaches,

b is the count of pairs that are not grouped together and the denominator is the total number of

pairs. Thus, the numerator of equations 11 and 12 represent the count of pairs in agreement.

ARI is adjusted for the number and size of clusters. If they are the same, under the randomness

of cluster labels, its expected value is equal to zero. ARI is then:

ARI =
RI − expected(RI)

max(RI)− expected(RI)
, (13)

where expected(RI) is an expectation value of the Rand Index (Sinnott et al., 2016). ARI can

yield negative values. Already a value of zero can indicate that clusterings are not similar to each

other. The highest value ARI can yield is 1. Thus the higher the index number, the more similar

two clusterings are.

12



3.3.2 Silhouette Coefficient

The average silhouette coefficient is a method proposed by Rousseeuw (1987) and it indicates

how well observations were clustered. It calculates the silhouette score (silhouette width) for each

observation using:

S(i) =
b(i)− a(i)

max{a(i), b(i)}
, (14)

where a(i) indicates the average dissimilarity of i to other elements in its cluster and b(i) is the

average dissimilarity to other elements in other clusters. The dissimilarity is the distance between

two observations which indicates how different observations are from each other. The final score of

the silhouette coefficient is then the average of all the scores. The coefficient can take values between

-1 and 1, including the end values of the interval. A high value indicates that the observation was

correctly grouped; thus a value close to -1 indicates misclassification. The scores are plotted on the

silhouette graphs. The best clustering is when the silhouette heights are similar. As an example,

Figure 1 shows two silhouette plots (Raymaekers and Rousseeuw, 2022). The left plot presents

grouping into three clusters. The grey cluster’s height is large and the width varies much. In this

particular cluster, we see large scores (width) which indicate that points are located close to the

center of a cluster, but also we see very low scores. This means that some points in the grey cluster

are close to other clusters. Next, we look at the right graph with four partitions. Here, the heights

are almost the same, and silhouettes look similar. Even though negative values (wrongly classified

observations) are visible, the overall average silhouette width is larger than for the left graph.

Figure 1: Example of silhouette plots.
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4 Simulations

In this section, the simulation design and results are described.

4.1 Data Design

We are performing simulations to account for the different grouping design. We simulate two

Gaussian Mixture Models (GMM) based on different observations’ split:

• Model 1: data split - 50%, 30% and 20%

• Model 2: data split - 50%, 40% and 10%

As there is no universal rule of thumb on minimum sample size for clustering purposes (Siddiqui,

2013), we choose to have 1000 observations. The data follows:

X ∼ (1− ϵ)N(0,Σ) + ϵ1N(δe1,Σ) + ϵ2N(δe2,Σ)

∼ (1− ϵ)N(µ0,Σ) + ϵ1N(µ1,Σ) + ϵ2N(µ2,Σ)
(15)

where δ is equal to 8, ϵ = ϵ1 + ϵ2, and X = (X1, ..., Xp)
′ is a p-multivariate random vector and

the distribution of X is a mixture of three Gaussian Distributions. We have different location

measures; µ0 is a vector of zeros, µ1 is a first unit vector multiplied by δ, and µ2 is a second

unit vector multiplied by δ. For the above model, we consider two scenarios for positive-definite

covariance matrix Σ: the identity matrix and the diagonal matrix (Σ = diag(1, 1, δ, ..., δ)).

Table 2 shows the simulation set-up summary. Each case is performed for three different di-

mensions. There are three scenarios for the number of dimensions: 10, 50 or 100 (p1 = 10, p2 =

50, p3 = 100, respectively). In this set-up, three groups are visible in the data. To hide it for further

analysis, we rotate the data with an orthogonal matrix (Fischer et al., 2017). We use the Toeplitz

matrix for this, which has each descending diagonal element constant. For the dataset, we are also

adding a categorical variable group that indicates from which group the observation is.
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Model Data Split Sigma

Case 1 1 50%, 30%, 20% Diagonal

Case 2 1 50%, 30%, 20% Identity

Case 3 2 50%, 40%, 10% Diagonal

Case 4 2 50%, 40%, 10% Identity

Table 2: Data simulation set-up.

Simulation is performed in R and required packages are mentioned below. 100 samples are

generated with the number of observations equal to 1000 and the dimension p of 10, 50 and 100.

Data follows GMM with various observations’ split and different covariance matrices (see Table 2

for details). Before we present the results, we explain in detail how the simulation was performed

for original and modified datasets.

Simulation design per dataset For Original Data, for each of the four cases and three different

dimensions, we create simulation functions. Clustering is done directly on the data generated by

GMM. For the K-means clustering, we use the cluster package (Maechler et al., 2019) and we take

the true number of groups, namely three. To perform EM clustering we use the mclust package

(Scrucca et al., 2016), also with the group number equal to three. For each clustering algorithm,

we calculate the ARI and we take an average over all simulations. ARI tells us how well the data

was clustered comparing the classification output to the true group membership.

For PCA Modified Data, we apply PCA for dimension reduction before performing cluster

analysis. We make use of the factoextra package (Kassambara and Mundt, 2020). PCA output

shows eigenvalues and we take those into account when deciding how many components to take.

We take those components that have corresponding eigenvalues larger than one (Jinga et al., 2006).

Because we know the number of groups is three (K = 3), it follows that the maximum number of

chosen principal components is equal to two (max K − 1 components) (Ding and He, 2004). With

the new subspace, we proceed with clustering using the same approach as for the Original Data.

Additional to the ARI results, we also report the average number of selected components.

For ICS Modified Data, the dimension reduction is done by ICS. We use the ICSOutlier

package (Archimbaud et al., 2018c), in which we can specify scatter matrices. We have two different

functions per each case of simulation. This is because we first perform ICS with scatter matrices

being COV & COV4, and then with more robust scatter pair MCD & COV . To choose the
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invariant coordinates we use the normality test, namely the D’Agostino test (Archimbaud et al.,

2018b), and we set the significance level to 5%. The idea is such that the new subspace consists of

not normal components. We start by considering the p-values of the first and last component, next

we look at the second and one before the last. We check if they are smaller than the significance

level, and we choose the one that is the lowest. As we have three groups in the data, the maximum

number of coordinates is two. Figure 2 plots the first and the last component after performing ICS

transformation with MCD & COV as scatters. Three groups are clearly visible on the plot. For

all new subspaces created by ICS, we want to find two components with clearly visible groups.

Figure 2: First and last component for Case3 when using MCD & COV .

When performing ICS with MCD & COV , the default for the MCD’s alpha is 50%. This is

the breakdown point and this parameter is controlling the size of the subset that is used for the

determinant minimization. We use this set-up as a foundation for our ICS MCD & COV analysis.

However, we encounter problems with coordinates selection and change the parameters for certain

cases. The problems with MCD will be mentioned later. The alpha can take values from 0.5 to

1, so we also apply MCD alpha 75% to see if it performs better (namely, if it chooses, on average,

two components). Another modification to the above-mentioned MCD is the nsamp, the number

of subsets that is used for primary estimates. The default is equal to 500. However, we also check

the deterministic MCD, where the h central observations of six deterministic estimators are the

start (Hubert et al., 2012). The combination of deterministic and alpha 0.75 is also applied to

examine if it recovers the right number for components. Lastly, similarly as for the PCA approach,

we perform clustering on the new subspace and obtain mean ARI results.

As a reference to our analysis, we review the ICSShiny package (Archimbaud et al., 2018a)

with the ICS application. The application visualizes coordinates for different scatter matrices and

investigates more normality tests for the coordinates selection.
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Plots description Below graphs show the results of simulations of the four cases. The red color

indicates the average ARI value, the color green indicates the minimum ARI, and the blue is the

maximum ARI. Color coding is the same for all graphs. In the x axis, we can see five different

methods, which are the methods the data was modified with. PCA is the data modified with PCA

algorithm, Original Data is unmodified. ICS1 is the ICS with COV & COV4, ICS2 is the ICS with

MCD & COV , ICS3 is the ICS with modified MCD & COV . Adjustments to MCD in ICS3 are

described in detail per case.

4.2 Case 1

For Case1, the ICS3 uses α = 0.75 for MCD. When the dimension is equal to 10, Σ =

diag(1, 1, 8, ..., 8) and K-means is the clustering method, we see that the highest mean values were

received by using ICS2 and ICS3 (Figure 3). Although their minimum and maximum values

have big differences, the medians are also the highest (See Table 6 in Appendix B). For the EM

clustering results, we see that ICS2, ICS3 and Original Data have similar results, while PCA

performs significantly worse than other methods (Figure 4). It is in line with PCA fundamentals,

that it looks at the overall largest data variability but cannot account well for variability that is

put only on the last variables. The median value for ARI when EM is used is the same for ICS2,

ICS3, and for Original Data (Table 6 in Appendix B). Here (when p = 10), for K-means and EM

clustering, the preferred dimension reduction method is ICS3 as it is fast, has the best results for

ARI, and always finds two components (Table 6 in Appendix B).

Figure 3: Simulation K-means results for Case
1, dim=10.

Figure 4: Simulation EM results for Case 1,
dim=10.
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For higher dimensions, p = 50, 100, we see from the graphs that all ARI scores are small, around

zero, even negative (Figures 5,6,7,8). This indicates misclassification. The explanation for ICS1

not performing well is the fact that the observation split for Case1 consists of one group that is

around 20% of all data. It has been proven that it is a limiting case for COV & COV4 scatters

(Archimbaud et al., 2018b). There are no such proofs for MCD & COV due to advanced and

extensive mathematical calculations, but it might also be the reason why ICS2 and ICS3 are not

performing well for this case. For higher dimensions of Case1, we do not have satisfactory results.

Moreover, an observation about the performance of PCA is such that it obtains slightly higher

average ARI results, and it always chooses two components for its clustering subspace (See Table

6 in Appendix B).

Figure 5: Simulation K-means results for Case
1, dim=50.

Figure 6: Simulation EM results for Case 1,
dim=50.

Figure 7: Simulation K-means results for Case
1, dim=100.

Figure 8: Simulation EM results for Case 1,
dim=100.
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4.3 Case 2

For Case2, the ICS3 uses α = 0.75 for MCD.

Case2 indicates that the covariance matrix is the identity matrix, and the observation split is

50%,30%, and 20%. When K-means is used as a clustering method for 10 dimensions, it is noticeable

that Original Data has the smallest mean ARI value. Other methods obtain better results (Figure

9). ICS2 and ICS3 find two coordinates (Table 7 in Appendix B) and have the same median values.

PCA, however, does not find two coordinates as the mean for the number of components is 1.96

(Table 7 Appendix B). When EM clustering is used, we see an opposite trend to the K-means.

Figure 10 shows that Original Data obtained the highest mean ARI value, whereas results for ICS

methods are much smaller. Further, PCA’s mean value is high but it does not always find two

components (Table 7 Appendix B). ICS methods have the biggest value amplitude (around 0.5)

for K-means, while for EM it is almost zero for ICS2 and ICS3. Even though ICS3 does not reach

Original Data’s mean ARI value, it chooses the two components well, thus we recommend using

ICS3 as a base for both clustering methods when there are ten dimensions.

Figure 9: Simulation K-means results for Case
2, dim=10.

Figure 10: Simulation EM results for Case 2,
dim=10.

Figure 11 for results of dimensions 50 and Figure 13 for results of dimensions 100 look alike. In

both cases, K-means is used for clustering and the best results are obtained for PCA. As mentioned

above, ICS is not performing well in case of a data split with a group of 20%. Similarly, for EM

clustering results (Figures 12 and 14), ICS methods do not perform well and they do not choose

two components (Table 7 Appendix B). However PCA, with this simulated data and the covariance

matrix being identity, it always finds two components. Therefore, for dimensions equal to 50 and
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100, the PCA obtained subspace should be used for clustering.

Figure 11: Simulation K-means results for
Case 2, dim=50.

Figure 12: Simulation EM results for Case 2,
dim=50.

Figure 13: Simulation K-means results for
Case 2, dim=100.

Figure 14: Simulation EM results for Case 2,
dim=100.

4.4 Case 3

In Case3, for dimensions p = 10, 50 the ICS3 uses α = 0.75 for MCD. On average, we see high

ARI numbers (larger than 0.5) for ICS for both K-means and EM (Figures 15 and 16). Case3 has

observations split of 50%,40%, and 10% thus, the ICS transformation with COV & COV4 scatters

should not encounter any problems. Moreover, all ICS methods choose two coordinates (Table 8

Appendix B). As the mean ARI value is the largest for ICS1, we conclude that it is an optimal

choice for Case3 clustering when p = 10. The EM clustering results also obtain high values for

ICS methods and for the Original Data. The interval of min/max ARI values for Original Data is
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significantly smaller than for other methods, thus the EM clustering should be done on unmodified

data when p = 10. The low performance of PCA is noticeable for both EM and K-means results.

It is due to covariance matrix being Σ = diag(1, 1, 8, ..., 8).

Figure 15: Simulation K-means results for
Case 3, dim=10.

Figure 16: Simulation EM results for Case 3,
dim=10.

Rather small numbers are obtained for average ARI results of K-means and EM clustering for

p = 50 (Figures 17 and 18). PCA is finding two components, but none of ICS methods obtain two

on average (Table 8 Appendix B). Therefore, in this case, clustering should be performed directly on

the Original Data, as none of the dimension reduction methods significantly improve the clustering

performance.

Figure 17: Simulation K-means results for
Case 3, dim=50.

Figure 18: Simulation EM results for Case 3,
dim=50.

Below graphs (Figures 19 and 20) show the results of Case3 with p = 100. ICS3 uses here a
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deterministic version of MCD. Again, the values obtained by ICS are, on average low and do not

find two components (Table 8 Appendix B). PCA subspace gives higher mean ARI with always

two principal components as its base.

Figure 19: Simulation K-means results for
Case 3, dim=100.

Figure 20: Simulation EM results for Case 3,
dim=100.

4.5 Case 4

When p = 10 in Case4, ICS3 uses α = 0.75 for MCD. Figure 21 shows the outcomes of

the K-means clustering. Original Data’s results are substantially smaller than the rest. Case4 is

a set-up where we have the identity covariance matrix and the data split of 50%,40%, and 10%.

Therefore, PCA should not encounter any problems with choosing the right components, and ICS

transformation should perform well. Table 9 in Appendix B shows that indeed in all the cases, the

average of chosen components is equal to two. Looking at the obtained mean ARI values, we see

that ICS1 has the highest number. Even though the min/max interval of ARI values is large, the

median is equal to 0.6682, which is significantly larger than the Original Data and similar to other

ICS outputs (See Table 9 in Appendix B). Figure 22 presents the results of EM clustering, which

are on average high for all methods (around 0.64). PCA and ICS correctly choose two components.

Nevertheless, the EM clustering on Original Data obtains the best ARI value and has the smallest

min/max interval.
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Figure 21: Simulation K-means results for
Case 4, dim=10.

Figure 22: Simulation EM results for Case 4,
dim=10.

For dimensions equal to 50 and 100 (for Case4) the ICS3 uses the deterministic version of

MCD. Figures 23, 24, 25 and 26 present ARI results. Surprisingly, ICS methods do not work

well, with the average ARI numbers around zero. Additionally, ICS methods choose at most 1.6

components, while PCA finds exactly two (See Table 9 in Appendix B). In almost all cases, PCA

obtains the best mean results.

Figure 23: Simulation K-means results for
Case 4, dim=50.

Figure 24: Simulation EM results for Case 4,
dim=50.
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Figure 25: Simulation K-means results for
Case 4, dim=100.

Figure 26: Simulation EM results for Case 4,
dim=100.

5 Real Dataset

For completeness, after simulation analysis, we apply the same process to the real dataset. The

V ehicle dataset is a built-in dataset in R package called mlbench, and the data comes directly

from the UCI repository (Newman et al., 1998). The dataset consists of 846 observations and 19

variables. All variables are numerical but one, which is a categorical variable indicating the type

of a vehicle.

The variables are the features that were extracted from the silhouettes by the Hierarchical

Image Processing System (see Table 5 in Appendix A for features description). As we have a

Class feature, we know exactly the true groups of vehicles. There are four types, and the exact

membership can be seen in the table below (Table 3). Group identification was designed in a way

that the three groups would be easily distinguishable (bus, van, car), making it more difficult to

recover the right car type (opel or saab).

Group Type Class Class %

Bus Bus 218 26%

Car Opel 212 25%

Car Saab 217 26%

Van Van 199 24%

Total 846 100%

Table 3: Descriptives of Class variable.
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We apply the same methodology to the V ehicle dataset. First, the clustering is done directly on

the data (only the Class feature is deleted from the dataset, and it is treated as a true group vector,

which is later compared to the clustering results). As a result, we get ARI values for K-means and

EM algorithms. Both of them are similar, around 0.07 (Table 4).

ARI Kmeans ARI EM Comp. Nr.

Original Data 0.0726 0.0796 -

PCA 0.0766 0.0477 3

ICS1 0.0207 0.0139 3

ICS2 0.0569 0.0732 3

Table 4: Real dataset results.

Next, we apply PCA to reduce the dimension. The first four principal components have a

corresponding eigenvalue larger than one. Those four components would have been chosen as a

new subset, however, in this case, we know the true number of car groups. Thus, we can select

maximum of three components to be our base for clustering. The graph below shows how much

variance is explained with a given number or components (Figure 27). Three principal components

explain 80% of the total variance. For clustering, we know that the true number of clusters is four.

In order to verify, we check the average silhouette coefficient for K-means and it also gives us the

optimal number of clusters being equal to four (Figure 28). The obtained ARI value for K-means

is 0.0766, and it is larger than the Original Data. However, the ARI result for EM clustering is

equal to 0.0477, which is smaller than the original one (Table 4).

For ICS, to choose coordinates, we apply the same logic as in the simulated data. We do the

normality test and check the obtained p-values. However, in this case, we choose the significance

level to be 1%, as 5% would lead to too many components. For ICS1 (when COV & COV4 are the

scatters) we have that the first four coordinates are significant. Because we have four groups in the

data, we can have at most three coordinates; thus, we take the first three to be our new subspace.

In this case, the p-value of the last component is already larger than 0.01, thus insignificant. Figure

29 shows chosen components, the first three as mentioned above. It is noticeable that their densities

are almost the same. Namely, it is hard to observe the vehicle’s groups. Looking at IC.1 & IC.3,

and IC.2 & IC.3, the bus class (in red) is more distinguishable from the others. Moreover, the ARI

values obtained for ICS1 are much smaller than the rest. The scatter choice of COV & COV4 is

not performing well. When we look at the data division into four classes (Table 3), we see that
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Figure 27: Cumulative variance
plot for PCA on V ehicle dataset.

Figure 28: Optimal K for K-
means performed on the PCA
subset.

vehicle groups are around 25%. This might be the reason why ICS1 is not working properly.

When using MCD & COV as scatters (ICS2), we obtain six first components to be significant,

but also the last one. Next, the p-values are compared and three coordinates are chosen (first,

second, and the last). Figure 30 shows selected components. The density of IC.1 and IC.2 are

almost the same, while the plot of IC.18 displays different densities. As mentioned previously, the

data was designed such that three groups will be easily distinguishable (bus, van, car), making it

more difficult to recover the right car type (opel or saab). Indeed, when looking at the IC.1 and

IC.18 plot, we see the purple van observations on the left, almost all red bus observations on the

right, and in the middle, we see green and blue ones. Thus, the groups are distinguishable, but not

easily, as we see some overlaps. In this regard, ICS2 is performing better than ICS1. Clustering

results with ICS2 are higher for EM and almost the same as for the Original Data. (Table 4).

All our approaches follow the tandem clustering form. As mentioned in the Literature (section

2), there exists an alternative method that is not done sequentially but simultaneously performs

dimension reduction and clustering, namely the Reduced K-means. We apply it by using the

clustrd package (Markos et al., 2019). We set the number of clusters to four and the dimensions

of a solution, that is the new subspace, to three. With an obtained new clustering, we compute

the ARI index. ARI equals 0.0761. It is similar to the values achieved with the Original Data

(Table 4), but significantly larger than for all ICS cases. When comparing the tandem clustering of
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PCA and K-means with the Reduced K-means, we obtain similar numbers. The Reduced K-means

is only smaller by 0.0005. However, the Reduced K-means performs significantly better than the

tandem clustering with the EM algorithm (Table 4).

In fact, the ARI results are not high, as the largest value is only 0.0796. Thus, if the K-means

is the desired clustering method, we suggest performing the analysis on the PCA modified data,

or using the Reduced K-means approach. However, when EM is used, we suggest modifying the

data with ICS2 or by simply using the original V ehicle dataset. Moreover, we notice that the

distribution of the data is skewed. As ICS requires elliptical distribution, this might be the reason

of clustering not performing well.
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Figure 29: Invariant Coordinates chosen by ICS1. The class
coding is: 1 = bus, 2 = opel, 3 = saab and 4 = van.

Figure 30: Invariant Coordinates chosen by ICS2. The class
coding is: 1 = bus, 2 = opel, 3 = saab and 4 = van.

28



6 Conclusion and discussion

The main objective of this thesis is to improve clustering identification by first performing

dimension reduction. Shrinking the feature space is beneficial for many complex algorithms as it

increases accuracy and efficiency and simplifies data interpretation (Anowar et al., 2021). Various

examples containing PCA and K-means algorithms have already been studied (Kaya et al. (2017),

Lee et al. (2009)). However, PCA for tandem clustering might be inefficient. It is due to reducing

the dimension only based on the variability and not finding the true structure of the data (Soete

and Carroll, 1994). Therefore, we proceed with involving ICS in order to enhance clustering with

dimension reduction in a sequential way. The ICS method focuses on finding the structure of the

data and it considers the general kurtosis. Maximizing and minimizing the general kurtosis, allows

to detect small and large clusters, respectively. ICS property of finding Fisher’s linear discriminant

subspace, in the context of mixture of elliptical distributions, enables one to use it for cluster

analysis.

We perform clustering on simulated and real datasets. In both cases, we assume the number

of clusters is known. Simulated data is generated by GMM with two set-ups for the covariance

matrix and two models for the observations split. We perform K-means and EM clustering on the

unmodified data but also on the data with dimensions reduced by PCA and ICS. Each analysis is

applied for three different numbers of variables (dimensions equal to 10, 50 and 100) and diverse

variants of ICS.

”Does the ICS dimension reduction before clustering improve cluster identification?” The an-

swer to our research question is ambiguous and depends on the used data. Our observations and

advice for further research are discussed below.

We have seen that, in general, when Model 2 is used (Case3 and Case4), the ICS modified

data yields good results. When the dimension is equal to 10, ICS methods always choose the right

number of components, and the clustering validation index obtains high values. When K-means

is the clustering algorithm, ICS dimension reduction improves cluster analysis. For the EM, using

both ICS and unmodified data obtain good results. However, for higher dimensions (p = 50, 100),

we encounter problems while applying ICS. The average number of chosen components is not

equal to two namely ICS is not always finding the right coordinates. To correct for it, we set

the significance level to 5% and adjust MCD when it is used as a scatter for ICS. Nevertheless,

it still does not produce optimal results. For Case1 and Case2, when the observations’ split is
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50%,30%,20% (Model 1), ICS with COV & COV4 is not functioning well. Additionally, ICS with

MCD & COV is also not performing well. Even when the adjustments are made for the MCD, ICS

is not always choosing the right number of components. Consequently, the ICS is not improving

the cluster analysis. For further research, we suggest applying various normality tests to choose

the invariant coordinates. We only use the D’Agostino test but perhaps verifying other normality

tests will provide the right components, which can yield better clustering results.

Although for the V ehicle dataset we obtained the right number of components, the ICS ARI

results do not exceed Original Data values. An additional investigation should also consider other

scatter matrices for ICS. Possibly, those can have a positive effect on the ICS performance and thus

improve clustering. To enhance components selection, the following analysis should also inspect

adjusting p-values for multiple testing. Accounting for the distribution of the data shall also

be considered. For instance, taking a log transformation of the data should solve the poor ICS

performance. For the V ehicle dataset we also apply the Reduced K-means. This is an alternative

to tandem clustering, as dimension reduction and clustering are done at the same time. We obtain

better results than those for ICS, thus we suggest performing the Reduced K-means on the simulated

data as well.

Lastly, regarding time efficiency, the clustering done on the ICS modified data was much faster.

For instance, the code for Original Data with 100 dimensions was running for 1.5 days, while for

ICS only about 20 minutes (Case3). Additionally, due to time efficiency and many scenarios with

a different number of dimensions or other data variations, our simulation was over 100 samples.

We suggest that further study should generate at least 1000 samples for the GMM data.
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Kinnunen, T., Sidoroff, I., Tuononen, M., and Fränti, P. (2011). Comparison of clustering methods:

A case study of text-independent speaker modeling. Pattern Recognition Letters, 32(13):1604–

1617.

Lee, C., Abdool, A., and Huang, C.-H. (2009). PCA-based population structure inference with

generic clustering algorithms. BMC Bioinformatics, 10(1):1–13.

Likas, A., Vlassis, N., and Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern

recognition, 36(2):451–461.

Ma, J. and Yuan, Y. (2019). Dimension reduction of image deep feature using PCA. Journal of

Visual Communication and Image Representation, 63.

MacQueen, J. (1967). Classification and analysis of multivariate observations. In 5th Berkeley

Symp. Math. Statist. Probability, pages 281–297.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K. (2019). cluster: Cluster

Analysis Basics and Extensions. R package version 2.1.0 — For new features, see the ’Changelog’

file (in the package source).

32



Markos, A., Iodice D’Enza, A., and van de Velden, M. (2019). Beyond tandem analysis: Joint

dimension reduction and clustering in R. Journal of Statistical Software, 91(10):1–24.

Newman, D. J., Hettich, S., Blake, C. L., and Merz, C. J. (1998). UCI machine learning repository.

Nordhausen, K. and Ruiz-Gazen, A. (2022). On the usage of joint diagonalization in multivariate

statistics. Journal of Multivariate Analysis, 188.

Peña, D., Prieto, F. J., and Viladomat, J. (2010). Eigenvectors of a kurtosis matrix as interesting

directions to reveal cluster structure. Journal of Multivariate Analysis, 101(9):1995–2007.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering method. Journal of the

American Statistical association, 66(336):846–850.

Raymaekers, J. and Rousseeuw, P. J. (2022). Silhouettes and quasi residual plots for neural nets

and tree-based classifiers. Journal of Computational and Graphical Statistics, pages 1–12.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis. Journal of Computational and Applied Mathematics, 20:53–65.

Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E. (2016). mclust 5: clustering, classification

and density estimation using Gaussian finite mixture models. The R Journal, 8(1):289–317.

Shirkhorshidi, A. S., Aghabozorgi, S., and Wah, T. Y. (2015). A comparison study on similarity

and dissimilarity measures in clustering continuous data. PloS one, 10(12).

Siddiqui, K. (2013). Heuristics for sample size determination in multivariate statistical techniques.

World Applied Sciences Journal, 27(2):285–287.

Sinnott, R. O., Duan, H., and Sun, Y. (2016). Chapter 15 - A Case Study in Big Data Analytics:

Exploring Twitter Sentiment Analysis and the Weather, pages 357–388. Morgan Kaufmann.

Soete, G. D. and Carroll, J. D. (1994). K-means clustering in a low-dimensional Euclidean space.

In New approaches in classification and data analysis, pages 212–219. Springer.

Steinhaus, H. (1956). Sur la division des corps materiels en parties. Bull. Acad. Polon. Sci., C1.

III vol IV, pages 801–804.

Tyler, D. E., Critchley, F., Dumbeng, L., and Oja, H. (2009). Invariant co-ordinate selection.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):549–592.

33



Vichi, M. and Kiers, H. A. (2001). Factorial k-means analysis for two-way data. Computational

Statistics and Data Analysis, 37(1):49–64.

Yeung, K. Y. and Ruzzo, W. L. (2001). Principal component analysis for clustering gene expression

data. Bioinformatics, 17(9):763–774.

A Feature Description

Variable Description

Comp Compactness

Circ Circularity

D.Circ Distance Circularity

Rad.Ra Radius ratio

Pr.Axis.Ra pr.axis aspect ratio

Max.L.Ra max.length aspect ratio

Scat.Ra scatter ratio

Elong elongatedness

Pr.Axis.Rect pr.axis rectangularity

Max.L.Rect max.length rectangularity

Sc.Var.Maxis scaled variance along major axis

Sc.Var.maxis scaled variance along minor axis

Ra.Gyr scaled radius of gyration

Skew.Maxis skewness about major axis

Skew.maxis skewness about minor axis

Kurt.maxis kurtosis about minor axis

Kurt.Maxis kurtosis about major axis

Holl.Ra hollows ratio

Class type

Table 5: Feature description for V ehicle dataset.
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B Tables of Results

Tables contain average results over 100 simulations for each of the four cases. Median, minimum

and maximum values can also be found here.

K-means EM

p Avg. Comp. Nr. Avg. ARI Min ARI Max ARI Median ARI Avg. ARI Min ARI Max ARI Median ARI

Original Data 10 - 0.0562 0.0249 0.0844 0.0543 0.4921 0.4865 0.7273 0.4898

50 - 0.0086 -0.0037 0.0239 0.0086 0.0315 -0.0124 0.4898 0.0115

100 - 0.0037 -0.0067 0.0172 0.0032 0.0063 -0.0089 0.0323 0.0041

PCA 10 1.16 0.0798 0.0267 0.2583 0.0605 0.0584 -0.0107 0.3561 0.03

50 2 0.0353 0.0174 0.0621 0.0345 0.03 -0.0233 0.0904 0.0284

100 2 0.0164 0.0035 0.0339 0.0168 0.0149 -0.0298 0.064 0.0162

ICS1 10 1.55 0.3766 0 0.4648 0.3893 0.4096 0 0.4679 0.4196

50 0.9 0.0049 -0.0106 0.0992 0 0.0015 -0.0373 0.0564 0

100 1.42 0.0017 -0.0081 0.0244 0.0006 -0.0018 -0.0174 0.0194 -0.0019

ICS2 10 2 0.4048 -0.0409 0.4898 0.4898 0.4897 0.4856 0.4898 0.4898

50 0.54 0.0009 -0.0065 0.0197 0 -0.0015 -0.0259 0.0065 0

100 0.8 0.0011 -0.0091 0.0171 0 -0.0008 -0.0145 0.0235 0

ICS3 10 2 0.4078 -0.0409 0.4898 0.4898 0.4897 0.4856 0.4898 0.4898

50 0.71 0.0022 -0.0065 0.0272 0 -0.0011 -0.0214 0.0244 0

100 0.86 0.0009 -0.0079 0.0146 0 -0.0014 -0.0223 0.025 0

Table 6: Case 1 results. ICS1 is ICS with COV & COV4, ICS2 is ICS with MCD & COV , ICS3
in this case is ICS with MCD α = 0.75 & COV .

K-means EM

p Avg. Comp. Nr. Avg. ARI Min ARI Max ARI Median ARI Avg. ARI Min ARI Max ARI Median ARI

Original Data 10 - 0.2298 0.1749 0.2893 0.2299 0.6301 0.4865 0.7279 0.4898

50 - 0.0578 0.0311 0.0796 0.0565 0.3798 -0.0038 0.4898 0.0115

100 - 0.0299 0.0129 0.056 0.0293 0.041 -0.0083 0.0328 0.0041

PCA 10 1.96 0.4071 0.2278 0.5331 0.3939 0.5865 0.2139 0.715 0.6454

50 2 0.1791 0.1377 0.2342 0.1777 0.2059 0.0292 0.3745 0.2024

100 2 0.1051 0.0715 0.1578 0.1035 0.0864 -0.0172 0.2061 0.085

ICS1 10 1.55 0.3766 0 0.4648 0.3893 0.4096 0 0.4679 0.4196

50 0.9 0.0049 -0.0106 0.0992 0 0.0011 -0.0373 0.0566 0

100 1.42 0.0017 -0.0081 0.0244 0.0006 -0.0017 -0.0174 0.0194 -0.0013

ICS2 10 2 0.4048 -0.0409 0.4898 0.4898 0.4897 0.4856 0.4898 0.4898

50 0.54 0.0009 -0.0065 0.0198 0 -0.0015 -0.0259 0.0065 0

100 0.8 0.0011 -0.0092 0.0171 0 -0.0008 -0.0145 0.0235 0

ICS3 10 2 0.4078 -0.0409 0.4898 0.4898 0.4897 0.4856 0.4898 0.4898

50 0.71 0.0022 -0.0065 0.0272 0 -0.0011 -0.0214 0.0244 0

100 0.86 0.0009 -0.0079 0.0146 0 -0.0014 -0.0223 0.025 0

Table 7: Case 2 results. ICS1 is ICS with COV & COV4, ICS2 is ICS with MCD & COV , ICS3
in this case is ICS with MCD α = 0.75 & COV .
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K-means EM

p Avg. Comp. Nr. Avg. ARI Min ARI Max ARI Median ARI Avg. ARI Min ARI Max ARI Median ARI

Original Data 10 - 0.0573 0.0249 0.0868 0.0574 0.671 0.6675 0.6711 0.6711

50 - 0.0092 -0.0019 0.0272 0.0089 0.033 -0.0292 0.6711 0.0076

100 - 0.0043 -0.0056 0.0169 0.0039 0.0079 -0.0062 0.0737 0.0061

PCA 10 1.28 0.1021 0.0282 0.267 0.0656 0.0899 -0.0208 0.4156 0.0339

50 2 0.0372 0.0179 0.0593 0.0365 0.0317 -0.0128 0.0874 0.0319

100 2 0.0176 0.006 0.0339 0.0171 0.0141 -0.019 0.0522 0.0137

ICS1 10 2 0.6272 -0.0259 0.6711 0.6682 0.6419 -0.0143 0.6711 0.6711

50 1.27 0.0027 -0.0069 0.0703 0.0002 -0.0028 -0.0214 0.0204 -0.0009

100 1.6 0.0024 -0.0102 0.0363 0.0009 -0.0009 -0.0261 0.0256 -0.0004

ICS2 10 2 0.5263 -0.0268 0.6711 0.6682 0.6349 -0.0175 0.6711 0.6711

50 1.4 0.0194 -0.0267 0.3552 0.0046 0.0131 -0.0202 0.4326 -0.0164

100 0.94 0.0011 -0.0099 0.0234 0 -0.0019 -0.0227 0.0143 0

ICS3 10 2 0.5568 -0.0268 0.6711 0.6688 0.6353 -0.0167 0.6711 0.6711

50 1.48 0.0614 -0.0268 0.5691 0.0052 0.07168 -0.0202 0.5589 -0.0139

100 1.16 0.0009 -0.0104 0.0159 0 -0.0023 -0.0232 0.01261 0

Table 8: Case 3 results. ICS1 is ICS with COV & COV4, ICS2 is ICS with MCD & COV ;
ICS3 in this case is ICS with MCD α = 0.75 & COV for p = 10, 50, and for p = 100 ICS3 uses
deterministic MCD & COV .

K-means EM

p Avg. Comp. Nr. Avg. ARI Min ARI Max ARI Median ARI Avg. ARI Min ARI Max ARI Median ARI

Original Data 10 - 0.2359 0.1917 0.2818 0.2348 0.701 0.6675 0.784 0.6711

50 - 0.0612 0.0404 0.083 0.0609 0.4152 -0.0102 0.7644 0.6703

100 - 0.0322 0.0122 0.059 0.0324 0.039 -0.004 0.1735 0.0298

PCA 10 2 0.4486 0.3781 0.5595 0.4373 0.653 0.4771 0.7836 0.6785

50 2 0.1915 0.1527 0.2613 0.1897 0.2113 0.0567 0.3681 0.2169

100 2 0.1135 0.0769 0.1668 0.1118 0.0941 0.0265 0.1964 0.0924

ICS1 10 2 0.6272 -0.0259 0.6711 0.6682 0.6418 -0.0143 0.6711 0.6711

50 1.27 0.0026 -0.0069 0.0703 0.0002 -0.0028 -0.0214 0.0204 -0.0009

100 1.6 0.0024 -0.0102 0.0363 0.0009 -0.0008 -0.0261 0.0237 -0.0004

ICS2 10 2 0.5263 -0.0268 0.6711 0.6682 0.6349 -0.0175 0.6711 0.6711

50 1.4 0.0195 -0.0267 0.3552 0.0046 0.015 -0.0202 0.4326 -0.0163

100 0.93 0.0012 -0.0099 0.0234 0 -0.0017 -0.0177 0.0134 0

ICS3 10 2 0.5568 -0.0268 0.6711 0.6688 0.6353 -0.0167 0.6711 0.6711

50 1.52 0.0353 -0.0269 0.542 0.0042 0.0285 -0.0193 0.5303 -0.0164

100 1.06 0.0013 -0.0106 0.0209 0 -0.0038 -0.0227 0.0146 0

Table 9: Case 4 results. ICS1 is ICS with COV & COV4, ICS2 is ICS with MCD & COV ;
ICS3 in this case is ICS with MCD α = 0.75 & COV for p = 10, and for p = 50, 100 ICS3 uses
deterministic MCD & COV .
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