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Abstract

The waste processing industry faces many logistical challenges, one of which is the distribution of waste

containers using vehicles with limited capacities to a set of customers with known demand and time win-

dows. This problem can be modelled as a Vehicle Routing Problem with Simultaneous Pickup and Delivery

and Time Windows. A Solution Initialization Heuristic (SIH) is developed and combines a cheapest inser-

tion algorithm with a greedy scheduling heuristic. Several refinement methods are developed, including a

Variable Neighborhood Descent (VND), a Large Neighborhood Search (LNS) and a MIP-Start procedure.

The combination of SIH and VND obtains near optimal results for one of the data sets and in combination

with LNS, it provides very competitive solutions for the other data set. MIP-Start procedure is able to

find optimal solutions for four out of the six data sets and is able to obtain good bounds for the other

two. An analysis of the neighborhoods in VND shows that intra-route optimization is more applicable in

this case compared to inter-route. The methods used within the LNS are analyzed and methods such as

Cost Removal, Cluster Removal, Greedy Repair and κ-Regret Repair outperform other methods and show

promising results. Overall, the results suggest that the proposed methodology is able to obtain competitive

solutions fast.
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Abbreviations

Table 1: List of abbreviations in alphabetical order

Abbreviation Meaning

LNS Large Neighborhood Search

MIP Mixed Integer Programming

NP-hard Non-deterministic Polynomial-time Hardness

PDPTW Pickup and Delivery Problem with Time Windows

SIH Solution Initialization Heuristic

TS Tabu Search

TSP Travelling Salesman Problem

VND Variable Neighborhood Descent

VRP Vehicle Routing Problem

VRPPD Vehicle Routing Problem with Pickup and Delivery

VRPPDTW Vehicle Routing Problem with Pickup and Delivery and Time Windows

VRPSPDTW Vehicle Routing Problem with Simultaneous Pickup and Delivery and Time Window

VRPTW Vehicle Routing Problem with Time Windows
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1 Introduction

Vast amounts of waste are produced yearly and the processing is a complex problem which involves

many logistical challenges. Consider a distribution network with a single depot, which delivers

and collects large waste containers to and from customers. These containers are mostly used

for construction or renovation waste and their sizes are standardized. They are transported by

specialized trucks, equipped with handling equipment to load and unload the containers. Customers

order empty containers to be delivered to them, fill them with waste over a period of time and

request a pickup afterwards. Full containers are picked up and returned to the depot, where they

are emptied, cleaned and stored, after which they are available for delivery again. Now consider

multiple customers, whom can have demand for delivery, pickup or both for different types of

containers. Customers can request both a delivery and pickup for example, in case their container

is full but there is still waste left or the construction is not done yet. The demand of customers is

known in advance and additionally each customer has a known time window in which service must

take place. In order to serve all requests a homogeneous fleet of trucks is available for transport

from and to the depot. The trucks have a limited weight and size capacity and the length of their

schedule is restricted by the opening hours of the depot. Service times for unloading and loading

of containers both at the depot and at the customers are known and constant. If trucks arrive at a

customer before the start of the time window, they are allowed to wait but arriving after the end

of the time window is not allowed.

The purpose of this thesis is to construct a complete schedule for all vehicles such that each

customer is visited and every demand is met while respecting the weight, size and time window

constraints. In this schedule trucks are allowed to drive multiple routes from depot to customers

and back to the depot, in order to unload the full containers and reload with empty containers for

delivery. This problem is known in the literature as the Vehicle Routing Problem with Simultaneous

Pickup and Delivery and Time Windows (VRPSPDTW).

The VRPSPDTW is a generalization of the well known Vehicle Routing Problem (VRP), which

is a widely studied topic in the literature. The vehicle routing problem, and therefore the VRP-

SPDTW, is a NP-hard problem and this severely limits the application of exact methods and

requires a heuristic approach for most real-world sized instances. The main goal of this thesis

is to develop and implement a Solution Initialization Heuristic and several methods to refine the

obtained solution and provide insights on the quality of this solution, while focusing on obtaining
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competitive solutions within a short time span. The objective of the developed methods is to mini-

mize the total travel time of all vehicles combined and secondarily minimize the number of vehicles

used. The research in this thesis is motivated by GreenRoutes, a company that provides route

optimization software to companies within the waste processing sector, as their customers face the

problem described in this thesis.

This thesis starts with a review of the relevant literature in Section 2, where the VRPSPDTW

and relevant variants of the VRP are discussed. Next, in Section 3, a Mixed Integer Programming

formulation is given, which is implemented and used as a benchmark for comparison. Section 4

describes the data used in this thesis as it is provided by GreenRoutes. The solution methods

developed and implemented in this thesis are discussed in Section 5. The parameters of these

methods are tuned and computational results are obtained, which are discussed in Section 6. Lastly,

Section 7 summarizes the thesis, draws conclusions and possible future research is discussed.

2 Literature Review

The problem introduced in the previous section can be seen as a Vehicle Routing Problem with

Simultaneous Pickup and Delivery and Time Windows (VRPSPDTW), also known as the Pickup

and Delivery Problem with Time Windows (PDPTW), which is a variant of the Vehicle Routing

Problem (VRP). This section reviews the formulations and heuristics for the VRP and relevant

variants. The VRP was first described by Dantzig & Ramser (1959) and is a generalization of the

Travelling Salesman Problem (TSP), which was introduced by Hassley Whitney in 1934 as stated

in Flood (1956). The basic VRP consists of a set of customers with known demand, which have

to be served by a homogeneous set of vehicles such that the total distance is minimized and all

demands are satisfied. One of the main difficulties of the VRP is the fact that it is NP-hard as it

is a generalization of the TSP (Garey & Johnson (1979)) and hence all generalizations of the VRP

are also NP-hard.

Laporte & Nobert (1987) show that exact methods therefore only work for smaller instances

and a recent review of exact methods by Baldacci et al. (2012) shows promising results, being able

to solve instances of up to 75 customers. However, the methods require long running times and

are hence not suited for real-life applications. Therefore, other methods such as (meta)heuristics,

machine learning or evolutionary algorithms have been widely studied and surveys were conducted

by Toth & Vigo (2002) and Golden et al. (2008).
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In this section we will discuss methods for several extensions of the VRP. Firstly, we discuss the

VRP with Time Windows (VRPTW), where each customer has to be served within a time window

in Section 2.1. Followed by the VRP with Pickup and Delivery (VRPPD), where each customer

either receives goods from a warehouse or returns goods to the warehouse, in Section 2.2. These

two extensions are combined into the Vehicle Routing Problem with Pickup and Delivery and Time

Windows (VRPPDTW) which is discussed in Section 2.3. Lastly, the Vehicle Routing Problem

with Simultaneous Pickup and Delivery and Time Windows (VRPSPDTW), where customers are

allowed to have demand for both pickup and delivery, is discussed in Section 2.4.

2.1 VRP with Time Windows

The VRP with Time Windows (VRPTW) is the problem of constructing a set of routes such that

each customer is visited exactly once within a time interval by a homogeneous fleet of vehicles with

respect to capacity constraints. Some real-world applications of the VRPTW are bank deliveries,

postal deliveries, school bus routing and industrial refuse collection. The NP-hardness of the

VRPTW limits the use of exact solution methods for most real-life instances and favors the use of

heuristic solution approaches instead.

Kallehauge (2008) reviews several exact formulations and analyzes several different algorithms to

solve them. Bräysy & Gendreau (2005a) conducted a survey on route construction and local search

algorithms for the VRPTW and in their second part, Bräysy & Gendreau (2005b), complement

their previous work with a survey on metaheuristics. More recently, Kumar & Panneerselvam

(2012) conducted a survey on the latest developments and concluded that future research should

be more focused on hybrid methods, the combination of multiple existing methods.

A Multi Objective Problem (MOP) approach is proposed by Ombuki et al. (2006), who use it

in combination with a Genetic Algorithm. The quality of the produced solutions is competitive

but the most significant contribution is the interpretation of the VRPTW as MOP. It is argued

that the MOP view of VRPTW is the most natural, as no unnecessary bias is introduced into the

search and no objective is considered as more compared to the other objectives.

A hybrid method is proposed by Schneider et al. (2014), who combined a Variable Neighborhood

Search with a Tabu Search (VNS/TS) heuristic for the Electric-VRPTW. The added difficulty of

the E-VRPTW is the limited reach of the electric vehicles and the required charging along routes.

The hybrid VNS/TS heuristic uses the diversification effect of the VNS and uses the TS heuristic

to efficiently search the obtained solution space. The VNS/TS heuristic is tested in a numerical
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study which shows the strong performance of the heuristic and the positive effect of combining the

two methods.

2.2 VRP with Pickup and Delivery

The VRP with Pickup and Delivery (VRPPD) is the problem of constructing a set of routes such

that each customer is visited once for either a pickup or a delivery by a homogeneous set of vehicles

with respect to the capacity constraints. Real-world applications of the VRPPD are mainly in

reverse logistics as more manufactures want control of their entire supply chain. On one hand for

environmental reasons and on the other hand because of potential savings of combining pickups

and deliveries.

Three different versions of the VRPPD are distinguished, similar to the survey by Wassan

& Nagy (2014), the VRP with Backhauls (VRPB), the VRP with Mixed Pickups and Deliver-

ies (VRPMPD) and the VRP with Simultaneous Pickups and Deliveries (VRPSPD). The VRPB

requires all deliveries to be performed before any pickups can be made, the VRPMPD allows de-

liveries and pickups to be mixed but customers are only allowed to have one or the other, which is

relaxed in the VRPSPD. Wassan & Nagy (2014) provide exact formulations for the VRPSPD and

show that the formulation can be used to model the other two problems. The VRPMPD can be

modelled as a VRPSPD by adding zero delivery demand to pickups and vice versa and the VRPB

by adjusting the parameters of the formulation. It is important to note that taking goods from one

customer to another is not allowed in all three cases, as this would not be a proper extension of

the VRP. When the transportation of goods between customers is allowed the problem belongs to

the class of General Pickup and Delivery Problems (GPDP), which is a generalization of the VRP,

as stated by Savelsbergh & Sol (1995). A GPDP where all destinations or origins are the depot is

a VRPPD.

The VRPB requires all deliveries to be performed before any pickups can be made. This

assumption is caused by the fact that vehicles are rear-loaded and the rearrangement of the loads at

delivery points is infeasible, as stated by Goetschalckx & Jacobs-Blecha (1989). They also provide

an alternative three index formulation, in comparison to the two index formulation by Wassan

& Nagy (2014) and performed an extensive computational analysis of multiple initial solution

construction algorithms. Concluding that the class of greedy algorithms is capacity oriented and

the K-median algorithms are distance oriented. The first exact algorithm is described by Toth &

Vigo (1997) and shows promising results. The algorithm uses a Lagrangian lower bound, which
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is improved by adding valid inequalities and is able to solve instances with up to 100 customers.

However, because of the computational complexity of the exact algorithm the running times are

considerably high.

The assumption made in VRPB is relaxed in the VRPMPD, hence pickups and deliveries are

allowed to be performed in any order on a vehicle route but customers are only allowed to have either

a pickup or a delivery. This problem is not widely studied in the literature as methods designed for

the VRPSPD, where customers have both a pickup and delivery, can be used for the VRPMPD, as

stated by Wassan et al. (2008). VRPMPD instances can be transformed into VRPSPD instances

by adding a zero demand pickup to deliveries and a zero demand delivery to pickups. To obtain

a good initial solution Chen & Wu (2006) proposed an insertion-based procedure. The procedure

is initiated by choosing a random customer as first customer, calculating all values of the insertion

criterion and inserting the customer with the lowest insertion criterion. This procedure is repeated

until no more customers can be inserted into the route, after which a customer is randomly chosen

from the remaining and the procedure is repeated. Montané & Galvao (2006) designed a Tabu

Search heuristic which uses four types of movements, relocation, interchange, crossover and 2-opt,

to obtain new solutions. Their methods obtain good results which are close to optimality within

a considerably low running time. Another Tabu Search algorithm was developed by Wassan et al.

(2008), which uses a reactive Tabu Search that is able to check feasibility of proposed moves quickly

and found several new best solutions to benchmark problems.

2.3 VRP with Pickup and Delivery and Time Windows

The VRP with Pickup and Delivery and Time Windows (VRPPDTW) is the combination of the

two extensions previously discussed, also known in the literature as the Pickup and Delivery Prob-

lem with Time Windows (PDPTW). Early research, conducted by Dumas et al. (1991), provides

a formulation and an exact algorithm, namely a column generation scheme to solve the PDPTW.

Their experiment showed that the time windows and the distribution of load demands are the

parameters that have the most significant impact on running times besides the size of the instance.

More recently Cordeau et al. (2007) conducted a survey of exact algorithms and heuristics for

the VRPPDTW. They also provided a more compact formulation of the VRPPDTW. One of the

heuristics mentioned is the Tabu Search heuristic developed by Nanry & Barnes (2000). They con-

structed new benchmark problems for the VRPPDTW based on Solomon’s benchmarks (Solomon

(1987)) and tested their Reactive Tabu Search. The heuristic consistently returns good solutions
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with very little computational effort. Li & Lim (2003) used a tabu-embedded simulated annealing

algorithm to solve the VRPPDTW. Their method was the first efficient approach to solve large

multiple-vehicle VRPPDTW instances and is easily adaptable to generalizations of the VRPPDTW.

Simulated annealing was also used in the first stage of the two-stage hybrid algorithm proposed by

Bent & Van Hentenryck (2006). The first stage reduced the total number of routes and the second

stage, which uses a Large Neighborhood Search (LNS), is meant to decrease the total travel cost.

They concluded that the two-stage approach, in comparison to only using one of the two methods,

improves the solution quality significantly.

Recently, more research has been conducted into exact methods for the VRPPDTW. Ropke et

al. (2007) defined a new formulation for the problem and introduced new valid inequalities which

are used in a branch and cut algorithm. The algorithm is tested on several instances and can solve

relatively large instances, of up to 200 nodes, to optimality. Following their previous work, Ropke

& Cordeau (2009) improved the algorithm by introducing a branch-and-cut-and-price algorithm.

Baldacci et al. (2011) presented an exact algorithm based on a set partitioning formulation which

is strengthened by Subset-Row inequalities. The method is shown to be more effective and is also

able to solve 15 instances previously unsolved by an exact method.

2.4 VRP with Simultaneous Pickup and Delivery and Time Windows

In comparison to the VRPPDTW, where customers require either a pickup or a delivery, the

VRPSPDTW allows customers to have both a pickup and a delivery at the same time. Any

VRPPDTW instance can be transformed into a VRPSPDTW, if a customer requires a pickup the

delivery demand is set to zero and vice versa. By the same logic any VRPSPDTW instance can

be transformed into a VRPPDTW, by splitting the pickup and delivery demand into two requests.

However, this may lead to a solution in which two requests by the same customer are served by

a different vehicle. The VRPSPDTW is a generalization of the VRP and is not investigated as

widely as the other variants discussed in this section, although some noteworthy research has been

done. Angelelli & Mansini (2002) proposed an exact algorithm, implementing a branch and price

approach on a set covering formulation.

Because of the NP-hardness of the problem, more research has been done into (meta)heuristics.

A genetic algorithm using a variant of the cheapest insertion algorithm is proposed by Wang &

Chen (2012). They modified the Solomon (1987) benchmark problems for VRPTW and conducted

a computational study. The genetic algorithm is compared to CPLEX software and is shown to
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provide better solutions with less computational effort. Another genetic algorithm is proposed

by Liu et al. (2013), who also propose a Tabu Search algorithm. The genetic algorithm is on a

permutation chromosome with a split procedure complemented with a local search. These methods

are compared in a computational study and their performance is of the same level but the Tabu

Search requires more computational time, but both methods outperform CPLEX.Wang et al. (2015)

proposed a Multiple Objective Local Search (MOLS) and a Multiple Objective Memetic Algorithm

(MOMA) approach. Their formulation has an objective made out of five components, the number

of vehicles, the total travel distance, the travel time of the longest route, the waiting time and

the delay time, which are all minimised. A parallel simulated annealing algorithm is proposed by

Wang et al. (2015) and they have shown the effectiveness of their method by improving on multiple

objectives on the benchmark instances made by Wang & Chen (2012). Another Tabu Search is

proposed by Shi et al. (2018), who developed a method that shifts between two tabu searches.

Tabu Search I rapidly decreases the objective but is sensitive to local optima, Tabu Search II is a

slower method but is very capable of escaping local optima. The effectiveness of their method is

shown by comparing them to the benchmark instances as proposed by Wang & Chen (2012) and

they improve several best known objective values. C. Wang et al. (2015)

Based on this literature review a Solution Initialization Heuristic is implemented which uses an

insertion criterion, whereof the effectiveness was shown by Solomon (1987). To refine this solution a

Variable Neighborhood Search, a Tabu Search and a Large Neighborhood Search are implemented

as Gendreau et al. (1994), and Ropke & Pisinger (2006) showed the effectiveness to the class of

Vehicle Routing Problems.

3 Problem Description

Inspired by the three index formulations of Azi et al. (2010) and Hernandez et al. (2014), this

problem is modelled on a complete graph G = (N,A). Where N = {0, . . . , n + 1} is the set of all

locations, such that 0 represent the start and n+1 the destination of each route, which are denoted

by a different index but may be the same geographical location. Let C = {1, . . . , n} denote a subset

of N that represents all customers. The set A denotes the set of all arcs, where (i, j) ∈ A is an arc

between location i and j, for every i, j ∈ N, i ̸= j and with each arc (i, j), traveling times Tij are

associated. The set of vehicles is denoted by V and consists of |V | number of homogeneous trucks,

with size capacity S and weight capacity W . The working day of a vehicle consists of a sequence
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of routes, all starting and ending at the depot. The set of all routes is denoted by R, and the total

number of routes |R| is sufficient enough to accommodate the maximum number of routes the fleet

V can possibly perform, these routes are allowed to be empty. It is assumed that routes performed

by the same vehicle are numbered in increasing order, meaning that a vehicle only performs route s

after r if r < s. Customers are allowed to have demand for different types of products for delivery

and for pickup as well, hence the set F for all types of pickup demand and the set G for all types of

delivery demand and are introduced. Each product in F (G) has weight wf
p and size sfp for f ∈ F

(wg
d and sgd for g ∈ G), where the subscript p (d) indicates a pickup (delivery). Furthermore, with

each customer i ∈ C, time window [ai; bi], pickup demand pfi , delivery demand dgi and service time

σi are associated. Time windows [ai; bi], where ai denotes the beginning of the time interval and

bi the ending, are imposed for each customer and service must take place within this interval. The

pickup (delivery) demand of containers of type f ∈ F (g ∈ G) of a customer i ∈ C is denoted by

pfi (dgi ). The time needed to service a customer based on the specific demand(s) of customer i are

denoted by σi. Start of service at customer i plus the service time σi, may not exceed the end of

the time window bi. The depot also has a time window [a0; b0] and [an+1; bn+1] which represents

the business hours of the depot and all activities must take place within this interval. Furthermore,

the service times at the depot for loading (unloading) trucks is denoted by σL
0 (σU

0 ) and takes place

at the beginning (ending) of a route.

Next, multiple decision variables are introduced, which in combination with the graph G and

the parameters defined provide a mixed-integer linear programming formulation. Firstly, let binary

variable xrij indicate if arc (i, j) appears in route r, note that if xr0(n+1) = 1, route r is empty. Next,

let binary variable yri indicate if customer i ∈ C is served by route r. In order to keep track of time,

let tri denote the time at which service starts at customer i ∈ C if it is served by route r and when

customer i is not served by route r the value is meaningless. The variable tr0 (t
r
n+1) denotes the start

(end) time of route r, for each r ∈ R. For each pair of routes r, s ∈ R, where r < s, binary variable

zrs indicates if route r is immediately followed by route s by the same vehicle. Furthermore, the

loads inside the trucks are tracked by the variables P f
ij and Dg

ij . Variable P f
ij indicates the amount

of demand picked up to customer i of type f and transported over arc (i, j), and Dg
ij indicates the

amount of delivery demand still in the truck after visiting customer i of type g and transported

over arc (i, j). Finally, variable v indicates the number of vehicles used, beyond the available fleet

of size |V | which is penalized by factor γ. The problem can be formulated using the following MIP

formulation:
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min
∑

(i,j)∈A

Tij

∑
r∈R

xrij + γv (1)

s.t.
∑
r∈R

yri = 1 ∀i ∈ C (2)

∑
j∈N

xrji = yri ∀i ∈ N, r ∈ R (3)

∑
j∈N

xrij = yri ∀i ∈ N, r ∈ R (4)

tri + Tij + σi ≤ trj +M(1− xrij) ∀i ∈ N, j ∈ C, r ∈ R (5)

tri + Ti(n+1) + σU
0 ≤ trn+1 +M(1− xri(n+1)) ∀i ∈ C, r ∈ R (6)

trn+1 + σL
0 ≤ ts0 +M(1− zrs) ∀r, s ∈ R, r < s (7)

trn+1 ≤ b0 − σU
0 ∀r ∈ R (8)

tr0 ≥ a0 + σL
0 ∀r ∈ R (9)

aiy
r
i ≤ tri ∀i ∈ C, r ∈ R (10)

biy
r
i ≥ tri ∀i ∈ C, r ∈ R (11)

|R| −
∑
r∈R

∑
s∈R,r<s

zrs ≤ |V |+ v (12)

∑
r∈R,r<s

zrs ≤ 1 ∀s ∈ R (13)

∑
r∈R,r<s

zsr ≤ 1 ∀s ∈ R (14)

∑
j∈N

P f
ij −

∑
j∈N

P f
ji = pfi ∀i ∈ C, f ∈ F (15)

∑
j∈N

Dg
ji −

∑
j∈N

Dg
ij = dgi ∀i ∈ C, g ∈ G (16)

∑
f∈F

sfpP
f
ij +

∑
g∈G

sgdD
g
ij ≤ Sxrij ∀(i, j) ∈ A, r ∈ R (17)

∑
f∈F

wf
pP

f
ij +

∑
g∈G

wg
dD

g
ij ≤Wxrij ∀(i, j) ∈ A, r ∈ R (18)

xrij ∈ {0, 1} ∀(i, j) ∈ A, r ∈ R (19)

yri ∈ {0, 1} ∀i ∈ N, r ∈ R (20)

P f
ij ∈ R ∀(i, j) ∈ A, f ∈ F (21)
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Dg
ij ∈ R ∀(i, j) ∈ A, g ∈ G (22)

tri ∈ R ∀i ∈ C, r ∈ R (23)

v ∈ N (24)

The objective function (1) minimizes the total travel time and the number of vehicles used

beyond the available fleet. Constraints (2) ensure that each customer is visited exactly once,

where Constraints (3) ensure a predecessor and Constraints (4) a successor for each customer.

The Constraints (5) to (11) ensure the feasibility of the time schedule. Constraints (5) guarantee

sufficient time for travel and service between customer i and j. Adequate time to unload/load

at the depot after/before a route is ensured by Constraints (6) and (7) respectively. The first

and last service of routes must take place within the opening hour of the depot which is ensured

by Constraints (8) and (9). Constraints (10) and (11) ensure that service at customer i takes

place within the time window. The number of vehicles used is determined by Constraint (12)

and ensures that variable v is set to the correct value. Artificially setting zrs values to one is

prevented by Constraints (13) and (14). The satisfaction of pickup and delivery demand is ensured

by Constraints (15) and (16) respectively. Constraints (17) and (18) ensure that the load of a

truck is feasible in terms of size and weight respectively and force P f
ij , D

g
ij to be zero when needed.

Finally, the domains of all variables are given by Constraints (19) to (24).

4 Data

Real-world data is provided by GreenRoutes, a company that supplies route optimization for waste

collectors. Their customers face the problem as described in this thesis and therefore their data can

be used to construct a real-world data set. The data set contains 500 customers and to investigate

the performance of the heuristics the set is split into different sized instances, a small, middle and

large data set containing 50, 100 and 200 customers respectively. In order to calculate the travel

time, Tij , between customers i and j Open-Source Routing Machine (OSRM) is used. OSRM is

a system that solves the shortest path problem between two coordinates using the road network,

while taking maximum speeds, weight and height restrictions into account.
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4.1 Data description

The data provided by GreenRoutes will be divided into two different data sets from which instances

of different sizes are obtained. The initial data set contains customers with demand for both big

containers (6m3 and 10m3) and small containers (2.5m3 and 1m3). Conveniently big and small

containers are not handled by the same vehicles and the data set naturally divides into two, one

set containing demand for big containers and the other only for small containers. However the

structure of the two sets is identical and for each customer the following data is available:

- Location: consisting of the full address, longitude and latitude, this data is used to calculate

the travel time, Tij , to other customers or the depot.

- Time window: defined by a starting time ai and an ending time bi, service must take place

within this time window.

- Demand: pickup, delivery or both, including the type of container and the quantity, denoted

by P f
ij and Dg

ij and is used to calculate the service time, σi, for customer i.

For the depot the following data is available:

- Location: consisting of the full address, longitude and latitude, used to calculate the travel

time to customers, T0i and Ti(n+1).

- Business hours: for all instances the business hours are 7am to 3pm and as the time horizon

is defined in seconds, t = 0 corresponds to 7am and to a0, where t = 28800 corresponds to

3pm and b0.

- Fleet: data about the different kinds of trucks, consisting of:

- Size capacity, S

- Weight capacity, W

- Number of available trucks, |V |

- Service times: unloading and loading at a customer i, σi, or at the depot σU
0 and σL

0 .

First, we focus on the big containers of 6m3 and 10m3. These are transported using special

trucks, sometimes called skip trucks or skip lorries, who can carry either one or multiple empty

containers or one full container. The maximum number of empty 6m3 containers a truck can carry

is five and for the 10m3 the number is three. The size, sgd, of a empty smaller 6m3 container is set

to 1 and for the bigger 10m3 to 12
3 and their weight, wg

d, is 900kg and 1100kg respectively. For
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a full container, either 6m3 or 10m3, the size, sfp , is 5 and the weight, wf
p , 12000kg. Trucks able

to handle these containers have a size capacity, S, of 5 and a weight capacity, W , of 12000kg and

hence can handle only one full container. Any combination of empty 6m3 and 10m3 is allowed.

Unloading and loading, or delivering and picking up, both take 10 minutes. Based on the demand

of a customer the service times are calculated, for the depot the service times are the same no

matter the number of containers, unloading and loading both take 15 minutes.

Furthermore, the smaller containers of 1m3 and 2.5m3 are transported using trucks also known

as boom trucks or lorry loaders. The smaller 1m3 containers are used to deliver soil or gravel to

customers and do not require a pickup as the package is disposable. These trucks have six spots

and per spot can either carry:

- Up to three empty 2.5m3 containers

- One full 2.5m3 container

- Up to two full 1m3 containers

- One empty 2.5m3 and one full 1m3 container.

A single spot is given a capacity of 1 and hence, full 1m3 containers have size 1
2 , empty 2.5m3 size

1
3 and full 2.5m3 size 1. The weight of a full 1m3 container is 1500kg, an empty 2.5m3 300kg and a

full 2.5m3 3000kg. Trucks of this type have a size capacity of 6 and a weight capacity of 15000kg.

Service time per container are 10 minutes, empty or full and at the depot 15 minutes for unloading

and for loading.

5 Methodology

In this thesis, a route is a set of customers visited by a vehicle which starts and ends at the

depot, without visiting the depot in between. A tour is made up of all routes performed by a

vehicle and if it consists of multiple routes the depot is visited in between. All tours for a day are

combined into a schedule. The objective is to minimize the total travel time and secondarily the

number of vehicles or equivalently the number of tours in a schedule, used. In this section, the

methodology to solve the VRPSPDTW instances is described. Firstly a solution is initialized by the

Solution Initialization Heuristic as described in Section 5.1. This solution is refined by a Variable

Neighborhood Descent as described in Section 5.2. Section 5.3, describes a Tabu Search and Section

5.4 a Large Neighborhood Search. Both methods are used to either improve the solution produced
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by SIH or further refine the solution from the VND. Lastly, a MIP-Start procedure is described in

Section 5.5 which uses the MIP formulation as described in Section 3.

5.1 Solution Initialization Heuristic

The Solution initialization Heuristic (SIH) works in two stages, firstly routes will be initialized

using a cheapest insertion heuristic inspired by Solomon (1987) and thereafter the routes will be

combined into tours in a greedy manner. In the first stage, routes are constructed by inserting

unrouted customers into existing routes at the cheapest feasible position. The heuristic takes the

customer, container, vehicle and depot data as input, which it uses to construct the routes and

their corresponding arrival times, weights and capacities at each customer on a route. An outline of

the heuristic can be found in Algorithm 1. All customers are put into the set UnroutedCustomers

and an empty set for all routes, R, is defined. The first route is defined, as the set R is still

empty and thus the Boolean CustomerInserted will be false, by the Lines 12 to 14. In Line 12 an

arbitrary customer, RandomCustomer, from the set UnroutedCustomers is chosen by the method

GetRandomCustomer(). Next, in Line 13, a new route is made with RandomCustomer, also the

corresponding arrival times, weights and capacities at each moment on the route are created.

Finally, in Line 14, the RandomCustomer is removed from the set of unrouted customers as it

is now on a route. In the next iteration, the set R of all routes is not empty and the for loop in

Line 5 is entered in order to execute Lines 6 to 10. For each route r in R, the best customer

to insert is calculated by the BestCustomerPerRoute() method, hence per iteration multiple

customers can be inserted. This method takes a route and the set of unrouted customers and

finds the cheapest feasible, if existent, customer to insert. The method loops through all customers

in UnroutedCustomers and calculates the cost of insertion on each place in the route for each

customer. Simultaneously, the method tests if the insertion at the particular place is feasible and if

the insertion is both feasible and currently the cheapest, it is stored. After all places on the route

are considered for each customer, the cheapest feasible customer, if existent, is returned. The cost

of insertion is defined by the following measure, where i and j are customers on route r and c is

the inserted customer:

cost(i, j, c) = α ∗ duradd(i, j, c) + (1− α) ∗ distadd(i, j, c), 0 ≤ α ≤ 1 (25)

duradd(i, j, c) = Tic + Tcj − Tij − T0c − T0(n+1) (26)

distadd(i, j, c) = Distic +Distcj −Distij −Dist0c −Dist0(n+1) (27)
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The cost, given by Equation (25) is defined by the weighted sum of the added duration and the

added distance of inserting customer c between customer i and j. The added duration, Equation

(26), is defined as the time it takes to visit customer c in between i and j, Tic+Tcj minus the duration

from i to j, Tij , and the duration of visiting c from the depot on its own, T0c + Tc(n+1). The final

part favors customers further away from the depot over customers closer, as a new route containing

a customer further away would be more costly. The formula for added distance, Equation (27), is

constructed in a similar manner. After consideration of different insertion criteria, i.e. euclidean

distance, ’as the crow flies’ distance and difference in arrival times, Equation (25) was the most

effective and hence implemented.

If there is no cheapest feasible customer, the BestCustomerPerRoute returns empty and the

next route r ∈ R is considered. After all routes are considered and no customer has been inserted,

Lines 12 to 14 are called and a new route is made with an arbitrary customer. This is repeated

until all customers are routed and the set of routes, R, is returned.

Algorithm 1: Cheapest Insertion Heuristic

Input: Customer, container, vehicle and depot data

Output: R := Routes with corresponding arrival times, weights and capacities

1 UnroutedCustomers← C

2 R← ∅
3 while UnroutedCustomers ̸= ∅ do
4 CustomerInserted← False

5 for r in R do

6 BestCustomer ← BestCustomerPerRoute(r, UnroutedCustomer)

7 if BestCustomer ̸= ∅ then
8 r ← PerformInsertion(BestCustomer)

9 UnroutedCustomers = UnroutedCustomers \BestCustomer

10 CustomerInserted← True

11 if CustomerInserted = False then

12 RandomCustomer ← GetRandomCustomer(UnroutedCustomers)

13 R← StartNewRoute(RandomCustomer)

14 UnroutedCustomers = UnroutedCustomers \RandomCustomer

The routes constructed using Algorithm 1 are combined into tours by Algorithm 2. The first

tour is initialized by the Lines 11 to 13, as the set of tours T is empty. In Line 11, the method

GetRandomRoute() is called, which returns a random route from a subset of all routes. This subset
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contains all routes which start at the earliest time, t = 0, or if no such routes are left, the route

with the earliest starting time. A new tour is constructed in Line 12 and the corresponding route

is removed from the set of routes. In the next iteration, the set of Tours, T , is not empty and the

Lines 4 to 9 are executed. For all t ∈ T , the method AddFeasibleRoute() searches for a feasible

route to extend the current tour. The remaining routes are considered in descending order in terms

of duration, which favors the relatively longer routes to be scheduled before the shorter ones. If a

feasible route is found, the route is added to the tour in Line 7 and removed from the set of routes

to consider in Line 8. In one iteration multiple tours can be extended and in the case that all t ∈ T

are considered and no tour was extended, a new tour is constructed by Lines 11 to 13. This is

repeated until all routes are scheduled and the output is a set of tours, also called a schedule, with

corresponding arrival times, weights and capacities.

As Algorithm 1 uses a random element in Line 12, different solution can be constructed in

different runs of the algorithm. In order to obtain results, the algorithm is run 25 times per

instance and averages are taken. Secondly, in order to optimize performance, the sets containing

routes or tours in Algorithm 1 and 2 are kept as small as possible. In the implementation, routes

or tours for which all remaining option are considered and no feasible addition found, are removed

from the corresponding set.

Algorithm 2: Greedy Tour construction heuristic

Input: R := Routes with corresponding arrival times, weights and capacities

Output: T := Tours with corresponding arrival times, weights and capacities

1 T ← ∅
2 while R ̸= ∅ do
3 RouteInserted← False

4 for t in T do

5 RouteToAdd← AddFeasibleRoute(t, R)

6 if AddedRoute ̸= ∅ then
7 t← PerformAddedRoute(RouteToAdd)

8 R = R \RouteToAdd

9 RouteInserted← True

10 if RouteInserted = False then

11 RandomRoute← GetRandomRoute(R)

12 T ← StartNewTour(RandomRoute)

13 R = R \RandomRoute
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5.2 Variable Neighborhood Descent

Secondly, to improve the solution initialized as described in Section 5.1, a Variable Neighborhood

Descent (VND) is implemented. The aim of the VND is to find a improved set of tours T ′ with

respect to the current set of tours T , an improvement is defined as decrease in the objective,

z(T ′) < z(T ). The VND searches for a better solution in the neighborhood of the current solution,

where a neighborhood is defined as a subset of solutions. Let X denote the total solution space

and the current solution by T ∈ X. The neighborhood N(T ) ⊆ X is composed of all solutions

that are in some sense close to T and T ′ ∈ N(T ) is a neighbor of T . The VND starts searching for

a new solution in the first neighborhood N1, if an improvement has been found the new solution

T ′, is accepted and the VND continues searching in the solution space of the new current solution.

However, if no improvement has been found, the VND searches in the second neighborhood N2,

if this yields an improvement the VND starts the search over in the first neighborhood with this

improved solution. If no improvement was found the search is continued in the next neighborhood,

if no improvement was found in the largest neighborhood, the VND is finished and returns the

current solution. An outline of the VND can be found in Algorithm 3.

Algorithm 3: Variable Neighborhood Descent

Input: T := Tours with corresponding arrival times, weights and capacities

Output: T := Tours with corresponding arrival times, weights and capacities

1 k ← 1

2 while k ≤ kmax do

3 T ′ ← N∗
k (T )

4 if z(T ′) < z(T ) then

5 T ← T ′

6 k ← 1

7 else

8 k ← k + 1

Where kmax is defined as the index of the last neighborhood and the following neighborhoods are

defined:

N1: Or-Opt, Relocate a single customer within a route which has a neighborhood size of

O(n2).

N2: Or-Opt*, Relocate a single customer from one route to a place within another route, a

variant of Or-Opt with a size of O(n2).
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N3: Swap, which swaps the position of two customers and has a neighborhood size of O(n2).

N4: 2-Opt, Destroy arcs (a, b) and (c, d) (from the same route) and form arcs (a, c) and (b, d),

which has a neighborhood size of O(n2).

N5: 2-Opt*, splits two routes into two parts and reconnects the first half of the first route to

the second half of the second route and vice versa, with a neighborhood size of O(n2).

The difference between neighborhoods who strictly make changes only within routes (inter-

route) and strictly between routes (intra-route) is important to note. Inter-route changing neigh-

borhoods are N1 and N4 and focus on improving current routes, while N2 and N5 are intra-route

changing neighborhoods and focus on moving customers between routes. Neighborhood N3 can

search both the inter-route and intra-route solution space.

5.3 Tabu Search

Furthermore, a Tabu Search (TS) is implemented, which is a method capable of escaping local

optima. Gendreau et al. (1994) first showed its effectiveness to the VRP and both Nanry & Barnes

(2000) and Chen & Wu (2006) use a form of Tabu Search in their approaches. Similar to VND,

Tabu Search starts from a solution T and aims to find the next solution T ′ in the neighborhood

of T , in contrast to VND T ′ may be accepted even if the objective value is worse if no improving

move is available. This occurs if the search is in a local optimum or all improving moves are on the

tabu list. The tabu list is a list containing (partial) potential solutions which can not be selected

for a number of iterations and are marked as tabu. This is done in order to move the search into

unexplored areas of the solution space and hence attempt to escape potential local optima. An

outline of the Tabu Search can be found in Algorithm 4.

The input is comprised of a set of tours and three parameters, the neighborhood index κtabu,

the length of the tabu list Λtabu and the maximal number of iterationsMtabu. The neighborhoods

used in the tabu search are the same as the VND, as described in Section 5.2 and the exact neigh-

borhood is defined by κtabu which takes a value from 1 to 5. The search is performed solely in

this neighborhood, although multiple tabu searches can be performed sequentially. The length

of the tabu list, Λtabu, defines the maximum number of potential solutions which are prohibited

from being evaluated in the next iteration. The maximum number of iterations,Mtabu, defines the

maximum number of iterations the Tabu Search is allowed to explore without finding an improve-

ment. The Tabu Search is initialized in Lines 1 to 5, TabuList as empty, NumIteration at zero,
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the BestObjective as the objective value of the input and the BestSolution as the input. While

NumIteration is less thanMtabu, the method BestNeighbor() searches for the best neighbor of T

in neighborhood Nk which is not on the tabu list TabuList in Line 7. The potential solution found

is added to the tabu list in Line 8 and if the objective value of the potential solution is less than

the current best known objective Lines 10 to 12 are excecuted. In Line 10 the best known objective

is updated, next the BestSolution is updated and subsequently the Numiteration is set to zero in

Line 12. If the objective is not higher NumIteration is updated and next in Line 15 the tabu list

is updated by the UpdateTabuList() method. The method takes the tabu list and Λtabu as input,

if the length of the tabu list exceeds Λtabu the potential solutions which are on the list for the most

iterations are removed. Lastly, in Line 16 the solution to be evaluated in the next iteration is set

to the solution found in this iteration. When NumIteration is equal to Mtabu, the Tabu Search

returns the BestSolution and the corresponding BestObjective.

Algorithm 4: Tabu Search

Input: T , κtabu,Λtabu,Mtabu

Output: BestSolution, BestObjective

1 TabuList← ∅
2 NumIteration← 0

3 k ← κtabu

4 BestObjective = z(T )

5 BestSolution← T

6 while NumIteration <Mtabu do

7 T ′ ← BestNeighbor(Nk, T, TabuList)

8 TabuList← TabuList ∪ T ′

9 if z(T ′) < BestObjective then

10 BestObjective← z(T ′)

11 BestSolution← T ′

12 NumIteration← 0

13 else

14 NumIteration← NumIteration+ 1

15 TabuList← UpdateTabuList(TabuList,Λtabu)

16 T ← T ′
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5.4 Large Neighbourhood Search

Another method capable of escaping local optima, Large Neighborhood Search (LNS), is imple-

mented. Ropke & Pisinger (2006) and Emeç et al. (2016) all show its effectiveness to the VRP-

SPDTW and use a diversified set of methods in their LNS. In LNS a solution T is partially destroyed

by a destroy method and this partial solution T ′ is subsequently repaired by a repair method. In

this section an overview of the LNS is given and pseudo code is provided, Section 5.4.1 reviews the

seven destroy and four repair methods and Section 5.4.2 describes the mechanism for destroy/repair

method selection.

An outline of the LNS can be found in Algorithm 5, the input is comprised of a set of tours, T

and a set of parameters parametersLNS . In Lines 1 to 4 the LNS is initialized, NumIteration is

set to zero, the input tour is set as the current BestSolution and its corresponding objective value

as the BestObjective. The set parametersLNS contains all parameters for the destroy and repair

methods as well as the weight updating factors, δ+destroy, δ
−
destroy, δ

+
repair, δ

−
repair, the initial weights

π−, π+ and the maximum number of iterations, MLNS , which are initialized in Line 4. While

the NumIteration is lower than MLNS , the ChooseDestroyMethod() draws a destroy method

from the available set based on the weights of all destroy methods, π− in Line 6. Next in Line 7,

DestroySolution() uses this method in combination with parametersLNS to partially destruct the

solution T into T ′. In Line 8 and 9 the same procedure is repeated for selecting and applying a

RepairMethod, these steps result in a new set of tours, T” which is evaluated in Line 10. If this

new solution has a lower objective value than the current BestObjective it is stored as the new

current best in Lines 11 to 13 and in Line 14 the NumIteration is set to zero. However if this is

not the case NumIteration is increased by one and finally in Line 17 the method UpdateWeights()

is used to update the weight, which is further elaborated in Section 5.4.2. When NumIteration is

equal toMLNS the LNS returns the BestSolution and the corresponding BestObjective.
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Algorithm 5: Large Neighborhood Search

Input: T , parametersLNS

Output: BestSolution,BestObjective

1 NumIteration← 0

2 BestObjective = z(T )

3 BestSolution← T

4 MLNS , δ
+
destroy, δ

−
destroy, δ

+
repair, δ

−
repair, π

−, π+ ← parametersLNS

5 while NumIteration < MaxNumIterations do

6 DestroyMethod← ChooseDestroyMethod(π−)

7 T ′ ← DestroySolution(DestroyMethod, T, parametersLNS)

8 RepairMethod← ChooseRepairMethod(π+)

9 T”← RepairSolution(RepairMethod, T ′, parametersLNS)

10 if z(T”) < BestObjective then

11 BestObjective← z(T”)

12 BestSolution← T”

13 T ← T”

14 NumIteration← 0

15 else

16 NumIteration← NumIteration+ 1

17 π−, π+ ← UpdateWeights(δ+destroy, δ
−
destroy, δ

+
repair, δ

−
repair, π

−, π+)

5.4.1 Destroy and Repair methods

To remove customers from the current solution, the following seven destroy methods are defined. If

removing a customer results in an empty route or tour, the corresponding route or tour is deleted

from the schedule and all relevant variables are updated.

Random Removal: Randomly removes customers from the current schedule until n−
rand cus-

tomers are removed while remaining a feasible schedule. The variable n−
rand is defined by

parameterLNS set and is given as a proportion, prand of the total number of customers |C|.

Smallest Tour: Removes the tour, including all corresponding routes, with the least customers

from the current schedule. This method aims to reallocate these customers to the other tours

and thereby reducing the total number of tours and thus the total number of trucks.

Smallest Route: Removes the route with the least customers from the current schedule. Similar

to the previous method, the aim is to allocate the customers to other routes and tours,
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ultimately in order to reduce the number of tours.

Longest Tour: Removes the tour with the most customers from the current schedule. The aim

of this method is to destroy a large part of the solution which is more difficult to destroy by

the other methods.

Longest Route: Removes the roue with the most customers from the current schedule. The aim

of this method is similar to the previous method.

Cost Removal: Removes the n−
cost customers who have the highest cost of serving them. The cost

of serving, csj , customer j is defined by csj = Tij+Tjk−Tik, where i and k are the customers

before and after customer j. Similar to Random removal the variable n−
cost is defined by the

parameterLNS set and is given as a proportion pcost from the total number of customers |C|.

The aim of this method is to remove customers at expensive, undesirable places and move

them to more desirable, cheaper places.

Cluster Removal: Selects a random customer i, then removes the n−
cluster which are closest to

customer i. The measure which determines the closeness between two customers i and j is the

travel distance Tij between the two. The variable n−
cluster is determined in a similar manner

as Random and Cost Removal by a proportion pcluster of the total number of customers |C|.

To reinsert the customers who have been removed the following four repair methods are used. Each

methods prioritizes the insertion of customers into existing tours and routes but if no feasible places

are left for customers, new routes and tours are allowed to be created.

Greedy: This method reinserts each customer into its cheapest place. During each iteration a

customer is inserted at the insertion place, where the cost of insertion defined as in Equation

(25), is the cheapest.

Random: This method reinserts customers into random feasible place.

GRASP: This method constructs a list of nGRASP cheapest, feasible insertion places per customer

and randomly chooses one of them to insert the customer into. The number nGRASP is defined

by the parameter pGRASP times the total number of customer |C|.

κ-Regret: The methods previously described have a greedy component which favors the insertion

of customers with low insertion cost over those with high insertion cost. However postponing
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the insertion of these customers may lead to even higher insertion cost. The κ-Regret method

tries to resolve this by looking “ahead”. For each customer a list of insertion places, sorted in

descending order in terms of insertion cost is composed. The κ-Regret value is then defined

as the difference between the κ-th value and the first value in the list. Each iteration the

method inserts the customer which has the highest κ-regret value. This method is inspired

by Emeç et al. (2016).

5.4.2 Weight Updating

The weight of each method is based on the performance of that method in the previous iterations:

if a method has performed well the weight is increased, if not, the weight is decreased. All methods

start with equal weights and hence have the same probability to be chosen, as the LNS progresses

weights shift and improving methods are favored. After each iteration if a better solution has been

found the weights of the corresponding destroy and repair method are increased by factor δ+destroy

and δ+repair, if not the weights are decreased by factors δ−destroy and δ−repair. The increasing factors

δ+destroy and δ+repair are always greater than one and the decreasing factors δ−destroy and δ−repair are

always lower than one. For a high value of δ+ and a low value of δ− the LNS favors improving

methods over diversifying methods and for low values of δ+ and high values for δ− vice versa. The

selection of values for the parameters is a trade-off between intensification and diversification, these

parameters are tuned in Section 6.1.

5.5 MIP-Start

The problem in this thesis and as described by the MIP formulation from Section 3 is NP-hard,

hence will not solve in polynomial time. However, solutions obtained by the methods described in

Sections 5.1 to 5.4 can be used as a starting position for the MIP formulation from Section 3. A

starting position is defined by values for (part of) the decision variables and in this case can be

obtained from the schedule. The number of vehicles v, the start time of service for at each customer

yri with i ∈ C, r ∈ R and the variables xrij for i, j ∈ N, r ∈ R and zrs for r, s ∈ R, r < s can directly

be obtained from a schedule. The variables which keep track of the load, P f
ij for i, j ∈ C, f ∈ F

and Dg
ij for i, j ∈ C, g ∈ G are implied by the aforementioned. The solver starts looking from this

starting position and if this starting position is reasonably good, the solver might find the optimal

solution in a limited amount of time. This procedure is called MIP-Start and is applied to schedules

which can not be improved further by the methods as described in previous sections.
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6 Computational Results

In this section the parameters of the algorithm are tuned and the corresponding computational

results of the algorithms are discussed. All methods are implemented in Python version 3.8.9 and

the MIP formulation and the MIP-Start procedure both use the solver Gurobi version 9.5.1. All

numerical results are obtained by running the experiments on a computer with a 2.2 GHz Quad-

Core Intel i7 and 16 GB RAM. In Section 6.1 the parameters are tuned and in Section 6.2 the

computational results of the algorithms are discussed.

6.1 Parameter Tuning

The Solution Initialization, Tabu Search and Large Neighborhood Search contain several parameters

and the tuning is discussed in this section. Firstly, the tuning of α, the parameter in the SIH is

discussed in Section 6.1.1. Next, the tuning of the parameters used in the TS, κtabu, Λtabu,Mtabu,

is discussed in Section 6.1.2. Lastly, all parameters of the LNS are tuned and discussed in Section

6.1.3.

6.1.1 Solution Initialization Heuristic

The Solution Initialization Heuristic has one parameter named α, which effects the insertion cri-

terion, Equation (25). As the value of α approaches one, the insertion criterion has an emphasis

on added duration over added distance and vice versa for α approaching zero. As can be seen in

Figure 1, the different values of α do not have a large, for that matter significant, impact on the

total number of tours or the total duration. Which can be explained by the correlation between

distance and duration, as distance increases duration increases and vice versa. Only for smaller

distances, the duration may not decrease with the same factor, for example if the shortest path

(in a straight line) crosses a river or a large park without roads, however this occurs rarely in this

particular data set. As the number of customers increases, the total duration is slightly lower for

higher values of α, which can be explained by the emphasis on the total duration instead of the

total distance. Hence, the value of α is set to 0.9, in order to minimize total duration while still

taking the distance into account.
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Figure 1: Solution Initialization Heuristic results for different values of α.

6.1.2 Tabu Search

The Tabu Search as described in Section 5.3 has three parameters, κtabu, Λtabu and Mtabu. The

neighborhood in which the Tabu Search is performed is determined by κtabu and takes a value from

1 to 5. The parameter Λtabu determines the length of the tabu list, the longer this list, the further

backwards the search is able to go in a neighborhood. Having Λtabu to large leads to undesirable

large running times and Λtabu to small complicates escaping local optima as we can not search back

far enough. The different values for Λtabu tested are 100, 250, 500 and 1000. The maximum number

of iterations we are allowed to search without improvement is determined byMtabu. The value of

Mtabu is a trade-off between time-efficiency and comprehensive searching. The lower Mtabu, the

faster the search is completed at the risk of missing a better solution and for higher Mtabu vice

versa. Mtabu is tested for the values 50, 100, 200, 500 and 1000. All neighborhoods are combined

with each possible pair of Λtabu andMtabu, the results are given in Table 2.

Table 2: Average improvement and standard deviation of Tabu Search over Solution Initialization per
neighborhood for all combinations of tabu list length and maximal number of iterations

κtabu 1 2 3 4 5

Small containers
Average improvement 4.96% 12.84% 4.44% 5.98% 8.26%
St. Dev improvement 0.64% 1.49% 1.16% 0.85% 1.35%

Big containers
Average improvement 0.98% 8.18% 8.54% 1.16% 11.73%
St. Dev improvement 0.26% 1.28% 0.90% 0.44% 1.19%

As can be seen from Table 2, for the small container instances neighborhood two, Or-Opt*,

results in an average improvement of 12.84% which is significantly more than the others. The first,

third and fourth neighborhood underperform in comparison to the other two, which can be explained
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by the inter-route nature of these neighborhoods as opposed to the intra-route nature of the other

two. The room for improvement within routes is smaller as routes have been greedily constructed

without regard to the other routes and hence there is more room for improvement between routes.

For the big container instances neighborhood five, 2-Opt*, results in an average improvement of

11.73% which is significantly more than the others. Neighborhood one and four result in small

improvements for the same reason as the small container instances. However neighborhood three,

which swaps two customers, seems to perform well in comparison to its performance for small

container instances, which can be explained by the structure of the solution for big container

instances. In this case when a pickup is performed the truck must return to the depot, hence

swapping two pickup customers can result in big improvements, while for the small container

instances this is not true. With the best neighborhood known for both small and big container

instances, the average improvement and running times for different values of Λtabu andMtabu are

shown in Table 3 and 4.

Table 3: Average improvement and running times of Tabu Search after Solution Initialization in the best
neighborhood for different lengths of the tabu list over all different values for the maximal number of iterations

Λtabu 100 250 500 1000

Small containers
Average improvement 12.52% 13.01% 12.63% 13.20%
Average time (s) 17.66 29.10 37.58 44.96

Big containers
Average improvement 12.50% 11.00% 11.53% 11.90%
Average time (s) 74.34 81.71 98.30 101.76

Table 4: Average improvement and running times of Tabu Search after Solution Initialization in the best
neighborhood for different number of maximal iterations over all different values for the tabu list length

Mtabu 50 100 200 500 1000

Small containers
Average improvement 12.39% 12.05% 12.59% 13.40% 13.77%
Average time (s) 3.44 6.50 16.06 37.50 98.13

Big containers
Average improvement 11.99% 11.29% 10.88% 12.73% 11.75%
Average time (s) 13.08 23.69 50.53 127.73 230.11

As can be seen from Table 3, for both the the small and big container instances the difference

in performance is minimal for different values of Λtabu, while the difference in running times is

significant. Hence, a lower value for the length of the tabu list Λtabu is chosen. For the maximal

number of iterations, as can be seen from Table 4, this trend continues, hence a lower value for

Mtabu is set. Performance measures for each combination of tabu list length and maximal number

of iterations can be found in Appendix A. In conclusion, the final values for the parameters of the

Tabu Search can be found in Table 5.
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Table 5: Final values for the Tabu Search parameters for both small and big container instances

κtabu ∆tabu Mtabu

Small containers 2 100 50
Big containers 5 100 50

6.1.3 Large Neighborhood Search

The parameters of the LNS as described in Section 5.4 are tuned in three phases. Firstly, the

destroy and repair specific parameters are tuned, thereafter the weight updating factors are tuned

and lastly the maximum number of iterations. In Table 6 all different values for the parameters in

the first phase are displayed with in bold the final values used in the LNS. The three parameters

prandom, pcost and pcluster determine the proportion of customers to be removed from the solution.

As the aim of the Random Removal method is to diversify the solution and the average improvement

is similar for all values, see Appendix A, the value is set to 0.25. For both pcost and pcluster the value

is set to 0.15, as this value has significantly better performance than the low value, see Appendix A,

comparable performance to the high value while not being as destructive. For the repair methods

parameters pGRASP and κregret, the final value is the one that yields the best improvement on

average, see Appendix A for details.

Table 6: All the different values used in LNS parameter tuning, with in bold the final value, using the small
container instance with 50 customers

Component Parameter Value’s

Destroy
prandom 0.075 0.15 0.25 -
pcost 0.075 0.15 0.25 -
pcluster 0.075 0.15 0.25 -

Repair
pGRASP 0.05 0.1 0.15 0.2
κregret 2 3 4 5

In the second phase of the LNS parameter tuning the weight updating factors, δ+destroy, δ
−
destroy,

δ+repair, δ
−
repair are tuned. In Table 7 the results of the parameter tuning are shown, with in bold

the final values for each parameter. All combinations of δ+destroy, δ
−
destroy, δ

+
repair, δ

−
repair are tested

and are sorted from most improving to least improving. The final values as in Table 7 are the most

frequent values in the top 50, 100 and 200 of this list.

Lastly, in the third phase the maximum number of iterations parameter is tuned. The results

of can be found in Table 8, as the maximal number of iterations increase the average improvement

does as well. As the LNS is allows more iterations without improvement, more possible solution are

constructed and hence better objectives are found but at the cost of computation time. A length
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of 100 is chosen as this yields a relative high improvement with manageable running times.

Table 7: All the different values used in the second phase of LNS parameter tuning, with in bold the final
value, using the small container instance with 50 customers

Parameter Values

δ+destroy 1.05 1.1 1.2 1.5 1.75 2

δ−destroy 0.9 0.95 0.975 0.99 1

δ+repair 1.05 1.1 1.2 1.5 1.75 2

δ−repair 0.9 0.95 0.975 0.99 1

Table 8: Results for the third phase of LNS parameter tuning, with in bold the final value, using the small
container instance with 50 customers

MLNS 50 75 100 200 500

Average improvement 7.53% 9.18% 13.47% 13.49% 17.67%
Runtime (s) 1.48 2.66 4.15 7.04 20.15

6.2 Algorithm Results

When the parameters have been set to their final value, the performances of the algorithms are

evaluated. All methods are run for all instances of both the small and the big container data sets.

The MIP formulation and MIP-Start procedure are run with a time limit of 30 minutes to obtain

a lower and upper bound, an overview of the computational results can be found in Table 9 and

10. Optimality gaps are calculated with respect to the best known bound, which in all cases is

obtained by MIP-Start procedure.

For the small container instances, Table 9, the SIH is able to obtain a first solution within a

small amount of time for all instance sizes with. This solution is greatly improved by applying VND,

as this yields in a decrease of 12.69%, 18.93% and 18.71% of the optimality gap, for the 50, 100

and 200 customer instance respectively. Using this solution, Tabu Search, Tabu Search plus LNS

and LNS are performed in order to improve the solution further. Tabu Search is a computationally

heavy component as can be seen from the respective running times, with a decrease in optimality

gaps of 0.51%, 0.48% and 0.26%. Applying LNS to this solution results in another decrease in

optimality gap of 2.31%, 4.49% and 2.93% which results in the lowest optimality gaps, excluding

the MIP-Start. When the Tabu Search is skipped and only LNS is applied after VND, the resulting

optimality gaps are similar to not skipping Tabu Search. For the instance with 50 customers, MIP-

Start procedure results in a optimal solution within half an hour of 33028.7. Whereas for the 100

and 200 customer instance an optimality gap of 2.08% and 13.36% remains but the lower bound is
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improved in comparison to the bound obtained by the MIP.

Table 9: Results of all methods for the small container instances

Method Instance size UB LB Optimality gap Runtime (s)

MIP

50

90744 32797.3 63.86% 1800

SIH 43451.2 - 23.99% 0.09

SIH + VND 37237.3 - 11.30% 0.95

SIH + VND + TS 37025.2 - 10.79% 10.12

SIH + VND + TS + LNS 36090.1 - 8.48% 12.24

SIH + VND + LNS 36107.6 - 8.53% 3.07

MIP-Start 33028.7 33028.7 0.00% 1233.11

MIP

100

141912 51066.4 64.02% 1800

SIH 76462.4 - 32.37% 0.38

SIH + VND 59734.0 - 13.44% 12.42

SIH + VND + TS 59409.0 - 12.96% 57.19

SIH + VND + TS + LNS 56368.7 - 8.27% 64.84

SIH + VND + LNS 56730.7 - 8.85% 20.07

MIP-Start 52806.5 51708.12 2.08% 1800

MIP

200

354743 79760.7 77.52% 1800

SIH 122876.0 - 33.61% 1.50

SIH + VND 95861.7 - 14.90% 102.43

SIH + VND + TS 95572.6 - 14.64% 335.87

SIH + VND + TS + LNS 92401.3 - 11.71% 372.95

SIH + VND + LNS 92852.8 - 12.14% 37.08

MIP-Start 94156.9 81579.2 13.36% 1800

The results for the big container instances can be found below in Table 10. The SIH obtains a

solution in less than a second for all instances and the constructed solutions are at optimality gaps

of 13.33%, 15.59% and 13.15% for 50, 100 and 200 customers respectively. The SIH on big container

instances outperforms the SIH on small containers instances, this can be explained by the capacity

restrictions of the big containers instances. With the big container instances, once a vehicle has

performed a pickup full capacity of that truck is used and it must return to the depot. This results

in considerably shorter routes, for which the greedy approach of the SIH is better suited.Performing

a Variable Neighborhood Descent on these solutions yields in a decrease of 11.94%, 14.52%, 12.36%

in the optimality gap. The Tabu Search, Tabu Search plus LNS and LNS alone are not able to

close the remaining optimality gap. Using the MIP-Start procedures optimal values for all three

instances are found, within considerable low times for the 50 and 100 customer instances and for

the 200 customer instance in little over 15 minutes.
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Table 10: Results of all methods for the big container instances

Method Instance size UB LB Optimality gap Runtime (s)

MIP

50

227027 82758.2 63.55% 1800

SIH 95792.8 - 13.33% 0.01

SIH + VND 84194.7 - 1.39% 1.79

SIH + VND + TS 83875.3 - 1.01% 10.13

SIH + VND + TS + LNS 83861.1 - 0.99% 11.58

SIH + VND + LNS 84194.7 - 1.39% 3.24

MIP-Start 83026.7 83026.7 0.00% 20.48

MIP

100

481390 164590.3 65.81% 1800

SIH 194985.7 - 15.59% 0.03

SIH + VND 166373.7 - 1.07% 16.51

SIH + VND + TS 166138.6 - 0.93% 51.27

SIH + VND + TS + LNS 166114.3 - 0.92% 58.08

SIH + VND + LNS 166261.4 - 1.01% 23.33

MIP-Start 164590.3 164590.3 0.00% 70.43

MIP

200

952892 310560.9 67.41% 1800

SIH 357648.3 - 13,15% 0.18

SIH + VND 313104.2 - 0,79% 184.29

SIH + VND + TS 312805.3 - 0,70% 400.96

SIH + VND + TS + LNS 312805.3 - 0,70% 445.71

SIH + VND + LNS 313104.2 - 0,79% 229.04

MIP-Start 310627.7 310627.7 0.00% 1075.09

6.2.1 VND Analysis

As can be seen from Table 9 and 10 the VND reduces the optimality gap the most, hence in

this section its performance is analyzed in more detail. Below in Figure 2a the average number

of improvements found per neighborhood for the small container instances are visualised and in

Figure 2b similarly for the big container instances. For both the small and big container instances

the most improvements are found in the second neighborhood, Or-Opt*. The SIH has a greedy

nature and is thus focused on constructing the shortest route with respect to itself but not with

respect to other routes. Hence, the intra-route nature of Or-Opt* and its position as the second

neighborhood explains its performance.

For the small container instances neighborhood one, Or-Opt, is the second best performing

neighborhood and significantly outperforms the third, fourth and fifth neighborhoods. On the

one hand this can be explained by the fact that it is the first neighborhood and is thus visited

every iteration and on the other hand by the inter-route nature. As the routes for small container

instances generally speaking contain more customers in comparison to big container instances, where
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this neighborhood is outperformed by the third, the room for improvement is bigger. The greedy

nature of the SIH only focuses on the best next customer and not on the customers thereafter,

hence improvements can also be found within each route. The neighborhoods, N3, N4 and N5,

further refine the solution but do not find improvements as frequently.

For the big container instances the third neighborhood, Swap, is the second best performing. It

is significantly better in comparison to neighborhood N1, which can be explained by the capacity

restrictions for the big container instances. Moving a customer from one route to another route may

result in an infeasible solution. For instance moving a pickup customer to a route with already a

pickup customer is always infeasible, as is moving a delivery customer after a pickup customer. The

number of feasible moves is very restricted in comparison to swapping two customers, as swapping

two pickup customers, or two delivery customers, usually does not violate the capacity restriction.

Hence, more improvements are found in neighborhood N3 and it outperforms N1, N4 and N5. Note

that the intra-route neighborhoods N2 and N5 outperform the inter-route neighborhoods N1 and

N4, also because of the tight restrictions on capacity.

(a) Small container (b) Big container

Figure 2: Average number of improvements over 100 runs found by the VND per neighborhood

6.2.2 LNS Analysis

Lastly, the performance of the different destroy and repair methods used within the LNS are

analyzed. In Figure 3 the average weight per method when running the LNS 100 times on the

50 customer small container instance are displayed. In the top figure the weights for the destroy

methods are displayed, where the performance of the Cluster Removal, Cost Removal and Random
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Removal are most notable. The Cost Removal performs well from beginning to the end, this can be

explained by the focus on individual customers who have been placed undesirably and are moved

to a more preferable position in the schedule. The Cluster Removal method performs extremely

well in the beginning but its performance declines towards the end. Later in the search a greater

share of the customers is in a desirable position in the schedule and the cluster removal method

is too destructive and removes too many customers. In comparison to early in the search when

entire clusters of customers might be placed on a less convenient tour. Notably, the effectiveness

of diversifying the search by using the Random Removal method is shown, also the Longest Route

removal method has some affect. The inferior performance of the Smallest Route, Tour and the

Longest Tour methods stands out and omitting these methods might results in a better overall

performance of the LNS.

The performances of the repair methods are displayed on the bottom of Figure 3. Both the

Greedy and the κ-Regret repair method perform very well throughout the entire search. For the

Greedy method this can be explained by its focus on inserting each customer individually at its

most desired position in the schedule. While for the κ-Regret method it can be explained by

its ability of looking “ahead”, and inserting customers at desirable positions in the schedule with

respect to the remaining customers. The performance of the GRASP method is fine but on the

other hand the performance of the Random Repair method is not as desired. Once again, omitting

this method from the LNS might result in better overall performance of the LNS.
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Figure 3: Average weight per destroy (top) and repair (bottom) method over 100 runs of the LNS on the
50 customer small container instance

7 Conclusion

In this thesis, the goal was to develop a solution construction heuristic and several refining methods

which could obtain competitive solutions in a short time frame and obtain insights into the perfor-

mance of these methods. The problem at hand is the distribution of different waste containers to

a set of customers using a homogeneous fleet of vehicles. Customers are to be served within a time

window and their demand is known in advance and may consist of both a pickup and a delivery or

either. The vehicles used to deliver the containers have limited weight and size capacity and must

comply to the operating hours of the depot. This is the problem faced by GreenRoutes, a company

that supplies route optimization software within the waste processing sector. In the literature this

problem is known as a Vehicle Routing Problem with Simultaneous Pickup and Delivery and Time

Windows, which belongs to the widely studied class of Vehicle Routing Problems.

A Solution Initialization Heuristic is developed which combines a cheapest insertion heuristic,

inspired by Solomon (1987), to construct routes with a greedy heuristic which constructs tours from

these routes. The obtained schedule consists of a set of tours of one or multiple routes and is further

refined by different heuristics. Firstly, a Variable Neighborhood Descent with five neighborhoods is

34



constructed to search the solution space close to the initial solution. As this search might get stuck

in a local optima, two methods capable of escaping local optima are developed, a Tabu Search and

a Large Neighborhood Search. The effectiveness of these methods on the class of Vehicle Routing

Problems has been shown by Gendreau et al. (1994) and Ropke & Pisinger (2006) respectively. Tabu

Search allows moves which worsen the objective and previously visited solutions are prohibited for

a number of iterations, in order to move away from a local optima into unexplored parts of the

solution space. In the Large Neighborhood Search a set of destroy methods deconstruct part of the

solution and a set of repair methods is used to reinsert the removed customers. Each method in the

set of destroy methods has its own purpose, from diversifying the search to removing undesirable

customers and routes. The repair methods aim to reinsert the customers in the most desirable

place, either in a greedy way or in a more sophisticated way. Lastly, a MIP-Start procedure is

implemented which takes the best known solution and starts an exact search using the Gurobi

solver from that point, which increases the odds of finding the optimal solution dramatically.

The Solution Initialization Heuristic in combination with the Variable Neighborhood Descent

is shown to be really effective for the big container instances of all sizes. Within the VND, the

intra-route oriented neighborhood Or-Opt*, is shown to be the best performing neighborhood. A

near optimal solution can be found within minutes and the MIP-Start procedure is able to find

the optimal solution for all three of the big container instances. For the small container instances

the SIH with VND finds competitive solutions which are further refined by the Tabu Search and

the Large Neighborhood Search. The LNS is shown to be more effective in comparison to the

Tabu Search. A deeper analysis of the LNS shows the effectiveness of the Cost, Cluster and

Random Removal methods, while the Greedy and κ-Regret are the most effective repair methods.

Concluding, the advice to GreenRoutes is to use a combination of SIH, VND and LNS for the small

container instances and for the big container instances the SIH and VND combination to obtain

competitive results in a reasonable time.

The methods discussed in this thesis contain some limitations, the Tabu Search and the Large

Neighborhood Search parameters are both tuned only on the 50 customer instances. More research

can be done on the relation between the instance size and these parameters, as some destroy

methods might be too destructive on the larger instances. Also the reactiveness of the LNS can

be further researched, as in the current weight updating scheme weights can diverge a lot and

specific good/bad combinations are not rewarded/punished. Within the LNS, other destroy and

repair methods might be considered which focus on for example reducing the total number of
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vehicles used or removing customers with similar characteristics. The use of a local search or a

Tabu Search on a competitive solution found by the LNS might be useful to refine the solution

further. Some neighborhoods used in the VND rarely find improvements and might not be worth

the computational time. As VND is the most effective method developed in this thesis, research

into omitting or replacing these neighborhoods could be considered for future research. Lastly,

more research can be done into the insertion criterion used in the SIH, for example to include a

looking “ahead” feature such as in the κ-Regret method in this thesis.
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Emeç, U., Çatay, B., & Bozkaya, B. (2016). An adaptive large neighborhood search for an e-grocery

delivery routing problem. Computers & Operations Research, 69 , 109–125.

Flood, M. M. (1956). The traveling-salesman problem. Operations research, 4 (1), 61–75.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). freeman San

Francisco.

Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing

problem. Management science, 40 (10), 1276–1290.

Goetschalckx, M., & Jacobs-Blecha, C. (1989). The vehicle routing problem with backhauls.

European Journal of Operational Research, 42 (1), 39–51.

Golden, B. L., Raghavan, S., & Wasil, E. A. (2008). The vehicle routing problem: latest advances

and new challenges (Vol. 43). Springer Science & Business Media.

Hernandez, F., Feillet, D., Giroudeau, R., & Naud, O. (2014). A new exact algorithm to solve the

multi-trip vehicle routing problem with time windows and limited duration. 4or , 12 (3), 235–259.

Kallehauge, B. (2008). Formulations and exact algorithms for the vehicle routing problem with

time windows. Computers & Operations Research, 35 (7), 2307–2330.

Kumar, S. N., & Panneerselvam, R. (2012). A survey on the vehicle routing problem and its

variants.

Laporte, G., & Nobert, Y. (1987). Exact algorithms for the vehicle routing problem. In North-

holland mathematics studies (Vol. 132, pp. 147–184). Elsevier.

Li, H., & Lim, A. (2003). A metaheuristic for the pickup and delivery problem with time windows.

International Journal on Artificial Intelligence Tools, 12 (02), 173–186.

Liu, R., Xie, X., Augusto, V., & Rodriguez, C. (2013). Heuristic algorithms for a vehicle routing

problem with simultaneous delivery and pickup and time windows in home health care. European

Journal of Operational Research, 230 (3), 475–486.
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A Parameter Tuning

Table 11: Results parameter tuning Tabu Search for small container instance with 50 customers in N2

∆tabu Mtabu Improvement Runtime (s)

100 50 13.13% 3.09
100 100 13.11% 6.26
100 200 12.39% 10.99
100 500 11.22% 23.48
100 1000 12.76% 44.50

250 50 12.89% 3.59
250 100 10.46% 5.96
250 200 13.02% 16.26
250 500 15.84% 37.86
250 1000 12.85% 81.82

500 50 9.76% 4.13
500 100 12.45% 7.59
500 200 11.75% 19.83
500 500 14.79% 36.33
500 1000 14.39% 120.03

1000 50 13.78% 2.95
1000 100 12.19% 6.19
1000 200 13.19% 17.15
1000 500 11.76% 52.34
1000 1000 15.07% 146.18
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Table 12: Results parameter tuning Tabu Search for big container instance with 50 customers in N5

∆tabu Mtabu Improvement Runtime (s)

100 50 11.94% 14.54
100 100 11.77% 27.73
100 200 12.52% 51.07
100 500 13.82% 118.26
100 1000 12.44% 160.09

250 50 11.71% 10.61
250 100 10.98% 20.65
250 200 9.44% 44.48
250 500 11.52% 117.85
250 1000 11.33% 214.98

500 50 11.99% 13.08
500 100 10.86% 27.16
500 200 11.72% 54.26
500 500 13.38% 137.33
500 1000 9.68% 259.69

1000 50 12.30% 14.11
1000 100 11.56% 19.24
1000 200 9.86% 52.34
1000 500 12.20% 137.46
1000 1000 13.56% 285.66

Table 13: Average improvement and standard deviation of LNS over Solution Initialization for different
values of destroy parameters on the 50 customer small containers instance

Parameter Value Average St. Dev

prandom

0.075 11.03% 4.65%
0.15 11.38% 4.46%
0.25 11.41% 4.52%

pcost

0.075 9.80% 4.44%
0.15 11.75% 4.39%
0.25 12.27% 4.43%

pcluster

0.075 10.91% 4.39%
0.15 11.40% 4.60%
0.25 11.51% 4.64%
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Table 14: Average improvement and standard deviation of LNS over Solution Initialization for different
values of repair parameters on the 50 customer small container instance

Parameter Value Average St. Dev

p grasp

0.05 12.22% 4.30%
0.1 11.36% 4.37%
0.15 10.84% 4.55%
0.2 10.68% 4.81

k-regret

2 10.76% 4.56%
3 11.44% 4.50%
4 11.52% 4.62%
5 11.37% 4.48%
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