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Abstract

With the advent of neural networks in the previous decade, new and effective methods for addressing combi-

natorial optimization problems such as the Traveling Salesman Problem were devised. Despite the fact that

neural networks transcend metaheuristics and evolutionary algorithms, it seems that these approaches have

reached their limits, and their efficacy has been questioned.

Few comprehensive studies look into the use of neural networks to solve real-world optimization problems in

industry. As a result, the purpose of this research is to address a gap in the literature by comparing neural

network approaches to competitive methodologies.

A Kohonen Neural Network will be investigated, built, and compared to the K-means clustering approach, a

machine learning tool for TSP and to an Elitist Ant System (EAS), a powerful metaheuristic. Performance

metrics, solution quality, running times, and efficiency will all be determined through computational tests.

The aforementioned approaches will be applied to various sorts of TSP instances in terms of size, format,

and origin.

More practical applications of neural networks must undoubtedly be tackled in order to illustrate their

potentiality. However, when compared to other strategies, the results show that the Kohonen Neural Network

is a promising mechanism for solving the TSP. Due to its settings flexibility and performance in terms of the

solution values provided, it is arguably the most efficient strategy.
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1. Introduction

1.1 Background knowledge

The Traveling Salesman Problem is one of the most extensively studied combinatorial optimization problems

in the literature of operation research. The TSP is associated with determining the shortest route between a

set of cities. Due to the vast number of viable answers, this deceptively easy problem is difficult to solve. As a

result, strategies that produce a decent sub-optimal solution in an acceptable amount of time are commonly

utilized (Bert La Maire and Valeri M. Mladenov, 2012).

The rise of artificial neural networks in the past twenty years, offered new and efficient methodologies to

solve complex combinatorial optimization problems such as the TSP. Excitement was unpredictable, as new

ways were devised and their limits were discovered a few years later (Kate Smith-Miles, 1999). The first

appearance of a neural network that solved the Traveling Salesman Problem comes back in 1985 with Hopfield

& Tank. According to many researchers, Hopfield & Tank neural network was considered controversial and

unreliable due to problematic parameter coordination and infeasible solutions. These doubts concerning the

validity of the Hopfield & Tank approach, were published by Wilson and Pawley and seemed to refute the

enthusiasm around it (G. V. Wilson and G. S. Pawley, 1988). A more promising approach, that will be

benefited from this thesis study, comes from Kohonen’s Self-Organizing Feature Map (T.Kohonen, 1982).

The main advantage of this approach is that self-organizing or Kohonen neural networks have successfully

solved not only the Traveling Salesman problem but also two - dimensional problems such as the vehicle

routing problem (I. Vakhutinsky, B.L. Golden, 1994) and the shortest path problem (M. Takahashi, K.

Kyuma, E. Funada, 1993), which can be considered variants of the TSP.

In this study the application of Kohonen’s Neural Network on the Traveling Salesman Problem (Brocki and

Koržinek, 2007) will be the benchmark for comparison. In terms of solution quality, the neural method is

seldom compared with the best performing or most competitive alternative strategy in operations research

literature. Usually, only comparisons between neural networks for TSP can be spotted (Bert La Maire and

Valeri M. Mladenov, 2012) or between exact and machine learning techniques (Nassirou Lo Jeremiah Ishaya

and Abdullahi Ibrahim, 2019). Thus, there is a need for such a comparative analysis, as proposed below,

since to the best of our knowledge there is no similar comparison between a neural network with existing

alternative methods for TSP.

According to J.N.Hooker (1995) the key direction for this computational experiment is to include heuristics,

since neural networks are extremely competitive with metaheuristics.

Visiting the wide family of metaheuristics, the Ant Colony optimization based techniques seem promising and

competitive. The first Ant Colony Optimization algorithm, the well known Ant System was introduced using

the Traveling Salesman Problem as an example application (M.Dorigo, 1992). The Ant System provided
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promising initial results but was considered to be less efficient and performant than the latest algorithms

for TSP at that time (M.Dorigo, 1992). The Ant System is also notable because it inspired a number of

improvements that contributed greatly to the performance of ACO techniques. One of these enhancements

is the Elitist Ant System, which provides significant reinforcement to the arcs of the best route identified.

(S.Parsons, 2005).

Combinatorial optimization problems, such as the TSP, have become an active field of application for machine

learning. Thus, another motivation of this thesis study, is the comparison of the Kohonen Neural Network

with a classic machine learning method. A widely used machine learning method belongs to the group of

clustering analysis and more specifically is considered to be the classical K-means clustering algorithm. The

reason that the K-means clustering algorithm is selected as a candidate for comparison is that it unexpectedly

depicts more similarities than differences with a Kohonen Neural Network, due to their machine learning

nature. Following the research already conducted (Bação Fernando, Victor Lobo, and M. Painho, 2005), it

can be easily derived that clustering algorithms were highly affected by the amount of overlapping samples

from different classes and outliers, while Kohonen Neural Network did not perform well, being enormously

affected by the number of variables. Moreover, it is worth mentioning that in simulations where many

different clusters structures were involved combined with large data sets, K-means methods had a really

good performance compared to the performance of Kohonen Neural Network (Sueli A. Mingoti, Joab O.

Lima, 2005). Additionally, there is not a known comparison between a K-means clustering algorithm with a

Kohonen Neural Network, specifically for the TSP. Thus, it is interesting to explore the dependency of the

TSP performance on clusters and the behavior of the Kohonen Neural Network in comparison with a K -

means clustering algorithm on the data sets selected for this study.

1.2 Research Questions

The objective of this thesis study is to provide the reader with a comparative analysis of two machine learning

methods and one metaheuristic that aim to solve the Traveling Salesman Problem. Apart from implementing

and solving the Traveling Salesman Problem using the aforementioned methods, the purpose of this thesis

study adds value to the operations research by exploring diverse and interesting fields for comparison. This

comparative analysis will offer computational experiments, but also insights concerning the solution quality

and the running times. In other words, it will explore the behavior of these methods in different data sets,

in terms of size and form, that will be described in the Data section 5.

It is certain that more and more practical applications need to be solved using Neural Networks in order

to demonstrate their capabilities. Until today, most of the research has been focused on the solution to the

Traveling Salesman Problem and to a wide range of classic combinatorial problem using Neural Network but

not to the evaluation of the Neural Networks’ potential.

A more detailed description of the proposed methods will follow in the Methodology section 4.
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Therefore, this thesis aims to answer the following main research question:

How do machine learning methods for the Traveling Salesman Problem perform in comparison to the well

known metaheuristic ?

In other words, what kind of performance insights can be derived comparing a Kohonen’s Neural Network

on TSP instances to the metaheuristic of the Elitist Ant System and to the machine learning algorithm of

K - means algorithm.

The following two sub-questions will be addressed to answer the main research question :

• How the performance of the proposed methods is measured?

The answer of this sub-question refers to metrics and criteria on how the performance is measured, in

terms of solution quality, accuracy, efficiency and running time on small and large data sets. Moreover,

to the performance trade-off between the three proposed methods and how they can be improved is

to be explored as well. Another aspect that will be extensively investigated is how an initialization

technique affects the overall performance and how the selection of crucial parameters can result in

better outcomes and faster convergence.

• Which is the most efficient method and most preferred approach depending on the characteristics of

the instances ?

Elaborating on this sub-question, it is crucial to spot the kind of insights can be derived from the

computational experiments and the extent the traditional computationally bulky method of the meta-

heuristic, approaches the near - optimal solution of the machine learning methods.

By answering the research questions and conducting a thorough analysis, this thesis study aims to validate

that the Kohonen Neural Network can cope with the complexity of the combinatorial problems. Hence, it

will indicate that the Neural Network is one of the most effective approaches to solve TSP compared to other

techniques, as expected.
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2. Literature Review

In this section the literature review will be discussed in terms of background knowledge, methodology and

results that have been obtained in previous research on the TSP or other combinatorial problems. Moreover,

the relevance of the existing literature to the current research will be presented in the three subsections

below. In section 2.1 Kohonen Neural Network approaches for the TSP are presented, while in section 2.2

the metaheuristic approach of Elitist Ant System together with its extensions is given. The last part in

section 2.3 contains the K - means clustering based approaches.

2.1 Kohonen’s Neural Network

As it is already mentioned, the first appearance of the Kohonen Neural Network and the introduction of

the Self - Organizing Map (SOM) feature took place in 1982 by T.Kohonen. However, these early models

and neural networks seem to be rather weak. Kohonen’s breakthrough was the introduction of a system

that comprises of two distinct subsystems. The neural network implements the winner function, whereas the

other subsystem adjusts the local behavior of the neurons during the learning process. The first application

area of the SOM was speech recognition, which marks the time when the SOM has entered the world of data

analysis and data exploration (Kaski S. Oja, M. and T. Kohonen, 2003).

Taking a look at extensions and improvements, a large amount of variants of the basic SOM has been

suggested. The main alternatives for the definition of the SOM models are the Generative Topographic

Map (C.M. Bishop, M.Svensén and C.K.I. Williams, 1998) and the information-based computation of the

SOM models (Van Hulle, 2000). Moreover, improvements on the adaptive structure of the SOM array have

been introduced by Fritzke (1994), and alternative definition of the neighborhood relations are defined by

Martinetz (1993). Latest publications concerning the Self-Organizing Map are included in Laaksonen and

Honkela (2011) and Pŕıncipe and Miikkulainen (2009).

The SOM algorithm, originally introduced by Kohonen, is an unsupervised learning algorithm, that creates

a topological link between the inputs. This is the main characteristic that will explored by this thesis study

and has been explored by many others found in the literature that approached the Traveling Salesman

Problem via the SOM algorithm. Some of those key references that have been reviewed in the literature

are coming almost twenty years back. One of these was provided by Aras N, Oommen BJ, and Altinel

IK (1999), who incorporated statistics in the Kohonen Network setting it the most accurate method for

the TSP among the neural solutions available in the literature. Another interesting approach comes from

Somhom S, Modares A, Enkawa T. (1999) where a competition based neural network was established for

the multiple traveling salesman problem using a mini-max objective function. J.C.Fort (1988) also provided

an interesting application,containing many numerical examples and giving good sub-optimal tours. What
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was special in this study, is that only Kohonen’s algorithm was applied without an energy function nor any

parameter selection criteria chosen.

2.2 Elitist Ant System

The Ant Colony Optimization, the second component of this comparative study, is a metaheuristic in which

artificial ants collaborate to discover good answers to complex optimization problems. Ant Colony Opti-

mization techniques are used to address both static and dynamic combinatorial optimization problems, such

as the Traveling Salesman problem.

The Ant System, created by Marco Dorigo, was the first algorithm in the Ant Colony optimization framework

(1992). A large number of diverse algorithms followed this system and tried to improve it in terms of

performance. As it is already mentioned in the introduction chapter, the Ant System provided tangible initial

results and was an inspiration for a large amount of extensions that improved its performance significantly.

These extensions consider among others the Elitist Ant System, the rank - based Ant System and the Max

- Min Ant System. The main difference between those, is how the pheromone levels are updated.

A thourough literature research yields that the Elitist Ant System was introduced by Dorigo, Maniezzo &

Colorni in 1996, while the following extensions of Max - Min Ant System by Stutzle & Hoos in 1999 and the

Rank-based Ant System by Bullnheimer, Hartl & Strauss in 1997. Relevant extensions of the Ant System

can be found in the approximate non-deterministic tree search algorithm introduced by Maniezzo in 1999

and the Hyper-cube Ant System by Blum, Roli & Dorigo in 2001.

The adaptive elitist-ant system for addressing combinatorial optimization problems was proposed by Abuham-

dah (2021), which is the most recent appearance of the Elitist Ant System enhancement. Karmakar, Mi-

tra, Dey, Chakraborty, and Nayak, on the other side, provided an enhanced Elitist Ant System based on

pheromone approach and dynamic candidate lists (2016). The common ground of these extensions and im-

provements is that they follow the narrative of Dorigo (1992) as base, so is worth exploring the details of

the initial Ant System.

Dorigo presented three new Ant System variants after expanding on the original Ant System (Dorigo, 1992,

Colorni, Dorigo, & Maniezzo,1996). Ant-density, ant-quantity, and ant-cycle, to name a few. The pheromone

level was updated after all ants had built the tours in the ant-density and ant-quantity versions, whereas

the pheromone level was updated after all ants had built the tours in the ant-cycle version. The amount

of pheromone deposited by each ant was set to be the function of tour quality. When the Ant System is

referred, the ant-cycle is considered since the two other variants were of inferior performance. Additionally,

the performance of the Ant System when compared to other metaheuristics decreases dramatically as the

size of the test-instance increases.

Therefore, computational results presented in Dorigo (1992) and Colorni, Dorigo, & Maniezzo (1996) suggest

that the use of the elitist strategy or the Elitist Ant System with appropriate parameter selection values,
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allows the Ant System to find better tours with a lower number of iterations. That is the reason, that the

algorithm of this research will be followed and implemented in the suggested comparative analysis.

2.3 K - means clustering algorithm

Moving to the third component of this comparison, a K-means clustering algorithm is explored. The litera-

ture review on this approach is wide and vast.

According to J. MacQueen(1967) K-means is one of the most popular algorithms for non-hierarchical clus-

tering problems. The algorithm’s goal is to divide data items into k clusters. The data items in the k-means

algorithm are grouped based on their distance from one another, with each data object belonging to just one

cluster. The K-means method seeks out centroids with the shortest distance between them and the data

items that belong to them.

Applications of this kind of machine learning algorithms to the Traveling Salesman Problem are numerous but

it is important to mention the ”most relevant” to this thesis study. One of them is presented by Karakoyun

M.(2019), who uses a K-means clustering method combined with a Shuffled Frog Leaping Algorithm (SFLA).

This approach consists of three parts: separation of the cities into k clusters, finding the shortest path for

each cluster and merging the clusters. The results have shown that this algorithm gets better results as the

number of clusters increases for problems that have a large number of cities.

Additionally, it can be easily observed that K-means clustering algorithm is usually used as a pre-processing

step in order to solve the Traveling Salesman Problem. R.Nallusamy, K.Duraiswamy, R.Dhanalaksmi & P.

Parthiban (2009) used an approach of clustering the number of given cities depending upon the number of

salesmen and each cluster is allotted to a salesman. In this approach, multiple -TSP has been changed to

TSP, which is easier to calculate than m-TSP. After clustering, each salesperson in his allocated cluster is

assigned an optimal route. Majd Latah (2016) uses a similar method to propose a solution for the multiple

TSP Problem using the K-Means and Crossover based Modified ACO Algorithm. Also, in this case K-means

clustering algorithm is used in the pre-process since cities are grouped in clusters where each cluster represent

a set of adjacent cities.

The most relevant research conducted in the literature close to this suggested study is presented by Ameera

J.,Bara’a M. & Waed A. (2019) by utilizing a Firefly Algorithm (FA) and a k-means clustering algorithm. The

three major steps include: clustering the nodes, finding the optimal path in each cluster, and reconnecting

the clusters. The first stage divides the nodes into sub-problems using k-means clustering, while the second

step uses FA to discover the best path in each cluster and eventually connects all clusters.

Generally, the most common approach of solution for the TSP is in the 2-opt optimization. 2-opt, a local

search algorithm, was first proposed by Croes in 1958. The main idea behind it, is to take a route that

crosses over itself and reorder it by comparing every possible combination of this mechanism. This technique

checks if a swap of two edges yields a better result (removing a crossing) and can be applied to the travelling
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salesman problem as well as many related problems. The reason why this is mentioned is totally relevant

since it will be studied in the suggested thesis. Instead of correcting crossings, it will be more efficient to

create as few as possible costly ones by grouping the cities. A modified version of the K-Means algorithm

that clusters nearby cities, groups them, then groups the groups and corrects the sequence of visiting after

which it connects all groups resembles with the aforementioned K-means clustering algorithms review.

To sum up, the comparative analyses in the literature are scarce and not applied specifically on the Traveling

Salesman problem but it is worth mentioning that Kohonen’s Neural Network have been compared with a

K-means clustering algorithm on real life data with known cluster solutions. The performance of these algo-

rithms is dependent to changes in the number of clusters and number of observations (Usha A. Kumar and

Yuvnish Dhamija, 2010), while Sueli A. Mingoti, Joab O. Lima, (2005) have indicated that K-means cluster-

ing methods had a really good performance compared to a (SOM) Kohonen Neural Network. On the other

hand, comparisons of a (SOM) Kohonen Neural Network with an Ant Colony Optimization metaheuristic

do not exist.
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3. Theoretical Background

The goal of the Traveling Salesman problem is to determine the shortest route that a salesman should take

to travel through a list of locations and return to his starting point. A thorough discussion of the data sets

that provide the list of cities and their distances follows in section 5.

In a TSP graph, vertices represent the cities and edges the routes. The distance of the route can be computed

by the weights on the edges. It is a minimization problem in which each vertex is visited exactly once before

starting and ending at the same one. In the case that no route between two cities exist, the graph can be

complete without altering the optimal tour, by adding an arbitrary long enough edge.

It’s worth noting that asymmetry and symmetry are two major distinctions in the TSP. The distance between

two cities in the symmetric TSP is the same in both directions, resulting in an undirected graph. Paths

may not exist in both directions in the asymmetric TSP, or their distances may differ, resulting in a directed

graph. In this thesis, symmetric TSP instances is addressed.

3.1 Formulations

The TSP has been shown to be NP-hard, as mentioned by Karp in 1972 (Michael Jünger Gerhard Reinelt

and Giovanni Rinaldi, 1995). The decision problem variant of TSP is NP-complete (Toby Walsh and Ian P.

Gent, 1996). Even when the cities are on the plane with Euclidean distances, the problem remains NP-hard.

By removing the requirement of visiting each city only once, the problem is still considered NP-hard. The

reason for this, is the fact that there is an optimum tour that visits each city only once, satisfying the triangle

inequality.

The TSP may be expressed as a mixed integer linear program (Papadimitriou, 1998). There are also alterna-

tive formulations, including the Miller–Tucker–Zemlin (MTZ) and Dantzig–Fulkerson–Johnson (DFJ). The

DFJ formulation is more powerful, yet the MTZ formulation is still beneficial in some situations (Velednitsky,

2017).

The cities are labeled with the integers i = 1, ..., n, in both of these formulations, and the distance between

cities i and j is taken to be cij > 0.

The main variables in the formulations are:

xij =

1, the path goes from city i to city j

0, otherwise

Which are binary ensuring that the below formulations are integer. In particular, the objective function is :

min

n∑
i=1

n∑
j ̸=i,j=1

cijxij (1)

11



Variables xij fluctuate over all subsets of edges, while their minimum is xij = 0. The requirement that each

vertex has precisely one incoming and outgoing edge, is stated by equations (2) and (3), and is captured by

both formulations.

n∑
i=1,i̸=j

xij = 1 for j = 1, ..n (2)

n∑
j=1,j ̸=i

xij = 1 for i = 1, ..., n (3)

Equations (2) and (3) guarantee that the edges will form a tour and allow for several solutions, since there

can not be only one tour that traverses through all vertices. Therefore, the difficulty of this problem lies in

the way that MTZ and DFJ formulations convey this assumption.

Concerning the MTZ formulation, for each i = 1, 2, ..., n a dummy variable ui is utilized to indicate which

cities are visited and in what sequence. Thus ui < uj means that city i is visited before city j. When moving

from the first city to city i it can be interesting to explore how balancing the number of edges with the values

of ui affects the formulation.

MTZ uses (n− 1)(n− 2) linear constraints.

uj + (n− 2) ≥ ui + (n− 1)xij (4)

for all distinct i, j ∈ {2, ..., n}

The MTZ formulation of TSP is thus the following integer linear programming problem:

min

n∑
i=1

n∑
j ̸=i,j=1

cijxij (5)

xij ∈ {0, 1} i, j = 1, . . . , n (6)

n∑
i=1,i̸=j

xij = 1 j = 1, . . . , n (7)

n∑
j=1,j ̸=i

xij = 1 i = 1, . . . , n (8)

ui − uj + (n− 1)xij ≤ n− 2 2 ≤ i ̸= j ≤ n (9)

1 ≤ ui ≤ n− 1 2 ≤ i ≤ n. (10)

Equation (7) ensures that every city is reached from only another one, while equation (8) guarantees that

every departure that takes place in a city reaches another exactly once. Constraints (9) and (10) make sure

that there is just one tour that covers all cities, rather than two or more disconnected trips that merely

cover all cities together. To demonstrate this, consider the following: (i) every possible solution has only

one closed sequence of cities, and (ii) there exist values for the dummy variables ui that fulfill the criteria

for every single tour spanning all cities.
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It suffices to establish that any viable solution comprises only one closed sequence of cities by demonstrating

that every subtour goes through city 1. There can only be one such a tour due to equations (7) and (8).

It must now be demonstrated that there are values for the dummy variables ui that meet the conditions for

each and every tour that covers all cities. Define the trip as starting (and ending) at city 1 without losing

its generality. Choose ui = t if city i is visited in step t(i, t = 2, 3, ..., n). Then ui − uj ≤ n− 2, since ui can

be no greater than n and uj can be no less than 2; hence the constraints are satisfied whenever xij = 0.

For xij = 1 we have: ui − uj + (n− 1)xij = (t)− (t + 1) + n− 1 = n− 2, satisfying the constraint.

For the Dantzig–Fulkerson–Johnson formulation the cities are labeled with the numbers 1, .., n and the below

is defined as:

xij =

1 the path goes from city i to city j

0 otherwise

(11)

Take cij > 0 to be the distance from city i to city j. Then TSP can be written as the following integer

linear programming problem:

min

n∑
i=1

n∑
j ̸=i,j=1

cijxij (12)

n∑
i=1,i̸=j

xij = 1 j = 1, . . . , n (13)

n∑
j=1,j ̸=i

xij = 1 i = 1, . . . , n (14)

∑
i∈Q

∑
j ̸=i,j∈Q

xij ≤ |Q| − 1 ∀Q ⊊ {1, . . . , n}, |Q| ≥ 2 (15)

Constraint (15) guarantees that no acceptable subset Q forms a sub-tour. Therefore, the result is a single

tour rather than a collection of smaller tours.

Figure 3.1: Cracking the Traveling Salesman Problem — Quanta Magazine,2020
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4. Methodology

In this section, a deeper analysis on the methods that have been implemented for the TSP, is provided.

Next, details about each of the steps, that have been taken to reach a solution for the TSP are presented.

That includes the selection of different parameters, the form of the input data and all the improvements that

established efficient solutions.

4.1 Kohonen’s Neural Network

The starting point in the Kohonen’s Neural Network approach concerns the data that are inserted in the

algorithm and form a graph. While training the data, a network in the form of an adjacency matrix is built

using data from a symmetric TSP instance.

4.1.1 Self-Organizing Map

The way that the neural network is created starting from the input data leads to the introduction of the

concept of Self - Organizing Map (SOM). SOMs, have two modes of operation: training and mapping.

Training employs an input data set to create a map space, which is a lower-dimensional representation of

the data. Second, mapping uses the produced map to classify further input data.

The purpose of the training phase is to convert a p - dimensional input space (with p variables) into a two-

dimensional map space. The map space is constructed by neurons that are structured in a two-dimensional

hexagonal or rectangular framework. The number of neurons or nodes and their layout are pre - determined

(Hollmen, 1996).

For every node in the map space, a weight vector specifies its position in the input space. The training

process takes place by shifting these vectors towards the input data. That means, that a metric such as the

Euclidean distance is lowered without affecting the way that a map space is formed. In the end of this phase,

selecting the weight vector with the lowest metric in the map, contributes to the classification of additional

input data.

A competition layer is used to form a neural network that uses competitive, unsupervised learning in this

thesis project. This approach is based on the WTM (Winner Takes Most) algorithm, introduced by Teuvo

Kohonen (Kohonen, 2001).

According to Brocki and Koržinek (2007), when an input vector (a pattern) is presented, a distance to each

neuron’s synaptic weights is determined. The neuron with the best weights associated with the current input

vector is the winner. Correlation is calculated by taking the scalar product of the input vector and synaptic

weights. Only the winning neuron adjusts its synaptic weights to the input pattern’s point. Other neurons’

synaptic weights remain unchanged. Adding to the foregoing, neurons that are activated seldom have a
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better chance of winning. Because it modifies synaptic weights in one cycle, this WTM technique has better

convergence properties than other strategies. This means that not only the winner but also its neighbors

adjust, resulting in the fact that the closer a neuron is to the winner, the less its weights change.

As follows is a description of the learning process:

Wi ←−Wi + θF (λ, d(i, j))(x−Wi) (16)

where i ∈ (0, ..., n), with n numbers of neurons, Wi represents all synaptic weights of the winning neuron,

and θ is learning rate, while x stands for current input vector. F (λ, d(i, j)) defines the neighborhood. Thus,

classic Self Organizing Map (SOM) can be created when function F (λ, d(i, j))) is defined as:

F (λ, d(i, j)) =

1, for d(i, j) ≤ λ

0, for d(i, j) > λ

(17)

where d(i, j) is euclidean distance between the winning ith neuron and some other jth neuron in the map

that belong to the winner’s neighborhood. The neighborhood radius or the range of the neighborhood λ is

depreciated after every iteration. The euclidean distance between the input vector and all neural weights

must be determined to train Kohonen SOM. The winning neuron with the smallest distance to the input

vector is picked, and its weights are slightly changed to match the input vector’s direction. In the same

way, the weights of nearby neurons are then adjusted. As a result, the learning rate θ and the neighborhood

radius λ get smaller during this learning procedure. Iteration by iteration, the SOM is transferred from

global to local organization causing θ and λ to become smaller every time, since the neighborhood shrivels.

When it comes to the function that defines the neighborhood, it can be seen that at the start of the learning

process, the neighborhood radius λ equals a maximum value λmax. In the computational experiments section,

the value that will yield a near-optimal outcome will be investigated. The widely held belief is that when

the Gaussian Neighborhood Function (GNF) is utilized instead of the rectangular one, substantially superior

learning outcomes can be obtained (Mokrǐs & Forgáč, 2004).

The GNF can be described as follows :

F (λ, d(i, j)) = exp(−d(i, j)2

2λ2
) (18)

The Gaussian function appears to create challenges in calculations and significant time consumption due

to its complexity, arising from squaring, division, and exponential operations. This was the motivation to

verify whether the Triangular Neighborhood Function (TNF) might be utilized in place of the GNF (Dlugosz,

Kolasa, & Pedrycz, 2010).

This function is defined as:
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F (λ, d(i, j)) =

−α(θ0)(λ− d(i, j)) + c, if d(i, j) ≤ λ

0, if d(i, j) > λ

(19)

In the above equation (19), the α() function indicates the steepness of TNF, θ0 the learning rate of the

winner neuron and parameter c expresses the bias. After each training period, these parameters converge

towards zero.

It’s worth noting that the technique and methodology used in this thesis study allow for the selection of the

aforementioned neighborhood functions.

Elaborating on how the Kohonen Neural Network using a SOM is constructed and the way it works, the

following figure is utilized.

Figure 4.1: Visualization of a Kohonen SOM with a 2D grid of output neurons - (D.Markovic, M.Madic,

V.Tomic, S.Stojkovic, 2012)

The Kohonen Neural Network translates input vectors of any dimension to a map of two dimensions, as

previously mentioned (Kohonen layer). A two-dimensional grid representing the output neurons is used to

construct the feature map. A weighted connection exists between all input neurons and the neurons in the

output layer. As was already explained, in the competitive layer, the winning neuron is the one that is most

similar to the input data. The winning neuron’s and its surrounding neurons’ weights are updated in the

next phase. Each neuron has four neighbors because the neighborhood of a neuron is typically thought of

as being two dimensional.

4.1.2 Algorithm

Taking into account how the Kohonen Neural Network is built utilizing the SOM principle, it is now going

to be utilized to solve a n city problem. The Traveling Salesman problem is made up of two one-dimensional

layers: a three-neuron input layer and a n-neuron output layer. The number of neurons must equal the

number of cities.
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The random selection of a city from the algorithm results to the activation of the input neurons, since neurons

and a city’s coordinates are related. The two city coordinates plus a third normalization component, ensure

that all input vectors have the same Euclidean length and no two input vectors are col-linear. If the weights

of a neuron are equal to the coordinates of a city, the city is represented by that neuron. A neuron is

allocated to a city, and neurons are grouped into a vector that specifies the order in which cities should be

visited.

A neuron in the output layer is linked to every neuron in the input layer. The output neuron with the highest

activation denotes the image of that city. Initially, all connections are given random uniformly distributed

values. The TSP necessitates the creation of an ordered vector mapping of the input vectors in order to

calculate a solution. The position of a neuron in the output layer represents the position of a city in the

solution once the aforementioned technique has been completed. By computing the neuron with the highest

activation for each city and sorting the cities by the indices of their associated neurons, a route or a network

of neurons may be formed. By computing every city’s image and then sorting the cities by the indices, a

route or pathway of neurons is constructed (Favata & Walker, 1991).

Predefined values are set for the gain parameters (learning rate θ and neighborhood radius λ) while the above

process takes place until the gain parameters becomes non-positive. These values will be further explored in

the computational experiments in section 7.

A pseudo-code of the aforementioned process is as follows:

Algorithm 1 TSP Solver based on a Self - Organizing Map

1: Input Data-set containing nodes representing cities organized in SOM.

2: Begin Randomize the map’s nodes’ weight vectors

3: While The number of iterations is lower than the iteration limit

4: Randomly pick an input data vector and traverse each node in the map

5: Use the Euclidean distance formula to find the similarity between the input vector and the map’s node’s

weight vector.

6: Track the node that produces the smallest distance (this node is the winning neuron)

7: Update the weight vectors of the nodes in the neighborhood of the winner neuron (including the winning

neuron) by pulling them closer to the input vector, using the aforementioned options of the neighborhood

functions (equations (18),(19)).

8: Reduce the learning rate θ and the neighborhood radius λ

9: End

10: End

11: Output : Pathway of neurons in the Kohonen Neural Network

In order to illustrate how the tour is constructed the following figures are created (Figure 4.2 & Figure 4.3)

using an example of 10 cities and observing how the SOM of the Kohonen Neural Network evolves by the
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number of iterations. As mentioned in the above pseudo-code, an input data vector (that includes 3 cities,

for example) is randomly chosen in the left hand side of Figure 4.2. It begins as an elastic ring seeking to

adapt to its shortest shape possible. It maintains its position and tries to identify better local routes within

of it using the techniques that are described above (Step 5, 6 & 7).

Aiming to successfully achieve this, many neurons including the winning neuron are added to the network

every time. The parameters of the learning rate θ and the neighborhood radius λ are degraded ensuring the

exploration of the map. Thus, the answer is refined and results to a pathway (of 10 cities) similar to the one

depicted in the right hand side of Figure 4.3.

Figure 4.2: Kohonen SOM Algorithm for TSP - Author’s creation

Figure 4.3: Kohonen SOM Algorithm for TSP - Author’s creation

4.1.3 Settings

Using a SOM for our Kohonen Neural Network as a solver for the TSP rises comments on the parameters

that are of high influence for the network. These are concerned to be the learning rate and the neighborhood

function, especially in the training process.

Learning rates

In SOM learning, the learning rate is a training parameter that regulates the size of the weight vector. In

SOM, linear, inverse of time, and power series are the most commonly employed learning rate functions. (J.
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Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas, 2000). Linear, inverse of time and power series

are defined below respectively.

θ(t) = θ(0)
1

t
(20)

θ(t, T ) = θ(0)(1− t

T
) (21)

θ(t, T ) = θ(0)e
t
T (22)

Here T is the number of iterations and t is the order number of a current iteration.

Neighborhood functions

The neighborhood function defines the pace of the changes that will be happening around the winner neuron.

Moreover, the neighborhood function has an impact on the SOM process’s training result. Thus, choosing

the right neighborhood function for every data set is extremely important. Many functions are employed in

SOM, however the most common are Triangular and Gaussian, which are decreasing functions in the defined

region of the winning neuron.

These functions play crucial role in the definition of the neighborhood radius as well. The neighborhood

function depends on the grid-distance between the winning neuron and another neuron. The neighborhood

function diminishes with time, independent of its functional shape. The map self-organizes on a global scale

at first, when the neighborhood is vast and large. The weights are then linking up to local estimates when

the neighborhood has decreased to just a few neurons. While the learning rate and neighborhood function

decline consistently as the number of iterations grows in some implementations, they decrease in a step-wise

way in others, once every T steps.
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4.2 Elitist Ant System

In the field of Ant Colony Optimization, there is an alternative representation of the Traveling Salesman

Problem. A complete weighted graph G = (N,A) may be used to represent the TSP, with N representing

the set of cities or nodes and A representing the set of arcs entirely linking the nodes. The distance between

cities i and j is represented by the weight dij allocated to each arc. In this sense, the TSP issue may be

thought of as finding the shortest Hamiltonian circuit of the graph, where a Hamiltonian circuit is a closed

walk (a tour) that visits each node of G precisely once.

A solution to an instance of the TSP may be described as a permutation of the city indices, according to

Dorigo & Stützle’s book from 2004. This permutation is cyclic, which means that the absolute position of a

city in a tour is irrelevant, only the relative order matters.

The TSP’s only limitation is that all cities must be visited, and each city can only be visited once. This

limitation is enforced if an ant picks the next city only among those it hasn’t visited yet at each building

phase. All cities that have yet to be visited make up an ant’s viable neighborhood in city i, where k is the

ant’s identifier.

A permutation π of the node indices {1, 2, ..., n} that has the shortest length f(π) is an optimum TSP

solution, where f(π) is given by:

f(π) =

n−1∑
i=1

dπ(i)π(i+1) + dπ(n)π(1) (23)

The set of all possible routes can be considered as the problem’s state space. The completed connected graph

GC = (C,L) that will be used for this ACO algorithm is similar to the problem graph mentioned above.

The set L contributes to the connection of the cities in C, by giving each link a weight which is correlated

with the distance between cities i and j. The pheromone trails are affiliated with the arcs. Thus τij denotes

the likelihood that node j will be visited after visiting node i. The heuristic information, on the other hand,

is usually inversely related to the distance between nodes i and j, so ηij = 1/dij .

According to Dorigo and Stützle (2004), ηij indicates the heuristic attractiveness of traveling straight from

city i to city j. Based on the pheromone and heuristic values, τij and ηij respectively, on the arcs that link

unvisited cities, an ant arriving in city i selects the next city j as shown in Figure 4.2 below.

The following basic constructive method is applied to each ant in order to create tours:

• Determine the location of the ant’s beginning city.

• Create a tour using the information from the pheromone and heuristic values. Iteratively add cities

from the set that includes the unvisited ones, until all are visited by the ant.

• Return to your original location.

Pheromone trails and heuristic information values are used to make a probabilistic judgement. After all of

the ants have finished their travels, they are allowed to deposit pheromone on the routes they have taken.
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The following is an example of an algorithmic scheme:

Algorithm 2 ACO Algorithmic Scheme for TSP

1: Set parameters. Initialize pheromone trails.

2: While termination criteria are not met

3: Construct Ant Solutions

4: Apply Local Search

5: Update Pheromones

6: End

In an ACO algorithm, the first step that takes place is the initialization of the pheromone trails and param-

eters. Then a loop follows (Step 2), where the ants’ routes are designed, constructed and enhanced by using

a local search algorithm. In the final stage the ants evaporate the pheromone trails and update them using

their search findings.

It is worth mentioning that in some circumstances, the routes that are constructed by the ants in step 3 can

be improved by utilizing a local search technique. This can be considered as a potential daemon action in

an ACO algorithm.

Figure 4.4: The ant’s behavior - Olivier Rukundo and Hanqiang Cao, 2021

4.2.1 Algorithm Description

The Elitist Ant System algorithm follows from the reference on the Ant Colony Optimization by Marco Dorigo

(1992). As an Ant System there are similarities with the ACO algorithm that was introduced in the previous

section. The identical solution formulation approach and pheromone evaporation process are responsible for

these commonalities. Differences are observed in the way that the pheromone update is performed and in

the management of the pheromone trails. In this algorithm, we are referring to an ant-cycle version of the

pheromone update, meaning that this update takes place after all the ants had constructed the tours and

the amount of pheromone deposited by each ant was set to be a function of the tour quality.

In the implemented code set for the Elitist Ant System the ACO Algorithmic Scheme for TSP that was used

is the following :
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Algorithm 3 ACO Algorithmic Scheme for the EAS in TSP

1: Initialize values like clearing each ant’s old tour and clearing the old tour cost.

2: Using the pheromone and heuristic information (equation 26), make the ants construct the tour.

3: The tour that is constructed by step 2 is improved in this step by Hill Climbing (Local Search).

4: The pheromone is evaporated after each iteration.

5: Let the ants deposit the pheromone.

6: End

In the Elitist Ant Strategy algorithm, the main idea behind it is to provide additional reinforcement to the

arcs belonging to the best route so far found by the algorithm. This route or tour is defined as T bs, where

parameter e indicates the weight that is assigned to it and Cbs its length. By appending the value of e
Cbs

to the arcs of the tour the supplementary reinforcement is achieved. Thus, this can be seen as an additional

pheromone level placed by an additional ant called best so far ant.

As depicted in both Algorithm 2 and 3 the two main steps of the Ant System algorithm concern the

construction of the initial ants’ solution and the pheromones’ update. In order to efficiently initialize the

pheromone levels in an Ant System, a pheromone value higher than the expected in one iteration can be

chosen and set heuristically. In this implementation a greedy heuristic is used to generate a maximum, in a

greedy manner, given an initial tour. A 2-opt Hill Climbing heuristic is used which basically marks 2 points

in the sequence and reverse that part of the sequence searching for a better neighborhood. This is repeated

until a local minimum is reached.

The way the pheromone trails are updated is another important aspect of this strategy. As previously

mentioned, the best tour is reinforced by adding a quantity to its arcs, which is determined by a criterion

that determines the tour’s weight. Thus, an appropriate value for this parameter needs to be considered

in order to allow the Elitist Ant System to provide better solutions with a low number of iterations. More

specifically an equation for the pheromone deposit can be seen as:

τij ←− τij +

m∑
k=1

∆τkij + e∆τ bsij ∀(i, j) ∈ L (24)

where ∆τkij =


1
Ck , if (i, j) belongs to T k

0, otherwise

and ∆τ bsij =


1

Cbs , if (i, j) belongs to T bs

0, otherwise
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4.2.2 Settings

Initialization of the pheromone trails

One of the main settings that need consideration are the pheromone trails or levels. If the initial pheromone

values are too low, the search is immediately skewed by the ants’ first tours, which leads to the exploration

of smaller areas of the search space in general. If the starting pheromone levels are too high, however,

several iterations are lost while waiting for pheromone evaporation to drop enough pheromone values so that

ant-added pheromone may begin to bias the search. In this particular Elitist Ant System the pheromone

trails is to set them to a value slightly higher than the expected amount of pheromone deposited by the ants

in one iteration.

A rough estimate of this value can be obtained by :

τij = τ0 =
m

Cnm
(25)

where m is the number of ants, and Cnm is the length of a tour generated by the Hill Climbing heuristic.

Tour Construction

In the Elitist Ant System m artificial ants that build a route of the TSP at the same time are placed in

randomly selected cities using the following rule. In every tour construction step the ant uses a stochastic

rule, known as the random proportional rule to determine which city to visit next. Specifically, the likelihood

that an ant k which is now in city i and chooses to travel to city j is :

pkij =
[τij ]

α[ηij ]
β∑

l∈Nk
i

[τil]α[ηil]β
, if j ∈ Nk

i (26)

The parameters in (26) can be explained as follows : ηij = 1/dij is the heuristic value, while parameters α

and β indicate the proportional effect of the pheromone level and the heuristic information. The unvisited

cities compose a possible ant neighborhood with the ant’s k location being city i. This is expressed by Ni
k.

Extreme scenarios in the tour construction phase can be derived by the following cases. Selecting α = 0

the closest cities have higher probability of being selected. In the case of β = 0 just pheromone is utilized,

leading to unsatisfactory outcomes. On the contrary, when α > 1 a fast convergence is achieved , since the

ant construct the same tour and travel the same route, which offers a sub-optimal solution.
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4.3 K-means clustering algorithm

One of the most common approach in order to tackle the Traveling Salesman problem is to use the 2-

opt algorithm. The traveling salesman problem is solved using the 2-opt heuristic, which is a local search

technique. The core principle of the 2-opt heuristic, first introduced by Croes in 1958, is that when a route

crosses over itself, the nodes are reordered to remove the crossing. Elaborating on this, the goal of the local

search method is that after the reordering, all edges are shorter than the edges in the previous version. The

result of this, is the creation of a Hamiltonian cycle in the 2-opt neighborhood of a solution s. A local optima

can be derived, implying that no better route can be found in this process. This does not, however, ensure

that the TSP will be solved optimally.

Figure 4.5: Author’s creation - Idea behind the 2-opt algorithm (Croes, 1958)

The pseudo-code of the most common approach in order to solve the TSP using a 2-opt algorithm that

checks if a swap of two edges yields to a better result by removing a crossing is as follows :

Algorithm 4 2-OPT pseudo-code

1: Input : A complete graph with distances defined on the edges and a route and its distance

2: Output : A 2-opt feasible route

3: for i ∈ N eligible to be swapped and for j ∈ N eligible to be swapped such that j > i do

4: Apply 2-opt swap to i and j: create the new route as follows:

5: Take route up to i and add in order

6: Take route from j to i (both including) and add in reverse order

7: Take the route after k and add in order

8: Calculate new distance

9: if new distance < distance then Update route to include new ordering

10: Repeat until no improvement is made

11: End
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4.3.1 Algorithm Description

The approach that will be followed in this method instead of correcting the crossings as was described before,

now it creates as few as possible costly ones by grouping the cities.

It can be considered as a modified version of the K-means clustering algorithm that clusters nearby cities,

groups them and then groups the groups. It then links all groups by opening portals from the nearest city

of C1 to the closest city of C2, thereby correcting the order of visits.

This K-means clustering algorithm can be seen as a pre - processing step but also as a merging step at the

end. The idea is the following:

Grouping all the nearby (from the starting city) cities into clusters. Then aiming to find a good path

within the clusters in order to minimize the problem into a smaller one. The sequence of visiting clusters is

determined and is connected to the closest neighboring cities of the two clusters in sequence. A portal is the

edge that connects two clusters. At the end the sequence of each cluster is merged in order to form a final

answer to the Traveling Salesman Problem instance.

Exploring in more detail this K-means clustering algorithm, the following pseudo-code is being followed:

Algorithm 5 K-means clustering algorithm pseudo-code

1: Input : Inserted variables of N number of cities, the input of cities as objects with parameters : id, x, y

and to which cluster they belong. Euclidean Distance to determine the distance between two cities and

the cost of a tour is being evaluated.

2: Output : An optimal route

3: A TSP Solver is called out using the aforementioned K-means strategy

4: Nearby cities are grouped into clusters, finding a good path within the clusters minimizing the problem

into a smaller one.

5: A standard procedure is followed to initialize the centroids of clusters using a greedy algorithm. Cities

are assigned to new centroids and the TSP problem is solved within each cluster.

6: The pair of cities(vertices) of two closest centroids that are closest to each other is found and hence a

good candidate for a portal is made.

7: The sequences of each cluster are merged in order to form a final answer to the TSP

8: End

4.3.2 Settings

Clusters

The initialization of the parameters is contained in the implemented code set for this approach’s core class,

which is where the K-means technique is applied. This refers to the number of clusters and iterations. A

greedy approach is used to initialize the cluster centroids. Then surrounding cities are grouped into clusters,
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and a good path within the clusters is discovered, reducing the problem to a manageable size. The order

in which the visiting clusters are visited is established, and the clusters of the nearest neighboring cities are

connected. This sequence includes a cluster ID, a list of cities that make up that cluster, and a tour that

takes place within that cluster. A portal is a connection between two clusters that is found by determining

the pair of cities (vertices) that are nearest to each other. The final phase and technique involves joining the

sequences of each cluster to create a complete TSP solution.
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5. Data

Taking into consideration of the content mentioned in the previous chapters, it can be easily perceived that

datasets play a crucial role regarding the performance, running times and behavior of the methods. That is

the reason why the planning of the dataset collection, consists of three components: the source, the size and

the format.

5.1 Data Sources and Formats

All required data sets are distinguished by their origin. This means that two kind of data sets are used in

order to simulate their performance on the described methodology described in the previous section. The

first kind of data sets concern random simulated data that are carefully chosen from free online resources on

the TSP research.

The most difficult part of the data collection has to do with the format of the data sets and how they are

generated. It can be easily understood that having three different methods requires different format of the

datasets that will be used as input. For the first kind of data, the format of the random simulated datasets

is described as follows :

• For the Kohonen Neural Network (SOM): The data set that will be the input for this method will

contain in the first line the amount of cities that will be explored (either 100 or 1000) and in the

following lines the coordinates x and y of every city. In this way, a graph required for the Kohonen

Neural Network can be constructed.

• For the Elitist Ant System: The data set that will be used as input for this method will contain in

the first line the number of cities that will be explored (either 100 or 1000) and in the following n− 1

lines an n x n of the adjacency matrix of the city graph with the assumption to be symmetric. More

specifically, the format of the datasets that was used for the Kohonen Neural Network method and the

K - means clustering algorithm has been converted to the adjacency matrix for the EAS.

• For the K-means clustering algorithm: Similar to the first method, the data set for this method

contains in the first line the number of cities to be explored, while in the next lines contains the x and

y coordinates of each city.

Regarding the randomly simulated datasets, the way that they are created as TSP instances is quite simple.

Within a two - dimensional unit space [0, 1000] x [0, 1000], coordinate values have been chosen and generated

randomly. With the size distinction that is discussed in the next subsection, the random generated datasets

have graphs of either 100 or 1000 nodes. The small random simulated dataset is provided in the Appendix

10.2 for reference.
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It is significant to mention that the randomly generated datasets do not follow a particular pattern. According

to Nasrin Sultana, Jeffrey Chan, A. K. Qin, Tabinda Sarwar (2020), the main difficulty of the TSP problem

is to indicate the way that the nodes representing cities are distributed in the space. Thus, in the figure

(Figure 5.1.a) below we can see that Berlin52 which is a TSPLIB instance is considered a hard problem due

to its strict constraints on the data points. Searching for solutions in that space is relatively hard. Similar

patterns and constraints are included in the TSPLIB instances that are utilized in this thesis study (kroA100

& pr1002).

On the other hand, looking at Figure 5.1.b, TSP50 is an example of an easy TSP instance, similar to those

that are used in this thesis study (either with 100 or 1000 cities), as the cities are widely spread all over the

space and the data points are loosely constrained. Classifying how hard is a TSP instance to be solved is

firmly related to the distribution of the grid space and the distances between the nodes.

Figure 5.1: Distribution of cities for a TSPLIB instance and a randomly generated TSP instance - Nasrin

Sultana, Jeffrey Chan, A. K. Qin, Tabinda Sarwar (2020)

The second kind of data sets is collected from the official free online library TSPLIB for Traveling Salesman

Problem instances. TSPLIB is a library of sample instances for the TSP (and related problems) from

various sources and of various types. The TSPLIB instances that are selected for this thesis study are the :

kroA100.tsp & pr1002.tsp. The reason of why these are selected lies on their sizes which is explained in the

next subsection.

In general, all data sets are expected to be provided as .txt files or .tsp instances. Therefore, the proposed

data sets are seen to be legitimate for applying the concepts suggested in this thesis.

28



5.2 Data set size

As far as the data sets sizes are concerned, a distinction between large and small data sets is essential to

be made. In order to justify this differentiation between large and small, a short literature review on the

scientific research that will be used in this thesis study is required. According to Brocki and Koržinek (2007)

an instance of 100 cities is small while an instance of 1000 cities is considered to be large.

Distinguishing the instances based on these sizes, one can clearly understand how the behavior of a Kohonen

Neural Network can change. On the other hand, following Dorigo (1992), the symmetric TSPLIB instances

D198 and RAT783 have been used in order to study the performance of the Elitist Ant System compared to

other Ant Colony Optimization algorithms. Here, a TSP instance with 198 cities is considered small and a

TSP instance with 783 cities is considered large.

Moreover, a similar distinction between large and small TSP instances has been made from Karakoyun

(2019). In that study, problem instances for TSP taken from the TSPLIB with a size of 52 cities (Berlin52)

and a size of 1002 cities (Pr1002) were considered as benchmark, on which a modified K-means clustering

algorithm was applied.

Thus, a small data set contains the number of n = 100 cities, while a large data set contains the number of

n = 1000 cities. By distinguishing the data sets in these sizes, it is expected that different kind of insights

will be provided by this thesis study.

To sum up, in total, the algorithms described in the previous sections will be applied in four different data

sets. Namely,

Name of data set Number of cities

Random simulated data set (small) 100

kroA100 (TSPLIB) 100

Random simulated data set (large) 1000

pr1002 (TSPLIB) 1002
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6. Results

The validity of the three proposed approaches discussed in section 4 is investigated in this part for the four

different data sets. The results are presented in the form of tables and visualizations, allowing for a clear

understanding of the metrics that were employed in order to provide a complete solution for the TSP. In the

below summary table the best outcomes of every approach on each dataset are presented:

Table 6.1: Summary of best performing approaches for each data set

Approach Kohonen Neural Network

Data Set Simulated data set (100) kroA100 Simulated data set (1000) pr1002

Route Cost 8952.0 22735.95 28263.99 268830.06

Approach Elitist Ant System

Data Set Simulated data set (100) kroA100 Simulated data set (1000) pr1002

Route Cost 8064.79 23348.57 25278.73 280346.8

Approach K-means Clustering Algorithm

Data Set Simulated data set (100) kroA100 Simulated data set (1000) pr1002

Route Cost 10376 26815 30055 321154

6.1 Kohonen’s Neural Network

Random simulated data set with 100 cities - Using the Gaussian neighborhood function

The findings of Kohonen’s Neural Network application on a random simulated data set of 100 cities are

provided in the following two tables (Table 6.2 & Table 6.3). The neighborhood radius begins at 50 and

decreases to 0.9 at the conclusion of iterations. Similarly, the learning rate begins at 0.99 and decreases to 0.01

when all iterations are completed. Various iteration values are also employed, as the behavior of Kohonen’s

neural network is dependent on them. It is clear that by employing the Gaussian as the neighborhood

function and reducing the number of system iterations, better route cost solutions are found.

Table 6.2: Kohonen Neural Network on the random simulated data set for 100 cities using GNF.

Simulated data set (100) Using the Gaussian Simulated data set (100) Using the Gaussian Simulated data set (100) Using the Gaussian

Iterations 10000 Iterations 5000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.99 Learning Rate 0.99

Neighborhood Radius 50 Neighborhood Radius 50 Neighborhood Radius 50

Learning Rate Final 0.01 Learning Rate 0.01 Learning Rate 0.01

Neighborhood Radius Final 0.9 Neighborhood Radius 0.9 Neighborhood Radius 0.9

Route Cost 10658.97 Route Cost 17713.12 Route Cost 28499.21

Running Time 5.2 s Running Time 3.1 s Running Time 0.76 s
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Random simulated data set with 100 cities - Using the Triangular neighborhood function

For the same data set, using the Triangular as the neighborhood function, it is clear that lowering the

number of iterations increases the cost of the routes, yet running times follow the same pattern as previously,

suggesting that running times are completely dependent on the number of iterations.

Table 6.3: Kohonen Neural Network on the random simulated data set for 100 cities using TNF.

Simulated data set (100) Using the Triangular Simulated data set (100) Using the Triangular Simulated data set (100) Using the Triangular

Iterations 10000 Iterations 5000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.99 Learning Rate 0.99

Neighborhood Radius 50 Neighborhood Radius 50 Neighborhood Radius 50

Learning Rate Final 0.01 Learning Rate 0.01 Learning Rate 0.01

Neighborhood Radius Final 0.9 Neighborhood Radius 0.9 Neighborhood Radius 0.9

Route Cost 8952.00 Route Cost 13293.43 Route Cost 14070.16

Running Time 2.99 s Running Time 1.57 s Running Time 0.56 s

TSP Library data set with 100 cities kroA100 - Using the Gaussian neighborhood function

Exploring the data set generated from the TSP Library containing 100 cities, it can be easily seen that the

results do not follow a particular pattern.

In Table 6.4 running times decrease as the number of iterations decreases, however the cost of the routes

does not follow the same trend as before. The route cost is relatively high in the case of 1000 iterations.

Executing more iteration the route cost decreases.

Table 6.4: Kohonen Neural Network on kroA100 using GNF.

TSPLib data set (kroA100) Using the Gaussian TSPLib data set (kroA100) Using the Gaussian TSPLib data set (kroA100) Using the Gaussian

Iterations 10000 Iterations 5000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.99 Learning Rate 0.99

Neighborhood Radius 50 Neighborhood Radius 50 Neighborhood Radius 50

Learning Rate Final 0.01 Learning Rate 0.01 Learning Rate 0.01

Neighborhood Radius Final 0.9 Neighborhood Radius 0.9 Neighborhood Radius 0.9

Route Cost 22735.95 Route Cost 64538.71 Route Cost 81846.8

Running Time 6.3 s Running Time 3.46 s Running Time 1.2 s

TSP Library data set with 100 cities kroA100 - Using the Triangular neighborhood function

A different pattern applies in this situation (Table 6.5). The situation of 5000 iterations with the triangular

neighborhood function is too expensive, hence the case of 10000 iterations is the most appealing in terms of

route cost and running times.
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Table 6.5: Kohonen Neural Network on kroA100 using TNF.

TSPLib data set (kroA100) Using the Triangular TSPLib data set (kroA100) Using the Triangular TSPLib data set (kroA100) Using the Triangular

Iterations 10000 Iterations 5000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.99 Learning Rate 0.99

Neighborhood Radius 50 Neighborhood Radius 50 Neighborhood Radius 50

Learning Rate Final 0.01 Learning Rate 0.01 Learning Rate 0.01

Neighborhood Radius Final 0.9 Neighborhood Radius 0.9 Neighborhood Radius 0.9

Route Cost 42416.9 Route Cost 44864.57 Route Cost 43825.3

Running Time 3.45 s Running Time 1.8 s Running Time 0.8 s

Random simulated data set with 1000 cities - Using the Gaussian neighborhood function

The number of iterations set in the below tables (Table 6.6 & Table 6.7) is for the goal of not exceeding the

time restriction of 1000 seconds in the 1000 city scenarios below, both for the random simulated data and

the TSP Library instance of 1002 cities.

It is clear from the table below (Table 6.6) that devoting more time to running the algorithm leads in lower

route costs.

Table 6.6: Kohonen Neural Network on the random simulated data set for 1000 cities using GNF.

Simulated data set (1000) Using the Gaussian Simulated data set (1000) Using the Gaussian Simulated data set (1000) Using the Gaussian

Iterations 10000 Iterations 5000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.99 Learning Rate 0.99

Neighborhood Radius 50 Neighborhood Radius 50 Neighborhood Radius 50

Learning Rate Final 0.01 Learning Rate 0.01 Learning Rate 0.01

Neighborhood Radius Final 0.9 Neighborhood Radius 0.9 Neighborhood Radius 0.9

Route Cost 41312.07 Route Cost 55005.96 Route Cost 60732.30

Running Time 444.9 s Running Time 280.59 s Running Time 54.49 s

Random simulated data set with 1000 cities - Using the Triangular neighborhood function

When utilizing the Triangular Neighborhood function (Table 6.7), however, a selection of roughly 1000

iterations might result in a very expensive route cost in a short amount of time.

Table 6.7: Kohonen Neural Network on the random simulated data set for 1000 cities using TNF.

Simulated data set (1000) Using the Triangular Simulated data set (1000) Using the Triangular Simulated data set (1000) Using the Triangular

Iterations 10000 Iterations 5000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.99 Learning Rate 0.99

Neighborhood Radius 50 Neighborhood Radius 50 Neighborhood Radius 50

Learning Rate Final 0.01 Learning Rate 0.01 Learning Rate 0.01

Neighborhood Radius Final 0.9 Neighborhood Radius 0.9 Neighborhood Radius 0.9

Route Cost 28263.99 Route Cost 29861.10 Route Cost 80290.76

Running Time 302.45 s Running Time 156.06 s Running Time 30.86 s

TSP Library data set with 1002 cities pr1002 - Using the Gaussian neighborhood function

The following tables (Table 6.8 & Table 6.9), which contain findings from the TSP Library instance of 1002

cities, show minor changes from the tables (Table 6.6 & Table 6.7) before. Similarly, using both the Gaussian
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and the Triangular neighborhood functions, picking a number of iterations around 10000 might produce a

near-optimal outcome in a reasonable amount of time.

Table 6.8: Kohonen Neural Network on pr1002 using GNF.

TSPLib data set (pr1002) Using the Gaussian TSPLib data set (pr1002) Using the Gaussian TSPLib data set (pr1002) Using the Gaussian

Iterations 10000 Iterations 5000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.99 Learning Rate 0.99

Neighborhood Radius 50 Neighborhood Radius 50 Neighborhood Radius 50

Learning Rate Final 0.01 Learning Rate 0.01 Learning Rate 0.01

Neighborhood Radius Final 0.9 Neighborhood Radius 0.9 Neighborhood Radius 0.9

Route Cost 268830.06 Route Cost 842995.02 Route Cost 1468329.97

Running Time 407.93 s Running Time 175.72 s Running Time 38.5 s

TSP Library data set with 1002 cities pr1002 - Using the Triangular neighborhood function

Table 6.9: Kohonen Neural Network on pr1002 using TNF.

TSPLib data set (pr1002) Using the Triangular TSPLib data set (pr1002) Using the Triangular TSPLib data set (pr1002) Using the Triangular

Iterations 10000 Iterations 5000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.99 Learning Rate 0.99

Neighborhood Radius 50 Neighborhood Radius 50 Neighborhood Radius 50

Learning Rate Final 0.01 Learning Rate 0.01 Learning Rate 0.01

Neighborhood Radius Final 0.9 Neighborhood Radius 0.9 Neighborhood Radius 0.9

Route Cost 403194.81 Route Cost 464683.21 Route Cost 601807.49

Running Time 245.6 s Running Time 126.0 s Running Time 28.9 s

6.2 Elitist Ant System

It’s important discussing and demonstrating how the number of iterations chosen influences the route cost

in the Elitist Ant System results display. Furthermore, the value of parameter beta fluctuates between 2

and 5, as stated in the method explanation. It is also, examined how the route cost varies and how the

running durations are influenced by picking for beta the extreme values of that interval while keeping the

other parameters values constant. The values that are used in this implemented algorithm and are considered

good parameter values for the EAS according to Dorigo and Stutzle (2004) are the parameter α = 1, the

evaporation rate: ρ = 0.5, the number of ants: m = n (the number of cities) and the initialization value of

pheromone trial: τ0 = e+m
ρCnn .

In the instance of the random simulated data set of 100 cities, choosing to perform 10 iterations with the

parameter beta set to 5 yields the optimum route cost result.
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Table 6.10: EAS on the Random simulated data set with 100 cities

Simulated data set (100) Values Simulated data set (100) Values Simulated data set (100) Values

Iterations 10 Iterations 10 Iterations 5

Parameter alpha 1 Parameter alpha 1 Parameter alpha 1

Parameter beta 2 Parameter beta 5 Parameter beta 2

ρ 0.5 ρ 0.5 ρ 0.5

Route Cost 8141.27 Route Cost 8064.79 Route Cost 8239.31

Running Time 4.11 s Running Time 1.38 s Running Time 4.35 s

For the TSP instance kroA100 produced from the TSP Library, the same rules apply as previously.

Table 6.11: EAS on the kroA100

TSPLib data set (kroA100) Values TSPLib data set (kroA100) Values TSPLib data set (kroA100) Values

Iterations 10 Iterations 10 Iterations 5

Parameter alpha 1 Parameter alpha 1 Parameter alpha 1

Parameter beta 2 Parameter beta 5 Parameter beta 2

ρ 0.5 ρ 0.5 ρ 0.5

Route Cost 23536.74 Route Cost 23348.57 Route Cost 27776.76

Running Time 0.95 s Running Time 1.26 s Running Time 1 s

A large instance of 1000 cities does not exhibit the same variations as a small one. In every situation and

combination of characteristics, the route costs are extraordinarily expensive.

Table 6.12: EAS on the Random simulated data set with 1000 cities

Simulated data set (1000) Values Simulated data set (1000) Values Simulated data set (1000) Values

Iterations 10 Iterations 10 Iterations 5

Parameter alpha 1 Parameter alpha 1 Parameter alpha 1

Parameter beta 2 Parameter beta 5 Parameter beta 2

ρ 0.5 ρ 0.5 ρ 0.5

Route Cost 25344.09 Route Cost 25278.73 Route Cost 25440

Running Time 2190 s Running Time 2159.8 s Running Time 1088 s

For the TSP Library instance, this is not the case. The behavior of pr1002 is similar to that of the small

instances, indicating that doing 10 repetitions with parameter beta set to 5 yields to the best results.
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Table 6.13: EAS on the pr1002

TSPLib data set (pr1002) Values TSPLib data set (pr1002) Values data set TSPLib data set (pr1002) Values

Iterations 10 Iterations 10 Iterations 5

Parameter alpha 1 Parameter alpha 1 Parameter alpha 1

Parameter beta 2 Parameter beta 5 Parameter beta 2

ρ 0.5 ρ 0.5 ρ 0.5

Route Cost 281538.93 Route Cost 280346.8 Route Cost 281538.9

Running Time 2045.8 s Running Time 1869.3 s Running Time 1069 s

6.3 K - means Clustering Algorithm

Since running times are incredibly rapid, the route cost is only affected by the choice of iterations and

clusters.

For the random simulated instance of 100 cities, the scenario of 50 iterations with 10 clusters appears to be

the most ideal, as it delivers the lowest route cost.

Table 6.14: K-means clustering algorithm on the Random simulated data set with 100 cities

Simulated data set (100) Values Simulated data set (100) Values Simulated data set (100) Values

Iterations 10 Iterations 10 Iterations 50

Number of clusters 10 Number of clusters 2 Number of clusters 10

Route Cost 10581 Route Cost 11245 Route Cost 10376

Running Time 0.15 s Running Time 0.12 s Running Time 0.15 s

The amount of clusters in the TSP Library should be carefully considered. This is just additional confirmation

that the TSP Library instances’ properties differ from the random simulated data. The lowest route cost

can be attained by using two clusters and less than 50 iterations.

Table 6.15: K-means clustering algorithm on kroA100

TSPLib data set (kroA100) Values TSPLib data set (kroA100) Values TSPLib data set (kroA100) Values

Iterations 10 Iterations 10 Iterations 50

Number of clusters 10 Number of clusters 2 Number of clusters 10

Route Cost 27894 Route Cost 26815 Route Cost 27786

Running Time 0.12 s Running Time 0.13 s Running Time 0.12 s

The instances with 1000 cities has low enough running times to obtain satisfactory outcomes. For both cases,

a selection of less than 100 clusters and less than 50 iterations results in low route costs.
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Table 6.16: K-means clustering algorithm on the Random simulated data set with 1000 cities

Simulated data set (1000) Values Simulated data set (1000) Values Simulated data set (1000) Values

Iterations 10 Iterations 10 Iterations 50

Number of clusters 100 Number of clusters 2 Number of clusters 100

Route Cost 32327 Route Cost 30055 Route Cost 32223

Running Time 13.5 s Running Time 13.88 s Running Time 13.79 s

Table 6.17: K-means clustering algorithm on pr1002

TSPLib data set (pr1002) Values TSPLib data set (pr1002) Values TSPLib data set (pr1002) Values

Iterations 10 Iterations 10 Iterations 50

Number of clusters 100 Number of clusters 2 Number of clusters 100

Route Cost 362677 Route Cost 321154 Route Cost 371600

Running Time 13 s Running Time 14 s Running Time 15 s
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Visualization of Routes for the best scenarios of Tables 6.14, 6.15, 6.15 & 6.17 obtained with

the K-means clustering algorithm

Figure 6.1: Visualization of the 10 clusters and the routes for data set with 100 cities obtained in 50 iterations

Figure 6.2: Visualization of the 2 clusters and the routes for kroA100 obtained in 10 iterations

Figure 6.3: Visualization of the 2 clusters and the routes for data set with 1000 cities obtained in 10 iterations

Figure 6.4: Visualization of the 2 clusters and the routes for pr1002 obtained in 10 iterations
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6.4 Sensitivity Analysis and Parameter Tuning

The final section of this chapter will describe a variety of computational experiments using the parameters

and components of the aforementioned methodologies that affect performance. As a result, the behavior of

different approaches will be thoroughly investigated, and an indicator of their robustness will be obtained.

This section will also answer questions about what occurs if the settings or other attributes are changed. It

will offer us a clear picture of which strategy is the most efficient and the amount of the improvement it can

achieve by researching other scenarios and conducting computational trials.

6.4.1 Kohonen’s Neural Network

In the approach of the Kohonen Neural Network, it is worth mentioning that the components that affect

the algorithm performance and effectiveness are the neighborhood function, the number of iterations, the

learning rate and the neighborhood radius.

Neighborhood function and iterations

As demonstrated in the results section 6.1, the Gaussian function should be used in all comparisons. The

Kohonen Neural Network produced the best results by using the Gaussian function as a neighborhood

function. Now, for the number of repetitions, a wide range was chosen for all the instances, ranging from

10000 to 1000, considering time constraints in mind. It seems logical to investigate what happens if we

choose a number of 10 iterations.

In the appendix table 10.1, we can see that with 10 iterations, Kohonen Neural Network produces quite

similar solution values especially for the TSPLIB instances, but not for the randomly generated instances.

It provides competitive but less attractive outcomes in contrast to versions that utilize a large number of

iterations.

Learning Rate

The values that were used for the learning rate in the results section are the ones that were suggested in the

explored research. Learning rates can not exceed the value of 1. Iteration by iteration the learning rate is

decreasing reaching the final value of 0.01. It will be interesting though to explore how the Neural Network is

responding, if the initial values of learning rates are starting from different values in the interval [0.01, 0.09],

keeping the neighborhood radius to its initial values, as described in the results in the previous subsections.

In the appendix tables 10.2 and 10.4, it can be derived that starting from a lower learning rate than 0.99,

meaning starting from 0.7 a better solution can be achieved, while starting from even lower learning rate

0.4 does not offer the desirable results. So the learning rate should be selected carefully, by not selecting

the values close to the borders of the interval [0.01, 0.99]. For the TSPLIB instances kroA100 and pr1002, it

seems that the low value 0.4 for the starting learning rate is preferred (Tables 10.3 & 10.5).

Neighborhood Radius

The values of the neighborhood radius follow a different pattern compared to the learning rate. In the results
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presented in section 6.1, the initial value of the neighborhood radius was 50. Executing the iterations of the

Kohonen Neural network the neighborhood radius drops to its final value of 0.9. It will be interesting to

see what happens if we start from a lower or a higher value for it. Appendix tables 10.6, 10.7, 10.8 & 10.9,

dedicated to every instance, provide surprising insights, keeping the values of the learning rates similar to

the initials presented in the results section 6.1.

6.4.2 Elitist Ant System

In the approach of the Elitist Ant System, it is worth mentioning that the components that affect the

algorithm performance are the parameter beta and the parameter alpha. This algorithm achieves a fast

convergence so there is no point exploring the number of iterations. For the results presented in section 6.2

the iterations that are selected can not exceed the 10 repetitions.

Parameter beta

As we saw in 6.2 we have already done a computational experiment by allowing the parameter beta to take

its extreme values of 2 and 5. But it is worth seeing the results achieved by allowing beta to taking a value

in between. So for beta equal 3 the appendix table 10.10 is presented.

It can be easily seen that using the parameter beta equal to 3, balances out the trade off between iterations,

for the simulated instance of 100 cities, while for the simulated data set of 1000 cities reaches almost the

best result provided with the parameter selected at 2. For the instances generated from the TSP Library we

can see that selecting beta equal to 3, offers better results.

Parameter alpha

Keeping parameter beta equal to 3, as it seems the best choice, appendix tables 10.11, 10.12, 10.13, 10.14,

are presented. They offer insights concerning the computational experiments on the parameter alpha. For

every instance, parameter alpha can take the values of 0, 1 and 2. In the results presented in 6.2 parameter

alpha was set at 1. By selecting the values of 0 or 2 we can derive that similar or even better results are

achieved depending on the size and the source of the instance.

6.4.3 K - means Clustering Algorithm

The only tuning of parameters concerning the K - means clustering Algorithm, that can affect its performance

is considered to be the clusters. Various values on the number of clusters has been already explored and

presented in the results section 6.3.
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7. Discussion

The goal of this thesis is to answer with confidence, if machine learning approaches perform better than a

metaheuristic for the Traveling Salesman Problem. On several types of TSP cases, the performance of the

Kohonen Neural Network is examined and compared to that of the Elitist Ant System and the K-means

clustering approach. The performance analysis and computational experiments sections following will explain

how the offered ways’ performance is tested and which method is the most efficient and preferable method

for certain TSP instance characteristics.

Performance analysis

To evaluate the performance of the three proposed methods described in section 4 suitable metrics were

chosen to contribute to that analysis. The common main metrics were chosen to be the route cost, since

the TSP is solved, the number of iterations and the running times. Certainly, every approach has additional

metrics or parameters that are affecting their performance for sure.

As the results in the previous section show, for the random simulated data set for the 100 cities in table 6.3,

it can be easily seen that the Kohonen Neural Network offers the best solution in terms of cost. The scenario

of the triangular neighborhood function with the 10000 iterations outperforms all the best scenarios of the

other two approaches. For the EAS, the best solution is reached by selecting beta equal to 5, ρ equal to

0.5 and α equal to 1 (Table 6.10). The convergence of the EAS algorithm is reached very early, even before

the completion of the 10 iterations that were selected. The best case in the K-means clustering algorithm is

reached when 50 iterations are executed and the clusters are set to 10 (table 6.14). Even if we increase the

number of iterations and clusters the route cost that the Neural Network provided can not be met.

The TSP Library generated instance of 100 cities, kroA100, is subjected to a similar analysis. TSP Library

sets are notoriously difficult to solve. The reason for this is that cities are no longer picked at random

as they formerly were (Brocki & Korinek, 2007). When compared to the best scenarios of the other two

approaches for the identical data set, the situation where the Gaussian neighborhood function is employed

in conjunction with 10000 iterations (table 6.4) has no competition. Any tweaking of the settings in the

EAS and the K-means clustering method will not yield a better result than the Neural Network.

As predicted, the Kohonen Neural Network outperforms the other two methods for big data sets, with the

K - means clustering method having the weakest performance. Table 6.7 shows the best result obtained by

repeating the triangular neighborhood function without exceeding 1000 iterations.

TSP Library instances, as previously said, are more difficult to solve, especially in larger data sets with

several smaller patterns (Brocki & Korinek, 2007). This did not deter the Kohonen Neural Network, which

continues to be the best solution for the TSP library data set of pr1002, offering the cheapest route cost.

Similarly, after 10000 iterations of picking the Gaussian function, the best result is obtained (Table 6.8).

To summarize, the Kohonen Neural Network, as mentioned above, provides the sub-optimal solution values

40



in terms of route cost. Every scenario shown in the Neural Network application’s results, appears to be the

most effective. The primary drawback of the Kohonen Neural Network is the long running times and vast

number of iterations that may be chosen. The clustering algorithms EAS and K-means are incredibly fast.

In the case of the EAS, convergence occurs around 10 iterations, which is why this figure was chosen. On

the other hand, the number of iterations in the K - means clustering strategy can be raised, to reach the

iteration levels of the Kohonen Neural Network, although better solutions were not presented.

Comparison

Apart from the computational experiments, comparison can also be conducted using the available outputs

of existing studies on similar or identical instances and the results of the approaches used in the previous

sections. Obviously, the simulated data sets are out of this benchmarking since they are randomly generated.

For the TSPLIB instances that were used by Yanping Bai, Wendong Zhang & Hongping Hu in 2006, 20

iterations of a similar SOM application were applied to rd100 which contains the same number of cities as

kroA100. The best route cost from this application is 18024.3 which is close to the best results obtained

from the Kohonen Neural Network in Tables 6.4 & 6.5, although a different TSP instance is in discussion.

In the majority of the scenarios, the implemented Kohonen Neural Network outperforms the aforementioned

SOM application even with more iterations. Same holds for the instance U1060 which is close in terms of

cities’ number with pr1002 that was examined in this thesis. Diving into the results, presented by Brocki &

Korinek (2007), it can be seen that quite similar results have been obtained for pr1002, as well. Additionally,

the use of the Gaussian Neighborhood Function and the number of iterations are major factors that affect

the performance of the algorithm in terms of route costs.

Similar studies in terms of results compared to the deployed application were not available for the EAS in

the research literature.

On the other hand, Karakoyun (2019) has presented an approach based on a K-Means clustering algorithm.

The results obtained for the TSPLIB instance pr1002 were on average around 578583 in terms of route cost.

This is a value far from the optimal solution of 259045 for this particular instance. The values that were

obtained in our case seem to be closer to the optimal. The table 6.17 offers a clear view, with the best

scenario providing a solution with a route cost of 321154.
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8. Conclusion

This thesis addresses the question of whether a Kohonen’s Neural Network is a more reliable approach than

the metaheuristic of the Elitist Ant System and the K - means Clustering Algorithm in order to solve the TSP.

To answer it, the performance of these approaches was required by analysing metrics, such as the route cost

and the running times. Moreover, implementing these approaches to data sets with different characteristics

could offer insights concerning their efficiency and adaptability. Thus, two randomly simulated data sets and

two TSPLIB data sets were utilized.

The results in section 6 have shown that the Kohonen Neural Network provided the best solution in terms of

route cost for all data sets. Especially, for the data sets that contained 100 cities. For the larger TSP instances

we can see that the other two approaches can be competitive, since the solutions that they provided are

relatively close to the ones derived from the Kohonen Neural Network. The main drawback of the Kohonen

Neural Network approach concerns running times and parametrization. We can conclude that in the majority

of the scenarios and more specifically for the large TSP instances, running times are extremely long. On the

other hand, K - means Clustering algorithm appeared to be the fastest methodology, but its solutions for all

TSP instances do not seem competitive. Thus, the main competitor for the Neural Network is considered to

be the EAS. Achieving better running times and in some cases better results, the EAS provided solutions

close to the ones obtained from the Neural Network, for both the TSPLIB instances and the large random

simulated data sets. This implies that the EAS works better for large data sets but especially for the data

sets generated from the TSPLIB.

Regarding the question, which approach is the most efficient a sensitivity analysis was conducted. Taking into

consideration that the majority of solutions are really close, it is worth exploring how tuning the parameters

of these methodologies would affect the performance. Namely, for the Kohonen Neural Network we can

point out that the selection of the neighborhood function (Gaussian or Triangular) as the initialization

technique for this method plays a crucial role. The best results have been achieved by selecting GNF as the

neighborhood function. Furthermore, different values regarding the number of iterations, the learning rate

and the neighborhood radius affect the solution directly. By applying more iterations, the running times are

increasing but the route costs are decreasing dramatically. A safe choice for the learning rate would lie in

the interval of [0.01, 0.99], while for the neighborhood radius we need to be cautious and not select extreme

values creating a very small or a vast neighborhood to be explored.

As far as the EAS, is concerned, parameter alpha and beta are the two components that can affect the

performance of the system. Since the EAS converge extremely fast (after 10 iterations) the selection of the

aforementioned parameters is important. Parameter beta can take values ranging between the interval [2, 5].

Allowing it to take the mean off this interval, we can see that the EAS can provide slightly better results

than before. On the other hand, we can easily observe that letting parameter alpha taking the values of 0,
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1 and 2 offers no flexibility, since there are not any notable fluctuations on the results.

The evaluation has also shown that the only factor that affects the K - means Clustering algorithm is

considered to be the number of clusters. In the majority of the scenarios, decreasing the number of clusters

surprisingly offers better results, but unsuccessfully never reach the solution level obtained by the other two

approaches.

All in all, Kohonen Neural Network has been proved to be the most effective and adaptable technique for

resolving various TSP instances. Although the EAS and the K - means clustering algorithm provided fair

outcomes, the Kohonen Neural Network outperformed them.

Future and further research should be focused on this study’s limitations. First, a variety of data set types

were intended to be addressed. We have distinguished them by size (small or large, 100 or 1000 cities) and by

source (randomly simulated or TSPLIB generated). It would be interesting to see how the aforementioned

approaches behave in the world of ”big data” when extremely large data sets are employed. Moreover, the

TSP instances that were used in this study are symmetric, so another aspect to be explored is the use of

asymmetric TSP instances. Obviously, the machine learning methods will behave differently. Secondly, a lot

of parameters used in these approaches can be changed as the methods offer flexibility. More specifically,

for the Kohonen Neural Network it would be interesting to see another neighborhood function apart from

the implemented ones. An example of such, could be the Bubble function. Similarly, an improvement for

the Elitist Ant System, can be considered the use of another local search technique rather than the Hill

Climbing. Last but not least, in this study, K - means Clustering Algorithm is considered to be an extension

of the 2-opt algorithm. Hence, selecting another algorithm to start and solve the TSP by enhancing it with

the K - means clustering algorithm would be plausible.
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10. Appendix

10.1 Computationl Experiments Tables

Table 10.1: Computational experiment for all data sets using the Kohonen Neural Network with 10 iterations

Simulated data set of 100 Values kroA100 Values Simulated data set of 1000 Values pr1002 Values

Iterations 10 Iterations 10 Iterations 10 Iterations 10

Learning Rate 0.99 Learning Rate 0.99 Learning Rate 0.99 Learning Rate 0.99

Neighborhood Radius 50 Neighborhood Radius 50 Neighborhood Radius 50 Neighborhood Radius 50

Learning Rate Final 0.01 Learning Rate Final 0.01 Learning Rate Final 0.01 Learning Rate Final 0.01

Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9

Route Cost 15322.66 Route Cost 29909.22 Route Cost 53863.13 Route Cost 275079.82

Running Time 0.3 s s Running Time 0.31 s Running Time 7.46 s Running Time 3.75 s

Table 10.2: Kohonen Neural Network with different learning rate starting values for the simulated data set

of 100 cities

Simulated data set of 100 Values Simulated data set of 100 Values Simulated data set of 100 Values

Iterations 1000 Iterations 1000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.7 Learning Rate 0.4

Learning Rate Final 0.01 Learning Rate Final 0.01 Learning Rate Final 0.01

Route Cost 28499.21 Route Cost 11413.12 Route Cost 12650.38

Running Time 0.76 s Running Time 3.24 s Running Time 5.16 s

Table 10.3: Kohonen Neural Network with different learning rate starting values for kroA100

TSPLib data set (kroA100) Values TSPLib data set (kroA100) Values TSPLib data set (kroA100) Values

Iterations 1000 Iterations 1000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.7 Learning Rate 0.4

Learning Rate Final 0.01 Learning Rate Final 0.01 Learning Rate Final 0.01

Route Cost 81846.8 Route Cost 51473.40 Route Cost 34583.66

Running Time 1.2 s Running Time 2.7 s Running Time 2.7 s
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Table 10.4: Kohonen Neural Network with different learning rate starting values for the simulated data set

of 1000 cities

Simulated data of 1000 Values Simulated data of 1000 Values Simulated data of 1000 Values

Iterations 1000 Iterations 1000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.7 Learning Rate 0.4

Learning Rate Final 0.01 Learning Rate Final 0.01 Learning Rate Final 0.01

Route Cost 60732.30 Route Cost 35163.61 Route Cost 35462.71

Running Time 54.49 s Running Time 237.25 s Running Time 230.46 s

Table 10.5: Kohonen Neural Network with different learning rate starting values for pr1002

TSPLib data set (pr1002) Values TSPLib data set (pr1002) Values TSPLib data set (pr1002) Values

Iterations 1000 Iterations 1000 Iterations 1000

Learning Rate 0.99 Learning Rate 0.7 Learning Rate 0.4

Learning Rate Final 0.01 Learning Rate Final 0.01 Learning Rate Final 0.01

Route Cost 1468329.97 Route Cost 287314.01 Route Cost 275563.31

Running Time 38.5 s Running Time 180.7 s Running Time 178.74 s

Table 10.6: Kohonen Neural Network with different neighborhood radius starting values for the simulated

data set of 100

Simulated data set of 100 Values Simulated data set of 100 Values Simulated data set of 100 Values

Iterations 1000 Iterations 1000 Iterations 1000

Neighborhood Radius 20 Neighborhood Radius 50 Neighborhood Radius 100

Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9

Route Cost 11492.82 Route Cost 28499.21 Route Cost 9409.06 1

Running Time 2.8 s Running Time 0.76 s Running Time 2.68 s

Table 10.7: Kohonen Neural Network with different neighborhood radius starting values for kroA100

TSPLib data set (kroA100) Values TSPLib data set (kroA100) Values TSPLib data set (kroA100) Values

Iterations 1000 Iterations 1000 Iterations 1000

Neighborhood Radius 20 Neighborhood Radius 50 Neighborhood Radius 100

Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9

Route Cost 48600.09 Route Cost 81846.8 Route Cost 46946.18

Running Time 2.98 s Running Time 1.2 s Running Time 2.88 s
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Table 10.8: Kohonen Neural Network with different neighborhood radius starting values for simulated data

set of 1000

Simulated data set of 1000 Values Simulated data set of 1000 Values Simulated data set of 1000 Values

Iterations 1000 Iterations 1000 Iterations 1000

Neighborhood Radius 20 Neighborhood Radius 50 Neighborhood Radius 100

Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9

Route Cost 6134.05 Route Cost 60732.30 Route Cost 45244.89

Running Time 156.9 s Running Time 54.49 s Running Time 221.4 s

Table 10.9: Kohonen Neural Network with different neighborhood radius starting values for pr1002

TSPLib data set (pr1002) Values TSPLib data set (pr1002) Values TSPLib data set (pr1002) Values

Iterations 1000 Iterations 1000 Iterations 1000

Neighborhood Radius 20 Neighborhood Radius 50 Neighborhood Radius 100

Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9 Neighborhood Radius Final 0.9

Route Cost 290804.1 Route Cost 1468329.97 Route Cost 339550.11

Running Time 142.65 s Running Time 38.5 s Running Time 179.8 s

Table 10.10: EAS for all data sets with parameter beta equal to 3

Simulated data set of 100 Values kroA100 Values Simulated data set of 1000 Values pr1002 Values

Iterations 10 Iterations 10 Iterations 10 Iterations 10

Parameter alpha 1 Parameter alpha 1 Parameter alpha 1 Parameter alpha 1

ρ 0.5 ρ 0.5 ρ 0.5 ρ 0.5

Parameter beta 3 Parameter beta 3 Parameter beta 3 Parameter beta 3

Route Cost 8228.42 Route Cost 22005.25 Route Cost 26470.65 Route Cost 288401.74

Running Time 1.72 s Running Time 1.03 s Running Time 1.7 s Running Time 9 s

Table 10.11: EAS for the simulated data set of 100 with different values of parameter alpha

Simulated data set of 100 Values Simulated data set of 100 Values Simulated data set of 1000 Values

Iterations 10 Iterations 10 Iterations 10

Parameter alpha 1 Parameter alpha 2 Parameter alpha 0

ρ 0.5 ρ 0.5 ρ 0.5

Route Cost 8141.27 Route Cost 8303.35 Route Cost 8407.11

Running Time 4.11 s Running Time 10.31 s Running Time 9 sec
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Table 10.12: EAS for kroA100 with different values of parameter alpha

TSPLib data set (kroA100) Values TSPLib data set (kroA100) Values TSPLib data set (kroA100) Values

Iterations 10 Iterations 10 Iterations 10

Parameter alpha 1 Parameter alpha 2 Parameter alpha 0

ρ 0.5 ρ 0.5 ρ 0.5

Route Cost 23537.74 Route Cost 23992.31 Route Cost 22232.48

Running Time 1.83 s Running Time 4.6 s Running Time 3.6 s

Table 10.13: EAS for the simulated data set of 1000 with different values of parameter alpha

Simulated data set of 1000 Values Simulated data set of 1000 Values Simulated data set of 1000 Values

Iterations 10 Iterations 10 Iterations 10

Parameter alpha 1 Parameter alpha 2 Parameter alpha 0

ρ 0.5 ρ 0.5 ρ 0.5

Route Cost 25344.09 Route Cost 26308.43 Route Cost 26141.14

Running Time 2190 s Running Time 251 s Running Time 148 s

Table 10.14: EAS for pr1002 with different values of the parameter alpha

TSPLib data set (pr1002) Values TSPLib data set (pr1002) Values TSPLib data set (pr1002) Values

Iterations 10 Iterations 10 Iterations 10

Parameter alpha 1 Parameter alpha 2 Parameter alpha 0

ρ 0.5 ρ 0.5 ρ 0.5

Route Cost 281538.93 Route Cost 296920.67 Route Cost 282999.66

Running Time 2045.8 s Running Time 494 s Running Time 392 s

10.2 Random Simulated Data set of 100 cities

Table 10.15: Random Simulated data set of 100 cities

100

840.0 263.0 540.0 439.0

236.0 684.0 119.0 818.0

249.0 288.0 715.0 70.0

34.0 933.0 556.0 621.0

38.0 620.0 15.0 499.0

571.0 314.0 153.0 363.0
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875.0 369.0 618.0 433.0

877.0 468.0 564.0 105.0

130.0 360.0 317.0 250.0

850.0 672.0 590.0 153.0

708.0 375.0 642.0 294.0

153.0 383.0 952.0 591.0

560.0 343.0 785.0 163.0

616.0 465.0 755.0 119.0

122.0 325.0 991.0 308.0

549.0 377.0 366.0 110.0

877.0 288.0 739.0 642.0

676.0 389.0 922.0 241.0

667.0 406.0 811.0 220.0

107.0 204.0 842.0 477.0

32.0 786.0 483.0 508.0

113.0 52.0 590.0 508.0

71.0 950.0 517.0 760.0

221.0 351.0 487.0 528.0

556.0 713.0 500.0 714.0

170.0 377.0 757.0 864.0

385.0 309.0 882.0 348.0

344.0 673.0 131.0 653.0

92.0 479.0 178.0 371.0

262.0 145.0 252.0 103.0

133.0 548.0 912.0 391.0

451.0 204.0 407.0 137.0

526.0 605.0 316.0 868.0

533.0 772.0 518.0 845.0

131.0 807.0 605.0 464.0

192.0 948.0 533.0 957.0

744.0 185.0 738.0 937.0

520.0 576.0 821.0 743.0

594.0 499.0 76.0 186.0

466.0 712.0 440.0 724.0

102.0 551.0 967.0 226.0
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388.0 795.0 191.0 982.0

141.0 751.0 127.0 82.0

509.0 349.0 510.0 380.0

769.0 67.0 287.0 361.0

791.0 711.0 217.0 67.0

329.0 308.0 181.0 238.0

89.0 480.0 705.0 586.0

824.0 114.0 770.0 760.0

553.0 357.0 279.0 194.0
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