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Abstract

This thesis focuses on the line planning problem with transfer decisions. We use a math-
ematical formulation of the line planning problem and extend that to incorporate transfer
decisions. By extending the formulation, we ensure that these transfer decisions are pro-
vided and are valid in cyclic timetables that are generated in the next planning phase of
public transport planning. We propose a constraint generation algorithm in order to solve
the problem, as the number of constraints can grow exponentially by the instance size. The
proposed algorithm is applied to artificial instances and a modified real-world instance. Re-
sults show that the line planning problem with transfer decisions can provide useful transfer

decisions that can be considered in the timetabling phase of public transport planning.
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Chapter 1

Introduction

One of the most important factors of the attractiveness of public transport is convenience
(Warman, 2014). The convenience of public transportation depends on access and egress
time, waiting time, expected delay time, mean crowding, number of transfers, and access
to information (Warman, 2014). Service with a high frequency leads to lower waiting times
and transfer times.

One of the influencing factors for convenience might be whether there is a direct connec-
tion from one’s departure location to one’s arrival location. One can imagine that a direct
service is more attractive than a service in which a passenger has a transfer at an interme-
diate location. In public transport, however, direct connections can not always be offered.
Hence, short transfer times are also important for the experience of passengers. To actually
determine the transfer times, a timetable is required. However, we want to incorporate the
transfer time in the line planning problem as well.

In this thesis, we focus on incorporating transfer decisions into the line planning prob-
lem. Line planning is finding a set of lines and corresponding frequencies. Given the infras-
tructure of a public transport system and the passenger flows in the network, the aim is to
estimate the total traveling time of the passengers more accurately by considering whether
a short transfer can be offered by the line plan or not. These short transfers can be of use in
the timetable part of the planning process in public transport. Moreover, these short trans-
fers allow for better approximated transfer times in the line planning phase. The objective
is to minimize the total travel time for the entire public transport network, subjected to
the limitations in the network and the limited short transfers that can be guaranteed in a

network.



Current line planning problems approximate the transfer times, which measures the
total travel time of the passengers incorrectly. For instance, a passenger on a line with a
high frequency (e.g. 4 times an hour) needs to change to a line that is only offered once an
hour. The decision to offer a quick transfer depends on whether the transfer is important

enough in the whole public transport network.

1.1 Planning in Public Transport

The planning process in public transport is complex and therefore divided into several con-
secutive phases. These phases are on strategic, tactical and operational level and are further
subdivided into several subproblems. Huisman et al. (2005) provide an overview of the
planning problems that arise at Netherlands Railways and we roughly base this section on
this overview.

Network design and line planning are part of strategic planning and their planning hori-
zon is several years. The strategic planning is based on an origin-destination (OD) matrix,
which consists of passenger demand for each origin to each destination in the network. The
objective of the network design problem is to minimize the infrastructure costs by choosing
the optimal sets of links in the network that are needed to operate public transport. Sub-
sequently, the line planning problem (LPP) aims to determine the lines and frequencies in
a public transport network, such that all travel demand is satisfied. There are two main
objectives in the line planning problem, either the service for the passenger is maximized
or the operational costs of the public transport system are minimized.

The tactical planning consists of timetabling using the solution of lines and frequencies
from the line planning problem. The planning horizon is seasonal, which can be every
three months up to once a year. The aim is to find a timetable, which contains service trips
with departure and arrival locations and times. From the timetable, the service trips can be
created for the next phase. Moreover, a timetable allows us to compute the travel times for
the passengers.

Vehicle scheduling and crew scheduling are part of the operational planning and their
planning horizon is usually a day. The vehicle scheduling problem aims to allocate the service
trips that need to be executed by the vehicles while minimizing the operational costs. The

problem also includes deadhead trips, which are trips without any passengers, e.g. a trip



between two passenger trips or a trip from and to a shunting yard. From the solution to
the vehicle scheduling problem, crew tasks can be created. A crew task is a piece of work
between two relief points, a point where a crew member can change vehicles. The objective
of the crew scheduling problem minimizes the costs of the crew that are assigned to the
vehicle trips. These two scheduling problems can be integrated in order to reduce the total
costs of vehicle and crew scheduling.

In Figure the planning process of public transport is shown as a schematic overview.

This figure is largely based on the figure in Liebchen (2008).

Network design

Infrastructure

Line planning

Lines and frequencies

Timetabling

Trips

Vehicle scheduling

Tasks

Crew scheduling

Figure 1.1: Schematic overview of the planning process in public transport (Liebchen, 2008)).

1.2 Outline of this thesis

The remainder of this thesis is as follows. A discussion of the current literature can be
found in Chapter[2] Chapter [3|provides the mathematical formulation for the line planning
problem. Chapter [4| focuses on timetabling and provides an addition to the mathematical
formulation that incorporates the transfer decisions. Chapter |5/ elaborates on the solution
approach to the line planning with transfer decisions. In Chapter [6}, the computational re-
sults of the proposed method are presented. Finally, the conclusion of this thesis is provided

in Chapter



Chapter 2

Literature Review

In this chapter, we discuss the literature on line planning and timetabling in public transport.
There is a substantial amount of research available on line planning and timetabling. A

selection of the relevant literature is treated in the following sections of this chapter.

2.1 Line Planning

In line planning, one can distinguish between cost-oriented models and passenger-oriented
models. The former focuses on finding the lowest operational costs, while the latter focuses

more on for example the travel time of the passengers in the public transport system.

2.1.1 Cost-oriented models

Cost-oriented models focus on finding the lowest operational costs with respect to passenger
demand. |Claessens et al. (1998)| presented an extensive research on cost-oriented models
for the LPP. The goal of their work is to find lines subject to service constraints and capacity
requirements. The authors present an integer non-linear programming formulation and
transform this formulation into a linear one, in order to solve it using branch-and-bound.
The model presented by Claessens et al. (1998)| also determines the vehicle type operating
the line and the train length.

The research of (Goossens et al. (2004)| approaches the LPP with branch-and-cut using
a similar model used by (Claessens et al. (1998). Their main contribution is an extensive
preprocessing process and the development of valid inequalities for this problem in order

to tighten the lower bound. |Goossens et al. (2006) extend their approach to a multi-line
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planning problem in which the line system could have multiple line types with different

stopping patterns.

2.1.2 Passenger-oriented models

In passenger-oriented models, the assumption is that the passengers choose their optimal
route in terms of travel time. The focus is not primarily on costs, although cost constraints
are usually included.

Schobel and Scholl (2006)|present an approach to minimize the total travel times for pas-
sengers including penalizing the transfers. In order to incorporate this, the authors present
a change-and-go network that replaces the infrastructure network as the underlying net-
work for the mathematical formulation. The change-and-go network combines stations and
lines as one vertex in a graph and thus integrates line planning and traffic assignment. The
authors solve the problem with LP relaxation using Danzig-Wolfe decomposition. The dis-
advantage is that this leads to long solution times due to large IP models.

Borndorfer and Neumann (2010),, Borndorfer et al. (2007), and Borndorfer and Karb-
stein (2012)| present a model in which passengers can be freely routed and use column
generation to generate those routes. In their research, the objective is to minimize the rid-
ing time and therefore they neglect the transfer times. The authors assume that the transfer
time is independent of the line frequency.

In the models introduced by|Goerigk and Schmidt (2017) and Schmidt (2014), only line
concepts that allow all passengers to travel on the shortest path are considered feasible. The
authors propose an IP formulation and present a genetic algorithm to solve the problem.

Bull et al. (2019)| present a model that optimizes the total travel time and incorporates
frequency-dependent transfer costs and integrates passenger routing into the line planning
problem. The authors analyzed their performance on instances taken from a commuter train

network in Denmark.

2.2 Timetabling

In timetabling, one can distinguish between cyclic and non-cyclic timetabling. A cyclic
timetable has the property that an event, a departure or an arrival, occurs in a periodic

way. For example, train service at an hourly frequency departs 10 minutes past every hour,



so at 9:10, 10:10, etc. This makes it easier for passengers to remember the timetable. The
drawback is that this timetable is more expensive to operate. Non-cyclic timetabling does
not have this property. In this thesis, we focus on cyclic timetabling.

Most cyclic timetabling is based on the periodic event scheduling problem (PESP) by
Serafini and Ukovich (1989). PESP aims to find a feasible schedule at which the periodic
recurring events take place. This problem introduced by [Serafini and Ukovich (1989)|is a
feasibility problem and does not have an optimization objective. Nachtigall (1996)|extends
the PESP by adding an objective, namely minimizing the waiting times for the passengers.
Moreover, the author transforms the formulation into one in terms of cycles and this is called
the cycle periodicity formulation. Odijk (1996) uses a constraint generation algorithm in
order to construct periodic railways timetables at stations. Nachtigall and Voget (1996) use
PESP to obtain a timetable with minimum waiting times and use a genetic algorithm to
obtain a timetable.

In the PhD thesis of |Peeters (2003), the author applied the timetabling problem to the
Dutch railway network. The author also extended the formulation with variable trip times.
Furthermore, the author provided optimization of timetabling with other objectives, for ex-
ample, maximizing the timetable robustness and minimizing the required number of rolling
stock compositions.

Caprara et al. (2007)|and |Cacchiani and Toth (2012) offer an elaborate survey on all

railway timetable optimization.

2.3 Integrated approaches

In the last two decades, there is more focus on integrating several steps of the planning
process (as shown in Figure [I.1). The optimization of the line plan with a correspond-
ing timetable and vehicle schedule can be seen as a multi-stage optimization problem (P
Schiewe, 2020). The rationale behind the integration is that optimizing problems sequen-
tially leads to suboptimal results and integration can lead to optimal solutions. Schobel
(2017) presents an eigenmodel for the whole public transportation optimization. In the pre-
sented approach, the author integrates line planning, timetabling, and vehicle scheduling
in a bi-objective model. That is, the output of timetabling or vehicle scheduling can serve

as the input of the line planning phase. Consequently, the line planning problem can be



reoptimized with respect to the limitations in timetabling or vehicle scheduling.



Chapter 3

Line Planning

In this chapter, we first define the basic elements of line planning. Then, we provide the

model formulation for the line planning problem.

3.1 Basic definitions

A public transport network can be defined as follows.

Definition 1 (PTN). A Public Transport Network PTN = (S, E) is an undirected graph with
the stations as the set of vertices S and the connections between them as the set of edges

EcCcSxS.
We define a line [ within the PTN as follows.

Definition 2. A line [ is a path within the PTN represented as a sequence of alternating
stations and edges:

(51,61’2,52, . ..,ek_l’k,sk) (3.1

where stations s; € S and edges e, ; € E.

Every line [ is operated with a frequency f;, which denotes how often the service of the
line is offered within a certain period, usually an hour. A station can be visited by more than
one line. If that is the case, we call this station a transfer station.

The combination of the set of lines £ and frequencies for each line define a line concept:

Definition 3. Aline concept (L, f) is the set of lines £ that are operated and their frequencies

fiforalll € L.



The origin-destination matrix consists of all OD pairs with demand between the origin
station and the destination station and the set of OD pairs is denoted by P. The demand is
usually expressed in the number of passengers. A direct traveler is a passenger that does not
need to change lines in order to get from the origin u to the destination v, where u,v € S.
The riding time is defined as the time a passenger is traveling in a vehicle between the origin
and the destination, the transfer time is neglected. The traveling time is defined as the total

time a passenger is traveling, that is, the riding time and the transfer time.

3.2 Model formulation

The model consists of a lines model part, which covers the selection of the lines, and a

passenger flow model part, which covers the flow of the passengers.

3.2.1 Lines model

Let S be the set of stations and each s € S be a possible stop for a line [. Every station
also has passenger demand from an origin station o and the destination station d, which is
denoted by w,;. Then, the set P consists of the non-zero demand for all OD pairs in the
public transport system, that is, P = {(0,d),0 € S,d € S,w_; > 0}. The set L consists of all
lines that are possible within the public transport system. Each line [ has a set of frequencies
F; € N, which consists of predefined frequencies.

For every line [ € £ and every frequency f € F;, we have the decision variable

1 if line [ is selected with frequency f,

0 otherwise.
In practice, there are always limitations in the public transport network or requirements
required by the public transport authority, such as a maximum budget. Every line has a cost
¢y which is frequency dependent and there is a budget c,,,,. Now, the constraints of the

lines model can be formulated as follows:



dlxp<1 Ve, (3.3)

fen
Z Z Ci X1 < Crax, (3.4)
leL fer

x;; €{0,1}, Vie L,Vf € F. (3.5)

Constraints (3.3) ensure that for each line at most one frequency is chosen. Constraint
(3.4) ensures that the total cost of the lines does not exceed the given budget. Constraints

([8.5) ensure that the binary variables take either zero or one.

3.2.2 Passenger flow model

Our model for the passenger flow is based on the model used by Bull et al. (2019)| and
is partly based on the change-and-go graph created by Schobel and Scholl (2006). The
passenger flow is modeled on a directed graph. As the graph becomes very large, if each
line-frequency pair has to be included (Bull et al., 2019), the authors suggest aggregating
the line-frequency pairs. The aggregation of the line-frequency pairs is done to reduce the
size of the graph.

Let G = (V,A) be the directed graph for the passenger flow part, then the set V consists

of the following types of vertices:

* source siin and sink sfmt vertex for every station i € S,
« platform p' vertex for every station i € S,

* a station-line sf vertex for every station i € S a line [ visits, for every [ € L.

Note that the set of vertices V differs from the set of vertices S defined in the undirected
graph PTN in the lines model.

Let A denote the set of arcs as part of the directed graph. Then, A' C A is the subset of
all arcs that are part of the line and undetermined frequency, and Alf C A is the subset of
all arcs that have a determined frequency and are used for the long transfers. For the short
transfers, we have the subset A" C A. The directed graph G contains the following types of
arcs. The arcs have a weight that represents the time if an arc is used by a passenger. The

arcs in graph G with a duration weight (either riding or transfer time) are the following:
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* a travel arc between every adjacent pair of station-line vertices for every line and in
both directions with a riding time (these arcs are in AD),

* an arc from every station platform vertex to every station-line vertex at every fre-
quency for long transfers with a long transfer time (these arcs are in A;),

* an arc from every station-line vertex to every station-line vertex for short transfers

with a short travel time (these arcs are in A").

Note that, for the long transfers we have parallel arcs between the platform vertex and
the station-line vertex depending on the frequency. The weight, therefore, differs at every
frequency. The next chapter shows the necessity of the need for extra constraints if we want
to incorporate short transfers into the line planning problem.

Then, we have additional arcs that ensure the flows from the origin to the destination,

but have a weight of 0. Therefore, the graph G also contains the following arcs:

* an arc from every station-line vertex to every station sink vertex,
* an arc from every station-line vertex to every station platform vertex,

* an arc from every station source vertex to every station-line vertex.

In Figure an example of a public transport network is shown. This example has
two lines, line [; from station W to station E via C and line [, from station N to station
S via station C. Station C is a station at which a transfer is possible. In Figure (3.2} a
directed graph G is (partly) shown for the example of Figure Only stations N (green),
C (gray), and W (red) are shown, the other stations are omitted in this example. In this
example, every station has a source vertex siin and a sink vertex Sfm and arcs to the station-
line vertex and from the station-line vertex, respectively. The changing station C has two
source arcs and two sink arcs as this station is served by both lines. In Figure there
are two different types of arcs, solid and dotted arcs. The dotted arcs are supporting arcs
ensuring the passenger flow from the origin to destination and the traveling time on these
arcs is 0. The solid arcs represent a traveling time value and we distinguish three types of
arcs with a traveling time: arcs with a riding time, arcs with a short transfer time, and arcs
with a long transfer time. The short transfer time is set to tg,,, minutes, the long transfer
time is defined as tj,,, = %, where f is the frequency per hour of the line to which the
passenger transfers.

With this directed graph, we can formulate the passenger routing part of the line plan-

ning problem as a multi-commodity flow problem, where a commodity represents the group

11



Figure 3.1: An example of a public transport network with the set of stations S = {N,E,S,W,C}.
At station C both line [; and line [, have a stop. Line [ visits station W, C, and E, and line [, visits

station N, C, and S.

Figure 3.2: An example of a station with two lines. The dotted arcs have a value of 0. The solid
arcs represent the travel time. In this example, both lines have just a frequency of one train an hour.
If, for example, line 2 has the option to have a frequency of 1 or 2, then we have two arcs with two

values of t,p,, for each of the frequencies.
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of passengers with the same origin. The model in Bull et al. (2019)| combines flows that
have the same origin. This reduces the number of flow decisions by a factor of |P|.

The number of passengers from the origin station o that traverse the arc a is denoted by
the flow variables y? > 0.

Let &) be the demand for passengers at vertex v € V whose origin is station s. Then the

value of &° takes the following values:

’
W, if vertex v is a sink vertex for station s,
&0 =1-1-3 w if vertex v is the source vertex for station s;, (3.6)
S $182 1
\O otherwise,

where w,  is the demand from station s; to station s,. The following constraints are then

imposed:

Z ys(“’v) — Z ys(v’w) =0, Vse s, Vv ey, (3.7)

(u,v)€A (v,w)eA
DlyE< > Pxy,  VIELVaed, (3.8)

0€S fer

> yi<Pixy, VIeLNfeF,VacA, (3.9)

0ES
0<y <> w,, VYoeS,VaeA (3.10)

SES

Constraints (3.7)) are flow conservation constraints. Constraints ensure that ev-
ery arc has sufficient capacity for the flows using that arc. P; denotes the capacity of the
line at frequency f and functions as a big-M. Constraints ensure that the frequency-
dependent long transfer arcs are only used if the line is operated. Constraints ensure
that the decision variables are non-negative and that the variable is not larger than the sum
of all demand from the origin station. The upper bound for this decision variable is set to the
maximum demand to obtain tighter bounds for the LP relaxation of the branch-and-bound

algorithm.

13



3.2.3 Objective function

The objective function is to minimize the total traveling time including the transfer time at

minzz teys, (3.11D)

acA oS

the station and is as follows:

where t, is the cost of the arc a and represents the traveling time of a passenger on that

particular arc.

14



Chapter 4

Timetabling

In Chapter [3| we mainly focused on the line planning phase of public transport and we have
not yet considered timetabling, which is the next step in the planning process (as shown
in Figure [I.1). First, we define the Periodic Event Scheduling Problem, which is generally
used in the timetabling phase for periodic timetabling. Afterward, we focus on the cyclic

properties in timetables.

4.1 Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) is a problem introduced by |Serafini and
Ukovich (1989)|in which events are scheduled and occur in a recurring pattern under peri-

odic time window constraints. The problem can be formulated as follows:

Definition 4 (PESP). The PESP aims to find a periodic schedule given a set £ of events, a set
of activities A C € x £, a cycle time T, and time windows [[;;,u;;] for all activities (i, j) € A.

A periodic schedule v; € [0, T) with i € £ satisfies
(vi—v) modulo T € [L;j,u; V(i,j) € A. 4.1)

Here, v; and v; with i, j € £ represent the time of event i and j respectively. The dif-

ference of v; and v; is bound by [;; and u;;, these values are respectively the lower and the

j>
upper bound of the process time between the events i and j. The cyclicity of the timetable
is modeled by the modulo operator. In optimization, the modulo operator in Equation (4.1))

is replaced by a binary variable p;; € {0, 1} for all (i, j) € A, in order to obtain a constraint

15



that is easier to model. That is,
v;—v; + Tp;; € [, u;; V(i,j) € A (4.2)

So if we have an activity with event times v; = 56 and v; = 4, and the cycle time T = 60.
Then, p;; = 1 as v; < v;, so filling in the equation: 4 — 56 + 60 = 8 minutes. That is how
long the activity from event i to j lasts.

To summarize, the PESP formulation is as follows:

(PESP)  min  F(v,p) (4.3)
s.t. Lij<v;—v;+Tp;; <uy V(i,j) € A, (4.4)

v; €[0,T) Vieg, (4.5)

p;; €1{0,1} V(i,j) € A. (4.6)

A PESP instance can also be (graphically) represented by an event-activity network
N = (&, A). This network N is a graph with a set of vertices £ representing events and

a set of arcs A representing activities. In our case, the set of events can be divided into two

types:

* an arrival event from line [ and at station s is denoted by the arrival vertex a; € &,,,

where &, C €,

* a departure event from line [ from station s is denoted by the departure vertex d; €

Eqep> Where &g, C E.

Then, there are activities that link two events to each other. We can divide these activities

into three types:

» adriving activity (d,*, a)?) € Agnve C A that links the departure event d;' of a line from

station s, to an arrival event a,* of the same line at the following station s,,

* a dwelling activity (af , dls) € Agyen C A from a line that links the arrival event a; of a

line at a station to the departure event d; of the same line at the same station,

* a transfer activity (afl, dzsz) € Apanster C A at station s that links the arrival event afl of

line [, at station s to the departure event dls2 of a different line [, at the same station s.

16



SRS
?&%‘&
) §
. D@ i D@
drive dwell drive

Figure 4.1: An example of an event-activity network with two lines [; and [,, and five stations A, B,
C, D, and E of which station A is the transfer station. A passenger can start from a certain departure
event and end at a certain arrival event. The solid, dashed and dotted arcs are in the sets Age,

Agwell, and Aiansfer TESPECtively.

To illustrate the event-activity network, Figure [4.1] shows an example of this network.
This example has two lines, line [, and [, and has five stations A, B, C, D, and E. Station
A is the transfer station. For example, a passenger from station B to station E can travel
using the path d? — a4 — dJ — a}. The passenger then transfers at station A and uses the

transfer activity from the arrival event a’;‘ to the departure event d?.

4.2 Cycle Periodicity Formulation

The Cycle Periodicity Formulation (CPF) is an alternative formulation that is transformed
from the PESP formulation and is introduced by Nachtigall (1996). In this formulation, the
time information is not linked to the events of the EAN but linked to the activities in the
EAN. Since we are interested in whether the cycles are valid for the timetable and not the
exact times of the timetable, we use this formulation in order to check whether a timetable
is feasible. To ensure that the line plan and transfers (£, f, z), obtained by solving the line
planning problem with transfer decisions, provide a feasible timetable, we need to introduce

some extra definitions. Consider a directed graph G, we define a cycle in a graph as follows.

Definition 5. A cycle C = (v,,...,V, V) is a path in a graph G = (&, .A) that visits events

ey,...,er €& and returns to e; € £.

Alternatively, a cycle can be represented as a sequence of activities, that is (e;,e,) € A
to (ex_1,ex) € A and back to (e;,e;) € A. A cycle in a graph does not need to follow the

direction of the arcs, and therefore we can distinguish two sets of arcs in a cycle: forward

17



arcs C* and backward arcs C™.

Next, we define the concepts of potential and tensions. Consider a directed graph G =
(&, A), then a potential is defined as a function 7; : £ — R. A tension is the set of arc values
T, with a € A and is defined as a function 7 : A — R and this function relates to some

potential 7 as follows:

Ty =T;— T, Va=(i,j) € A (4.7)

The periodic variant of potentials and tensions can be defined as follows. The periodic
potential with period T is defined as a function 7, : £ — R, with the values of n; € [0, T)
for all i € £. The corresponding periodic tension with period T is a function 7, : A — R,

with 7, > 0 and periodic potential 7, with period T and p, € {0, 1}.
Tor =Tir—Tir+ TP, Va=(i,j) € A. (4.8)
Then, consider the concept of cycle periodicity.

Definition 6. The cycle periodicity property for a cycle time T holds for cycle C, a set of arc

values 1., a € A, if for some cycle periodicity integer variable q,

Z TaT — Z TaT = ch, (49)

aeC*t aeC—

where 7, ;, with a € C, is the periodic tension for arc a with cycle period T.

Nachtigall (1996)|proved the following theorem regarding the cycle periodicity property.

We define the set C as the set of all cycles in the graph G.

Theorem 1. Given a directed graph G = (£, .A) and a period T, a set of non-negative ten-
sions T,, a € A, there is a periodic tension if and only if, there exists an integer variable q.
for each cycle in C € C, such that,
Z Tar— Z Tor = Tqc. (4.10)
aeCt aeC—

Lemma 1. The cycle periodicity integer variable g relates to the PESP integer variable p,

4c=D,Pa— ), Par (4.11)

aeCct aeC~

as follows:

where a =(i,j) € A.
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For a proof, we refer to |Peeters (2003). We can now provide the CPE which is related to

the PESP
(CPF) min F(t,q) (4.12)
St D Ter— D, Tar =Tdc Ve ec, (4.13)
aeCt aeC—
L, <Tor <u, Vae€ A, (4.14)
qc€Z Ve ec. (4.15)

Here, constraints (4.13)) ensure that the cycle periodicity property holds for every cycle in
the graph. Constraints (4.14) are the time window constraints for every arc. Constraints

(4.15) ensure that the cycle periodicity variable is integer.

4.3 Example

To illustrate the cycle periodicity property, we provide an example network with four lines
£ ={l,1,,15,1,} and six stations S = {A,B,C, D, E,F}. The graph of Figure shows this
network. The dashed, dashed-dotted, dotted, and solid lines depict respectively [;, L,, L5,
and l,. Stations A, B, C, and D are transfer stations as these stations serve more than one

line. Note that, station E is not a transfer station as this station has just one edge.

Figure 4.2: An example of a public transport network with four lines and six stations.

Let the event-activity network A" = (&, A) be a graph with constraint arcs. That is, each
activity has a lower and an upper bound that represents the minimal and maximal dura-
tion of the activity. Recall that an event-activity network is a graph with vertices and arcs

that represent events and activities respectively. We assume that we have a cycle period of
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T = 60. In Figure the event-activity network is shown for the gray area of the pub-
lic transport network from Figure The vertices represent the events and there are two
types of events: arrival and departure events. For each line, there are forward and backward
vertices, as a line usually runs in both directions. The forward and backward departure (ar-
rival) events are denoted by d; and d; (a; and a;) respectively, where [ is the line and s
is the station. The solid arcs are driving or dwelling arcs and the dash-dotted arcs are the
transfer arcs. Note that, for station D, we do not have transfer arcs from the arrival event
— — — —

a’lj to departure event d?? and arrival event ag to departure event dlD , as this transfer would

mean that the passenger taking this arc would return to station E. Line 1 and line 3 share

the same stations at this edge in the PTN, see Figure

Table 4.1: List of cycles in the example.

Cycle Path Length Direction
— — — — «— «— — — —
—a, »d, »a; »d; —»a; »d; »a; — clockwise
(oh dA ’23 dB 3C dC g dD ‘f dA 60 lock
<— «— —) — — — <—
C, dA — a’i’ - dD — ag — dC - ag — dB - a‘g - dA 60 counterclockwise
—> — —> — —> — —)
Cs dt— ag - dg — ag — df - a’i — d‘z“ 35+ x clockwise
«— «— — — «— «— —
—a, »dy »a, »d, > a,— x  counterclockwise
C, di—adi—di—dl—-d}—ad)—d] 35+ terclock
A C <_c ‘D = o _/K
Cs dy —»a; >dy —a; —>dD—>a1 —dy 35+ x clockwise
<— <— —> —) —) <—
Ce dA — a1 — dD — a3 - dC — a4 — dA 35+ x counterclockwise

We now first consider only lines [;, [,, and [;. We ignore line [, and the events corre-
sponding to line l,. In Table the paths of the cycles are shown as well as the length
of the cycles. In this case, we have two cycles C; and C,, the other cycles contain line 4.
Note that, C; and C, are in fact parallel cycles but C; and C, are in the opposite direction.
C, is clockwise and C, is counterclockwise following the direction of the arcs. As both lines
have a length of 60 and this length is a multiple of the cycle period, there exists a feasible
solution to the CPE

We now consider the extra line [, and the corresponding events. Let the duration of the
activities with an x be 10. Now, we have six cycles. The original cycles, C; and C,, and the
additional cycles Cs, C,, Cs, and Cgz. In Table the length of the additional cycles are
shown. As one can observe, if x = 10, then the length of cycles Cs;, C,, Cs, and Cg is now
45, which is not a multiple of 60. Therefore, if we have a line plan with these four lines and

the current short transfers, then there is no feasible timetable for this line plan.
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Let x = 25, then the length of the additional cycles is 60, which is a multiple of the cycle
period. The length of the third cycle is now 60 and this is a multiple of 60. Therefore, if
x = 25, then there exists a feasible timetable for this line plan with the short transfers.

To summarize this, in order to find a feasible timetable, all cycles that are in the event-
activity network obtained by the line concept should be a multiple of the cycle period T.
If this is not the case, constraints (4.13) can not be met. That is, if the left hand side in
Equation is not a multiple of T, the cycle periodicity integer variable q. for cycle C
is not integer and that violates constraint (4.15).

4.4 Additional constraints to the model formulation

In order to obtain a line plan and transfer decisions, additional constraints have to be added
to the model formulation provided in Chapter (3| The cycle periodicity property has to be
met, that is, in the graph with short transfers we can not have any cycles that violate this
property. To translate the model formulation from line planning in Chapter [3|to the EAN in

the timetabling, we consider the following arcs:

* travel arcs between every adjacent pair of the station-line vertices for every line and

in both directions with a riding time,

* an arc from every station-line vertex to every station-line vertex for short transfer with

a short travel time.

In timetabling, we have three types of arcs, travel, transfer, and dwell arcs. The dwell arcs
are new in the EAN compared to the graph used in line planning and in order to correspond
with the line planning model, we do not assign time costs t, to the dwell arcs.

Let A" be the set of short transfer arcs. Let C be the set of all possible cycles in the graph.
A subset of C;,,.iiq € C violates the cycle periodicity property. That is the case when the sum
of the activities in the cycle is not a multiple of the cycle period T. Let 6(C) be the set of
arcs that are in the cycle C, then £(C) is the length of the cycle and this can be computed as

follows:

(e)y= > t, (4.16)

aeé(C)
where 6(C) = {(i,j) € C:i €&,j € £}. A cycle is invalid if £(C) is not a multiple of the

cycle period T. As we do not provide a full timetable for this problem, we can allow for a
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Figure 4.3: An example of an event-activity network with cycles from the public transport network
in Figure The arrival and departure events are represented by the vertices a; and d;, where [ is
the line number and s is the station name. The drive and dwell arcs are represented by solid arcs.
The transfer arcs are represented by dashed-dotted arcs. The duration of the activity is shown for
each arc. The transfer and dwell activity has a duration of 5, and the driving activity has a duration

of 10. The duration of the driving activities of line I, is x.

22




small deviation from the cycle period T. Let A be that deviation, then a cycle is invalid if

¢(C) mod T € [A,T — A]. Thus the set of invalid cycles is:

Cinvatia = {C €C: £(C) mod T € [A, T —A]}. (4.17)

4.4.1 Transfer decisions

Now we can introduce a new set of variables and constraints in order to incorporate the
transfer decisions in the line planning model formulation. Consider the set of short transfer
arcs A' C A. A transfer arc is an arc from a station-line vertex to a station-line vertex and
where the station is the same but the line is different. For each transfer possibility at every
transfer station, there is a transfer decision variable z, for all arcs a = (slil,sliz) € A'. This
decision variable shows whether a short transfer from line [; to [, is offered at station i or

not. That is,

i

1 if a short transfer arc a = (s,

l,sliz) is offered from line [; to [, at station i,

0 otherwise.

(4.18)
Then, we have the following constraints for transfer decisions:
> yi<Mz, VaeA, (4.19)
0€ES
z,€{0,1}, VaeA. (4.20)

Constraints ensure that if a short transfer is offered at station i from [ to [,, then
all flow decision variables ygs;l’siz) for all origin stations o can be greater than 0. M is a
sufficiently large number such that all flows can be met if a short transfer is allowed. M is
set to the total number of passengers of the instance in order to obtain a tighter bound as
the flow can not exceed the total number of passengers of the instance. Constraints

ensure that the binary variable takes O or 1.

4.4.2 Cycles in the network

Let 5(C) be the set of arcs of cycle C and let A’ be the set of transfer arcs. If there is an invalid
cycle, we want to exclude that cycle in the line planning model formulation. Therefore, we

do not want to have all transfers that can be offered in the invalid cycle.
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Let 6°(C) = 6(C)N A" be the set of transfer arcs of cycle C € Cyyy14, then to exclude all

invalid cycles we impose the following constraints,
Z 2, <[6°(C)[ =1,  VYC € Cpyata- (4.21)
aest(C)
Constraints ensure that from the set of excluded transfer combinations not all deci-
sion variables from the set can be covered, that is, at least one of the decision variables must
be zero.

As the number of invalid cycles Cj,,4 can be exponentially high, there are also expo-
nentially many constraints (4.21]). Enumerating this set of cycles is very hard and therefore
we need to find other ways to obtain the optimal solution for the line planning with transfer
decisions.

Figure shows the graph of the example from Section that is similar to Figure
Recall that we have six cycles as shown in Table For each of the transfer activities,
the associated transfer decision variable is shown instead of the duration of the transfer
(which is 5 for all transfers) in Figure Note that, we have set the duration of line 4
between station A and C to 10. According to the CPE the cycles that include line 4 have to
be eliminated. Therefore, the set of invalid cycles is Ciyyaiqa = {Cs, C4, Cs, C}. We do that
using the additional decision variables. For each of the transfer activities, the associated set

of decision variables of the transfer arcs is shown. These are shown in Table

Table 4.2: List of cycles and the corresponding set of decision variables.

Cycle Path 54(C)
— — — — «— «— — —
G dA — ag - dB — ag - dC — ag - dD — a‘f - dA {2(2,3),2(3’1),2(1’2)}
«— —> — —) — «— <—
C, dA — a? — dD - ag - dC - ag — dB - a‘;‘ - dA {2(1,3),2(3,2): 221)}
_A’ 3 _B’ = _c’ A _,’q
G dy »a;, »dy »ay =»dy »a,—d {2(2,3),23,4), %(a,2)}
A_. ‘¢ _c’ 3 ‘_B A _A’
Cy d, »a; >dy >a; >d) > a; —>d, {2(4.3),2(3,.2) 2(2.4)}
A< ‘_c ‘D —D’ 2 A
CS d — a4 — d — a3 — d — al — d {2(4’3),2(3’1),2(1’4)}
(— <— —> —) —) (—
Ce di —af —>dj —af — df —ay > d) {2(1,3): 23,40 24,)}

For each of the cycles, we have a constraint (4.21). That means that for each of the cycles,
at least one of the decision variables has to be 0, and thus that short transfer connection is
not allowed. So by setting z42) = 2(2.4) = Z4.1) = Z1.4) = 0, the cycles in Cy,..4 have been

eliminated and constraints (4.21) are satisfied. Therefore, a short transfer possibility is not
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provided to and from line 4. As a result of this, the flow arcs corresponding to these transfer
decision variables are also set to zero by the constraints (4.19) that link the flow variables

with the transfer variables.
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Figure 4.4: An event-activity network with six cycles. For every transfer activity, we have a decision
variable that corresponds with the transfer arc in the line planning model formulation. These decision

variables are denoted by z; ;), where i and j are line numbers with i # j. The duration of all transfer

arcs is 5 and is not shown to keep the figure readable.
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Chapter 5

Constraint Generation

In Chapter (3| and |4, the focus was on the problem description. This chapter focuses on
the solution method we use to find a satisfactory solution for line planning with transfer

decisions.

5.1 Relaxing the problem

The model formulation of line planning and the additional constraints given in Chapter
are used to find a satisfactory solution. However, there are some limitations to this model.
The model formulation is a combination of a line selection problem and a multi-commodity
flow problem. The additional constraints are comparable to the subtour elimination con-
straints of the traveling salesman problem. This problem is, therefore, N"P-complete, as the
multi-commodity flow problem is A’P-complete. N'P-complete means that the solving time
increases quickly if the size of the problem grows. However, a solution to the problem can
be verified quickly.

As our problem has an exponential number of constraints, we apply constraint genera-
tion to the MILP of the line planning formulation provided in Chapter [3| with the additional
constraints in Chapter [4. We relax this problem by removing constraints (4.21]). Then, we
solve the relaxation of the problem using branch-and-bound and when the optimal solution
is found for the relaxation, then we check whether this problem is infeasible for the original
problem. In this case, this means there exists a cycle in the solution that violates the cycle
periodicity property. In order to resolve this, we use a cycle detection algorithm to find

invalid cycles. These cycles are then added as constraints to the relaxed MILP We continue
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until no invalid cycles are found. A flowchart is shown for this approach in Figure 5.1

e

Relax constraints

Solve

yes '
Add constraints

no
{ Optimal }

Figure 5.1: Flowchart of the algorithm to solve the line planning problem with transfer decisions.

5.2 Constraint Generation Algorithm

To obtain a solution for the line planning problem with transfer decisions, we implement
a constraint generation algorithm (CGA). We solve the mathematical formulation for the
line planning problem with transfer decisions (see Chapter [3). The solution obtained is
a line plan with transfer decisions, denoted by (L, f,2), where L is the set of lines, f the
vector of selected frequencies of the selected lines, and vector z the transfer decisions. From
this solution, an event-activity network can be constructed. We refer to Figure for an
example of this network. Using this EAN, we try to find cycles that do not satisfy the cycle
periodicity property with the procedure CYCLECHECK. If we find a cycle that does not satisfy
the cycle periodicity property, this procedure returns a combination of transfer decisions that
is not possible concurrently. This transfer combination is added to the family set of transfer
combinations, which is also the input of the next iteration of optimizing the line planning

problem with transfer decisions. In Algorithm|1], the pseudo-code of this algorithm is shown.
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Algorithm 1 Constraint Generation Algorithm

1: Input: lines and frequencies
2: Output: optimal set of lines, frequencies and transfer decisions

3: procedure CGA

4: Cinvalia < D > set of excluded cycles

5: Cinvalia < D > excluded cycle

6: (L%, f*,2") « LinePlanningProblem(Z, f,C;,..iq) > optimal solution of the relaxed
problem

7: Cinvatia < CYCLECHECK((L™, f*,2)) > find cycles

8:  while C;,,q #@ do

9: Cinvalid < Cinvatid Y { Cinvatia}
10: Cinvatia < @
11: (L*, f*,2") « LinePlanningProblem (L, f, Ciyyaiid)
12: Cinvaia < CYCLECHECK((LY, f*,2))

5.2.1 Cycle detection

The aim of CYCLECHECK is to detect cycles in the EAN that violate the cycle periodicity
property. That is, CYCLECHECK tries to obtain the cycle with the largest deviation from the
cycle period. The pseudo-code of CYCLECHECK is shown in Algorithm |2\ First, we generate
the EAN from the lines, frequencies and offered short transfers. We initialize the set of
cycle candidates C that might be removed and set it to the empty set (line [5). In order to
detect cycles, we compute the shortest path from each departure event d; € &, at every
transfer station s € S,y in the EAN N. Then, for each of the transfer stations, a distance
vector D is known (line [7). Now, we only have the shortest path and in order to obtain
the shortest cycle, we need to return to the original transfer station. Therefore, we need
to find the arriving vertex aj, from which the departure event d; € &, has an incoming
transfer or driving activity. Recall that £(C) is the cycle length of cycle C, that is the distance
calculated by Dijkstra’s shortest path algorithm and the duration of the transfer activity

(a}.,d}) € Ayanster together, thus
((C)=Dla,.]+ blas, ,a5)- (5.1)

Let r(C) = £(C) modulo T be the remainder of this cycle length, where T is the cycle

T
period. The cycle has the largest deviation if the remainder r(C) = 7 Let A be the max-
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imum deviation for which we allow that the cycle is still valid. Thus, the candidate cycle
that has to be excluded is the cycle with the remainder that deviates the most from the cycle
period T. Let dev(C) be the deviation of cycle C from the cycle period T, then dev(C) is
defined as follows:

T

deV(C)=§—‘§—r(C)‘. (5.2)

The range of dev(C) is [0, %] The calculation of r(C) and dev(C) are shown in line|10{and
11l

As we do not seek to obtain a timetable, we do not reject all cycles that deviate from the
cycle property. We set a parameter A and only the cycles that have a deviation larger than
A will be candidates for exclusion (line [12)). To obtain a cycle, we connect the departure
event d; with the arrival event aj,. There exists an arc from aj, to d; as s is a transfer station.
In line 14, we add C to the set of cycles C.

We add all invalid cycles found with this procedure and exclude them at the next iteration
of the constraint generation algorithm. If no invalid cycles are found, then we have found
the optimal heuristic solution.

The cycle detection algorithm only follows arcs in the forward direction. However, there
are also cycles that contain arcs in the backward direction. Therefore, this approach might
not find all cycles that violate the cycle periodicity property. As a result of this, this approach
is a heuristic. This means we might not obtain a feasible solution for the formulation pro-
vided in Chapter [3| and the additional constraints provided in Section 4.4| as we do not
detect cycles that also contain backward arcs. This means that the constraint generation
algorithm approximates the optimal solution and therefore the approximate solution might

not provide a feasible timetable.

Dijkstra’s shortest path algorithm

To find the shortest cycle, we use Dijkstra’s shortest path algorithm (Dijkstra, 1959) to find
the shortest paths in a graph from the starting location, also known as the source, to all
other locations. Algorithm [3|shows the pseudo-code of Dijkstra’s shortest path algorithm.
In this case, the weighted graph is the EAN, with the events as vertices and activities
as arcs. The activities have weights and these represent the duration of an activity. The

departure event e, is the source event. Then for every event e € £ in the network N, we
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Algorithm 2 Cycle detection

1: procedure CYCLECHECK((L, f*,2%))
2: Input: PTN, satisfactory solution (L, f*,2*)
3: Output: set of transfer combinations to be excluded

4: EAN <« N = (&, A)

5: C—Q > set of invalid cycles
6: for d; € &, With s € S oy dO
7: D < DIJKSTRAALGORITHM(N, d;)
8: for a), € &, do
9: t(C) < Dlaj. ]+t an
10: r(C) « £(C) modulo T
T T
11: deV(C)HE—‘E—r(C)‘
12: if dev(C) > A then
13: C < DIJKSTRASHORTESTPATH(N, d}, a;,) > backtracking
14: C—Ccu{cC}
15: return C

initialize the current duration d(e) = oo from event e, to event e and set current predecessor
label p(e) = @ for event e. We also add every event in £ to the set of unvisited events U.
We define the duration from our departure event d(e,) = 0.

While the set of unvisited events { is not empty, we find the event u € ¢ with the shortest
current duration d(u) to the source. Event u is removed from the set ¢/. Then, for every
adjacent event of event u, v € U, we calculate the duration d* = d(u) + w(u,v), where
w(u, v) is the weight of the arc (activity) between u and v. If the new found duration d* is
shorter than the current duration from the source event to event v, d(v), then we set d(v)
to the new found shortest duration d* and the predecessor label of event v, p(v), is set to
event u.

In order to obtain the shortest path, we need a sink event e,. We add that sink event to
the path P. From that sink event, we select the predecessor of e;, p(e;). We continue as long
as the predecessor is defined, otherwise, we have found the source event e,. The pseudocode

of this procedure can be found in Algorithm [3|under the procedure DIJKSTRASHORTESTPATH.
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Algorithm 3 Dijkstra’s shortest path algorithm

1: procedure DIJKSTRAALGORITHM(EAN, source)

2: Input: N = (€, .A), source e; € £

3: Output: list of minimal distances from e, to every event in £

4: U—g > set of unvisited vertices
5: foreec & do

6: d(e) « oo > set current distance from source to infinity
7: ple) — @ > set current predecessor label to empty
8: U—UU{e}

9: d(ey) <0 > set distance from source to O

10: while U/ # @ do

11: u « argmind(e)
el
12: U—U\{u}
13: for adjacent v € U of vertex u do
14: d* «—d(u)+w(u,v)
15: if d* < d(v) then
16: d(v) « d*
17: p(v) — {u}

18: procedure DIJKSTRASHORTESTPATH(EAN, source, sink)

19: Input: N = (&, A), source e, € &, sink ¢, € £

20: Output: shortest path

21: P—@ > add sink to the path
22: q < p(ex) > obtain predecessor sink event
23: while g # @ do

24: insert q to path P

25: q < p(q)
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Chapter 6

Computational Results

This chapter focuses on the computational results of the method to solve the line planning

problem with transfer decisions. First, we describe the test instances and then we provide

the computational results from these test instances.

6.1 Test instances

LinTim is the data set created by /A. Schiewe et al. (2020). The authors provide artificial data
and data based on the real world. The artificial data instances are called toy and grid. The
real-world data instance is from Athens’ metro network (athens). In Table a selection
of the instances used is shown along with the instance’s characteristics, such as the number

of stops, edges, and lines. Also, the number of OD pairs and the number of passengers in

the system are shown.

Table 6.1: An overview of the instances.

size
instance type
stops edges lines OD pairs passengers
toy artificial 8 8 8 22 2622
grid artificial 25 40 n/a 567 2546
athens real world metro 51 52 59 2385 63323
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toy instance

The toy instance is a small artificial instance with 8 stops, edges, and lines. This instance
is used for testing. This instance was not useful for the analysis as the instance is too small

to obtain insightful results.

grid instance

The grid instance is an artificial 5 x 5 grid. This instance has 25 stops and 40 edges. No
lines are provided and there are 567 OD pairs. Figure shows the grid instance. For
every travel arc in the grid, that is an arc between two stations, we have a fixed duration
of 8. This instance does not provide a line pool and we, therefore, generated line pools
ourselves. We generated three sets of lines, named 5H, 5V, and 4D. We have 5 horizontal
lines which are denoted by 5H. Next to these lines, we have 5 vertical lines denoted by 5V.
Next to horizontal and vertical lines, we added diagonal zig-zag lines from the four corners
of the grid, denoted by 4V. In this case, diagonal means that we start from the corner and
iteratively go one station to the right, and then one down. Another diagonal zig-zag line is
obtained by iteratively going one station down first and then going to the right. Table
shows the different line pools for this instance. Each of the lines has a frequency of 1 to 4
if selected. The largest line pool is 5H5V4D, which has 14 lines. Line pools 5H5V, 5SH4D,
and 5V4D are subsets of the line pool 5H5V4D. In Appendix [B, the OD matrix is provided
in Table and the routes of each line are provided in Table

Table 6.2: This table shows the line pools used as input for the 5 x 5 grid.

name |£| description

S5H5V 10 5 horizontal and 5 vertical lines

S5H4D 9 5 horizontal and 4 diagonal zig zag lines

5V4D 9  5vertical and 4 diagonal zig zag lines

SH5V4D 14 5 horizontal, 5 vertical and 4 diagonal zig zag lines

In order to test the algorithm on more instances, we adapt this instance to a 4 x 4 grid.
We removed 9 stations from the instance, these stations are the 5 stations at the bottom

and the 4 remaining stations at the right. The edges to and between these stations are also
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Figure 6.1: The PTN of the grid instance. This grap