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Abstract

Bankruptcy data sets are notoriously imbalanced, such that the minority class of de-

faults is less than 5%. To train statistical methods and Machine Learning models, one

has to sample the training set to create a equal class size. This thesis analyses the

effect of six sampling methods on multivariate discriminant analysis, logistic regression,

artificial neural network, support vector machine, boosting, XGBoost, and Random

Forest. The sampling techniques include the industry standard under-sampling. Con-

trary to previous research, I compare random over-sampling and four techniques based

on Synthetic Minority Oversampling Technique (SMOTE) to the performance of under-

sampling. The thesis adds a new extension, which I call Borderline-3. This algorithm

creates synthetic points only for observations that have more nearest neighbours for

minority class than majority class observations. The first result shows that under-

sampling is the most consistent technique across the models. In contrast to previous

literature, logistic regression can outperform most sampling and model combinations

with a SMOTE-based extension. Furthermore, I test feature importance using Shap-

ley Additive Explanations. The results show that feature importance is significantly

affected. Thus the sampling methods one chooses can impact the decisions of company

executives or loan providers. This paper concludes that sampling has a significant in-

fluence on the predictive performance in bankruptcy prediction despite no attention in

the current literature.
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No amount of (apparent) statistical

evidence will make a statement

invulnerable to common sense.

Robert Merton Solow

Acknowledgements

This thesis is the final graduation requirement for obtaining the Master’s degree in Quantitative

Finance at the Erasmus University of Rotterdam. This research would not have been possible with-

out the guidance of my supervisor Dr. Onno Kleen. Onno’s feedback gave invaluable help towards

analysing and structuring this to a coherent narrative. I also want thank Dr. Andreas Pick as part

of the graduation committee. I would like to thank Accenture for the opportunity to write and

learn so much. In particular the Agile Release Train group and the Talent Factory for allowing me

to present and receive helpful feedback. Finally, I am profoundly grateful for the love and support
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1. Introduction

Bankruptcy prediction is a critical classification challenge for banks and other loan providers. Eco-

nomically, if a bank provides a loan to a company but it does not default than this is a missed

capital gain opportunity. If however, a bank loans money to a company that defaults, it can po-

tentially lose the whole sum of the loan and future interest earnings. The costs of the latter are

arguably greater than missed capital gains because defaulting loans can do substantial damage to

the balance sheet of the loan provider. Statistically, the missclassifcation of ‘active’ and soon to

be ‘default’ companies are false positives and false negatives. Since the seminal paper of Altman

(1968), academics have tried to minimise the number of false positives (type I error) and false

positives (type II error). Bankruptcy literature includes statistical techniques, such as discriminant

analysis from Altman (1968) and later logistic regression (LR) from Ohlson (1980). In the last

few decades Machine Learning models, including support vector machines (SVM), boosting and

bagging, have shown superior performance to the classical methods (Wilson and Sharda, 1994; Sun

et al., 2014). However before one trains a model, the data needs to be balanced. This means that

in the dataset the binary target variable, denoted by ‘active’ and ‘default’, has an equal number

of observations for each target class. Bankruptcy data is actually imbalanced where the minority

class is less than 5% of the total number of observations (Veganzones and Séverin, 2018). The

current research only considers under-sampling, such that one randomly deletes observations of the

majority class to create an equal number of observations. Other techniques to balance a data set

exist such as random over-sampling, which duplicates observations of the minority class but it has

the tendency to over-fit. In the last twenty years an over-sampling technique has shown significant

improved of predictive performance and is widely applied in the academic fields of medical diag-

nosis and fraud detection (Fernandez et al., 2018). The techniques is known as Synthetic Minority

Oversampling Technique (SMOTE) (Chawla et al., 2002). In short, SMOTE creates synthetic

observations between minority class observations. This thesis is the first comparative analysis on

the performance of SMOTE to under-sampling for the classical statistical techniques and Machine

Learning models. Therefore I ask:

Does sampling significantly affect bankruptcy prediction?

The motivation for this question is two-fold. Firstly, it extends the work done by Barboza et al.

(2017). The authors compared the the industry standard statistical techniques, discriminant anal-

ysis by Altman (1968) and LR by Ohlson (1980), to more recent models. I include the following

machine learning models: Artificial Neural Networks (ANN), SVM, Boosting, Extreme Gradient

Boosting (XGBoost), and Random Forest (RF). I compare the seven models for an unbalanced data

set and six sampling techniques. These include: random under-sampling, random-oversampling,

SMOTE, Adative Synthetic (ADASYN), Borderline-1, and Borderline-3. The latter three are

SMOTE-based extensions. I choose ADASYN and Borderline-1 because these are widely the most

applied extensions for a binary target variable in other academic fields (Fernandez et al., 2018).

These extensions have additional rules to over-sample the dataset to create ‘smarter’ over-sampling.

In other words, the algorithm creates more synthetic observations for one observation than another.
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For example, for Borderline-1 only creates synthetic observations for points that have more ‘active’

companies than ‘defaulting’ companies near it (based on K Nearest Neighbours). These obser-

vations are referred to as ‘danger’ points. If all neighbours are only ‘active’ then it generates

no additional observations. I programmed a new extension, referred to as Borderline-3, to only

over-sample observations that have more ‘defaulting’ neighbours than ‘active’ neighbours. These

observation are referred to as ‘safe’ points. The motivation is that instead of oversampling on

extreme observations, like in Borderline-1, the algorithm focuses on observations that are more

equal. Such that the observations that are similar are more informative than the extreme points

(i.e. ‘danger’). This reduces the risk of generating false positives in a test environment. Based on

the methodology of Barboza et al. (2017) with different sampling techniques, I test the following

hypothesis:

Hypothesis I: If sampling is applied to one-year ahead bankruptcy dataset, then

SMOTE-based sampling outperforms undersampling.

Secondly, I test the effect of sampling on the predictive performance of the different sampling meth-

ods. These sampling methods include under-sampling, SMOTE, and Borderline-1. In the case of

under-sampling, potentially relevant information is deleted. Whereas SMOTE generates new ob-

servations such that the data set is twice the size due to synthetic data. What sampling technique

a bank chooses can potentially affect what financial data it bases it decisions on. To analyse the

effect of sampling on feature performance, I use Shapley Additive Explanations (SHAP) (Lundberg

and Lee, 2017). This a a game theory centric approach that quantifies the contribution of each

individual variable. It shows how important a feature is to the trained model. I use SHAP for the

machine learning model XGBoost to quantify feature importance. It is beyond the scope of the

thesis to test all machine learning models. This test is used to test the second hypothesis:

Hypothesis II: Sampling methods affect feature importance for bankruptcy data.

To answer the main research question, I use the Wharton Research Data Services, access provided

by the Erasmus University of Rotterdam, to download publicly listed companies in the United

States over the period 1980Q1 until 2022Q1. From this I construct a dataset with a target variable

for a company to default within one year. Here ‘0’ is for a company that is active next year and

‘1’ for a company that defaults in the next year. For variable construction I follow Barboza et al.

(2017) to create eleven variables.

The first hypothesis expects SMOTE-based sampling to outperform under-sampling. The results

show that under-sampling is the most consistent sampling technique for all models. The perfor-

mance is not always the highest, but it consistently beats SMOTE and ADASYN for all models

except linear SVM. Under-sampling the best sampling technique for Boosting, XGBoost, and RF
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and support existing literature that it outperforms Altman’s and Ohlson’s techniques (Barboza

et al., 2017; Heo and Yang, 2014; Wang et al., 2014). However, Borderline-1 is the superior sampling

technique in combination with LR and linear SVM. The results show that LR (with Borderline-

1) outperforms under-sampling for boosting and RF. This contradicts the view of Barboza et al.

(2017) that machine learning models outperform classical statistical methods. Therefore the sta-

tistical method by Ohlson (1980) is still relevant, and simply using machine learning models does

not guarantee the highest predictive performance.

The new SMOTE-based extension Borderline-3 slightly outperforms an unbalanced data set, but

is arguably useless. In combination with the performance of Borderline-3, the ‘danger’ points hold

more predictive power than the ‘safe’ points. The Borderline-3 sampling technique omits too much

relevant data. The algorithm did minimise the number of false positives but at the expense of

over-fitting on the majority class.

The second hypothesis expects sampling to significantly affect feature importance, and indeed the

results show that for XGBoost feature importance can significantly change. For under-sampling

‘Growth of Sales’ has the second highest feature importance but its fifth for SMOTE and tenth

for Borderline-1. This implies that if one bank that uses under-sampling for it predictive model

and another bank uses Borderline-1, then the risk of providing a loan is equal but the decision is

dependent on the sampling decision of the engineer. The statistical evidence of hypothesis one and

two show that under-sampling is the most universal technique, but still requires bankers to use

common sense for approving loans.

The contributions of this thesis are three-fold:

• Develop a novel extension to SMOTE, based on the algorithm of Borderline-1 that minimises

false positives, called Borderline-3. The technique helps to minimise false positives but fails

to minimise false negatives.

• Apply six sampling techniques on for seven models on bankruptcy data. Directly contrasting

under-sampling with (SMOTE-based) over-sampling techniques in bankruptcy prediction.

The results show that the sampling technique one uses affect the outcome and certainty of

the chosen model.

• Investigate feature importance and characteristics using SHAP. The tool helps banks and

other loan providers to visualise why a Machine Learning model predicts a default or not.

The thesis is structured as follows: Chapter 2 presents the current state of the literature on

bankruptcy prediction; in Chapter 3, I present the raw data set, adjustments, and variable construc-

tion; then, sampling techniques, statistical methods and machine learning models, feature analysis,

and performance analysis are detailed in Chapter 4; Chapter 5 discusses the results; finally, Chapter

6 concludes the thesis with a discussion on limitations, implications, and future research.
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2. Literature Review

In the United States, the Securities and Exchange Commission (SEC) defines public corporate

bankruptcy as a company that goes out of business from a crippling amount of debt (SEC, 2009).

There exist two types of bankruptcy for publicly listed companies. Firstly, a company declares

Chapter 7 if a company is liquidated. Assets are divided over three types of investors (in order

of the first claim): Secured creditors, unsecured creditors, and stockholders. The secured credi-

tors, i.e. banks, have collateral and therefore are the first to get paid. The unsecured creditors

including banks, suppliers, and bondholders, are next in line to claim the outstanding debt. Fi-

nally, the stockholders receive the remaining assets. It is likely at this point a stockholder gets

no value whatsoever. Secondly, a company uses Chapter 11 if management hopes to ‘reorganise’

the business to one day be profitable again. But this is not certain and still poses a significant

risk for credit suppliers. Because the bankruptcy court must approve all significant business deci-

sions. Although the company is labelled bankrupt, it still trades on the stock exchange and must

oblige to the SEC filings. If the company is unable to restructure it is declared insolvent and

liquidated in the same way as chapter 7. Balcaen and Ooghe (2006) argue the term bankruptcy is

a poorly defined dichotomy. In the case of chapter 11, it can be a strategic decision by the board.

This human element is however not reflected in the accounting data typically used in the financial

distress literature. In this thesis, I refer to bankruptcy and default as both chapter 7 and chapter 11.

The academic literature of bankruptcy prediction was pioneered in the 1960s with Beaver (1966)

who conducted a univariate discriminant analysis on thirty financial ratios. The main contribution

is that accounting data “can be evaluated in terms of their utility and that utility can be defined

in terms of predictive ability” (Beaver, 1966). This was closely followed by the seminal paper of

Altman (1968), who used multiple discriminant analysis (MDA) to assess the financial distress of

manufacturing companies. His model estimated a so-called Z-score classifying companies into three

groups: safe-zone, grey-zone, and distress-zone. The lower the score, the more likely a company was

to experience financial trouble in the next one to five years. Later, Altman et al. (1977) improved

the original Z model with new variables and showed superior performance. Today, Altman’s Z-score

is still used in comparative studies as a baseline ‘to-beat’ (Balcaen and Ooghe, 2006). The Z-score is

widely used in the industry and forms the foundation of analysis for a significant body of literature.

These variables are based on: liquidity, profitability, productivity, leverage and asset turn-over.

However, one significant disadvantage of MDA analysis is it assumes a linear relationship between

a variable and the predictive probability (Balcaen and Ooghe, 2006). This led Ohlson (1980) to

use conditional probability models, such that variables and failure probability are non linearly dis-

tributed. In a comparative study, Begley et al. (1996) found Ohlson’s model is superior to Altman’s.

As Shin and Lee (2002) point out, these conventional statistical techniques assume normality and

independence for the input variables. This is not the case in financial accounting data. Modern

techniques, however, do not rely on the same assumptions as classical methods. A long list of liter-

ature show the predictive superiority of machine learning models. Firstly, using the five variables of
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Altman’s Z-score from the 1968 model, Wilson and Sharda (1994) showed a significantly increased

performance using Artificial Neural Networks over multivariate discriminant analysis. Other no-

table machine learning papers are shown in Table 1. This literature has shown that for accounting

ratios and data sets (both country and period) show an increase in the predictive performance due

to machine learning algorithms. Most notably, ensemble methods show the highest performance

(Barboza et al., 2017; Heo and Yang, 2014; Wang et al., 2014).

Table 1: Notable financial distress and bankruptcy prediction papers.

Author(s) Sampling Models

Altman (1968) Unbalanced and Under-
sampling

Multivariate Discriminant Analysis

Altman et al. (1977) Unbalanced and Over-
sampling

Multivariate Discriminant Analysis

Ohlson (1980) Under-sampling Logistic Regression

Wilson and Sharda (1994) Undersampling Multivariate Discriminant Analysis, and Artificial Neural
Networks

Sun et al. (2014) Under-sampling Logistic Regression, Artificial Neural Networks, Support
Vector Machines, Decision Tree, Random Forest

Ligang et al. (2014) Under-sampling Multivariate Discriminant Analysis, Logistic Regression,
Decision Trees, and Support Vector Machines.

Heo and Yang (2014) Under-sampling Discriminant Analysis, Decision Trees, Boosting, Artifi-
cial Neural Networks, and Support Vector Machines

Wang et al. (2014) Under-sampling Boosting, Bagging, Logistic Regression, Naive Bayes, De-
cision Trees, Artificial Neural Networks, Support Vector
Machines

Kim et al. (2015) SMOTE Boosting

Barboza et al. (2017) Under-sampling Multivariate Discriminant Analysis, Logistic Regression,
Artificial Neural Network, Support Vector Machines,
Boosting, Bagging, Random Forest

Le et al. (2018) Unbalanced, SMOTE
and extensions

Artificial Neural Networks, Support Vector Machines,
Decision Tree, Random Forest

Bankruptcy prediction is a binary classification problem, where there is severe class imbalance. The

class imbalance problem is common in many real-world data sets such as cancer diagnosis or fraud

detection (Fernandez et al., 2018). An imbalanced data set results in poorly trained classifiers such

that those that maximise accuracy but neglect false positives (Type I error) and false negatives

(Type II error). To address imbalanced training data set the current literature, shown in Table

1, overwhelmingly uses under-sampling. The main disadvantage is the loss of data. Nevertheless,

under-sampling has been shown to build significantly better classifiers than over-sampling (Chawla

et al., 2002). More recent papers consider over-sampling techniques such as Synthetic Minority

Over-sampling TEchnique (SMOTE). Instead of replicating observations, SMOTE creates synthetic

points on a vector between a set number of nearest neighbours. More recent papers, such as Kim

et al. (2015) and Le et al. (2018), have used SMOTE in a bankruptcy setting, but they have not

compared the performance for equal data set to the industry standard under-sampling.
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3. Data

This chapter discusses the data set and variable construction for the tests discussed in the introduc-

tion and the methodology. The data sets is available from the Wharton Research Data Services 1,

WRDS hereafter, and contain US-listed companies from the following data providers: CRSP Delist

and CRSP / Compustat Merged. The following section describes the data set and the decisions to

prepare it for the tests.

3.1. CRSP Delist

The CRSP / Compustat Merged data set contains company info and financial ratios, but does not

have any status information. Therefore I need a crosswalk file that links a company to its current

status. I use CRSP Delist that contains four variables:

• The PERMNO label; A company’s unique code and remains unchanged over time. This code

is the identifier to merge the CRSP Delist and CRSP / Compustat Merged data sets.

• Company Name; Over time, a company’s name can change, which I verified by comparing it

to the PERMNO label.

• The Status; A company can take any of the following values: Active (100-199), Mergers (200-

299), Exchanges (300-399), Liquidations (400-499), Dropped (500-599), Expirations (600-

699), Domestics that became Foreign (900-999). A full overview of all codes can be found on

the website 2. In this research, I use Liquidations (400-499), and bankruptcy declared due to

insolvency (574) as companies that default. Active companies are set to 100, because other

codes between 100 and 199 are active but stopped trading. Active and default companies are

set to binary values, 0 and 1, respectively.

• The Delisting Date; When a company is insolvent or liquidated. If a company remains active,

this variable is equal to the last date of the database, here 2021-12-31.

Let this data set be called df delist. The data set has 10165 rows × 4 columns for 10,165 indi-

vidual companies. Here 877 companies have value defaulted. Figure 1 shows a histogram of the

number of bankruptcies in the data set for each year between 1980-2021.

3.2. CRSP / Compustat Merged

CRSP, or Center for Research in Security Prices, provides market data for publicly listed com-

panies in North America. Compustat provides additional financial statement data. The CRSP /

Compustat Merged data set is a file that links fundamental data of Compustat to the PERMNO

label of CRSP. I require this for the crosswalk file df delist discussed in the previous section.

1https://wrds-www.wharton.upenn.edu
2View website using the link https://www.crsp.org/products/documentation/delisting-codes
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Figure 1: The number of defaults per year in CRSP Delist data set.

Next, I construct eleven variables following Barboza et al. (2017), BKA-17 hereafter. That paper

is a comparative study of multiple statistical methods and machine learning models. BKA-17 use

five variables of Altman (1968) and six variables of Carton and Hofer (2006). I considered using

the Altman et al. (1977) ratios over Altman (1968). However, the supposed superior variables rely

on normalisation, which is uncommon in later financial distress literature. Furthermore, due to

the popularity of the Altman-1968 variables in later papers, I chose those. The latter variables,

by Carton and Hofer (2006), require me to construct some variables based on two years. For this

reason, I only keep companies that have two or more observations in the data set. Table 2 shows

the mathematical construction of these variables.

Table 2: Variables from Barboza et al. (2017) constructed from the data set.

Variable Description Formula

X1 Liquidity Net Working Capital
Total Assets

X2 Profitability Retained Earning
Total Assets

X3 Productivity Earnings before interest and taxes
Total Assets

X4 Leverage Market Value of share * number of shares
Total Debt

X5 Asset turnover Sales
Total Assets

OM Operational Margin Earnings before interest and taxes
Sales

GA Growth of Assets
Total Assetst−Total Assetst−1

Total Assetst

GS Growth in Sales
Salest−Salest−1

Salest

GE Growth in number of Employees
Employeest−Employeest−1

Employeest

CROE Change in Return on Equity ROEt − ROEt−1, where ROE = Net Income
Common Stockholder’s equity

CPB Change in Price-to-Book ratio PBt − PBt−1, where PB = Market Value per share
Book Value per share

Notes: Table 11 in Appendix B on page 36 shows the identifier information for the Compustat variables to construct

the variables of table 2. I follow the variable names and construction of BKA-17.

The pre-processed dataset, referred to hereafter as df pre, is constructed using the ‘CRSP Delist’

and ‘CRSP Compustat Merged’. The two data sets are merged on the identifier ‘PERMNO’. I am

interested in using the data of each company only once. To get a randomised selection, I use a
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function to get the final dataset df sim1 and consists of the following steps:

1. Create a one-year time lag for each ratio for each company.

2. Drop all missing values. This step is second because the shift function creates new missing

values.

3. Replace all values equal to positive or negative infinite with the next largest value.

4. Split the data set in ‘active’ and ‘defaulted’ companies.

5. For the defaulted companies, keep only the observation of one-year-prior to delisting date.

6. For the active companies, randomly select an observation of a company based on PERMNO.

7. Concat the data frames that result from the previous two steps.

Some comments on these steps. First, to accurately predict one-year ahead, I need to consider the

publication date. If a company is declared insolvent, it can no longer meet the financial obligations

to lenders as debts become due. This is reflected in the variables. Therefore, I introduce a one-year

lag between the delist date and the eleven financial ratios based on all companies at all observations.

Second, I drop all missing values because I want to make as few assumptions on the data set pos-

sible. However, the downside is that if one ratio is missing and the other ten available, the whole

company for a given year is dropped. Due to the abundance of data, I argue for this solution instead

of other solutions, such as imputing missing values, thereby randomly generating observations. Be-

cause I will over-sample the dataset at a later stage, I run the risk of modifying the data frame so

much that it is unrealistic for real-world experiments. A second consideration is to use a missing

values threshold. Meaning, that if the percentage of missing values in a column surpasses 30%,

then the column is dropped. The idea is to reduce the number of dropped companies (and thus

information). For 30% missing values, the function drops X1 (Liquidity). For a stronger threshold

of 20% only five variables remain. I argue this loss of variables is worse then deleting company

information because of two reasons: Most data that is dropped is for earlier observations (before the

year 2000). Due to changing capital structures (Altman, 2019), such as companies taking on more

debt. The second reason is that other papers do not consider deleting variables because there are

too few observations. Therefore I delete the rows where one of the columns or more has missing data.

Third, to mitigate trouble with techniques and models, infinite values are set to the maximum

/ minimum value recorded. I considered using windsorisation, thereby setting outliers to a spec-

ified percentile. However, one of the interest of this thesis is how outliers are dealt with in sampling.

Finally, steps 4-7 show an important stylistic choice on how to deal with companies that are active

since listing. For example semiconductor producer Intel is active for the whole period 1980-2021.

But what year is optimal for training a classifier if a company is still active? To mitigate this I

split the data set in Active and Defaulted companies. For all active companies, I randomly selected
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the year of financial data. In the case of defaulted companies, I keep only the financial ratios one

year to default. Then I concat the two data frames back together. This is the last step to make

sure I do not delete information because a company has an empty cell for certain variables. This

approach follows Veganzones and Séverin (2018) and Brown and Mues (2012).

Table 3 on page 10 presents a summary of the full sample pre- and post- data processing and it

shows summary statistics of the active and defaulted companies of the dataset. Figure 2 shows the

correlations between the eleven financial ratios and the target variable for the final dataset df sim1.

Almost all correlations are irrelevant, except X2 (Profitability) and X3 (Productivity), X3 and OM

(Operational Margin). As a double check, I analyse the Variance Inflation Factor (VIF) of df sim1

to test the multicolliniearity between variables in Table 3. A VIF smaller than one means variables

are uncorrelated, VIF between one and five is moderately correlated, and above means high cor-

relation. I find X2 (Profitability) and X3 (Productivity) show the highest VIF slightly surpassing

two. I argue the correlational relationships coupled with low VIF are weak enough to use for the

sampling tests and SHAP analysis. A perfectly uncorrelated set of financial ratios is impossible to

create (Balcaen and Ooghe, 2006).

Figure 2: Correlations between financial ratios.
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Table 3: Descriptive statistics for the data set
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Notes: Descriptive statistics (mean, standard deviation, minimum, 25%-,50%-,75%-percentile and the maximum).
VIF is the Variance Inflation Factor of each variable. The first data set is after merging the CRSP Delist and CRSP
/ Compustat Merged data sets before data cleaning. The second data set is after the seven pre-processing data steps.
The third and fourth data sets are is the data before concating in step 7 for the defaulted companies (step 5) and
the active companies (step 6).

10



4. Methodology

This chapter consists of four sections. Figure 3 is an illustration of the steps used to construct

this research. I cover the first two steps, the Database, and Data Pre-processing, in chapter 3. In

that chapter, I describe the data source and the process of generating the variables from the raw

data. The following four (sub-) steps are discussed in this chapter. Firstly, I describe the different

sampling techniques. Secondly, I describe the statistical methods and Machine Learning models

used to predict bankruptcy. Thirdly, I discuss SHapley Additive exPlanations (SHAP) to study the

effect of sampling on feature importance. Finally, I describe the techniques to evaluate the model

performance.

Figure 3: Illustration steps that are detailed in the methodology and data chapters.

4.1. Sampling

A data set is unbalanced if one value of the target variable has more observations than another

value of the target variable. The value with more observations is the majority class, and in this

research is the value ‘0’ for companies that do not default within one year. The minority class

here is the value ‘1’ for companies that default within the next year. The higher the imbalance,

the harder it becomes for the model to correctly identify the minority class. For example, if one

trains a model to only predict ‘active’ companies for a data set with a 95/5 imbalance, then it

achieves a 95% accuracy. However, it is incapable of identifying the bankruptcy cases that one

is interested in. Imbalanced data sets are a prevalent problem in data science (Fernandez et al.,

2018), and in bankruptcy prediction the minority class is less than 5% (Veganzones and Séverin,

2018). Therefore, sampling, or balancing data sets to create equal an equal number of data points

for the majority and minority classes, is essential for programming reliable models. Reliable, in the

sense that, the number of missclassified bankruptcies is minimised. Unbalanced data sets prioritise

accuracy and create higher number of missclassified bankruptcies. However, as discussed in section
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2, there is no extensive research which sampling technique best fits the bankruptcy classification

challenge. Re-sampling techniques are divided into four categories: under-sampling the majority

class, over-sampling the minority class, combining over- and under-sampling, and creating ensemble

balanced sets. Due to the scope of a thesis, I only consider the first two categories. In the following

paragraphs, I discuss different ways to sample a data set.

Figure 4: Benchmark dataset, this an unbal-
anced randomly generated data set.

To illustrate the effect of sampling I create a ran-

domly generated dataset with two features and

a target variable ‘Active’ and ‘Default’. This

is the benchmark, and shows how the differ-

ent sampling techniques affect the majority (Ac-

tive) and minority class (Default). The two class

have 4800 and 200 observations respectively. Fig-

ure 4 shows blue squares for minority class and

only present 2% of the dataset. The orange

dots present 98% of the data set. I re-sample

this dataset using the following techniques to il-

lustrate and elaborate on how sampling tech-

niques work, including the benefits and the weak-

nesses.

Figure 5: Randomly under-sampled benchmark
data set.

In bankruptcy prediction random under-sampling

is the standard method to sample an unbalanced

data set. Here one randomly deletes observations

of the majority class until there is an equal ra-

tio between the two instances. Figure 5 shows

how the majority class, the orange dots, are re-

duced. Thereby the remaining data set is only 4%

of the size of the original data set. The decrease in

data points makes the computation time faster. A

disadvantage is the loss of potentially important

information. Furthermore, the remaining dataset

can be an inaccurate representation of the popula-

tion because only only a random subset remains.

There are several ways to combat this, such as

stratified sampling, cross-validation, and other options. This is outside the scope of the thesis.
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Figure 6: Randomly over-sampled benchmark
data set.

Random over-sampling is duplicates observa-

tions based on the minority class. The main

advantage is no information loss, but at the

risk of over-fitting on the minority class. Fig-

ure 6 plots the benchmark data with new ob-

servations to total 9800. Here another disad-

vantage is apparent, random over-sampling is a

naive sampling method, as it uses no heuris-

tics. In other words, all observations, even out-

liers, are oversampled. As discussed in section

2, random-undersampling is superior at building

classifiers than random over-sampling (Chawla

et al., 2002).

To address the short-coming of under-sampling and over-sampling Chawla et al. (2002) published

a seminal paper that introduced the Synthetic Minority Over-sampling Technique, or SMOTE. In

fraud detection and credit risk, the algorithm is common practice, except in bankruptcy prediction.

Despite that, all applications are notoriously unbalanced. In contrast to over-sampling, SMOTE

algorithm creates ‘synthetic’ data points. These synthetic data points are newly generated data,

whereas, in random over-sampling, the data is duplicated. Thus SMOTE addresses the main

disadvantage of random over-sampling because it reduces overfitting. It works as follows; consider

Figure 7a, depicting ‘real’ data point xi and four ‘real’ neighbours xi1, ..., xi4. SMOTE uses K-

nearest neighbours and identifies the K data points with the shortest distance to xi. For this

example K = 4, the default setting is K = 5. Next, SMOTE randomly assigns new synthetic

points r1, ..., r4 along the line between xi and its neighbours. SMOTE generates a synthetic data

point with equation 1.

rj = xi + rand(0, 1) · (xi − xij) (1)

Where rand(0, 1) generates number generator between 0 and 1 using a uniform distribution and

j is the nearest neighbours between [1, ...,K]. Figure 7b shows how the benchmark data set of

Figure 4 is re-sampled. Notice the ‘bridges’ between the blue cloud and the orange cloud. The

lines result from the K nearest neighbours approach to generating data points on the line between

two existing data points. However, generating new observations makes no consideration of how

many majority data points surround a minority data points. Again, consider Figure 4 with one

blue square in the right upper corner in a cloud of blue points. SMOTE constructs ‘bridges’ to

outlier as shown in Figure 7b. This is the main disadvantage of SMOTE, where all minority class

observations are over-sampled equally. In the years following the publication of this algorithm,

academics created over 80 SMOTE-based extensions (Fernandez et al., 2018). I consider two of the

most popular extensions that address the main disadvantage: Adaptive Synthetic and Borderline-1.

I chose these two additions because these are the most well-known extensions and regularly used

in other academic fields (Fernandez et al., 2018).
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(a) Illustration of how to create the synthetic data
points in the SMOTE algorithm. Image from Fer-
nandez et al. (2018).

(b) SMOTE benchmark

ADASYN (He et al., 2008), short for Adaptive Synthetic, generates new samples based on the local

distribution of majority and minority classes. The main difference between SMOTE and ADASYN,

is that the latter uses an impurity ratio for the minority class to create synthetic points. Impurity

(impi) is found for observation xi by dividing majority neighbours (∆i) by K-nearest neighbours

(K). The higher the ratio of majority to minority class observations, thus higher impurity, the

more additional points are generated. The number of additional synthetic points for observation

xi is based on the normalised impurity ratio ˆimpi. A full derivation is available in appendix C on

page 37. The idea is to create synthetic hard-to-learn samples, i.e. neighbourhoods dominated by

the majority class. Therefore, it is adaptive because the classification decision boundary is shifted

towards the impure samples. Figure 8a shows that ADASYN indeed prioritises the impure samples,

as the outliers closer to the blue cloud are oversampled. Whereas the inliers of the orange cloud are

minimally oversampled. Minority samples with high number of majority classes get more synthetic

points. The synthetic points therefore are similar to the majority class and make it harder for the

algorithm to distinguish majority and minority classes and potentially increase the number of false

positives.

(a) ADASYN over-sampled benchmark data set. (b) Borderline over-sampled benchmark data set
benchmark
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In Borderline-SMOTE (Han et al., 2005), synthetic data points are only made along the borders

of the majority and minority class. There exist two Borderline SMOTE: ‘1’ and ‘2’. Number ‘1’

only over-samples the minority class, whereas number ‘2’ also under-samples the majority class if

misclassification can occur. As stated earlier, I only consider under-sampling and over-sampling

and no combinations. Therefore I limit this analysis to Borderline-1. It is outside the scope of the

thesis to study all extensions. Each minority observation is classified in one of three ways:

• Noise: all nearest neighbours are from the majority class. These observations are not over-

sampled.

• Danger: when the attribute K neighbours (default = 5) over M neighbours (default = 10)

exceeds a predetermined value. These observations are oversampled.

• Safe: K neighbours (default = 5) over M neighbours does not exceed threshold. These

observations are not oversampled.

In Figure 8b, one can see that only the border observation are oversampled. The number of bridges

appears significantly smaller. Furthermore, observations in the blue cloud, are correctly classified

as ‘Noise’. However, like ADASYN, the main disadvantage of this algorithm is that it over-samples

observations minority classes with a high number of majority neighbours. This increases the risk

of generating false positives in a test set because a model has trouble distinguishing minority from

majority classes.

Figure 9: Borderline-3 oversampled benchmark
data set.

To mitigate that disadvantage of SMOTE and

specifically Borderline-1, I created a new exten-

sion: Borderline-3. This extension is over-

samples the minority classes with a higher num-

ber of minority neighbours instead of majority

neighbours (like ADASYN and Borderline-1 do).

Thus it over-samples ‘safe’ observations instead of

‘danger’. The motivation is to address the disad-

vantage of Borderline-1 that ‘danger’ are harder

to classify for a model such that it creates more

false positives. Algorithm 1 shows how it gener-

ates synthetic samples. Suppose that the whole

training set is T , the minority class is P and the

majority class is N . Here P = {p1, p2, . . . , ppnum} and N = {n1, n2, . . . , nnnum}, where pnum and

nnum are the number of minority and majority observations. The procedure of Borderline-3 works

as shown on page 16.
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Algorithm 1: Borderline-3 algorithm

Step 1. For every pi in the minority class P , calculate the m nearest neighbours for the

training set T . The number of majority examples among the m nearest neighbours is denoted

by m′ where 0 <= m′ <= m.

Step 2. Classify the observations as NOISE, DANGER, and SAFE.

if m′ = m then

All nearest neighbours of m′ are majority class, the observations is labelled as NOISE.

else if m
2 <= m′ < m then

The number of pi’s majority neighbours exceeds the number of minority neighbours, the

observations is labelled as DANGER.

else
The number of pi’s minority neighbours exceeds the number of majority neighbours, the

observations is labelled as SAFE.

end

Step 3. For each observations in set SAFE, calculate it’s K nearest neighbours from minority

class P .

SAFE ∈ {p′1, p′2, ..., p′snum}, 0 <= snum <= pnum

Where snum is the number of safe points and pnum is the number of minority class

observations.

Step 4. Generate N − P synthetic observations

for p′i in SAFE do
s is an integer between 1 and k.

randomly select s nearest neighbours from the k nearest neighbours in P

for j = 1, 2, ..., s do

(a) Calculate the difference difj between p′i and it’s nearest neighbour from P .

(b) Multiply difj with a random number rj from a uniform distribution between 0 and

1.

(c) Generate a new synthetic minority between p′i and its nearest neighbours:

syntheticj = p′i + rj · difj
end

end

Table 4 is a summary table of the sampling techniques. The main conclusions from the discussion

are this. Unbalanced training sets are not adapt in predicting minority classes; therefore one con-

siders sampling. The most popular technique in bankruptcy prediction literature is undersampling.

This disadvantage is the loss of information of the majority class. One can over-sample to mitigate

this by duplicating observations, however, this leads to significant overfitting. Therefore random

under-sampling is better adapt at creating classifiers than random over-sampling (Chawla et al.,

2002). SMOTE solves the overfitting problem by creating synthetic data points between observa-

tions, and therefore correlating. However SMOTE handles all observations as equal and is therefore
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prone to outliers. Newer SMOTE-based extensions aim to solve this issue, including the extensions

ADASYN and Borderline-1. The thesis’ extension, Borderline-3, focuses on over-sampling the

‘safe’ observations. I expect Borderline-1 to outperform unbalanced and over-sampling because the

majority and minority classes are evenly distributed, and the synthetic points should reduce over-

fitting. Furthermore, Borderline-1 prioritises extreme observations and should therefore see better

performance of recall due to a lower number of false negatives. Finally, all sampling techniques rely

on randomness. Therefore all models and programs used in this thesis use a global random seed.

This seed sets the random state to ‘1996’ to make the results reproducible. The exact number is

chosen arbitrarily, but necessary to treat it as an immutable variable to make the test replicable

and the results definitive.

Table 4: Summary of sampling techniques.

Sampling Technique How

Unbalanced Do nothing, initial data set

Random under-sampling Randomly delete observations

Random over-sampling Randomly duplicate observations

SMOTE Create synthetic data points using equation 1

ADASYN Create synthetic data points based on the impurity density distribution
of observation i. See appendix C for derivation.

Borderline-1 Generate synthetic data points if the number of nearest neighbours of
observation i does crosses the threshold and if it not equal to K.

Borderline-3 Generate synthetic data points if the number of nearest neighbours of
observation i does not cross the threshold. See algorithm 1.

4.2. Statistical Methods and Machine Learning Models

Barboza et al. (2017) evaluated bankruptcy prediction using industry-standard statistical methods

and compared the performance to more recent Machine Learning models. I replicate their variables

and compare seven classifiers. I additionally sample the data according to the techniques in section

4.1. I discuss the following categories of classifications, in order of appearance: statistical models,

artificial neural networks, support vector machines, and ensemble techniques.

4.2.1. Statistical Methods

For completeness follows Barboza et al. (2017), by what they define as statistical techniques. Specif-

ically, multiple discriminant analysis (MDA) from Altman (1968) and Logistic Regression from

Ohlson (1980).

Balcaen and Ooghe (2006) argue MDA has restrictive assumptions. Firstly, MDA assumes that

any linear combination of the features is normally distributed. However as noted by Shin and Lee

(2002), financial data is inherently non-normal. Secondly, it has equal variance-covariance matri-
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ces between active and bankrupt groups such that Cov(x, y) = Cov(y, x). However, Balcaen and

Ooghe (2006) argue financial data rarely satisfies this assumption. This leads to significant biased

tests. Furthermore, the authors note that one should use Quadratic MDA models over Linear MDA

models because this addresses the unequal dispersion matrices. However, Quadratic MDA models

rarely outperform Linear MDA (as used by Altman (1968)). Taking this into consideration, I use

Quadratic MDA, QDA henceforth for the analysis. Thirdly, MDA assumes the absence of multi-

collinearity between features. As shown by Table 3 the highest VIF values are for X2 (Profitability)

and X3 (Productivity) in df sim1. Thus there is moderate multicollinearity.

I use Logistic Regression, LR hereafter, as a classifier because it is easy to implement and efficient

to train. A derivation is in appendix D on page 37. Balcaen and Ooghe (2006) identify the following

two restrictive assumptions for LR: multicollinearity and outliers. Furthermore, bankruptcy is by

definition outliers because they happen infrequently. To address (some) of the issues, I considered

normalising the features and windsorising the dataset. For the research purposes, this is omitted

because I want to make as few changes to the data as possible following Barboza et al. (2017).

4.2.2. Artificial Neural Networks

Previous literature that analysed bankruptcy prediction with Artificial Neural Networks (ANN)

include Wilson and Sharda (1994), Kim and Kang (2010), and Barboza et al. (2017). The analogy

of neural networks mimicking human neural processing is frequently made. This semi-parametric

approach makes recursive use of linear combinations and non-linear transformations. ANN exists

of input layers, multiple hidden layers, and an output layer. Using back-propagation, the weights of

layers are changed by the difference between the calculated output values and the true output values.

For the analysis, I use the MLP Classifier of the python package scikit learn. Most function are

set to default, expect activation function h(a), where a is the scalar. The following functions are

considered:

• Logistic, A logistics sigmoid function that returns h(a) = 1/(1 + e−a). Return values are

between 0 and 1.

• Tanh, A hyperbolic tangent function that returns f(a) = tanh(a). Returns values are be-

tween −1 and 1.

Because the target variable is binary and the financial data is not normalised and non-linear, these

two options are the most suitable options. A disadvantage of the logistic activation function is that

it can slow down the gradient descent of the back-propagation. For example, if the training input

is a large negative number, the weights are less regularly updated. In contrast, the hyperbolic tan-

gent function maps this to −1. Kim and Kang (2010) used logistic as activation function, whereas

Barboza et al. (2017) used the hyperbolic tangent as activation function. Wilson and Sharda (1994)

does not specify the activation function. Due to the slower processing time and the relatively large
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data set, I set the activation function to the tangent hyperbolic.

4.2.3. Support Vector Machines

A Support Vector Machine (SVM) creates a hyperplane such that the data points are classified

according to the side of the hyperplane that they reside (Cortes and Vapnik, 1995). For SVM, I

only consider binary classification. However, financial data is not perfectly separable. Therefore

hyperplanes are constructed such that there is a ’soft’ margin of error. To optimise for SVM,

one uses a mapping function that creates higher dimensions kernels to get better data separation.

The disadvantage of higher dimensionality kernels is higher complexity and, thus slower computing

time. For the thesis, I considered linear and radial basis function kernels following the methodology

of Barboza et al. (2017). I opt for linear SVM because radial basis function SVM shows a long

computation time and disappointing initial results.

4.2.4. Ensemble Methods

The idea of ensemble methods is to combine a multitude of weak learners such that the combined

model outperforms the individual learners (Hastie et al., 2017). These learners can be ensembles

sequentially, known as boosting, and in parallel, known as Bagging. In Boosting, a random sam-

ple of the training set is created and fitted to a shallow decision tree (Freund and Schapire, 1997).

Then it updates the weight of the data samples based on the inaccuracy of the previous decision

tree. In recent years eXtreme Gradient Boosting, or XGBoost, became popular on the Machine

Learning competition website Kaggle. This model uses regularization to improve gradient descent

towards the target outcome.

In Bagging, formally known Bootstrap aggregating, new data sets are created from the original

training data set. The algorithm randomly selects observations, sometimes multiple times, and for

each data set a classifier is built. Using averaging methods or voting methods a universal classifier

is built. Random Forest, RF, is a type of Bagging. The critical difference is that RF uses only

some of the variables for creating new data samples. In other words, Bagging uses all columns

whereas RF randomly selects the columns for its newly created training sets. The main advantage

is that each decision tree is de-correlated, therefore more independent and improving the ensemble

prediction.

Barboza et al. (2017) found Boosting, Bagging and RF provided the highest predictive capac-

ity. I add XGBoost, due to its popularity and compare it to the performance of Boosting in this

bankruptcy setting. I omit Bagging because RF generally outperforms it.

19



4.3. SHapley Additive Explanations

The inherent nature of most ML models is similar to a black box. The complex and non-linear

characteristics make it very difficult to understand the models’ underlying decisions. Several meth-

ods allow for explore the inner workings of Machine Learning models. One approach is to quantify

feature importance using Spearman’s correlation coefficient between the features and the target

variable. Other techniques allow for a deeper analysis and are known as explainable Artificial

Intelligence. These techniques include Partial Dependence (Friedman, 2001), Accumulated Local

Effects (Apley and Zhu, 2020), and SHapley Additive exPlanation (SHAP) (Lundberg and Lee,

2017). The latter method offers the following benefits over the former methods, namely: global

interpretability and local interpretability.

This framework is based on cooperative game theory where features form subsets. The framework

identifies the marginal contribution for each feature in each subset. The Shapley value then rep-

resents the weighted average contribution of each feature for all subsets. From Lundberg and Lee

(2017), I use equation 2 to approximate Shapley value ϕi for machine learning model f for a specific

input x for feature i:

ϕi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !

[
fx(z

′)− fx(z
′\i)

]
(2)

Where z′ is a subset of features, and x′ is all possible subset not containing the simplified input x′.

For the exact mathematical deduction, please refer to Lundberg and Lee (2017) on the property

of Local Accuracy. It translates to x′ is equal to x. Here M is the total number of subset. The

fraction represents the weighting according to how many features are in the subset. The deduction

of fx represents the output of the black box model with and without feature i. The difference is

the contribution of the feature to the prediction in this subset.

Figure 10 is an illustration of how to interpret the values of each feature. A trained model has a

base value E[f(z)], which shows the expected value of the output if no feature values are known,

this is the mean prediction of the model. For each input x, the value shifts towards a new estimated

value. For example, ϕ1 is the shift for feature i with input x1. After all inputs, the value is equal

to the model output f(x), where all ϕ’s show the Shapley values to arrive at that output.

This example is for a single set of inputs and provides an explainable way as to why a particular

observation (here a specific company with a set of financial ratios) defaults or not. Furthermore,

Shapley values are useful to find the mean absolute Shapley value for each feature j:

Ij =
1

n

n∑
i=1

|ϕ(i)
j | (3)

Where n is the number of observations. This allows for analysis on the magnitude of feature attribu-
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Figure 10: Illustration of how Shapley values work from Lundberg and Lee (2017)

Notes: E[f(z)] is the mean predicted output of the model. For each additional feature i with input x the expected
output shifts with Shapley value ϕ.

tions to attain global interpretability. Such that one can analyse how important a feature is to the

model. This is superior to classical feature importance, where one uses the correlation coefficient

between the features and the target variable. Then one studies the data. However, the Shapley

value is the average expected marginal contribution of one feature after all other combinations are

considered.

For the analysis I use use the SHAP python package 3. I chose the XGBoost as Machine Learn-

ing model because the documentation is more extensive than other models 4. Furthermore, the

Shapley package allows for ‘beeswarm’ summary plots. Each dot represents the Shapley value and

the feature value for each feature. This is useful to find relationships between model output and

individual features. Moreover, the Shapley package can create dependence plots as an alternative

to partial dependence plots and accumulated local effects. SHAP allows for additional information

to the other methods. It can show the variance of observations instead of only the average effects.

Moreover, it can highlight feature interactions of a chosen variable.

However, Shapley a potential disadvantage is correlation bias. This occurs when during the train-

ing of the model, and Shapley has no method of correcting for it. Consider two highly correlated

features A and B. XGBoost assigns the highest weight to one of the two features, here A. The

trained model assigns high Shapley values to A and not to B to the way the model is constructed.

Thus even if feature B is informative, the model neglects its explanatory power because the model

is trained on feature A. Therefore, it is vital to use a data set with low multicollinearity.

Finally, the benefits of global interpretation, with feature attribution and summary plots, and local

interpretation, with dependence plots make this framework a powerful tool for explaining machine

learning algorithms. These visualisations and the better interpretability make it a powerfull tool

for loan providers to explain why a model labels a company as default or not. The only financial

prediction literature that uses SHAP today is for mortgage defaults prediction in a working paper

by Bracke et al. (2019).

3Documentation available at https://shap.readthedocs.io/en/latest/index.html accessed on June 1st, 2022
4https://christophm.github.io/interpretable-ml-book/shap.html accessed on June 1st, 2022
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4.4. Performance Analysis

To evaluate the performance of the models for different sampling techniques, I follow the relevant

literature and use the following classification metrics: Accuracy, Recall, Specificity, and Area under

ROC Curve (AUC). Additionally, as a forecasting measure, I use the Brier score. Machine Learn-

ing algorithms are typically analysed using a confusion matrix that assigns classification to four

possible cases, summarised in Table 5.

Table 5: Confusion Matrix.

Predicted Category
Positive Negative

True class Default (0) True Positive (TP ) False Negative (FN)
Active (1) False Positive (FP ) True Negative (TN)

• True Positives (TP ): Classifies a company defaults and does so within the next year.

• True Negative (TN): Classifies a company that remains active and defaults within the next

year.

• False Positive (FP ): Type I error. Classifies a company as defaulting within the next year,

but does not. This presents lost opportunities. Companies might fail to get additional loans

to grow and expand. Furthermore, lenders lose an opportunity to safely sell loans.

• False Negatives (FN): Type II error. Classifies a company to remain active within the next

year when in facts it defaults. This creates lost equity for shareholders, lost jobs for workers,

and defaulting loans for lenders.

I measure the performance using these four cases as follows. Firstly, accuracy (AC), as shown in

equation 4, is the total number of correctly labelled companies divided by the total number of

companies in the dataset. Accuracy is a great measure when one has a balanced data set, but

this is not the case for bankruptcy data sets. In the case of unbalanced data sets, this leads to a

deceptive interpretation of a models performance. Considering 1% imbalance and all companies are

classified to remain active in the next year, our model is 99% accurate. However, the companies

that default are of interest here, so I consider additional measures of performance, following the

performance measures of Chawla et al. (2002). Specificity (SP), or False Positive Rate (FPR), is

shown in equation 5. This measures the ratio of misclassified active companies over all active com-

panies in the data set. Recall (RE), or True Positive Rate (TPR), measures ratio of misclassified

defaulted companies over the total number of defaulting companies. Recall is also referred to as sen-

sitivity. Specificity is a threshold for potential gain, whereas recall is a threshold for potential loss.

In the earlier example, specificity is 100% and Recall 0%. A perfect classifiers attains 100% for both.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)
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Specificity = 1− Type I Error =
TN

TN + FP
= 1− FPR (5)

Recall = 1− Type II error =
TP

TP + FN
= TPR = Sensitivity (6)

Moreover, I can combine the two measures, specificity and sensitivity, for different thresholds to

plot the Receiver Operating Characteristic (ROC). Here the X-axis represents the specificity, and

the Y-axis the recall. Figure 11 shows three hypothetical curves. Plot A is a perfect classifier

with no False Positives or False Negatives. Plot C, when 1− FPR = TPR, is when one randomly

guesses classes. Plot B is then between a perfect and random classifier; the closer it gets to A

the better. The Area under ROC Curve (AUC) allows for comparing classification performance

independent of decision criteria for specificity and recall (Fawcett, 2006). The higher the AUC the

better the model can separate classes. Therefore, it is a useful tool for comparing models, but it is

sub-optimal if one prefers to minimise Type I or Type II error. That is, AUC can be high for low

recall, such that the risk of type II error for loan providers it too high to accept.

Figure 11: Illustration of a ROC curve.

Finally, I test the prediction performance of the models using the Brier Score (Brier et al., 1950).

Previous literature on bankruptcy prediction and sampling omits measures of probabilistic forecast

performance. I include this measure to identify the statistical certainty of prediction. The Brier

score is calculated as

Brier =
1

N

N∑
t=1

(ft − ot)
2 (7)

Where N is the total number of observations in the data set, ft is the forecast probability of default,

and ot the true outcome of the event for observation t. For example, if a model predicts that a

company defaults with either 60% or 80% certainty, then the Brier score identifies which prediction

is more ‘correct’. The Brier score is between 0.0 and 1.0, with 0.0 being a perfect score and 1.0

being the worst possible outcome. If that company defaults then the forecast with 80% has a lower,

and thus better, Brier score then the forecast with 60%.
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5. Results

The current state of the literature has not addressed the effect of sampling on the predictive

performance of models for bankruptcy. This section is addresses this following the methodology of

section 4. First, I test the effect of sampling on eight statistical techniques and Machine Learning

models. The sampling methods are as discussed in section 4.1 and the performance measures in

section 4.4. Second, I analyse the effect of sampling on feature importance. This is two-fold, the

global and local interpretability, using Shapley Additive Explanations as explained in section 4.3.

5.1. Simulation 1: The effect of sampling on bankruptcy prediction

I split the data set of chapter 3, df sim1, into two sets: training and test. The split is randomised

with a ratio of 67:33. This split omits the element of time, such that observations in the train and

test split are from observations across the whole time line. As described in section 3.2, I randomly

select one observation per ‘active’ company over the whole timeline. The motivation is to guar-

antee that a defaulting company (within two or more years year) does not interfere with training

the models. Such that a defaulting company in two years is dropped from the data set rather than

labelled as ‘active’. The assumption here is that a company with poor financial accounting data is

observed in the years prior to bankruptcy. How many years prior to bankruptcy this is measurable

is outside of the scope of the thesis. I keep one observation of companies that default within one

years, I do the same for companies that remain active (over the whole timeline). This randomised

approach already neglects the time dimension and therefore it makes no sense to do a time split.

Additionally, I test the performance of the sampling techniques for XGBoost after hyperparameter

tuning. That is, I uses grid search cross validation for a split of train-validation-test of 60:20:20.

With only 86 defaults in the whole data set, the validation set only has 17 cases of bankruptcies.

Furthermore, the total dataset for under-sampling for the validation set then only contains 34 ob-

servations. For over-sampling, all new replicated, or synthetic points are based on a tiny set of

companies.

Table 6: Overview of data df 1 before sampling.

Data frame Total Observations Number of Defaults Imbalance (%)

df sim1 3182 86 2.72%

Training (Unbalanced) 2131 58 2.72%
Training (Undersampling) 116 58 50.00%
Training (Oversampling Methods) 4146 2131 50.00%
Training (ADASYN) 4132 2059 49.83 %

Test 1051 28 1.76%

24



5.1.1. Does sampling affect the performance of bankruptcy prediction?

Table 6 shows the size of the splits with different sampling techniques. The training set of under-

sampling contains only 116 observations compared to 4132 or 4146 observations for over-sampling

based techniques. The test set remains unbalanced because this is out-of-sample; therefore sam-

pling makes no sense.

The under-sampling results for the seven classifiers are consistent with Barboza et al. (2017). ANN,

Boosting, XGBoost, and RF demonstrate the higher accuracy, AUC, and specificity than QDA and

LR. Figure 12 shows the ROC curve for all under-sampling methods. Furthermore under-sampling

is the most consistent sampling technique across all models except Linear SVM. Consistent be-

cause under-sampling demonstrates values for AUC (higher or equal to 0.625) and recall (higher

or equal to 75%). Table 7 shows random over-sampling is too naive (Chawla et al., 2002), and

a ‘smarter’ method is required if one chooses to over-sample. Random over-sampling over-fits by

duplicating minority classes. SMOTE-based sampling techniques are adapt at improving recall over

over-sampling techniques. However recall for SMOTE and extensions are close to or below 50%,

making this an inferior option for parties that want to minimise the type II error. For example, if

credit supplier uses SMOTE with Random Forest then he or she accepts that nearly four out of five

companies go bankrupt, which is too high. The low values for recall for SMOTE-based sampling

techniques, especially for Boosting, XGBoost, and RF make under-sampling the most consistent

under-sampling technique.

Figure 12: ROC Curve for under-sampling for seven classifiers.

Overall, QDA is a poor predictor for bankruptcy. Although recall shows all data sets correctly

predicts bankruptcy over 82% of the time, accuracy and specificity suffer for it because the sta-

tistical technique classifies over half of the companies in the test set as bankrupt. For a loan

provider translates to missing many loan interest opportunities. These observations are consistent

with Shin and Lee (2002) who argue that statistical methods suffer from non-normal data and

outliers. Notably, Borderline-1 with LR shows outstanding performance and beats under-sampling

with Random Forest based on accuracy, AUC and Brier score. The performance is also seen in

figure 16 on page 39. This shows that classical techniques can outperform machine learning models

25



with a machine learning approach for sampling. Borderline-1 is built with K-nearest neighbours

and uses outlier detection. Furthermore, Figure 18 on page 40 shows that AUC of the Linear SVM

for the unbalanced and under-sampling data set perform worse than a random classifier (dotted

red line). Again Borderline-1 is the best performing sampling technique with high recall (76.7%)

and specificity (82.1%).

It is striking that the extensions, ADASYN and Borderline-1, behave differently for other mod-

els. For example, Borderline-1 improves on SMOTE in both specificity and recall for QDA, LR,

Boosting and linear SVM. However, it deteriorates recall for ANN, XGBoost, and Random Forests.

Borderline-1 can identify three types of observations, creating only synthetic points between ‘dan-

ger’ points. In contrast, ADASYSN creates synthetic points for changing impurity levels. ADASYN

shows higher recall than Borderline-1 for all models except boosting. But creates more false posi-

tives because it over-samples on outliers with high impurity ratio. unlike Borderline-1 which does

not over-sample ‘noise’ observations.

The Borderline-3 algorithm show recall of sub 15% for all classifiers but QDA. The prioritisation

of ‘safe’ points of Borderline-3 actually harms the performance. A possible explanation is that

synthetic points are only created for a small cluster of data points. Put differently, only a small

number of observations are classified as safe with little variance. This ‘safe’ cluster omits too much

information of more extreme data points such as the ‘danger’ observations in Borderline-1. A future

iteration of Borderline-3 could combine the strengths of Borderline-1 and ADASYN. The program

identifies noise points where minority class nearest neighbours are exclusively majority class. It

uses an impurity ratio for the remaining observations to construct more synthetic observations for

more impure observations. In borderline-1, danger points get an equal number of synthetic points,

and ADASYN creates new observations based on the impurity for all observations. Thereby this

new extension creates only synthetic observations for ‘safe’ and ‘danger’ points but the number of

each observation is determined by the impurity (like in ADASYN). Instead of all creating an equal

number of observations for all ‘safe’ and ‘danger’ points (like in Borderline-3 or -1).

Finally, the Brier score is uninformative because it behave very similar to accuracy. The lowest

Brier scores are in general for the Unbalanced data set and Borderline-3 sampled data set. These

also show the highest accuracy. This shows why measuring AUC and Recall are more informative,

because if a model (almost) exclusively predicts that a company remains ‘active’ then accuracy and

Brier show stellar results, but a loan provider risks blindly providing loans to company that default

in the next year.
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Table 7: Classification results for sampling methods using 11 variables of Barboza et al. (2017).

Model Data TP TN FP FN AC (%) AUC SP (%) RE (%) Brier

QDA Unbalanced 25 166 857 3 18.2 0.621 16.2 89.3 0.816
Under-sampling 27 101 922 1 12.2 0.625 9.9 96.4 0.874
Over-sampling 25 149 874 3 16.6 0.619 14.6 89.3 0.831
SMOTE 24 203 820 4 21.6 0.591 19.8 85.7 0.783
ADASYN 24 190 833 4 20.4 0.596 18.6 85.7 0.794
Borderline-1 23 332 691 5 33.8 0.633 32.5 82.1 0.659
Borderline-3 25 166 857 3 18.2 0.621 16.2 89.3 0.816

LR Unbalanced 0 1023 0 28 97.3 0.714 100.0 0.0 0.026
Under-sampling 24 513 510 4 51.1 0.666 50.1 85.7 0.250
Over-sampling 0 1016 7 28 96.7 0.686 99.3 0.0 0.116
SMOTE 21 490 533 7 48.6 0.682 47.9 75.0 0.230
ADASYN 22 487 536 6 48.4 0.699 47.6 78.6 0.230
Borderline-1 21 771 252 7 75.4 0.841 75.4 75.0 0.141
Borderline-3 0 1023 0 28 97.3 0.714 100.0 0.0 0.026

ANN Unbalanced 0 1020 3 28 97.0 0.789 99.7 0.0 0.027
Under-sampling 23 698 325 5 68.6 0.765 68.2 82.1 0.215
Over-sampling 12 947 76 16 91.2 0.743 92.6 42.9 0.066
SMOTE 11 918 105 17 88.4 0.725 89.7 39.3 0.089
ADASYN 12 905 118 16 87.2 0.715 88.5 42.9 0.099
Borderline-1 8 963 60 20 92.4 0.730 94.1 28.6 0.062
Borderline-3 0 1020 3 28 97.0 0.772 99.7 0.0 0.027

Linear SVM Unbalanced 0 1023 0 28 97.3 0.591 100.0 0.0 0.026
Under-sampling 25 425 598 3 42.8 0.451 41.5 89.3 0.253
Over-sampling 0 1023 0 28 97.3 0.632 100.0 0.0 0.121
SMOTE 24 390 633 4 39.4 0.722 38.1 85.7 0.230
ADASYN 24 377 646 4 38.2 0.739 36.9 85.7 0.231
Borderline-1 23 785 238 5 76.9 0.853 76.7 82.1 0.146
Borderline-3 0 1023 0 28 97.3 0.591 100.0 0.0 0.026

Boosting Unbalanced 4 1011 12 24 96.6 0.661 98.8 14.3 0.203
Under-sampling 22 692 331 6 67.9 0.748 67.6 78.6 0.249
Over-sampling 6 963 60 22 92.2 0.639 94.1 21.4 0.213
SMOTE 14 859 164 14 83.1 0.680 84.0 50.0 0.210
ADASYN 11 847 176 17 81.6 0.642 82.8 39.3 0.211
Borderline-1 12 930 93 16 89.6 0.664 90.9 42.9 0.217
Borderline-3 4 1011 12 24 96.6 0.661 98.8 14.3 0.203

XGBoost Unbalanced 2 1020 3 26 97.2 0.791 99.7 7.1 0.026
Under-sampling 21 728 295 7 71.3 0.794 71.2 75.0 0.209
Over-sampling 6 993 30 22 95.1 0.742 97.1 21.4 0.042
SMOTE 13 906 117 15 87.4 0.711 88.6 46.4 0.095
ADASYN 12 895 128 16 86.3 0.732 87.5 42.9 0.098
Borderline-1 10 961 62 18 92.4 0.777 93.9 35.7 0.058
Borderline-3 2 1020 3 26 97.2 0.791 99.7 7.1 0.026

RF Unbalanced 0 1023 0 28 97.3 0.774 100.0 0.0 0.025
Under-sampling 23 723 300 5 71.0 0.823 70.7 82.1 0.195
Over-sampling 0 1020 3 28 97.0 0.777 99.7 0.0 0.027
SMOTE 6 982 41 22 94.0 0.781 96.0 21.4 0.055
ADASYN 7 976 47 21 93.5 0.779 95.4 25.0 0.058
Borderline-1 5 1008 15 23 96.4 0.786 98.5 17.9 0.036
Borderline-3 0 1023 0 28 97.3 0.774 100.0 0.0 0.025

Notes: For all sampling, random state was set equal to 1996. More notes for this table are on the top of the next
page.
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Notes of Table 7: The Table shows the seven different models discussed in section 4.2 for the unbalanced training

set and after six different sampling methods of section 4.1. The results are bold and underlined showing the best

performing sampling technique for each model. For True Positives (TP) and True Negatives (TN) the higher the

number the more correctly labelled companies. For False Positives (FP) and False Negatives (FN) the lower the

number the fewer companies are missclassified. For Accuracy (AC), Area under the Receiver Operating Characteristic

Curve (AUC), Specificity (SP), and Recall (RE) the higher the number the better. Finally for the Brier score the

lower the higher the predictive performance.

5.1.2. Does recall improve for a hyperparameter tuned model?

From Table 7 it is evident that simply plugging in the classifiers, even for tried and true features,

can generate poor results. It is likely that the SMOTE-based sampling methods require further

optimisation to outperform under-sampling. So here I continue with XGBoost to see if GridSearch

Cross-Validation and hyperparameter tuning can improve the performance.

Table 8: Classification results for XGBOOST after GridSearch Cross Validation.

Model Data TP TN FP FN AC (%) AUC SP (%) RE (%) Brier

XGBoost Unbalanced 2 1017 6 26 97.0 0.747 99.4 7.1 0.027
Under-sampling 19 714 309 9 69.7 0.768 69.8 67.9 0.230
Over-sampling 2 1020 3 26 97.2 0.731 99.7 7.1 0.029
SMOTE 6 987 36 22 94.5 0.755 96.5 21.4 0.046
ADASYN 11 866 157 17 83.4 0.763 84.7 39.3 0.123
Borderline-1 7 998 25 21 95.6 0.761 97.6 25.0 0.038
Borderline-3 2 1017 6 26 97.0 0.747 99.4 7.1 0.027

Notes: GridSearch Cross Validation for the following set of combinations of parameters for XGBoost. Maximum tree
depth (max depth): [3,6,10]. Step size shrinkage (learning rate) to prevent over-fitting) : [0.01, 0.05, 0.1]. Number
of trees (n estimators): [100, 500, 1000]. Subsample of ratio of columns for constructing a tree (colsample bytree):
[0.3, 0.7]. K-fold equal to five, thus total 270 folds. Random state was set equal to 1996. The results are bold
and underlined showing the best performing sampling technique for each model. For True Positives (TP) and True
Negatives (TN) the higher the number the more correctly labelled companies. For False Positives (FP) and False
Negatives (FN) the lower the number the fewer companies are missclassified. For Accuracy (AC), Area under the
Receiver Operating Characteristic Curve (AUC), Specificity (SP), and Recall (RE) the higher the number the better.
Finally for the Brier score the lower the higher the predictive performance.

The results of Table 8 show that for bankruptcy, one cannot simply use SMOTE and expect to get

good results. The data tends to over-fit even after tuning with cross-validation. I argue this can

be due to two reasons. Firstly, SMOTE based sampling deteriorates because the minority class

(default) has high variance, and it is very similar to the majority class (active). Table 3 on page 10

shows that the minimum and maximum values of the ‘active’ class are almost always larger than

the ‘default’ class. Furthermore, the 25th and 75th percentile values are roughly the same size for

the ‘active’ and ‘default’ class.

Secondly, bankruptcy prediction can be affected by seasonality and changing trends. SMOTE

based algorithms on rule-based algorithms have shown superior performance in fraud detection and

medical diagnosis (Fernandez et al., 2018). However, in those setting variables remain constant

over time. Whereas the size of leverage of a company, for example, has changed significantly over

time, due to changing trends in the market (Platt, 2016). Furthermore, as shown in Figure 1 on
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page 7 defaults are more frequent during recessions. As argued by Richardson et al. (1998), the

accounting-based model fails to control for changing macro conditions. A company with equal

financial ratios has a higher likelihood of default in distressed market conditions. However, this is

not part of the model I considered, as I only control for accounting data and no macro-variables.

5.2. Simulation 2: The effect of sampling on features

The existing literature shows specific characteristics of sampling methods. Under-sampling is prone

to estimation bias because it only takes a subset of the majority class. SMOTE, meanwhile,

mitigates the main disadvantage of over-sampling, that is overfitting by creating synthetic points.

This raises the question: what is the effect on feature importance? New points are generated on

the ‘bridges’ between existing observations of the minority class. To test the effect of sampling on

feature importance, I further analyse the XGBoost classifier using Shapley values. The train and

set are the same as in the previous sections. I also analyse Borderline-1 because it ignores noise

observations.

5.2.1. Does SMOTE affect feature importance?

Table 9 shows the mean Shap value (mean|S|) for the eleven financial ratios. The mean Shap plots

for the four sampling techniques are shown in Figure 22 in Appendix F on page 42. From Table

9 several interesting results appear. Leverage (X4) is consistently the most important feature for

the model, although the relative importance varies across the sampling methods. Among the top

five features, most features are relatively consistent except for ‘Operational Margin’ and ‘Growth

in number of Employees’ (GE).

For under-sampling ‘Growth in Sales’ (GS) is the second most important feature and appears much

lower in the ranking of other sampling methods. In the previous section, I concluded for XGBoost

that undersampling showed higher recall than the oversampling methods. This suggests that some

variables are over-fitted, such as OM, whereas others, such as GS, are under-fitted.

To better understand the effect of sampling, I constructed a beeswarm summary plot in Figure 13.

To read this plot, consider GE for SMOTE in figure 13c feature GE. Higher GE values, in red,

show lower Shapley values. In other words, the higher the values growth of employees, the less

likely a company is to go bankrupt (as the value approaches 0). This third most important feature

for SMOTE, GE behaves very differently from the other sampling methods. In under-sampling, in

Figure 13b, low values for GE can have both positive and negative Shapley values. For Borderline-

1, in Figure 13d, GE drops to the seventh most important feature and has the opposite effect to

under-sampling. Higher Growth of Employees can have large positive Shapley values and small

negative Shapley values.
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Table 9: Absolute mean SHAP values.

Variable Description Unbalanced Under-sampling SMOTE Borderline-1

X1 Liquidity 0.29 (3) 0.51 (3) 0.33 (4) 0.41 (4)
X2 Profitability 0.20 (7) 0.35 (6) 0.20 (9) 0.32 (5)
X3 Productivity 0.20 (8) 0.08 (11) 0.15 (10) 0.04 (11)
X4 Leverage 0.58 (1) 1.20 (1) 0.90 (1) 1.95 (1)
X5 Asset turnover 0.17 (11) 0.28 (8) 0.13 (11) 0.22 (9)

OM Operational Margin 0.37 (2) 0.31 (7) 0.62 (2) 0.47 (2)

GA Growth of Assets 0.21 (6) 0.08 (10) 0.23 (8) 0.25 (8)
GS Growth in Sales 0.26 (5) 0.71 (2) 0.33 (5) 0.12 (10)

GE Growth in number of Employees 0.28 (4) 0.44 (4) 0.41 (3) 0.28 (7)

CROE Change in Return on Equity 0.19 (9) 0.43 (5) 0.32 (6) 0.29 (6)
CPB Change in Price-to-Book ratio 0.18 (10) 0.10 (9) 0.26 (7) 0.43 (3)

Notes: For all sampling, random state was set equal to 1996. The number between brackets is the order of feature
importance, where number one is the most important and eleven is the least important feature. The underlined
values have deviating feature importance to other sampling techniques..

(a) Unbalanced (b) Random Under-sampling

(c) SMOTE (d) Borderline-1

Figure 13: SHAP Beeswarm plots for four different sampling techniques.

Notes: This plot shows how individual data points affect the output of the model. The colours indicate the relative
feature value of an observation. The X-axis shows the size of Shapley values, and the Y-axis are the features
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5.2.2. SHAP dependence Plots

As a final test, I analyse the effect a single financial ratio has on the predictions made by the model.

Thus I only investigate the dependence plot of the ratio Liquidity (X1). The SHAP package allows

for deeper analysis by colour plotting the feature value of a different feature. Here I plot the same

plot with X4 value colours in Figure 14. I removed the one percentile outliers to improve the

plot readability. The percentiles are included in Figure 23 in Appendix G on page 43 shows the

dependence plots.

Three characteristics become apparent. Firstly, the sampling methods shift the mean SHAP value

of feature contribution. This is also clear from Table 9 and Figure 13, as one could read that the

different sampling techniques affected the size of the Shapley values for each individual feature.

Moreover, the variance of mean Shapley values between the maximum and minimum is higher

for undersampling [+1.5,1.0] versus for SMOTE [+0.6,-1]. This further implicates the feature

importance as identical observations have different size of effect on the outcome. Secondly, X1 acts

as a ‘step’ function with threshold around value 0.2. Thus for values higher than 0.2 the Shapley

value for X1 decreases roughly 0.5. But under-sampling and borderline-1 show an additional step

at 0.0 (going up for under-sampling) and 0.45 (going down for Borderline-1). Thirdly, there is an

interaction with X4 (Leverage), such that higher values of X1 have higher values for X4, such that

higher liquidity is paired with higher leverage. This is fairly consistent for all sampling methods.

I conclude that sampling significantly affects the feature importance in bankruptcy data. The

decision of sampling shows different behaviour even for individual features.
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(a) Unbalanced (b) Random Under-sampling

(c) SMOTE (d) Borderline-1

Figure 14: Dependence plot of X1 (Liquidity) with feature value for X4 (Leverage)
Notes: The X-axis is the true value of an observation, and the Y-axis shows what that value did to the prediction.
The colours red and blue are the corresponding Leverage (X4) values for the same observation of Liquidity (X1).
The higher the value for X4, the redder the observation becomes.
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6. Conclusion

This is the final chapter of the thesis and consists of three sections. The first section syntheses

the results and how these relate to the hypotheses. The second section argues the implications

the results of the thesis have. The last section discusses the limitations of the thesis and suggests

future research to mitigate these.

This thesis analyses the effect of under- and over-sampling techniques in a default data setting. The

current state of the literature almost exclusively focuses on identifying better financial ratios and

newer machine learning models. However, none directly compare the effect of different sampling

techniques. This thesis is a comparative study between the de facto under-sampling method in

financial distress prediction and SMOTE based sampling techniques popular in other fields such as

fraud detection.

The first hypothesis expects SMOTE-based sampling techniques to outperform under-sampling in

one-year-ahead of default prediction. In section 5.1 I compared seven sampling techniques for seven

different models. The conclusion for under-sampled models is consistent with the results of Bar-

boza et al. (2017). Ensemble techniques show increased accuracy and AUC, in particular Random

Forest. Over-sampling, as expected, shows unacceptably low recall. The number of misclassified

defaulted companies is too high for potential users, such as a bank, to trust the results due to the

high potential costs. SMOTE sampling, especially Borderline-1, shows the highest results mea-

sured in accuracy and AUC. The SMOTE-based sampling methods improve recall over random

over-sampling significantly but fail to classify half of the bankrupt companies correctly in Machine

Learning models (Boosting, XGBoost, RF). I conclude that under-sampling is the most consistent

method as a general model. However, the Borderline-1 for Logistic Regression outperforms all

under-sampling methods measured in AUC. This result contradicts Barboza et al. (2017), in that

statistical techniques can outperform machine learning models, in particular ensemble methods, by

sampling the data differently. Even if one further optimises the data set by using grid search, the

results for over-sampling can even deteriorate. Borderline-3 did limit the number of false positives,

however showed poor results in detecting ‘defaulting’ companies. The over-sampling technique

performed roughly equal to an unbalanced data set.

The second hypothesis expects that sampling affects features’ importance. In section 5.2 I test this

assumption with SHapley Additive exPlanations. With this cooperative game theory approach I can

analyse the feature contributions of a Machine Learning model. Here I further investigate XGBoost

because it is one of the ensemble methods that suffer from SMOTE-based sampling, unlike under-

sampling. Among the top four features, the top contributing ones remain fairly consistent except

Growth of Sales (GS) for Under-sampling. GS has significantly smaller Shapley values in the other

sampling methods, especially for Borderline-1. Thus, both global and local feature analysis shows

sampling techniques affect features such that the importance is based on the technique one chooses.
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To answer the main research question: Does sampling significantly affect bankruptcy prediction?

The results discussed above show that the performance of statistical techniques and machine learn-

ing models are dependent on the sampling methods. Furthermore, the feature importance is signifi-

cantly affected in machine learning such a features’ importance depends on the sampling technique.

Thus credit suppliers such as bank should be aware of the effect sampling has an the output and

use common sense for approving loans.

These results build on the existing evidence that machine learning outperforms statistical techniques

if one uses under-sampling. The results for Borderline-1 show that the algorithm can significantly

boost the performance of statistical techniques (Logistic Regression). Borderline-1, and other

SMOTE based techniques, is also a machine learning algorithm because it is built on K-nearest

neighbours. So the results are in line with previous works such as Barboza et al. (2017), but such

that sampling can significantly affect the performance of classical approaches such as Ohlson (1980).

Moreover, I test the feature importance of default prediction for the first time with Shapley Additive

Explanations. This tool allows one to for explain a machine learning models. I analysed the feature

importance and feature dependence, but this model is especially helpful for credit suppliers. The

package allows for example, a bank to directly show why a model predicts that a certain company

defaults or not.

The reliability of this data set is impacted by three factors. Firstly, I constructed the variables

Altman (1968) and Carton and Hofer (2006), following Barboza et al. (2017). In particular, the

Altman variables (X1 through X5) are widely applied throughout the literature and financial in-

dustry. As Beaver (1966) argues, the primary concern is not the validity of the ratios but the

accounting behind them. Companies sometimes manipulate the financial data, aware of the key

metrics used in finance, to achieve more funding or higher market value. This is known as ‘window

dressing’, and a famous example is the ‘cooking of the books’ of Enron.

Secondly, the dataset includes both liquidation (chapter 7) and bankruptcy (chapter 11). In both

cases, the company is unable to repay its debt, but sometimes board members and executives

choose to initiate bankruptcies to restructure a company (Balcaen and Ooghe, 2006). This suggest

there is a human element, not represented in the accounting data. Furthermore, if companies use

the ratios to detect ‘danger’ of defaulting, companies can act to mitigate potential financial distress

(Beaver, 1966). Therefore the observations can be misleading because active companies could have

gone bankrupt if no action was taken.

Thirdly, I only included accounting data as is standard in the financial distress literature. Therefore

I omitted external factors, including macro data. These include the seasonality of industries, the

cyclicality of the markets such as GDP growth or decline, ESG ratings and more. As argued earlier,
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accounting-based data fails to control for macro conditions (Richardson et al., 1998). Therefore

future research can extend the analysis by including relevant non-accounting features.

As a final note on future research, I considered using earning estimates. Due to the sparsity of the

data from the WRDS data set, this was neglected. Other data sets would be interesting but are

time-consuming to match and were therefore outside the scope of the thesis. Earning estimates can

be better predictors because earnings have no publication lag. This means the estimated earnings

could have higher predictive power than the earnings of yesteryear. Estimated earnings, namely,

look into the future instead of looking back. This includes analyst predictions of the economy, such

as GDP growth rates or the likelihood of a recession.
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Appendices

A. Abbreviations

Abbreviation Definition

AC Accuracy
ADASYN Adaptive Synthetic, a SMOTE-based extension
ANN Artificial Neural Networks
AUC Area Under ROC Curve
CRSP Center for Research in Security Prices
FP False Positives
FN False Negatives
MDA Multivariate Discriminant Analysis
QDA Quadratic Multivariate Discriminant Analysis
RE Recall, Sensitivity
RF Random Forest
ROC Receiver Operating Characteristic
SMOTE Synthetic Minority Oversampling Technique
SEC Securities and Exchange Commission
SHAP Shapley Additive Explanations
SVM Support Vector Machine
TN True Negatives
TP True Positives
XGBoost Extreme Gradient Boosting
WRDS Wharton Research Data Services

Table 10: List of Abbreviations

B. Variable Construction

Table 11: CRSP / Compustat Merged input variables for constructing variables.

Variable Compustat Code Description

Net Working Capital WCAP Working Capital (Balance Sheet)

Total Assets AT Assets - Total

Retained Earnings RE Retained Earnings

Earnings before interest and taxes EBIT Earnings Before Interest and Taxes

Market Value of share PRCC C Price Close - Annual - Calendar

Number of shares CSHO Common Shares Outstanding

Total Debt LT Liabilities - Total

Sales SALE Sales/Turnover (Net)

Employees EMP Employees

Net Income NI Net Income (Loss)

Book Value per share BKVLPS Book Value Per Share
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C. ADASYN derivation

This section describes the mathematical derivation of the SMOTE-based extension Adaptive Syn-

thetic (ADASYN) following the original paper He et al. (2008). First, ADASYN determines the

number synthetic observations to generate (G):

G = (|nnum− pnum|) ∗ β (8)

Where nnum is the number of majority observations and pnum is the number of minority ob-

servations. β ∈ [0, 1] is a parameter to set the balance level after sampling using ADASYN. In

this thesis, β is set to 0.5. Next for each observation xi, ADASYN finds the number of K-nearest

neighbours, like in SMOTE, and the number of majority observations ∆i. Then it calculates the

impurity ration impi:

impi =
∆i

K
(9)

Then all impurity ratios are normalised according to ˆimpi:

ˆimpi =
ri∑pnum

k=1 impj
(10)

Then the total number of synthetic points generated (gi) for observation xi is determined as:

gi = ˆimpi ∗G (11)

Finally, the algorithm loops for gi times for each observation xi to create new synthetic variables

using the following formula:

rj = xi + rand(0, 1) · (xi − xij) (12)

Where rj is a synthetic variables, and rand(0,1) is a random number generators between 0 and 1

using a uniform distribution. xij is one of k-neighbours of xi and j is between 1 and K. Therefore

the main difference between SMOTE and ADASYN is that ˆimpi and gi determine how many ob-

servations are created for each minority observation.

D. Logistic Regression

Logistic Regression to estimate the likelihood of a company to default in the next year. The target

variable is binary, and a relationship is estimated with the following logistic regression:
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PD = PR[Default next year = 1|X] = F (z) (13)

Where PD is the probability to default and F (z) logistic cumulative distribution function evaluated

at z, which is expressed as:

z = β0 + β1x1 + ...+ βkx
k (14)

Here x are the explanatory variables and β are the coefficients.

F (z) =
ez

1 + ez
=

1

1 + e−z
(15)

38



E. Simulation 1: ROC Plots

Figure 15: QDA ROC Curve for sampling techniques

Figure 16: Logistic Regression ROC Curve for sampling techniques

Figure 17: Artificial Neural Network ROC Curve for sampling techniques
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Figure 18: Linear SVM ROC Curve for sampling techniques

Figure 19: Boosting ROC Curve for sampling techniques

Figure 20: XGBoost ROC Curve for sampling techniques
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Figure 21: Random Forest ROC Curve for sampling techniques
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F. Simulation 2: Feature Importance

(a) Unbalanced (b) Random Under-Sampling

(c) SMOTE (d) Borderline-1

Figure 22: Illustration of various images
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G. Simulation 2: Dependence Plots

(a) Unbalanced (b) Random Under-sampling

(c) SMOTE (d) Borderline-1

Figure 23: Dependence plot of X1 (Liquidity)
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