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Abstract

Classification and Regression Trees (CART) are widely used Machine

Learning techniques, due to it’s versatility and interpretability. However,

the CART algorithm creates every split in isolation of the other splits, this

leads to suboptimal decision trees. A second downside is that decision trees

are not robust to varying training samples. A different training sample can

result in a different tree. Bertsimas and Dunn (2017) used a Mixed Integer

Program (MIP) to estimate the tree at once, achieving global optimality.

The downside of this method is that it does not perform well on larger

datasets. In this thesis I study four MIP formulation: OCT, BinOCT,

Benders and Flow. The main goal of this thesis is to apply these methods to

larger datasets. I use real world datasets from the UCI data repository and

synthetically created datasets. A secondary goal is to study whether optimal

tree methods make the trees more robust to different training samples. My

main finding is that the biggest influence on the computation time of the

MIP is the depth of the tree. If the depth of the tree is higher than two,

then only for datasets with less than 150 observations, the MIP is solved

to optimality. Since almost every problem requires deeper trees, which is

time-wise not feasible, the MIP approach seems to not to be a good method

to use at this moment in time. However, it does appear that optimal trees

are more robust to different training samples, though further research is

necessary to ensure.
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Symbols

Sets

B Set of branching nodes

L Set of leave nodes

T Set of terminal nodes

F Set of features

I Set of Observations

K Set of classes

A(n) Set of ancestor nodes

Flow Graph Variables

V Vertices of the flow graph

A Arcs of the flow graph

l(n), r(n) Left and right child node of n

a(n) Ancestor of node n

s Source node

t Sink node

Decision Variables

wn
k Binary variable: whether leave node n has label k

bnf Binary variable: whether feature f is used to branch on node n

zia(n),n Binary variable: whether observation i flows from a(n) to n

pn Binary variable: whether a prediction is made on node n

f Feature

k Class

I Individual observation

d Depth of the tree

λ regularization parameter
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Formulations

OCT Formulation from Bertsimas and Dunn (2017)

binOCT Formulation from Verwer and Zhang (2019)

FlowOCT Flow-formulation from Aghaei et al. (2021)

BendersOCT Benders-formulation from Aghaei et al. (2021)
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1 Introduction

In this research I investigate whether the popular decision tree can be improved and

solved to optimality for large datasets. A decision tree can be used for classification

and regression problems. Although, a single decision tree might not always perform

as good as more advanced Machine Learning techniques, in terms of prediction

accuracy, it is still a widely-used technique. Because decision trees are versatile,

fast and easily interpretable, it is also a popular tool for policy- and decision

makers.

The Classification and Regression Tree (CART), proposed by Breiman et al.

(1984), is the most common form of a decision tree,it has almost 17.000 citations

according to semanticscholar in March 2022. However, there are two main disad-

vantages with this approach.

Firstly, CART trees are highly variable. The tree can have a completely dif-

ferent form depending on which part of the data is used to train the tree. It is

possible that when a different set of observations is used to train CART, the re-

sulting decision tree has a different form. Needless to say, this is not desirable from

a policy and decision making perspective. Because with a highly variable tree, the

decisions or policies that are created might be contingent upon the subset of the

data that is used to train the tree.

Secondly, the final tree can be suboptimal due to the way the tree is con-

structed. CART is constructed in a top-down approach. Starting from the root

node, new splits are created until a stopping condition is met. Stopping conditions

can be: the maximum depth of the tree, a minimum number of datapoints in every

node, a minimum increase per split, etc. Every split is created by optimizing an

impurity measure, for example the gini- or entropy-coefficient. These impurity

measures ensure that the data is split optimally into the child nodes. However,

the impurity measure only optimizes the distribution of the data for the next split.

It does not take into account the splits that are yet to come, resulting in the fact

that CART might be suboptimal.

In this thesis, I investigate a method that formulates the problem of finding a

classification tree as a Mixed Integer Program (MIP). This formulation makes it

possible to estimate the tree at once while optimizing an objective function, like

the Mean Squared Error (MSE) or the accuracy. Bertsimas and Dunn (2017) were
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the first to successfully create decision trees through solving a MIP. There are three

main factors that influence the size of the MIP, 1) the number of observations in

the dataset, 2) the number of features in the dataset and 3) the depth of the tree.

This MIP problem is NP-hard, which means that there is no known algorithm that

can solve the problem in polynomial time. Therefore, the approach of Bertsimas

and Dunn takes a long time to find optimal trees, especially for larger datasets

and deeper trees.

The goal of this thesis is to study whether optimal tree methods can be applied

to larger datasets, and if not, whether I can create a method that is able to handle

larger datasets. To answer this question, I study the effect of the number of

observations, number of features and the depth of the tree on the computation

time. By discovering which factor influences the computation time the most, it

becomes possible to create a targeted solution.

Secondly, I aim to study whether optimal tree methods reduce the variability

that we observe in CART trees. The form and variables in a CART tree can vary

depending on the training sample used to train the tree. I want to study whether

the shape and the variables in an optimal tree, are more robust than CART to

different training samples. I study this by comparing the true discovery rate1 for

the synthetic datasets and the standard deviation of the accuracy for different

training samples.

To study the influence of different factors in the complexity of the MIP, I use

two kind of datasets. On the one hand, synthetically created datasets, of which

the data-generating process (DGP) is known. On the other hand, a variety of

real-world datasets from the UCI Machine Learning Repository. The synthetically

created datasets are used to study the effect of different parameters (number of

observations, number of features, depth of the tree) on the computation time. The

real-world datasets are used to study how the methods fare when applied to real

datasets. In this paper I study the performance of CART and four optimal tree

methods: OCT (Bertsimas and Dunn, 2017), BinOCT (Verwer and Zhang, 2019),

Benders and Flow (Aghaei et al., 2021) on these datasets.

From analyzing the four MIP methods and CART on the datasets, I discovered

that the biggest influence on the running time of the method is the depth of the

1the percentage of features that is both in the decision tree and the features used to create

the dataset
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tree. For trees that have a higher depth than two, the optimal tree methods are

only able to find an optimal tree for small datasets with less than 150 observations.

Therefore, I believe that it is currently not possible to apply these methods on

larger and deeper trees, since the trees will start being too small to have good

predictive power.

Besides the optimality, I also studied the discovery rate for the synthetic

datasets and the variance of the mean accuracy, in order to find out how vari-

able the trees are between different training samples.

I found that the true discovery rate of the MIP approaches is higher than of

CART and that the standard deviation of every method is low. The standard

deviation of the mean accuracy turns out to be very low for every method (also for

CART). This might indicate that the optimal tree methods result in more robust

trees. However, I discovered that the trees can be different, in spite of the same

true discovery rate and the same accuracy. Therefore, the proxies used might not

be very suitable to research the robustness of the trees.

In the remainder of this paper I first give an overview of the existing literature

(Section 2). Then I discuss the theory that is necessary for a good understanding

of the methodology (Section 3). After this, I discuss the methods that are used

(Section 4), followed by the result section (Section 5). I end with a conclusion and

some ideas for future research (Section 6).
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2 Literature Review

The idea to form the tree at once, was already proposed in the original work on

CART. The authors write (Breiman et al., 1984, p.42):

Finally, another problem frequently mentioned (by others, not by us)

is that the tree procedure is only one-step optimal and not overall opti-

mal. (...) If one could search all possible partitions (...) the two results

might be quite different. (...) At this stage of computer technology,

an overall optimal tree growing procedure does not appear feasible for

any reasonably sized dataset.

So, the top-down approach with which CART is created is not because Breiman

et al. deemed this the best approach. However, their approach was taken due to

computational limitations in finding an optimal tree. Because it was known that

the problem of constructing optimal binary decision trees is NP-hard (Hyafil and

Rivest, 1976).

Since, the publication of the work on CART, several approaches have been

proposed to create optimal trees. A few of the different approaches are: linear

optimization (Bennett, 1992), continuous optimization (Bennett and Blue, 1996)

and genetic algorithms (Son, 1998). However, none of these approaches provide

certifiable optimal trees and there is no way to prove that the tree constructed

through these methods is optimal. Something which is possible when using MIP.

Even though it was known that many statistical problems can be formulated

in a MIO way (Arthanari, 1981), it took a long time before someone applied the

MIO approach to practical problems. According to Bertsimas and Dunn (2017)

the reason that this approach has not been tried before is the common perception

that MIO problems are intractable, i.e. not computationally feasible, for small to

medium instances.

There has been an astonishing increase in the computational power of MIO

solvers and the computation power of computers. Bertsimas and Dunn note that

in the last 25 years the increase in the computational power of mixed-integer

linear-programming(MILP) solvers increased by approximately 800 billion times.

Due to changes and improvements in the solvers and an increase in computational

hardware. This large increase has led Bertsimas to believe that the view that MIO
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problems are intractable is outdated. He tackled multiple statistical problems

by applying MIO methods. He succesfully applied MIO to: least quantile re-

gression(Bertsimas and Mazumder, 2014), linear regression(Bertsimas and King,

2016), logistic regression (Bertsimas and King, 2017) and best subset selection

(Bertsimas et al., 2015).

After being succesful with MIO in the above mentioned statistical problems,

Bertsimas and Dunn tackled the problem of suboptimal decision trees in Bertsi-

mas and Dunn (2017). They propose a novel formulation of the decision trees as

an MIO, resulting in optimal classification trees (OCT). The method performed

well on training and test data. It outperformed CART on all instances, by ap-

proximately 1-2%, in an out-of-sample comparison on 53 datasets from the UCI

machine learning repository.

However, the method of Bertsimas and Dunn (2017) becomes computationally

infeasible for a treedepth larger than 5 and a dataset with more than approximately

5500 observations. This is not suprising when we study the factors that influence

the number of decision variables and constraints. The tree depth, the number of

observations and the number of variables all play a role.

Datasets of more than 5500 observations are often encountered. Hence, it would

be very beneficial to find ways in which the framework of Bertsimas and Dunn

(2017) can be applied to applications where the datasets that are encountered are

larger. Creating a MIO that can tackle larger datasets has been tried by multiple

academics since the publication of Bertsimas and Dunn (2017) paper.

The work of Bertsimas and Dunn (2017) opened the road to more research on

the topic of optimally creating classification trees. There are two main ways in

which researchers tried to improve upon the original work on optimal classification

trees(OCT). Either by changing the settings of the MIO solver, so that the solver

solves the problem faster, or by creating a better formulation. In this case ’better’

is either a formulation that uses less decision variables, or a formulation that is

tighter and hence, solves the problem faster.

The work of Feijen (2018) falls mainly in the first category. He continues

with the framework of Bertsimas and Dunn (2017). Feijen focuses on finding

smart branching strategies, his adaption to the solver reduces the running times

significantly. However, he tests his methods only on the Iris dataset (Fisher, 1936),

a small dataset with only 150 observations, four features and three classes. Next
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to that, the trees he constructs have a maximum depth of two. These two factors

make it questionable whether this approach is sufficient for larger datasets.

Verwer and Zhang (2019) use the second approach and formulate the decision

tree as a binary linear program, meaning that the formulation only uses binary vari-

ables. This formulation has the benefit that the number of decision variables in the

formulation is largely independent of the number of rows in the dataset. However,

in the process of reducing the number of decision variables the Linear Optimiza-

tion (LO) relaxation, compared to the formulation of Bertsimas and Dunn (2017)

is less strong. The result is that neither method is consistently outperforming the

other method.

Aghaei et al. (2021) also follows the second approach, they propose a flow

formulation to obtain OCT. In this formulation, correctly identified datapoints

flow from the root node through the tree, while incorrectly classified datapoints

are not allowed to flow through the tree. The number of decision variables is the

same as in the formulation of Bertsimas and Dunn (2017). However, the linear

programming relaxation is stronger. Next to the stronger formulation they are able

to decompose the problem into multiple smaller problems that are easily solvable.

Using the Benders’ decomposition algorithm (Benders, 1962), they are able to

speed-up computation and reduce computer memory consumption, allowing the

solution of larger MIO problems. They find that this strong formulation leads to

solving the problem 31 times as fast and obtaining an out-of-sample performance

increase by up to 8% compared to existing OCT-approaches.
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3 Theory

The main goal of this thesis is to study whether optimal tree methods can be

applied to larger datasets. CART is the main method to estimate decision trees.

However, there are a few limitations to CART which are resolved by the optimal

tree methods. In this section I look at the basic idea of CART, and take a closer

look at the limitations of CART. Dunn (2018) is taken as a guide to writing

the section on CART, the figures are also taken from Dunn (2018). Secondly, I

discuss the theory on how to solve a Mixed-Integer Program(MIP). Followed by a

discussion on how Gurobi, the solver used in this thesis, solves an MIP. Finally, I

give some basic theory on Benders’ decomposition, a method that is used in this

thesis to solve MIP faster.

3.1 CART Decision Tree

CART takes a top-down approach to determine the partitions in the tree. Starting

from the root node, a measure is optimized to find the best next split. The points

are divided according to this split. Then, the same measure is optimized at the

new partition. Common impurity measures for classification problems are the gini-

or entropy-coefficient. The impurity measure quantifies the similarity of the labels

among points in a group. The lower the value, the more similar the points are in

that group.

This top-down approach continues at each new node until one of the following

stopping criteria is met:

1. The impurity of the node cannot be reduced further (all the points in the

node have the same label).

2. The node being partitioned has fewer points than the minimum allowed leaf

size, Nmin.

3. The maximum depth, dmax, is reached

When the stopping criteria is met for each new node ( i.e. the partitioning

ends), then labels are assigned to the leaf nodes. The label of leaf nodes is used

to predict the label of the new data points. The label that is assigned to the leaf

node, is the mode of the labels of the training points that fall into that leaf node.
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3.1.1 Example

In this section I illustrate the workings of CART applied to the Iris dataset (An-

derson, 1936), a dataset from the UCI Machine Learning Repository (Dua and

Graff, 2017). The Iris Dataset contains four features (length and width of sepals

and petals) of 150 samples of three different species of Iris (Iris setosa, Iris virginica

and Iris versicolor). The goal is to predict the species of Iris using only the four

physical measurements.

In Figure 1a the data is plotted with the Length and Width on the x- and y-

axis, respectively. Figure 1b-e show the consecutive splits of the CART algorithm

on the dataset. The first split is on the petal length. Since this partitions Setosa

perfectly from the other two species, no further split is needed on the left side of

the partitioning. The second split, splits on petal width. Since the split doesn’t

completely seperate the species Versicolor and Virginica from each other, next

splits can be made. The third and fourth split make the separation between the

species Versicolor and Virginica pure. Figure 1f shows the final labels assigned to

each partitioning. The final partitioning is also shown in tree form in Figure 2.

One of the problems with CART, is the risk of overfitting the tree on the

training data. With a very large tree, it is easy to achieve a high prediction

accuracy on the training data, but probable that the accuracy on the test data

is low. The chance of overfitting can be reduced by controlling for the trade-off

between the training accuracy and the number of splits in the tree. The more

splits in a tree, the higher the complexity of the tree.

In CART, this trade-off is regulated by introducing a cost-complexity parame-

ter(CCP), α. The CCP ensures that a new split improves the accuracy by at least

a certain percentage. If not, then the split is removed from the decision tree. For

an α of 0.01, each split needs to improve the accuracy with more than 0.01. So

through this parameter, the complexity of the final tree can be controlled. Hence,

the complexity of the tree and the chances of overfitting can be reduced. The

optimal value of the CCP is often determined through cross-validation.

After the tree has been fitted on the training data, the accuracy improvement

is determined for each split in the tree. If the accuracy improvement due to a split

is lower than α, then this split is replaced with a single leaf node. This process is

known as pruning.
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Figure 1: An example of the CART algorithm applied to the Iris dataset that

shows the recursive partitioning step-by-step.
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Figure 2: The tree learned by CART for the Iris dataset.

In the above example, the fourth split, applied in Figure 1e, creates a partition

that increases the accuracy by 1 point. Without this split, the misclassification

would be 2 points, while with the split, the misclassification is 1 point. The split

thus only increased the accuracy by 1 point. The other splits in the tree are much

more significant in terms of accuracy improvement. Through pruning, the fourth

split can be removed (depending on the value of the CCP). This would result in

the tree in Figure 3.

Figure 3: The CART tree learned for the Iris dataset after pruning.

Two of CARTs main problems are, 1) the high variability and 2) the greedy

top-down approach. Another problem might be the use of a gini- and entropy

coefficient instead of the accuracy to build the tree. In this section, I touch upon

these problems of CART and give a graphical example.

The main problem with CART is the greedy nature. In each branching node, a

new split is determined in isolation of future splits. This can lead to a split that is

initially ’strong’, i.e. a split that has a low impurity measure, but the splits after

this split are all ’weak’, i.e. there are only high impurity measures. The danger

is that the CART tree doesn’t capture the true characteristics of the dataset well,

which might lead to a poor performance on the test set. Figure 4 shows an example
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where a tree grown by the top-down approach is very different from the tree that

generated the data.

Figure 4: An example of CART on a synthetic dataset. Figure 4a shows the data,

and 4b shows the splits that are used to generate the data. Figure 4c-f show the

splits that are made in a greedy approach. The final tree is totally different from

the tree used to generate the data.

A second problem with CART is the high variability in the tree. Depending

on the training set used, the splits and the shape of the tree can vary. One of the

ways that decision trees are used is to make policies. Because the rules given by a

decision tree are easy to interpret. However, if the trees differ, then it is hard to

create consistent policies.

Another limitation of CART is the use of an the gini- and entropy coefficient,

rather than the misclassification rate when selecting the next split. Given that the

misclassification rate is the final objective of the decision tree, it is peculiar that an

impurity measure is used to build the tree. Breiman et al. (1984, p. 97) explains

why CART uses an impurity measure instead of the misclassification rate:

... the [misclassification] criterion does not seem to appropriately re-

ward splits that are more desirable in the context of the continued
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growth of the tree. ... This problem is largely caused by the fact

that our tree growing structure is based on a one-step optimization

procedure.

This also becomes clear from Figure 4. From Figure 4d to 4e, a split is added that

improves the impurity measure, but does not improve the misclassification error.

So if the misclassification error would be optimized, we could not continue growing

the tree. It’s sensible to believe that growing the decision tree by optimizing the

final objective leads to better splits. However, because of top-down induction, this

is not possible.

By estimating the entire tree at once, CARTs problems might be resolved.

Each split is determined with knowledge of all the other splits. On top of that, the

CCP can be applied during the growing, instead of after the tree has been grown,

as is the case with CART. This results in the optimal decision tree. A tree can be

estimated at once by writing it as a MIP.

Every decision tree has to satisfy a few rules. For example: at each node just

one feature can be used to branch upon; a datapoint cannot end up in multiple

leave nodes; an observation can only go left or right on a branching node, etc.

By writing all the rules down as constraints in a MIP, the decision tree can be

estimated at once by solving the MIP.

3.2 Solving a MIP

There are different ways to formulate a MIP. Some formulations are stronger (i.e.

have a smaller array of possible solutions, and hence are easier to solve), than

others. The different MIPs can be solved by mathematical programming solvers.

There are a wide range of commercial and non-commercial solvers available. A

few of the most common solvers are: Gurobi(Gurobi Optimization, LLC, 2022),

CPLEX(Cplex, 2009), Xpress(FICO, 2022). In Mittelmann (2018), recent versions

of the different solvers are compared to each other on a benchmarking dataset.

From this comparision it becomes clear that Gurobi is the best solver, in terms of

speed and number of solved problems.2 Since, Gurobi is the fastest solver in this

2Mittelmann (2018) is the last comparison I can find where GUROBI, CPLEX and Xpress

are compared together. Apparently this is due to a conflict between IBM, FICO and GUROBI.

Gurobi misused the results of the 2018 benchmark results to make their solver appear better
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benchmark we use this solver to solve the MIP problems.

Mathematical programming solvers use branch-and-bound to solve the MIP.

In this section I briefly discuss branch-and-bound following the Gurobi man-

ual(Gurobi Optimization, LLC, 2022). In a basic branch-and-bound we begin

with the original MIP. Due to the integrality restrictions it is hard to solve the

MIP directly. Hence, the integrality restrictions are dropped. The resulting lin-

ear program(LP) is the relaxation of the original MIP. Solving an LP problem is

computationally easier than solving a MIP. It can happen that the solution to the

LP problem satisfies all the integrality constraints, in that case this solution is

also the solution to the MIP. However, it is more likely that the variables that are

supposed to be integers are fractional in the LP-solution. In that case we branch

on one of these fractional variables.

As an example suppose that we have the MIP denoted by P0. In the LP

relaxation one of the fractional variable is x and it has a value of 7.7. We can

then exclude this value by solving one problem with the added constraint x ≤ 7

and one problem with the added constraint x ≥ 8. The variable x is then called

the branching variable, and by branching on x we produce two sub-MIPs P1(P0

with the added constraint x ≤ 7) and P2 (P0 with the added constraint x ≥ 8). If

we compute the optimal solution to P1 and P2 then the best of these two optimal

solutions is the optimal solution to P0. So P0 is replaced by two sub-MIPs P1

and P2. To solve P1 and P2 we might again need to relax the MIP and choose a

branching variable. In doing so we generate what is called a search tree. Every

MIP generated is a node of the tree, with P0 being the root node. The leaves of

the tree are all the nodes that we haven’t yet branched from. If a point is reached

in which we can solve, or otherwise dispose of all leaf nodes, then we solved the

original MIP.

A solved or disposed node is called a fathomed node. There are three ways in

which a node can be fathomed. The first way is to find a solution that satisfies all

the integrality restrictions. Then this is a feasible solution to the original MIP. The

current node is fathomed, since there is no need to branch on this node anymore.

If the integer solution is the best integer solution found up to this point (i.e. the

solution with the best objective value), then this solution is the incumbent. The

compared to the CPLEX and Xpress solver. IBM and FICO reacted by requesting the results of

their solvers to be removed from the benchmarks(Mittelmann, 2020)
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incumbent is only updated when the new integer solution is better than a previous

integer solution, or if there was no incumbent solution (at the start of the search

there is no incumbent solution).

The second way in which a node can be fathomed is when we branch and the

added restriction makes the LP-relaxation infeasible. If there is no feasible solution

to the LP relaxation there is no feasible solution to the MIP problem.

The third way in which a node is fathomed is, when the solution to the LP-

relaxation is worse than the incumbent solution. Since the solution to the LP

relaxation is a lower bound (in case of a minimization problem), to the optimal

MIP solution. Thus, the optimal solution of the search from that node is never

better than the incumbent.

Another important concept in the branch-and-bound method is the optimality

gap. The optimality gap measures the difference between the best known upper

bound and the best known lower bound. I discuss the bounds in the case of a

minimization problem (for a maximization problem the upper bound becomes a

lower bound and vice versa). The upper bound is the incumbent solution. The

lower bound is the minimum of all the objective values of the LP-relaxations.

Because, the optimal solution to the MIP is never higher than the optimal solution

of its LP-relaxation. Hence, the optimal solution to the original problem is never

better than the minimum value of all the LP-relaxations in the leaf nodes. The

difference between the lower and upper bound is called the optimality gap.

The optimality gap becomes smaller throughout the process of branch-and-

bound. When branching is applied constraints are added to the LP relaxation and

hence the optimal value to the LP relaxation increases. Ensuring a higher lower

bound. When a new incumbent solution is found the upper bound is updated.

When the upper and lower bound meet, i.e. the optimality gap is zero, optimality

is reached and we found the solution to the original problem.

3.3 Gurobi and Branch-and-Bound

The Gurobi solver does not just use a textbook branch-and-bound algorithm. They

improved their solver with a variety of methods that increase the solving time

significantly. The four biggest contributors are presolve, cutting planes, heuristics

and parallelism. In the coming section I elaborate on these methods.
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3.3.1 Presolve

Presolve is often applied in advance of the start of the branch-and-bound proce-

dure. It reduces the problem, with the intend to reduce the size and tighten the

formulation. A simple example is the following. Suppose that a MIP problem and

the following constraints are part of the formulation:

2x1 + 2x2 ≤ 1

x1 ≥ 0

x2 ≥ 0

Dividing both sides by 2 leads to:

x1 + x2 ≤
1

2

Since x1 and x2 are both required to be non-negative integers this inequality clearly

implies that x1 = x2 = 0. Hence both of these variables and the constraint

can be removed from the formulation. By removing these variables the set of

feasible integer solutions did not change, but the set of feasible solutions to the LP

relaxation did. The set of feasible solutions to the LP relaxation became smaller.

Tightening the MIP formulation can be very beneficial to the speed with which a

MIP problem is solved.

3.3.2 Cutting Planes

The second idea that improves the performance of a solver is to add cutting planes.

The idea of a cutting plane is similar to presolve. Namely, tighten the formulation

by removing undesirable fractional solutions. Instead of tightening the formula-

tion before starting the branch-and-bound, as in presolve, this is done during the

solution process. During the solution process constraints are added to the LP re-

laxation, the constraint is chosen in such a way that it cuts off a fractional solution.

This is similar to branching where, to remove a fractional solution, a constraint is

added to the LP relaxation. However, adding a cutting plane does not have the

undesirable effect of creating sub-problems.

Figure 5 shows an example of a cutting plane. The dots in the figure are integer

points and the grey area is the set of feasible solutions. The purple line shows the

objective function, each point on the purple line has the same value. The closer
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Figure 5: From Klotz and Newman (2013): An example of cutting planes.

to the origin the worse the optimal solution. Hence, the optimal solution to the

LP relaxation is at the corner that has a circle around it. At this point the the

objective function has the maximum distance to the origin without the solution

being infeasible. The best IP solution is the circled dot.

The solution to an LP relaxation can be found relatively quickly, since existing

methods(like simplex, or the interior point method) are able to find the vertice at

which the solution is optimal. However, finding the MIP solution is a lot harder.

By adding a cutting plane (the green line in Figure 5) a set of the fractional

solutions is removed. Next to that, it might happen that an IP solution becomes

the vertice of the set of feasible solutions (as is the case in Figure 5) . This is an

ideal scenario, since the solution to the LP relaxation (which is easier to find) is

also the solution to the IP.

3.3.3 Heuristics

Gurobi also implements heuristics to quickly find feasible solutions (even though it

is unlikely to be optimal), this may or may not improve the incumbent. If it doesn’t

improve the incumbent the effort is wasted. However, having good incumbent, and

finding them quickly, can speed up the branch-and-bound algorithm. Thus, they

argue, it is worth to invest a bit of computation time at each node to find a feasible

solution. Having a good incumbent tightens the bound, which makes it more likely

that the value of an LP relaxation exceeds the bound ( in a minimization problem),

which in turn leads to a node being fathomed.

One example of such a heuristic is to take the solution to the LP relaxation
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and analyze which variables are close to an integer value. Then, they round these

fractional solutions to the nearby value, and solve the LP relaxation again. This is

done iteratively in the hope that all variables fall in line and the feasible solution

has a better objective value than the current incumbent.

3.3.4 Parallelism

The last big contributor to the speed-up of searching the search tree is parallelism.

The concept is easy. Instead of processing one node at a time the nodes are pro-

cessed in parallel. Next to these above mentioned techniques Gurobi’s MIP solver

has more techniques. On their website they mention; sophisticated branch variable

selection, node presolve, symmetry detection and disjoint subtree detection. The

goal in most cases is to limit the size of the branch-and-bound tree that must be

explored.

3.4 Introduction to Benders’ Decomposition

With Benders’ decomposition (Benders, 1962) it becomes possible to obtain solu-

tions for large problems that can be split into a master problem(MP) and subprob-

lems(SP). The MP only contains a subset of the original variables and a subset of

the constraints. A schematic representation of Benders’ Decomposition is given in

Figure 6. The MP and SP are in a continuous feedback loop. The MP is solved to

optimality, resulting in a solution (and hence values for the subset of variables).

The solution of the MP is used in the SP, then the SP are solved. If there is a

constraint that is not added to the MP, but violated by the current solution, then

this constraint is added to the MP and the MP is solved again. In each iteration

three scenarios can happen.

The first scenario is that a subproblem is unbounded. A problem is unbounded

when the solution is feasible, but the objective function can be improved arbitrarily.

In that case a feasibility constraint is added to the MP. This feasibility constraint

ensures that when the MP is solved again, it is not possible to get the solution

that resulted in an unbounded subproblem.

The second scenario is that a subproblem is bounded, but the optimal solution

is better than the optimal solution of the MP. This cannot be a feasible solution,

since the MP is a relaxation of the full problem (remember that only a subset of
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Figure 6: From Rahmaniani et al. (2017): A schematic representation of Benders’

Decomposition

constraints are used), hence the solution to the MP is a lower bound(LB) to the

optimal solution. If this is the case, then an optimality cut is added to the MP

and the problem is solved again.

This procedure of adding constraints is repeated until no new constraints have

to be added to the MP. When no new constraints have to be added, the solution

to the MP is feasible, unbounded, and not lower than the LB.
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4 Methodology

In this section I discuss the methods that are proposed in Aghaei et al. (2021).

Due to the strong Linear Optimization relaxation and the high speed-up compared

to BinOCT (Verwer and Zhang, 2019) and OCT (Bertsimas and Dunn, 2017), the

framework of Aghaei et al. (2021) seems to be the most applicable for larger

datasets. I compare this method to CART, OCT and BinOCT, but I don’t discuss

these methods here. The formulation used for OCT and BinOCT can be found in

Aghaei et al. (2021, EC.2.) and Verwer and Zhang (2019) respectively.

4.1 Notation of Decision Trees and Acyclic Flow Graphs

For every decision tree a maximum number of consecutive splits is chosen a priori,

this is the depth, d, of the tree. In a decision tree there is a distinction between

branch and leave nodes. On the branching nodes, the dataset is split on a certain

feature, a leave node is the final node of the tree. To each leave, a label is assigned

depending on the majority class in the leaf.

Another distinction that can be made is between balanced and imbalanced

trees. In a balanced decision tree, the number of splits from the root node to the

leave node is the same for every possible decision path. In an imbalanced tree the

number of consecutive splits before reaching a leaf node is not the same for every

decision path. This is a pruned tree, through pruning the the chance of overfitting

is reduced.

In a balanced tree, every non-leaf node has exactly two children nodes. The

nodes are numbered in the order they appear in a breadth-first search, the bottom

right node has number 2d+1−1. The set of branching nodes, B, are the first 2d−1

nodes. The remaining 2d nodes are the set of leave nodes, L = {2d, 2d+1, ..., 2d+1−
1}. The left side of Figure 7 shows an example of a balanced decision tree of depth

two.

Bertsimas and Dunn (2017) and Verwer and Zhang (2019) use a Mixed Integer

Program (MIP) to model a tree as seen in the left side of Figure 7. Aghaei et al.

(2021) slightly changes this tree, to obtain a stronger formulation. They add a

source node, s, and a sink node, t, as can be seen in the right side of Figure

7. Adding these two nodes makes it possible to model the decision tree as an

acyclic flow graph. All the datapoints flow into the graph from source node s. If
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Figure 7: From Aghaei et al. (2021): A balanced decision tree of depth 2(left) and

the associated flow graph(right). Here, V = {s, 1, 2, ..., 6, 7, t},B = {1, 2, 3},L =

{4, 5, 6, 7} and A = {(s, 1), (1, 2), ..., (6, t), (7, t)}

an observation is correctly predicted, it flows through the whole graph, from the

source node to the sink node. However, if an observation is not predicted correctly

then the observation stops in a leave node, and does not flow through to the sink

node. In the optimal tree, the flow from the source node to the sink node is the

highest. In the MIP of Aghaei et al. (2021) the flow through the tree is optimized.

In this paragraph I give the formal definition of a flow graph corresponding

to a balanced decision tree of depth d. The vertices, V , of the flow graph are

V := {s, t} ∪ B ∪ L. The arcs, A, are

A := {(n, l(n)) : n ∈ B} ∪ {(n, r(n)) : n ∈ B} ∪ {(s, 1)} ∪ {(n, t) : n ∈ L}.

Where l(n), the left child node of node n, is mathematically defined as l(n) := 2n.

For r(n), the right child node of node n, r(n) := 2n + 1. The ancestor of node

n ∈ B ∪ L is a(n) :=
⌊
n
2

⌋
when n 6= 1 and a(1) = s.

The notation for an imbalanced trees is almost the same as for a balanced tree.

There is a set of branching nodes, B := {1, ..., 2d− 1} and a set of terminal nodes,

T = {2d, ..., 2d+1 − 1}. Nodes {2d, ..., 2d+1 − 1} are not called leave nodes, as in

balanced trees. In an imbalanced tree node n ∈ B ∪ T is only called a leaf node

when no branching occurs in this node.

In the formulation for balanced tree there is no flow possible from node n ∈ B
to t. However, for an imbalanced tree this is possible. So the set of arcs, A, is

supplemented with arcs that go from any branching node to the sink node, t. This
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Figure 8: From Aghaei et al. (2021): The flow graph to model an imbalanced

decision tree of maximum depth 2(right). Here, V = {s, 1, 2, ..., 6, 7, t},B =

{1, 2, 3}, T = {4, 5, 6, 7} and A = {(s, 1), (1, 2), (1, t), ..., (6, t), (7, t)}

results in the set of arcs

A := {(n, l(n)) : n ∈ B} ∪ {(n, r(n)) : n ∈ B} ∪ {(s, 1)} ∪ {(n, t) : n ∈ T ∪ B}.

An example of this can be found in Figure 8.

4.2 MIO Flow Formulation for Balanced Trees

In this section I discuss the strong formulation of Aghaei et al. (2021) to optimize

a decision tree. Besides the LP-relaxation of their formulation being stronger than

other formulations, it also perfectly lends itself for Benders’ Decomposition (which

is discussed in Section 3.4). The strong formulation and Benders’ Decomposition

are two advantages that reduce the running time significantly. To model the acyclic

flow graph as a binary decision tree, three set of variables are used: w, b and z. The

variable w is used to indicate the label of the leaf nodes. The variable b indicates

the features that are used to branch. Variable z dictates the flow through the

graph. In the next paragraph I discuss these three types of decision variables more

elaborately.

The variable bnf , n ∈ B and f ∈ F , is used to indicate whether feature f is

used to branch on node n. This variable is one, if and only if feature f is used to

branch at node n.

The binary variable wn
k ∈ {0, 1}, k ∈ K and n ∈ L, is used to indicate what the
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label of leaf node n is. For example, if the majority of datapoints in the first leaf

node belong to the second class, then w1
2 = 1.

The z variables are routing variables, dictating whether an observation passes

through a certain arc. The variable zia(n),n ∈ {0, 1} , for n ∈ B ∪ L and i ∈ I,

is one if and only if observation i is correctly classified and passes through arc

(a(n), n)(which is the arc between node n and it’s ancestor) and zero otherwise.

The variable that dictates the flow from the leaf nodes to the sink node is zin,t ∈
{0, 1}, for n ∈ L and i ∈ I. The variable zin,t is one, if and only if datapoint i

traverses leaf node n and the datapoint is correctly classified, if the datapoint is

correctly classified it holds that wn
yi = 1.

A decision tree of depth d, fitted on the dataset D := {xi, yi}i∈I , with |I|
observations, xi consisting of F binary features, xi ∈ {0, 1}F , and K different

classes where yi is the class that observation i belongs to can be modelled as

follows:

max
∑
i∈I

∑
n∈L

zin,t (3a)

subject to
∑
f∈F

bnf = 1 ∀n ∈ B, (3b)

zia(n),n = zin,l(n) + zin,r(n) ∀n ∈ B, i ∈ I (3c)

zia(n),n = zin,t ∀n ∈ L, i ∈ I (3d)

zis,1 ≤ 1 ∀i ∈ I (3e)

zin,l(n) ≤
∑

f∈F :xi
f=0

bnf ∀n ∈ B, i ∈ I (3f)

zin,r(n) ≤
∑

f∈F :xi
f=1

bnf ∀n ∈ B, i ∈ I (3g)

zin,t ≤ wn
yi ∀n ∈ L, i ∈ I (3h)∑

k∈K

wn
k = 1 ∀n ∈ L (3i)

wn
k ∈ {0, 1} ∀n ∈ L, k ∈ K (3j)

bnf ∈ {0, 1} ∀n ∈ B, f ∈ F (3k)

zia(n),n ∈ {0, 1} ∀n ∈ B ∪ L, i ∈ I (3l)

zin,t ∈ {0, 1} ∀n ∈ L, i ∈ I. (3m)
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The objective (3a) optimizes the flow through the graph, or in other words the

total number of correctly classified observations. The first constraint (3b) ensures

that at every branching node exactly one feature is used to branch on. The second

constraint (3c) is a flow conservation constraint. Every datapoint i that enters

branching node n needs to leave that node either to the left or to the right. In a

similar fashion, the third constraint (3d) makes sure that every datapoint i that

enters leaf node n goes to the sink node. The fourth constraint (3e) limits the units

of flow that can enter the graph, a maximum of one flow unit per observation

can enter the graph. The fifth (3f) and sixth (3g) constraints, ensure that an

observation goes left when xif = 0 and right when xif = 0, with f being the feature

used to branch on at node n. Because of the flow conservation constraint (3c), an

observation that arrives at node n, has to leave it to either the left or the right.

The seventh constraint (3h), only allows correctly classified observations to flow

to the sink node. Finally, constraint 3i ensures that each leaf node is assigned to

one predicted class k ∈ K.

Even though the formulation of Aghaei et al. (2021) uses binary features, it

can be applied to non-binary features as well. There are two kind of features,

quantitative and categorical features. Quantitative features can be discrete (i.e.

the feature can only take certain values) and continuous (i.e. the feature can

take any value). Categorical features can be categorized. These categories can be

ordinal (the order in the categories matter) or nominal (the order in the categories

doesn’t matter). All these different kind of variables can be preprocessed and

changed into binary variables.

Categorical nominal variables can be changed into binary variables using one-

hot encoding. For every level of the feature, a binary column of size 1 × |I| is

created. Entry i in this binary column is one, if and only if the categorical value

of this observation corresponds to the level of the binary column. For categorical

ordinal variables and quantitative features you can follow a similar approach. For

these kind of variables, the binary column has value one, if and only if the main

column has the corresponding value, or any value smaller than it.
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4.3 MIO Flow Formulation for Imbalanced Trees

Formulation 3 models balanced trees, meaning that the number of splits between

the root node to each leaf node is the same length. However, this might result in

overfitting and hence it is desirable to prune the branches. When the branches are

pruned the tree is imbalanced, meaning that the path from the root node to the

leaf node is not always of the same length. In CART pruning is done after the tree

has been created, with OCT pruning is incorporated in the MIP. In this section I

extend Formulation 3 to imbalanced trees.

Next to the decision variables that are used for formulation 3, the binary vari-

able pn is introduced for every node n ∈ B ∪T . This variable is one, if and only if

we make a prediction at node n. Furthermore, A(n) and λ are introduced. A(n)

is the set of all the ancestor nodes of node n. The parameter λ ∈ [0, 1] is a regular-

ization parameter. The formulation for an imbalanced decision tree is as follows
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max (1− λ)
∑
i∈I

∑
n∈T ∪B

zin,t − λ
∑
n∈B

∑
f∈F

bnf (4a)

subject to
∑
f∈F

bnf + pn +
∑

m∈A(n)

pm = 1 ∀n ∈ B, (4b)

pn +
∑

m∈A(n)

pm = 1 ∀n ∈ T (4c)

zia(n),n = zin,l(n) + zin,r(n) + zin,t ∀n ∈ B, i ∈ I (4d)

zia(n),n = zin,t ∀n ∈ T , i ∈ I (4e)

zis,1 ≤ 1 ∀i ∈ I (4f)

zin,l(n) ≤
∑

f∈F :xi
f=0

bnf ∀n ∈ B, i ∈ I (4g)

zin,r(n) ≤
∑

f∈F :xi
f=1

bnf ∀n ∈ B, i ∈ I (4h)

zin,t ≤ wn
yi ∀n ∈ T ∪ B, i ∈ I (4i)∑

k∈K

wn
k = pn ∀n ∈ B ∪ T (4j)

wn
k ∈ {0, 1} ∀n ∈ T , k ∈ K (4k)

bnf ∈ {0, 1} ∀n ∈ B, f ∈ F (4l)

zia(n),n ∈ {0, 1} ∀n ∈ B ∪ T , i ∈ I (4m)

zin,t ∈ {0, 1} ∀n ∈ T , i ∈ I (4n)

pn ∈ {0, 1} ∀n ∈ B ∪ T . (4o)

The objective function (4a) consists of two terms. The first term optimizes the

flow through the tree. Contrary to formulation 3 the summation is over all the

nodes, instead of just the set of leave nodes. The second term is a regularization

term, where the number of total branching nodes is counted. The second term

is subtracted from the first term, hence, more splits results in a lower objective

function. The regularization parameter, λ, determines the weight put on the regu-

larization term. With higher values of λ, the second term in the objective function

is bigger. Hence, for bigger values of λ, less splits are made.

The first modified constraint is constraint 4b, this constraint implies that node

n ∈ B is either a leaf node (pn = 1), a branching node (
∑

f∈F bnf = 1), or a pruned
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node (a prediction is made at one of the ancestor nodes,
∑

m∈A(n) pm = 1).

Constraint 4c forces node n ∈ T to be either a leaf node, or one of the nodes’

ancestors is a leaf node. In formulation 3, the flow conservation constraint (3c)

ensured that an observation flows either left or right. In the current model, ob-

servations can also flow to the sink node. Hence, in this formulation, the flow

conservation constraint (4d) is extended with the term zin,t, which is one when

observation i flows from node n to the sink node t and zero otherwise.

Constraint 4e to 4j are the same as in the first formulation. The last modifi-

cation is in constraint 4k. In formulation 3 this constraint equals
∑

k∈K w
n
k = 1.

While, in the current formulation this constraint is
∑

k∈K w
n
k = pn. This constraint

ensures that a class can only be assigned to a node when a prediction is made at

this node.

4.4 Reformulating the Flow Formulation

In this section formulation 4 is reformulated in such a way that Benders’ Decom-

position can be applied. Formulation 4 can be split in two MIP’s. In one problem,

the shape of the tree is determined, while in the other, the optimal flow path for

each observation is determined.

The shape of the tree is dependent upon three variables. 1) The variable

that models the splits on each node, b, 2) the variable that determines whether

a prediction is made on a node, p, and 3) the variable that determines the label

assigned to a leave node, w. This results in the following decomposition:

max (1− λ)
∑
i∈I

g(b, w, p)i − λ
∑
n∈B

∑
f∈F

bnf (5a)

subject to
∑
f∈F

bnf + pn +
∑

m∈A(n)

pm = 1 ∀n ∈ B, (5b)

pn +
∑

m∈A(n)

pm = 1 ∀n ∈ T (5c)

∑
k∈K

wn
k = pn ∀n ∈ T ∪ B (5d)

wn
k ∈ {0, 1} ∀n ∈ T ∪ B, k ∈ K (5e)

bnf ∈ {0, 1} ∀n ∈ B, f ∈ F (5f)

pn ∈ {0, 1} ∀n ∈ B ∪ T . (5g)

31



Where gi(b, w, p) is the optimal value of the problem:

gi(b, w, p) =max
∑

n∈B∪T

zin,t (6a)

subject to zia(n),n = zin,l(n) + zin,r(n) + zin,t ∀n ∈ B, i ∈ I (6b)

zia(n),n = zin,t ∀n ∈ T , i ∈ I (6c)

zis,1 ≤ 1 ∀i ∈ I (6d)

zin,l(n) ≤
∑

f∈F :xi
f=0

bnf ∀n ∈ B, i ∈ I (6e)

zin,r(n) ≤
∑

f∈F :xi
f=1

bnf ∀n ∈ B, i ∈ I (6f)

zin,t ≤ wn
yi ∀n ∈ B ∪ T , i ∈ I (6g)

zia(n),n ∈ {0, 1} ∀n ∈ B ∪ T , i ∈ I (6h)

zin,t ∈ {0, 1} ∀n ∈ B ∪ T , i ∈ I. (6i)

By substituting the objective function of the second problem (6a) in the objective

function of the first problem (5a) we arrive at formulation 4 again.

4.4.1 Capacitated Graphs

In formulation 6, the tree is fixed (b, w and p are given), the objective is to

maximize the flow of node n ∈ B ∪ T to the sink node t (max
∑

n∈B∪T z
i
n,t). This

is the same as optimizing a maximum flow problem on a capacitated graph, i.e. a

graph where each arc has a capacity.

In the next paragraph I give the formal mathematical definition of a capacitated

graph. For a given tree, defined by the variables b, w and p, the flow graph is

denoted by G = (V ,A). An example of a flow graph can be found on the left

side of Figure 9. The capacitated flow graph for observation i is the flow graph
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Figure 9: On the left side the flow graph G = (V ,A). V = {s, 1, 2, ..., 6, 7, t} and

A = {(s, 1), (1, 2), (1, t), ..., (6, t), (7, t)}. On the right side the capacitated flow

graph for observation i, Gi = (V ,A). With the capacities cia(n),n. The capacity is

one when an observation flows over the arc and zero otherwise.

augmented by binary arc-capacities, cia(n),n. The capacities are defined as follows:

cis,1 := 1,

cin,l(n)(b, w) :=
∑

f∈F :xi
f=0

bnf ,

cin,r(n)(b, w) :=
∑

f∈F :xi
f=1

bnf ,

cin,t(b, w) := wn
yi ∀n ∈ B ∪ T .

4.4.2 Max-Flow Min-Cut Theorem

The objective in each formulation for OCT is to correctly classify as many ob-

servations as possible. We have seen that for formulation 6 this is the same as

optimizing a maximum flow problem on a capacitated graph. To solve this we can

apply the max-flow min-cut theorem.

The max-flow min-cut theorem, states that the maximum flow passing through

a graph is equal to the total weight of edges in a minimum cut. A cut divides the

nodes in two sets, in such a way that the nodes s and t are not in the same set.

This means that the weight of a maximum flow cannot be larger than the weight

of the edges in a minimum cut.

An example of this theory can be seen in Figure 10. On the left, we see the
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capacitated graph for observation i, with three possible minimal cuts. The first

cut creates two sets: the source set, V1 = {s, 1, 3, 7}, and the sink set, V2 =

{t, 2, 4, 5, 6}. This cut goes through the following arcs: A = {(1, 2), (3, 5), (7, t)}.
Since the capacity on each of these arcs is zero, the value of this cut is zero.

The maximum flow through the graph is also zero, as there is no connected path

between source node s and sink node t. On the right side of Figure 10 we see

another capacitated flow graph. The observation in this flowgraph is correctly

predicted, and hence the maximum flow is one. The minimum cut that can be

made in this graph is also zero.

Figure 10: On the left side the capacitated flow graph for a non-correctly classified

observation, and three possible cuts. On the right side the capacitated flow graph

for a correctly classified observation and one minimum cut.

Due to the max-flow/min-cut duality, it follows that gi(b, w, p) (the objective of

formulation 6), is the minimum (s,t) cut of Gi(b, w). So gi(b, w, p), is the greatest

value that is smaller than or equal to the value of all cuts in graph Gi(b, w). To

put this into a constraint we define the cut-set. The cut-set is defined as follows:

given S ⊆ V , the cut-set is C(S) := {(n1, n2) ∈ A : n1 ∈ S, n2 /∈ S)} where S is

the set of all vertices that are on the source side of the cut.
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4.4.3 Flow Formulation With the Max-Flow Min-Cut Theorem

Incorporating the max-flow min-cut constraint results in the following formulation:

max (1− λ)
∑
i∈I

gi − λ
∑
n∈B

∑
f∈F

bnf (8a)

subject to gi ≤
∑

(n1,n2)∈C(S)

cin1,n2
(b, w) ∀i ∈ I,S ⊆ V\{t} : s ∈ S (8b)

∑
f∈F

bnf + pn +
∑

m∈A(n)

pm = 1 ∀n ∈ B, (8c)

pn +
∑

m∈A(n)

pm = 1 ∀n ∈ T , (8d)

∑
k∈K

wn
k = pn ∀n ∈ B ∪ T (8e)

wn
k ∈ {0, 1} ∀n ∈ L, k ∈ K (8f)

bnf ∈ {0, 1} ∀n ∈ B, f ∈ F (8g)

pn ∈ {0, 1} ∀n ∈ B ∪ T (8h)

gi ≤ 1 ∀i ∈ I. (8i)

The objective of this reformulation is to maximize the flow through the graph,

while making the least amount of splits. Maximizing the flow through the graph

is the equivalent of maximizing the number of correctly classified datapoints as

the value of the minimum cut, gi, is either one (a correctly classified datapoint)

or zero (an incorrectly classified datapoint). The value of gi cannot be larger

than the sum of edges in a minimum cut, this is ensured by constraint 8b. This

constraint enforces the minimum cut for all observations and all possible cut sets.

This results in an exponential number of constraints. Constraint 8c to constraint

8e are similar to constraints in previous formulations.

4.5 Benders’ Decomposition on the Flow Formulation

Flow formulation 8 is stronger than already existing formulations, as proved by

Aghaei et al. (2021). Next to the strong formulation an added benefit is the decom-

posable structure. Decomposing the formulation into a master- and a subproblem
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speeds-up the formulation. Due to constraint 8b the above formulation consists of

an exponential number of inequalities.

The first constraint (8b) is initially dropped, each dropped constraint is the

sub-problem(SP) in Benders’ Decomposition. The master problem(MP) can be

solved relatively quickly. However, it is likely that for a corresponding solution

the max-flow min-cut constraint is not satisfied for some datapoint i and some cut

(s,t). The violated SP-constraints are added, then the MP is solved again, until

none of the SP-constraints (8b) are violated.

The constraints that are violated and need to be added can be found by solv-

ing the minimum cut problem. Well-known general algorithms to solve the mini-

mum cut problem are: Goldberg and Tarjan (1988), Karger (2000) and Hochbaum

(2008). However, Aghaei et al. propose an algorithm that creates a minimum cut

set that is tailor-made for this application. The algorithm they propose creates

stronger, i.e. tighter constraints.

The constraints that are proposed by the algorithm are known as lazy con-

straints. Normally constraints are defined upfront, however, lazy constraints are

added during optimizing the MIP. At every node of the branch-and-bound tree Al-

gorithm 1 is called, using the callback function. If a max-flow min-cut constraint

is violated then the violated constraint is added to the formulation. In this way

it is not necessary to add an exponential number of constraints upfront, only the

constraints that are needed to create a feasible optimal solution are needed.

Algorithm 1 either returns -1 if all constraints for observation i corresponding

to 8b are satisfied, or the source set S of the minimal cut otherwise. The first

time the algorithm returns -1 is on line 2. In line 2 the flow capacity, gi, is 0, thus

the min-cut constraints will always be satisfied.From line 4 to 14 the source set

S is defined. This is done by recursively adding the node n to which observation

i flows. The way an observation flows is determined by the if/else-if statements

on lines 8 and 10. On line 14 we ended up on the leaf node that observation i

flows to. This leaf node is added the the source set. If the observation is correctly

classified then gi ≤ cin,t(b, w), in that case the min-flow max-cut constraints (8b) are

satisfied and the algorithm returns -1 (line 18). When gi = 1, but the observation

is missclassified we have more flow than the max-cut allows. Hence, the min-flow

max-cut constraints need to be added to the MIP and the source set S is returned.
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Algorithm 1 Cut Generation Procedure

Input: (b, w, g) ∈ {0, 1}B×F × {0, 1}L×K ×RI satisfying 8c - 8i

i ∈ I : datapoint used to generate the cut.

Output: -1 if all constraints 8b corresponding to i are satisfied;

source set S of min-cut otherwise

1: if gi = 0 then

2: return -1

3: end if

4: Initialize: n← 1 . Current node = root

5: Initialize: S ← {s} . S is in the source set of the cut

6: while n ∈ B do

7: S ← S ∪ {n}
8: if cn,l(n)(b, w) = 1 then . Datapoint i is routed left

9: n← l(n)

10: else if cn,r(n)(b, w) = 1 then . Datapoint i is routed right

11: n← r(n)

12: end if

13: end while . At this point, n ∈ L
14: S ← S ∪ {n}
15: if gi > cin,t(b, w) then . Minimum cut of S with capacity 0 found

16: return S
17: else . Minimum cut of S has capacity 1, constraints 8b satisfied

18: return -1

19: end if

5 Results

To answer the research questions I apply the methods on datasets of varying sizes

and varying tree depths. In the first part of the results section I apply the methods

(CART, OCT, BinOCT, FlowOCT and BendersOCT) on synthetic datasets. Table

2 shows the different synthetic datasets. In the second part of the result section

the methods are applied on six publicly available datasets from the UCI data

repository(Dua and Graff, 2017), the datasets and their characteristics can be

found in Table 1.
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Table 1: UCI repository datasets including the number of rows (|I|), number of

features(|F|), encoded features (|Fenc|) and the number of classes ((|K|)

|I| |F| |Fenc| |K|
Name

kr-vs-kp 3196 37 39 2

car-evaluation 1728 7 20 4

balance-scale 625 5 21 3

breast-cancer 277 10 39 2

monk-1 124 7 16 2

soybean-small 47 36 46 4

Table 2: Synthetic datasets including the number of rows (|I|), number of

features(|F|), encoded features (|Fenc|) and the number of classes ((|K|)

|I| |F| |Fenc| |K|

100 10 18 2

100 30 50 2

100 100 168 2

500 10 18 2

500 30 50 2

500 100 168 2

2500 10 18 2

2500 30 50 2

2500 100 168 2

5.1 Setup

All the approaches are implemented in Python and solved using Gurobi 9.5 (Gurobi

Optimization, LLC, 2022). The problems are solved on a single core of an Intel

i5 processor running at 2.6GHz using 8GB of RAM, running Windows 10 version

21H1 with a 10 minutes time limit for each problem. My code is available on:

https://github.com/holodorum/StrongTreesThesis.

For each dataset, I create 4 random splits of the data, each consisting of a
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training set of 75%, and a test set of 25%. My code allows for calibrating and

finetuning the parameters as well. However, the emphasis in my research is not on

getting the highest accuracy, but decreasing the running times for larger datasets.

Finetuning the parameters would be infeasible time-wise. Hence, I set λ to zero

and use each OCT-method to fit trees of depths 2 to 5 on the synthetic datasets

and datasets from the UCI data repository.

To run CART on the various datasets I use the Decision Tree Classifier class

from the Python scikit-learn library(Pedregosa et al., 2011). For CART the regu-

larization parameter is also set to zero, in order to have a similar degree of pruning

as the optimal tree methods. The maximum depth of the trees range from 2 to 5

and the trees are trained on the same trainingset as is used for the optimal tree

methods.

In the remainder of this section I first discuss the in-sample performance, com-

putation times and the ground truth discovery rate of the MIO methods on the

synthetic datasets. Then I discuss the in-sample performance and computation

times of the real datasets.

5.2 Synthetic Dataset

The synthetic datasets are created in the same way as the datasets in Murthy and

Salzberg (1995). For each dataset I first set the number of observations, n, and the

number of features. A percentage of the features is binary the other percentage is

categorical (with three categories). The distribution of the binary and categorical

features is as follows:

xbin ∼ Ber(θbin, n), θbin ∼ Unif(0, 1)

xcat∼ Cat(n,C, θcat), C = [0, 1, 2], θcat = [0.5, 0.3, 0.2].

Feature xbin is bernoulli distributed, with a uniform distribution of the θ-parameter

and with n trials. The categorical variable follows a multinomial distribution with

three categories. The probability that category 1, 2 or 3 is drawn for observation i

is respectively 0.5, 0.3 and 0.2. The categorical variables are one-hot encoded. This

results in independent variable X. A temporary bernoulli distributed dependent

variable, ytemp, is created. The variable is temporary, because after estimating the

decision tree it is discarded. A CART decision tree with a pre-specified depth is
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fit on the synthetic dataset with independent variables X and dependent variable

ytemp.

To create dependent variable y the leaves of the fitted decision tree are labeled

in such a way, that no two leaves sharing a parent have the same label. If the leave

nodes would have the same label, then they could be replaced by the parent node

bearing that label. Theoretically speaking we could use any number of classes, but

for the sake of simplicity I set the dependent variable to be binary.

The fitted tree is used to generate the dependent variable. The branching fea-

tures used in the tree are called the ground truth features, which are fundamental

in constructing the dependent variable. The fitted tree is the underlying structure

of the synthetic dataset, or the data-generating process(DGP).

When fitting a tree on the synthetic dataset, it is possible to compute how

many of the branching features that are used in the estimated decision tree are

ground truth features. If a used feature is also a ground truth feature, then it is

a true discovery (TD). If, on the other hand, the feature is not part of the ground

truth features, then it is a false discovery (FD). The true discovery rate(TDR) and

the false discovery rate(FDR) are computed as follows:

TDR =
No. of TD

No. groundset features
FDR =

No. of FD

No. features in fitted tree
.

The TDR indicates to what extent the decision tree is able to recover the true

DGP. However, a high TDR alone is not satisfactory. It might be the case that

the fitted tree uses so many features that it by chance includes features from the

ground truth set of features. To see whether this happens we compute the FDR.

This measure indicates how many of the features in the fitted tree are not part of

the set of ground truth features. A combination of a high TDR and a low FDR is

desirable.

5.2.1 In-Sample Accuracy

Table 3 shows the in-sample accuracy of the different methods on synthetic datasets.

Since the datasets are synthetically created without any noise the optimal tree

methods should be able to construct trees that give an accuracy of 1. However, in

multiple instances this is not the case, for these instances the maximum running

time (see Table A1) is reached.
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Table 3: In-Sample Accuracy on Synthetic Datasets

approach BendersOCT FlowOCT binOCT OCT CART

depth nrow features

2 75 10 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.97(0.01)

30 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.86(0.01)

100 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.91(0.02)

375 10 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.87(0.01)

30 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.92(0.01)

100 1.00(0.00) 0.93(0.00) 1.00(0.00) 0.99(0.01) 0.93(0.01)

1875 10 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.92(0.00)

30 1.00(0.00) 0.97(0.03) 0.99(0.03) 0.96(0.03) 0.94(0.00)

100 0.95(0.06) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00)

3 75 10 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.94(0.01)

30 1.00(0.00) 0.94(0.03) 0.94(0.04) 0.98(0.02) 0.88(0.03)

100 0.93(0.02) 0.97(0.04) 0.96(0.03) 0.97(0.04) 0.87(0.08)

375 10 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.98(0.03) 0.95(0.01)

30 1.00(0.00) 0.94(0.01) 0.96(0.03) 0.98(0.03) 0.94(0.01)

100 0.83(0.04) 0.91(0.08) 0.85(0.01) 0.85(0.00) 0.85(0.00)

1875 10 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.96(0.00) 0.96(0.00)

30 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00)

100 0.81(0.00) 0.81(0.00) 0.81(0.00) 0.81(0.00) 0.81(0.00)

4 75 10 0.99(0.01) 0.99(0.01) 0.97(0.02) 0.98(0.01) 0.93(0.02)

30 0.98(0.02) 0.96(0.02) 0.94(0.03) 0.96(0.02) 0.88(0.04)

100 0.99(0.02) 1.00(0.01) 1.00(0.00) 0.99(0.00) 0.97(0.02)

375 10 0.99(0.01) 0.99(0.01) 0.99(0.01) 0.92(0.05) 0.95(0.00)

30 0.91(0.03) 0.94(0.01) 0.94(0.00) 0.95(0.00) 0.94(0.01)

100 0.84(0.01) 0.92(0.02) 0.92(0.02) 0.93(nan) 0.92(0.02)

1875 10 0.87(0.09) 0.81(0.03) 0.89(0.05) 0.81(0.03) 0.81(0.03)

30 0.85(0.01) 0.85(0.01) 0.85(0.01) 0.85(0.01) 0.85(0.01)

100 0.70(0.11) 0.90(0.02) 0.90(0.02) 0.89(0.02) 0.90(0.02)

5 75 10 1.00(0.00) 0.99(0.01) 0.99(0.01) 0.98(0.01) 0.91(0.03)

30 0.99(0.01) 1.00(0.00) 1.00(0.01) 0.98(0.01) 0.96(0.01)

100 1.00(0.01) 1.00(0.00) 1.00(0.00) 0.94(0.05) 0.99(0.01)

375 10 0.94(0.02) 0.96(0.00) 0.96(0.00) 0.88(0.05) 0.95(0.01)

30 0.77(0.06) 0.87(0.03) 0.88(0.03) 0.78(0.02) 0.87(0.03)

100 0.73(0.05) 0.91(0.02) 0.91(0.02) 0.62(0.01) 0.91(0.02)

1875 10 0.93(0.01) 0.94(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01)

30 0.89(0.00) 0.89(0.00) 0.90(0.01) 0.90(nan) 0.89(0.00)

100 0.66(0.05) 0.86(0.01) 0.86(0.01) 0.86(0.01) 0.86(0.01)

Best Performance (with ties) 22 21 22 15 6

Best Performance (without ties) 6 2 2 3 0
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Take for example BendersOCT. Until depth 3, 1875 observations and 10 fea-

tures it constructs the optimal tree in each instance, except for depth 3, 75 obser-

vations and 100 features. Table A1 shows that BendersOCT reaches the maximum

running time for depth 3, 75 observations and 100 features. Even though this is not

very important for the research, it does provide an implementation sanity check.

The methods appear to be properly implemented, since it finds the optimal tree

except when the time-limit is reached.

Another interesting observation is that the methods always perform equally

well or better than CART. In only two cases CART performs equally good as the

optimal methods. The optimal approaches have a 4% higher mean accuracy than

the benchmark. For many instances the MIP-approach have a higher accuracy

than CART when the MIP is not solved to optimality. However, the performance

increase in these scenarios is often only one or two percent. BendersOCT has the

overall best performance in the most instances, although the differences between

all the methods are small.

The standard deviation of the mean accuracy is low for each method. There

are a few instances where the standard deviation is higher than 0.05, but these

instances correspond to the maximum time-limit being reached. This is not supris-

ing, since the trees at the moment that the time-limit is reached might differ

greatly.

A low standard deviation could be an argument for low variability in the trees.

It makes sense to assume that the trees are similar when the prediction accuracy

is the same. However, as I show in section 5.3.1 this is not always the case.

A final note is that for some instances the standard deviation is not a number

(nan). In these cases, the optimal tree method finds at most one solution to the

four different training samples. The standard deviation in this case is non-existing,

hence we observe nan values.

5.2.2 Discovery Rate

In Figure 11 the difference in the discovery rates(TDR) between an optimal tree

method and CART are shown, Figure 12 shows the TDR for various methods.

The table of which these figures are derived can be found in Table B2.

From Figure 11 it becomes clear that every method follows a similar pattern.
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Figure 11: A heatmap of the difference in the TDR between CART and the optimal

tree methods. A positive value means that the TDR of the optimal tree method

is higher than that of CART.

For small trees the TDR of the optimal method is higher. But for a larger tree

the TDR difference is either small or higher for CART.

Take for example BendersOCT, this method has a higher or equal discovery

rate to CART, for a tree depth lower than four and 10 or 50 encoded features. This

means that for these settings the trees created with the optimal approach are not

only better in predicting, but also in discovering the right features, or the true data

generating process. However, for deeper trees and trees with more features CART

often outperforms BendersOCT. This is due to the fact that in these instances

BendersOCT does not get close to finding an optimal solution within the time

limit.

From Figure 12 it becomes clear that a deeper tree and more features are

negatively correlated with the true discovery rate. For a tree of low depth and

a small amount of features the optimal tree methods all show a high TDR. The

opposite is also true: for a higher tree depth and more features CART has a higher

or equal TDR.

The intuition goes as follows. The depth of the tree has an influence on the
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Figure 12: A heatmap of the TDR of the different methods.

number of ground truth features. For a deeper tree the number of features used

is higher. The more features there are in the synthetic dataset, the less likely it is

for the feature used in the decision tree to be a ground truth feature.

The mean TDR is not all that matters. It is also important that the standard

deviation of the TDR is low, because in that case I can assume that the variability

between the trees of different training samples is low. Since if for different trees

the discovery rate is more or less the same, and hence the standard deviation low,

then it is likely that the same features are selected for trees generated on different

training samples.

We see that the standard deviation is quite low for the different methods, but

only BendersOCT has a lower mean standard deviation than CART (0.05 and 0.07

resp.). BinOCT, FlowOCT and OCT have standard deviations of 0.08, 0.09 and

0.08 respectively. The standard deviation for some instances is inflated because for

some training samples it was not possible to find any (good) solution within the

time limit. Even though the standard deviations are not high, it does not perform

significantly better than CART.
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5.2.3 Running Times

Table A1(see Appendix A) shows the running times of the methods on the different

synthetic datasets. From this table it appears that the biggest influence on the

running time is depth. With the synthetic datasets it is possible to see the effect

of a single factor on the computation time holding the other factors equal.

However, there are still two uncontrolled factors in this experiment. First of

all, no second computer was at my disposal. Therefore, the computer was used for

various purposes, while the program was running for a long time. It can be that

the use of the computer for these purposes, affected the performance of Gurobi.

Secondly, for each depth a new dataset is created, thus the DGP in some dataset

might be easier to find for MIP-methods than in other datasets.

These two reasons might explain some unexpected datapoints. For example,

the running time of BendersOCT decreases between 75 and 375 observations for

a dataset generated with a tree of depth 3 and 10 features. The methods also

perform unexpectedly well on the dataset with depth 4, 75 observations and 100

features. Instead of an increase in the running-time compared to the datasets with

depth 4, 75 observation and 10 or 30 features there is a decrease in running time.

In Appendix A, I analyze the effect of an increase in the features, depth and

number of observations on the running time for different methods. However, this

analysis is lengthy and not does not cover all the possible combination of factor

increases. Still, this analysis might give useful insights regarding the most impor-

tant contributor is to an increase in the running times. In Table 4, I provide an

alternative way to show the biggest contributor to an increase in the running time.

To create Table 4, I compute the factor increase of the running time when

either the features, the observations or the depth increase, while the remaining

two stay constant. For example, the depth is increased by one (from 2 to 3, 3 to

4 and 4 to 5) while the features and number of observations stay 10 and 75. This

is done for all possible combinations of features and number of observations. In

case of the depth, this results in a 27 factor increases (the product of: 3 depth

increases, 3 different feature settings and 3 different observation settings). Over

this array, the average is taken.

This is another way to study the most important contributor to an increase

in running time. However, there are a few limitations to take into consideration.
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For example, if an instance already reached the maximum running time, then an

increase in depth, feature or observation is likely to give a factor increase of 1.

Table 4 does not take this into account. Nevertheless, it gives a good overview

of the most important contributor, the depth, to the running time. The average

factor increase for depth is around 3.75 times as high as the average factor increase

for an increase in features and an increase in observations.

Table 4: The average factor increase in the running time per method for an incre-

ment of the number of Features, Observations and the Depth

Feature Observations Depth

BendersOCT 4.7 3.0 11.8

FlowOCT 5.9 4.2 21.1

binOCT 4.0 2.7 12.4

OCT 2.4 6.6 16.0

Mean 4.2 4.1 15.3

From this analysis we learned that. The datasets easily become too large, or

the tree becomes too deep. The methods are often not able to solve for datasets

with many features, nor are they able to construct trees larger than depth 3 (except

when the dataset is relatively small).

5.3 UCI Repository Datasets

5.3.1 In-Sample Accuracy

Table 5 displays the in-sample accuracies for varying depths on the datasets from

the UCI data repository. All the methods are close to each other in terms of

prediction accuracy. Including ties BendersOCT and binOCT perform the best

in 22 instances, closely followed by FlowOCT. CART and OCT are only among

the best performing methods in 10 and 15 instances respectively. However, when

removing ties the differences are even smaller. In the case that one method per-

forms better another method is just performing 1% worse. Or, the methods have

a similar accuracy but standard deviation is a little bit higher. For every method
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Table 5: In-sample accuracy UCI Repository Datasets

BendersOCT FlowOCT binOCT OCT CART

dataset depth

balance-scale 2 0.68(0.01) 0.68(0.01) 0.68(0.01) 0.68(0.01) 0.68(0.01)

3 0.74(0.01) 0.74(0.01) 0.73(0.01) 0.73(0.01) 0.70(0.02)

4 0.76(0.01) 0.75(0.01) 0.77(0.01) 0.76(0.01) 0.72(0.03)

5 0.80(0.02) 0.76(0.03) 0.80(0.01) 0.74(0.02) 0.79(0.01)

breast-cancer 2 0.79(0.01) 0.79(0.01) 0.79(0.01) 0.79(0.01) 0.78(0.01)

3 0.82(0.01) 0.82(0.00) 0.82(0.01) 0.82(0.01) 0.79(0.01)

4 0.85(0.01) 0.86(0.01) 0.86(0.00) 0.84(0.02) 0.82(0.00)

5 0.88(0.01) 0.90(0.01) 0.89(0.01) 0.85(0.01) 0.85(0.01)

car-evaluation 2 0.78(0.00) 0.78(0.00) 0.78(0.00) 0.78(0.00) 0.78(0.00)

3 0.81(0.00) 0.81(0.00) 0.81(0.00) 0.78(0.03) 0.81(0.01)

4 0.83(0.01) 0.83(0.00) 0.83(0.01) 0.80(nan) 0.82(0.01)

5 0.87(0.01) 0.87(0.01) 0.87(0.01) 0.70(0.00) 0.87(0.01)

kr-vs-kp 2 0.85(0.04) 0.84(0.02) 0.86(0.01) 0.78(0.04) 0.77(0.01)

3 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.63(0.07) 0.90(0.00)

4 0.94(0.00) 0.94(0.00) 0.94(0.00) 0.57(0.00) 0.94(0.00)

5 0.94(0.00) 0.94(0.00) 0.94(0.00) 0.78(nan) 0.94(0.00)

monk-1 2 0.84(0.03) 0.84(0.03) 0.84(0.03) 0.84(0.03) 0.77(0.01)

3 0.93(0.02) 0.93(0.02) 0.93(0.02) 0.93(0.02) 0.88(0.05)

4 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.88(0.05)

5 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.98(0.01) 0.89(0.04)

soybean-small 2 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.84(0.03)

3 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

4 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

5 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.98(0.01) 1.00(0.00)

Best Performance(with ties) 19 18 19 10 10

Best Performance(without ties) 1 2 0 0 0

the variance is quite low, also for the CART trees, this might be an argument for

a low variability.

In my experiment, the CART trees are restricted to having a depth between

2 to 5. In this way, the results for CART can be compared with the results of

the optimal tree methods for the same depth. However, it might be the case that

finetuning of the parameters gives different, and better results than the optimal

trees. Therefore, I run a randomized grid search over a parameter grid (see Table

B5 in the Appendix) to finetune the parameters. The depth and the accuracy of

the finetuned CART tree are given in 6.

The running time to finetune the parameters for every dataset was less than

0.005 seconds. For the balance-scale, car-evaluation, kr-vs-kp and soybean-small,
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the in-sample accuracy is higher than the other methods. Only for monk-1 and

breast-cancer there are optimal tree methods that outperform the finetuned CART.

This it not surprising, as maybe the structure of some datasets, especially larger

datasets, is only found in a tree with a higher depth. Which is what can be seen as

well in Table 6, where only for the smallest datasets, monk-1 and soybean-small,

the depth is less than or equal to 5.

Table 6: In-sample accuracy for fine-tuned CART tree

Accuracy

dataset depth

balance-scale 10 0.87

breast-cancer 7 0.82

car-evaluation 9 0.89

kr-vs-kp 13 1.00

monk-1 5 0.88

soybean-small 3 1.00

This raises the question: why use a slow, optimal tree method when a simple

CART with finetuned parameters gives better results? Another problem is that,

it appears that larger datasets require deeper trees for a good accuracy. However,

depth is the biggest factor in an increase in running times. Hence we run into the

problem that on the one hand, deep trees are necessary to get good decision trees,

but on the other hand, it is time-wise infeasible to estimate deep trees.

5.3.2 Running Times

Figure 14 shows the average running times for the different approaches, on different

datasets and depths. The Table of the running times can be found in Table B3 in

the Appendix.

A few things stand out. First of all, there are instances where the method

exceeds the maximum running time. For the car-evaluation dataset there are even

two methods that run for way more than 600 seconds. I could not find out why this

happens. Apparently, from gurobi discussion forums it appear that more people
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experience a violation of the maximum running-time. But there is no clear reasons

why it happens in some cases and does not in others.

From Figure 14 it also becomes clear that for a depth of two almost every

method is able to find an optimal solution within the time limit, and often even in

less than 5 seconds. The only dataset for which not every method is able to find

an optimal tree within 10 minutes is the kr-vs-kp dataset, the largest dataset on

which I test the methods.

Figure 13: Running times of methods on different datasizes and different depths

For depths higher than two almost every instance reaches the maximum running

time, implying that most trees with a depth higher than two are suboptimal. Only

for the small datasets with less than 150 observations, monk1 and soybean-small

this is not the case. Breast-cancer is another dataset with a small amount of

observations, 277, but 39 features. For the breast-cancer dataset the maximum

running time is already reached in every instance with a depth larger than two.
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Figure 14: Running times of methods on different datasizes and different depths

In contrast to the experiment with synthetic data it is hard to see the effect of

the number of features and observations in this experiment. Mainly because the

time limit is reached before the methods are solved. But these results are telling

enough. It will be hard to apply optimal tree methods to real life scenarios.

A tree of a depth larger than two is often necessary for good accuracy. However,

for a depth of two the methods can not even find an optimal tree for relatively small

datasets. Therefore I assume that solutions that reduce the number of features or

observations only have a limited effect. Because, even if the dataset is reduced in

size the method won’t be able to solve a tree of a depth higher than two.

I chose a relatively short time limit right now. The time limit I used is ten

minutes, in Aghaei et al. (2021) the time limit is 60 minutes and in Bertsimas and

Dunn (2017) 30 minutes (and 2 hours in some instances). Due to time constraints

it is infeasible for me to run all the instances on a 30 or 60 minutes time limit.
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However, when studying the results of Aghaei et al. I find that even for a 60

minute time-limit only a small percentage of the instances is solved to optimality

(see Table B4 in the Appendix).
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6 Conclusion

In this research, I studied whether the methods to generate optimal trees are

applicable to larger datasets, and if not, whether there are modifications to the

methods that make it possible to apply them to larger datasets. Secondly, I stud-

ied whether optimal trees are less variable upon the training dataset used. To

answer the research question, I applied the methods on synthetic datasets and six

publicly available datasets from the UCI data repository. By applying the meth-

ods on datasets of varying sizes, I got a better insight into the influences on the

computation time of the methods.

From studying the running times of varying methods on the synthetic datasets,

it became clear that the depth has the most influence on the running times. The

average factor with which the mean running time increases when the depth in-

creases, is almost 4 times as high compared to when the number of observations

and the number of feature increases.

By studying the running times of varying methods on the UCI repository

datasets I can conclude that for larger depths the optimal tree methods are not

able to solve the problem. For a tree depth larger than two, the methods are only

able to get an optimal tree for two small datasets, monk-1 and soybean-small.

This finding answers the question, ’are the methods to generate optimal trees

applicable to larger datasets?’, negatively. Since the depth of the tree is the main

cause of large running times, it is hard to find a good solution to the problem.

If the cause of slow running times is the number of observations then a method

could have been used that selects a subset of the data without throwing away

valuable datapoints as in Zhu et al. (2020). If the bottleneck would have been

the number of features, then the least important features could be excluded from

the dataset. However, even for relatively small datasets, like breast-cancer (277

observations and 39 features), the methods are not able to find a solution for a

depth higher than two. Therefore, it seems implausible that these solutions would

work in practice.

Diving deeper into the results of Aghaei et al. (2021) and Feijen (2018), and

examining their papers more thoroughly, it appears that the methods do not per-

form well on large datasets and deeper trees. At first glance, the papers gave the

wrong impression by presenting the results better than they actually are.
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For Feijen (2018) every instance is solved within the time-limit. However, there

are two catches. Firstly, he uses the iris dataset, a dataset with 150 observations,

4 features and 3 classes. Secondly, the trees he computes have a maximum depth

of 2. And as becomes clear from my results, the problem of not being able to solve

a tree to optimality, does not occur at a tree depth of 2, but at a tree depth higher

than two.

For Aghaei et al. (2021) we see something similar happening. They present

their methods as methods that are way faster than BinOCT and OCT. However,

the method is not applicable to larger datasets, which is not immediately clear

from reading the paper. They finetuned the λ paramter, so for every dataset and

every depth they did 50 runs (10 different λ parameters and 5 different subsets).

The results correspond to my findings. For the small datasets, monk1 and soybean-

small, every method is able to find an optimal tree within the time limit. However,

for the other four datasets (kr-vs-kp, car-evaluation, breast-cancer and balance-

scale) this changes. For kr-vs-kp and car-evaluation there are only 4 instances of

a tree depth higher than 2 solved within the time-limit. For breast-cancer and

balance-scale the solved instances are a bit higher, but still small (for the exact

results see Table B4 in the Appendix). The total running time for finetuning the

different approaches for different depths on these 6 datasets is almost 80 days.

For now I think it is not feasible in practice to create optimal trees. First of all,

it takes a lot of time to run and even then does find an optimal solution. Secondly,

using the CART algorithm with finetuned parameters gives a higher accuracy in

less than 0.005 seconds.

Even though the optimal tree methods are not solved to optimality, it still

contributes to the existing literature as it outperforms CART trees of the same

debt in almost every instance. An idea, to make use of the optimal trees use

CART as a warmstart for the optimal method. Then, depending on how quickly a

model is needed, we can let the optimal method run. In this way we always have

at least the same accuracy as CART, and might even improve upon it.3 Another

interesting idea is to investigate local optimal trees. These trees are quick to

estimate, even for large datasets and deep trees, and perform better than CART.

It does not provide globally optimal trees (i.e. the best tree), but locally optimal

3My code already allows for this, but since I for some reason was not able to implement it on

BendersOCT(probably because of the lazy callbacks) I did not incorporate it in this thesis.
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trees (i.e. it is not possible to improve the tree by changing one of the nodes).

Dunn (2018) develops this idea in his phd-thesis.

I also studied the discovery rate and the standard deviation of the accuracy.

It might be that optimal trees are less variable and contingent upon the subset of

data used to train the tree. Less variable trees are a desirable feature, especially

from a policy making perspective. If the decision rules change for every subset

that the tree is trained upon, it is harder to make a consistent policy.

On the synthetic datasets, the optimal trees were indeed better in discovering

the features of the DGP than CART. However, only for BendersOCT, the mean

of the standard deviations was lower than CART. The standard deviation of the

mean in-sample accuracy was low for every method.

On the UCI repository datasets, it is not possible to compute the discovery

rate. For these datasets, I took the standard deviation of the mean accuracy as a

proxy for the variability of the trees. It turns out that this is lower than 0.05 for

every instance.

Because the true discovery rate (TDR) of optimal tree methods is higher than

the TDR of CART and the standard deviation is low (but only for BendersOCT,

it is lower than CART), it might indicate that the trees are less variable. However,

I discovered that in some cases, different trees achieve the same accuracy. Hence,

it seems that the TDR and standard deviation are not the best proxies for deter-

mining the variability of decision trees. To really find an answer to the question of

variability, a more extensive analysis is necessary. A good starting point for this

research is Bakırlı and Birant (2017) and Sabbaghan et al. (2020), they provide a

good framework to measure the similarity between trees.

Even though the research did not deliver the desired results, it still contributes

to the existing literature. Mainly in that the MIP methods used in the current

literature cannot be applied to large datasets, even though the researchers do not

explicitly mention this. In spite of the large increase in computer speed since the

first paper on CART, the computer is not fast enough yet. Maybe in a few years,

when the speed and power of computers increased manifold again, then solving

optimal trees on large datasets will be feasible.
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A Appendix

First we study the effect of an increase in the number of observations holding the

depth and number of features equal, each time the observations increase with factor

5. For BendersOCT the increase in average running time between 75 observations

to 375 observations and 375 to 1875 observations is a factor 3.9 and 5.7 respectively

for a tree of depth 2 and 10 features. The average running time of BendersOCT

between 75 observations and 375 observations decreases and from 375 observations

to 1875 observations it increases by factor 6.5 for a tree of depth 3 and 10 features.

For depth 4 and 5 the method already reaches it’s max computation time (the

average running time is close to 600 seconds, so the factor increase does not give

us a lot of information). For other methods the factor-increase for the number

of observation is higher. For FlowOCT the average running time between 75

observations and 375 observations and 375 to 1875 observations is a factor 27.4

and 11.0 respectively for a tree of depth 2 and 30 features, although for the dataset

with 1875 observations and 30 features the method is not always able to find the

optimal solution.

For the method binOCT, a method where the complexity should be indepen-

dent of the number of rows in the dataset, there is a small increase in the running

time contingent upon the number of observations in the dataset. For BinOCT the

average running time between 75 observations and 375 observations and 375 to

1875 observations is a factor 1.2 and 1.07 respectively for a tree of depth 3 and

10 features. However, for a higher number of features this method already often

reaches the maximum computation time.

Secondly we study the effect of an increase in the number of features holding the

depth and number of observations equal. This effect is similar in size to the number

of observations. For BendersOCT the increase in average running time between

10 and 30 features and 30 to 100 features is a factor 9.7 and 3.0 respectively for

a tree of depth 2 and 75 observations. The average running time of BendersOCT

between 10 and 30 features and 30 and 100 features increases by factor 8.3 and 3.5

respectively for a tree of depth 3 and 75 observations(although for these settings

the time-limit is already reached). For FlowOCT the increase in average running

time between 10 and 30 features and 30 to 100 features is a factor 2.8 and 32.7

respectively for a tree of depth 2 and 75 observations. The average running time
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Table A1: Running Time on Synthetic Datasets

approach BendersOCT FlowOCT binOCT OCT CART

depth nrow features

2 75 10 0.40(0.22) 0.62(0.21) 0.57(0.14) 0.93(0.60) 0.00(0.00)

30 3.95(2.62) 1.76(0.97) 8.82(5.98) 4.32(2.97) 0.00(0.00)

100 11.95(8.86) 57.56(38.26) 38.39(58.73) 7.64(6.91) 0.00(0.00)

375 10 1.57(0.31) 5.42(2.47) 3.06(2.38) 10.98(5.20) 0.00(0.00)

30 5.63(3.66) 48.11(39.54) 18.13(26.27) 20.79(11.52) 0.00(0.00)

100 114.07(88.53) 827.86(437.23) 214.06(129.45) 475.04(266.57) 0.02(0.01)

1875 10 8.92(3.34) 11.13(4.51) 13.61(8.38) 193.11(25.71) 0.00(0.00)

30 59.04(91.04) 529.89(89.34) 296.95(221.27) 591.28(28.21) 0.01(0.00)

100 497.31(172.52) 612.55(0.06) 635.78(0.75) 615.41(0.26) 0.01(0.00)

3 75 10 20.54(26.28) 72.84(55.95) 82.54(99.72) 157.99(110.73) 0.00(0.00)

30 171.17(237.02) 600.37(0.02) 593.97(13.86) 464.89(222.72) 0.00(0.00)

100 600.03(0.01) 404.96(236.98) 511.92(182.71) 510.30(183.5) 0.00(0.00)

375 10 8.89(6.78) 159.05(102.22) 101.75(51.75) 439.00(190.73) 0.00(0.00)

30 180.41(141.63) 602.24(0.17) 505.54(198.28) 463.60(111.97) 0.00(0.00)

100 600.05(0.01) 599.48(13.39) 616.87(0.63) 609.84(0.19) 0.01(0.00)

1875 10 57.44(40.9) 377.64(160.91) 108.52(131.59) 606.01(0.20) 0.00(0.00)

30 600.10(0.06) 611.82(2.09) 627.96(6.20) 617.20(2.14) 0.01(0.00)

100 600.19(0.13) 629.82(3.29) 679.28(1.62) 646.12(1.11) 0.02(0.00)

4 75 10 451.50(297.06) 369.24(267.56) 600.83(0.06) 300.61(290.33) 0.00(0.00)

30 466.64(168.42) 600.78(0.02) 602.34(0.05) 477.69(247.83) 0.00(0.00)

100 303.67(342.29) 352.24(274.64) 143.32(112.18) 144.59(69.49) 0.00(0.00)

375 10 566.15(67.76) 491.43(221.4) 457.11(293.42) 477.14(252.47) 0.00(0.00)

30 600.04(0.01) 603.87(0.12) 610.19(0.38) 606.95(0.41) 0.00(0.00)

100 600.08(0.04) 612.13(0.24) 634.51(0.41) 624.48(1.24) 0.01(0.00)

1875 10 600.07(0.04) 610.36(0.15) 618.99(1.09) 615.69(0.17) 0.00(0.00)

30 600.26(0.18) 628.24(7.46) 668.05(11.76) 643.32(6.86) 0.01(0.00)

100 600.23(0.15) 2093.28(2879.58) 870.92(204.47) 773.30(124.2) 0.02(0.00)

5 75 10 71.41(42.27) 257.38(238.86) 334.15(310.46) 174.48(68.26) 0.00(0.00)

30 331.02(312.46) 111.05(65.43) 290.31(237.35) 175.12(101.94) 0.00(0.00)

100 197.28(282.87) 126.31(125.74) 203.19(277.03) 362.06(287.43) 0.00(0.00)

375 10 600.04(0.01) 604.35(0.22) 610.09(0.23) 607.98(0.58) 0.00(0.00)

30 600.06(0.02) 895.01(572.57) 630.90(10.12) 618.21(0.71) 0.00(0.00)

100 600.14(0.04) 623.25(1.48) 688.14(2.65) 657.39(3.39) 0.01(0.00)

1875 10 600.12(0.09) 620.77(0.42) 646.92(1.32) 638.10(1.24) 0.00(0.00)

30 600.11(0.03) 644.42(4.94) 749.32(14.64) 705.32(16.21) 0.01(0.00)

100 600.34(0.19) 721.60(8.35) 1437.26(429.85) 932.58(32.37) 0.03(0.00)

of FlowOCT between 10 and 30 features is 8.2 and between 30 and 100 features it

decreases for a tree of depth 3 and 75 observations(here as well the time-limit is
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reached).

Lastly we study the effect of an increase in the depth while holding the number

of features and observations equal. The depth of the tree is the biggest factor in

the computation time. I first want to note that for depth 4 and 5 the majority of

the datasets does not solve the problem within the time-limit. For depth 4 and

5 only the dataset with 75 observations and the dataset with 375 observations

and 10 features has a smaller mean computation time than 600, however, even for

these datasets the standard deviation is high (meaning that for some samples the

time-limit is reached).

For BendersOCT the increase in average running time between depth 2 and

3 and between depth 3 and 4 is 51.4 and 22 respectively (however, for depth 4

the standard deviation is 297 as well) for a tree of depth 75 observations and

10 features. BendersOCT shows the same pattern with a dataset with more ob-

servations, for a dataset with 375 observations and 10 features the running time

increases with a factor 5.7 between depth 2 and 3, and becomes computationally

infeasible for depth 4 and 5. For OCT the increase in average running time be-

tween depth 2 and 3 is 22 and between depth 3 and 4 is unknown since the method

becomes unsolvable for a tree of depth 375 observations and 30 features.
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B Appendix

Table B2: False and True Discovery Rate on the Synthetic Datasets

approach BendersOCT FlowOCT binOCT OCT Cart

FDR TDR FDR TDR FDR TDR FDR TDR FDR TDR

depth nrow features

2 75 10 0.00(0.00) 1.00(0.00) 0.08(0.17) 0.92(0.17) 0.08(0.17) 0.92(0.17) 0.00(0.00) 1.00(0.00) 0.33(0.00) 0.67(0.00)

30 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.33(0.00) 0.67(0.00)

100 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.33(0.00) 0.67(0.00)

375 10 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.33(0.00) 0.67(0.00)

30 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.33(0.00) 0.67(0.00)

100 0.00(0.00) 1.00(0.00) 0.17(0.19) 0.83(0.19) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.08(0.17) 0.92(0.17)

1875 10 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00) 0.33(0.00) 0.67(0.00)

30 0.00(0.00) 1.00(0.00) 0.17(0.19) 0.83(0.19) 0.08(0.17) 0.92(0.17) 0.25(0.17) 0.75(0.17) 0.33(0.00) 0.67(0.00)

100 0.08(0.17) 0.92(0.17) 0.17(0.19) 0.83(0.19) 0.17(0.19) 0.83(0.19) 0.17(0.19) 0.83(0.19) 0.17(0.19) 0.83(0.19)

3 75 10 0.07(0.08) 1.00(0.00) 0.11(0.07) 1.00(0.00) 0.14(0.00) 1.00(0.00) 0.14(0.00) 1.00(0.00) 0.29(0.08) 0.71(0.08)

30 0.00(0.00) 1.00(0.00) 0.29(0.20) 0.71(0.20) 0.43(0.37) 0.57(0.37) 0.21(0.34) 0.79(0.34) 0.46(0.24) 0.54(0.24)

100 0.54(0.07) 0.46(0.07) 0.54(0.24) 0.46(0.24) 0.39(0.27) 0.61(0.27) 0.50(0.25) 0.50(0.25) 0.69(0.36) 0.29(0.33)

375 10 0.00(0.00) 0.96(0.07) 0.04(0.07) 0.96(0.07) 0.04(0.07) 0.96(0.07) 0.29(0.26) 0.71(0.26) 0.33(0.00) 0.57(0.00)

30 0.26(0.06) 0.83(0.00) 0.33(0.13) 0.75(0.10) 0.36(0.08) 0.75(0.10) 0.32(0.07) 0.79(0.08) 0.21(0.14) 0.83(0.00)

100 0.43(0.12) 0.57(0.12) 0.21(0.18) 0.79(0.18) 0.36(0.08) 0.64(0.08) 0.32(0.07) 0.68(0.07) 0.32(0.07) 0.68(0.07)

1875 10 0.00(0.00) 1.00(0.00) 0.07(0.14) 0.93(0.14) 0.00(0.00) 1.00(0.00) 0.29(0.00) 0.71(0.00) 0.36(0.08) 0.64(0.08)

30 0.32(0.07) 0.68(0.07) 0.32(0.07) 0.68(0.07) 0.32(0.07) 0.68(0.07) 0.32(0.07) 0.68(0.07) 0.32(0.07) 0.68(0.07)

100 0.29(0.00) 0.71(0.00) 0.29(0.00) 0.71(0.00) 0.29(0.00) 0.71(0.00) 0.29(0.00) 0.71(0.00) 0.29(0.00) 0.71(0.00)

4 75 10 0.34(0.01) 0.70(0.04) 0.34(0.09) 0.66(0.09) 0.38(0.06) 0.66(0.07) 0.40(0.09) 0.64(0.10) 0.29(0.07) 0.52(0.04)

30 0.57(0.16) 0.52(0.18) 0.54(0.17) 0.54(0.17) 0.67(0.12) 0.42(0.15) 0.55(0.08) 0.56(0.10) 0.60(0.16) 0.33(0.15)

100 0.82(0.12) 0.15(0.10) 0.83(0.07) 0.15(0.04) 0.87(0.05) 0.17(0.07) 0.88(0.11) 0.15(0.14) 0.83(0.13) 0.10(0.08)

375 10 0.39(0.08) 0.69(0.11) 0.41(0.10) 0.63(0.12) 0.42(0.08) 0.67(0.10) 0.43(0.07) 0.62(0.00) 0.45(0.08) 0.56(0.07)

30 0.55(0.08) 0.46(0.09) 0.40(0.05) 0.64(0.06) 0.42(0.03) 0.62(0.04) 0.43(0.04) 0.61(0.04) 0.42(0.03) 0.62(0.04)

100 0.93(0.00) 0.07(0.00) 0.45(0.04) 0.54(0.09) 0.53(0.08) 0.50(0.08) 0.40(nan) 0.64(nan) 0.45(0.04) 0.54(0.09)

1875 10 0.37(0.07) 0.63(0.07) 0.38(0.07) 0.60(0.05) 0.33(0.12) 0.67(0.12) 0.40(0.05) 0.60(0.05) 0.40(0.05) 0.60(0.05)

30 0.48(0.11) 0.52(0.11) 0.48(0.11) 0.52(0.11) 0.47(0.14) 0.53(0.14) 0.47(0.14) 0.53(0.14) 0.48(0.11) 0.52(0.11)

100 0.92(0.07) 0.07(0.05) 0.44(0.03) 0.55(0.03) 0.45(0.03) 0.55(0.03) 0.44(0.04) 0.56(0.04) 0.44(0.03) 0.55(0.03)

5 75 10 0.50(0.06) 0.79(0.08) 0.43(0.12) 0.74(0.25) 0.55(0.05) 0.82(0.08) 0.54(0.05) 0.75(0.09) 0.28(0.15) 0.47(0.08)

30 0.70(0.07) 0.55(0.14) 0.65(0.07) 0.56(0.14) 0.69(0.06) 0.59(0.12) 0.71(0.03) 0.50(0.09) 0.35(0.14) 0.47(0.11)

100 0.78(0.11) 0.20(0.05) 0.71(0.14) 0.28(0.08) 0.90(0.05) 0.22(0.10) 0.92(0.05) 0.13(0.08) 0.75(0.15) 0.18(0.08)

375 10 0.35(0.05) 0.67(0.05) 0.27(0.08) 0.70(0.09) 0.31(0.04) 0.72(0.04) 0.37(0.08) 0.55(0.16) 0.23(0.05) 0.64(0.04)

30 0.56(0.07) 0.48(0.07) 0.41(0.07) 0.57(0.08) 0.42(0.08) 0.64(0.10) 0.61(0.11) 0.32(0.17) 0.42(0.06) 0.56(0.08)

100 0.83(0.05) 0.18(0.05) 0.60(0.05) 0.38(0.05) 0.66(0.03) 0.38(0.03) 0.97(0.04) 0.01(0.02) 0.62(0.06) 0.36(0.05)

1875 10 0.41(0.04) 0.63(0.04) 0.38(0.06) 0.66(0.07) 0.38(0.05) 0.66(0.05) 0.41(0.02) 0.63(0.02) 0.42(0.08) 0.61(0.09)

30 0.36(0.05) 0.64(0.04) 0.35(0.03) 0.66(0.02) 0.37(0.02) 0.66(0.02) 0.35(nan) 0.67(nan) 0.36(0.03) 0.64(0.02)

100 0.92(0.06) 0.08(0.05) 0.54(0.03) 0.46(0.03) 0.55(0.05) 0.45(0.05) 0.54(0.03) 0.46(0.03) 0.54(0.03) 0.46(0.03)
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Table B3: Running Time of Methods on UCI Repository Datasets

BendersOCT FlowOCT binOCT OCT Cart

dataset depth

balance-scale 2 4.71(0.75) 15.98(5.60) 28.05(15.35) 34.87(6.09) 0.00(0.00)

3 600.02(0.00) 601.55(0.02) 602.73(0.28) 601.99(0.02) 0.00(0.00)

4 600.02(0.00) 603.07(0.09) 605.54(0.12) 604.55(0.05) 0.00(0.00)

5 600.04(0.00) 605.65(0.27) 613.89(0.29) 610.83(0.51) 0.00(0.00)

breast-cancer 2 10.22(2.01) 27.80(2.46) 97.28(13.62) 28.92(25.8) 0.00(0.00)

3 600.02(0.00) 601.02(0.04) 602.31(0.08) 601.61(0.12) 0.00(0.00)

4 600.02(0.00) 602.27(0.22) 604.59(0.11) 603.41(0.06) 0.00(0.00)

5 600.04(0.00) 604.02(0.08) 611.31(0.19) 608.30(0.74) 0.00(0.00)

car-evaluation 2 34.42(5.78) 90.12(12.65) 88.10(62.75) 349.41(168.9) 0.00(0.00)

3 600.10(0.10) 605.13(1.66) 1276.47(1332.9) 1544.11(1875.68) 0.00(0.00)

4 600.05(0.03) 607.11(0.11) 614.24(0.23) 611.49(0.28) 0.00(0.00)

5 600.06(0.03) 614.43(0.08) 635.32(0.55) 627.54(0.40) 0.00(0.00)

kr-vs-kp 2 365.64(188.5) 604.33(0.06) 610.16(0.09) 604.79(0.11) 0.00(0.00)

3 600.07(0.06) 609.54(0.33) 621.15(0.35) 613.77(0.68) 0.01(0.01)

4 600.15(0.16) 619.44(0.47) 647.31(0.98) 634.71(0.88) 0.00(0.00)

5 600.10(0.03) 639.84(0.40) 721.35(2.94) 686.05(0.80) 0.01(0.00)

monk-1 2 1.40(1.45) 2.04(0.95) 1.40(0.39) 2.38(0.51) 0.00(0.00)

3 4.96(1.59) 37.68(1.60) 87.89(75.3) 389.34(147.61) 0.00(0.00)

4 2.79(1.04) 8.92(3.42) 9.89(7.97) 50.91(68.27) 0.00(0.00)

5 2.68(1.31) 14.27(4.03) 3.60(0.64) 42.13(13.22) 0.00(0.00)

soybean-small 2 0.46(0.06) 0.33(0.07) 0.41(0.18) 1.88(1.88) 0.00(0.00)

3 0.54(0.38) 0.64(0.18) 0.61(0.06) 1.41(0.84) 0.00(0.00)

4 0.64(0.06) 1.42(0.62) 1.17(0.03) 2.05(0.68) 0.00(0.00)

5 0.90(0.25) 1.76(0.12) 2.63(0.07) 2.66(0.61) 0.00(0.00)
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Table B4: Number of solved instances(max. 5 for BinOCT and 50 for the other

methods) on UCI Repository Datasets in Aghaei et al. (2021)

BendersOCT BinOCT FlowOCT OCT

dataset depth

balance-scale 2 50 5 50 50

3 50 0 50 0

4 5 0 0 0

5 0 0 0 0

breast-cancer 2 50 5 50 50

3 11 0 9 4

4 5 0 5 1

5 5 0 5 0

car-evaluation 2 50 5 50 48

3 4 0 0 0

4 0 0 0 0

5 0 0 0 0

kr-vs-kp 2 50 5 50 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

monk1 2 50 5 50 50

3 50 5 50 48

4 50 5 50 49

5 50 5 50 31

soybean-small 2 49 5 50 50

3 50 5 50 50

4 50 5 50 50

5 50 5 50 50
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Table B5: Parameter Grid For Finetuning Cart

Grid Options

max features ’auto’, ’log2’, None

max depth 1, 2, ..., 14, 15

min samples split 2, 6 , 10

min samples leaf 2, 6, 10

max leaf nodes None, 10, 20, ..., 90
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