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Abstract

In this paper, we apply a conditional latent factor model to analyze the notoriously complex

cross-section of delta-hedged option returns. Specifically, the drivers of single-name equity and

equity exchange-traded fund (ETF) near-the-money call options are examined through Instru-

mented Principal Component Analysis (IPCA). Opposing to former models, IPCA incorporates

observable pricing-relevant characteristics via time-varying loadings that instrument for unob-

servable dynamics. We utilize an unbalanced panel data set of 1007 companies and 278 ETFs

that ranges from 2006 to 2018 and consists of 109,168 monthly delta-hedged option returns. Fur-

thermore, this research categorizes over the eleven GICS industry sectors and tackles the richly

parameterized IPCA model by implementing regularization to counter overfitting. We find that

a constant and implied volatility are vital drivers of all delta-hedged returns. Additional drivers

include operating leverage, market capitalization, and total assets for the equity options and

average daily bid-ask spread of the underlying, gamma, and theta for the ETF options. By iden-

tifying compensation for risk exposures, IPCA is able to generate annual out-of-sample Sharpe

ratios above two and shows potential for profitable trading strategies.

Keywords: delta-hedged option returns, IPCA, equity options, ETF options, regularization
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Introduction Master Thesis

1 Introduction

Since the early developments of the modern capital market in the 17th century in Amsterdam (Pe-

tram and Richards, 2014) traders have spent countless hours analyzing the movements of financial

securities. The quest of understanding the risk-reward trade-off expanded vigorously after the in-

troduction of the common factor analysis model of Spearman (1904) and its successors. For more

than a hundred years, the research area of analyzing returns through factor analysis flourished with

respect to stocks. In terms of options, this research field remained modest. According to Christof-

fersen et al. (2013), this results from decades of option research where the primary focus fixated on

the pricing component using valuations based on no-arbitrage, leading to the acclaimed Black and

Scholes (1973), Merton (1973), Cox et al. (1979), Hull and White (1987) and Heston (1993). This

follows the traditional view that options are merely leveraged positions in the underlying with no

other dynamics or purpose. For decades a stochastic process is assumed regarding the underlying

asset value, completely ignoring possible cross-sectional relations of the underlying through common

factors.

To empirically analyze the factor structure, decisions need to be made about the unobservable

nature of factors and its loadings. There are two common approaches to overcome this obstacle.

One can pre-specify factors, as for instance in the renowned Fama and French (1993) and Fama

and French (2015). This approach implements established knowledge about the cross-section and

therefore deems factors observable. However, this is often the main interest of a research. The other

approach is to treat risk factors as latent. In that environment, one can apply principal component

analysis (PCA). This technique is purely statistically originated and does not require any ex ante

knowledge of the data structure. The downside of this approach are the difficult to interpret latent

factors, its inadequacy in a dynamic setting, and its incapability in incorporating external data that

could increase performance.

In this paper, we assume risk factors to be latent and implement characteristics as conditioning

information for time-varying betas to describe empirically observed option returns. We implement

the Instrumented Principal Component Analysis (IPCA) approach of Kelly et al. (2017), which

has been empirically applied to stock returns in Kelly et al. (2019) and option returns in Büchner

and Kelly (2022). IPCA combines the benefits of common factor models and PCA, while avoiding

most of their weaknesses. By forcing factor loading to partially depend on periodically observable

and reported asset characteristics, IPCA implements conditional information through instrumen-
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tal variables for the latent conditional loadings. The theoretical background behind instrumental

variables in an asset pricing setting is extensively described in Hansen (1982) and Cochrane (2009).

The main motivation behind IPCA is for a model to suggest that characteristics proxy for loadings

on common risk factors. This motivation is in line with dynamic equilibrium asset pricing theo-

ries. For instance, Santos and Veronesi (2004) argue that conditional betas vary over time due to a

combination of economic conditions and firm characteristics.

Several papers did analyze a potential factor structure in options, yet limited their focus to bond

options (Black et al., 1990) and interest rate options (Chen and Scott, 1992). Their findings raised

several questions regarding other prominent derivatives that are inextricably intertwined with the

stock exchange. Recently, Christoffersen et al. (2018) and Büchner and Kelly (2022) find that equity

options and index options exhibit strong factor structures that explain a substantial portion of the

cross-sectional variation.

During the period 1995-2012, the largest stock markets in the U.S. increased by roughly 300%,

while the notional amount of financial derivatives held by the 25 largest U.S. bank holding companies

grew around 1800% (Abdel-khalik and Chen, 2015). In comparison, the U.S. GDP merely doubled

over the same time period, which indicates a vast growth of the derivatives market. Combining

these developments with modern modeling approaches in the field of factor analysis, the question

arises whether it is possible to shed light upon the factor structure in the cross-section of single-

name equity option returns. Moreover, one might wonder if this factor structure changes when the

underlying is grouped together in the form of an equity exchange-traded fund (from now on ETF in

contrast to equity ETF ). This analysis might offer a better understanding of the drivers of option

returns, which can lead to new research areas and profitable trading strategies.

The framework of the IPCA offers the model previous knowledge about the structure, which

improves the estimation of factors and loadings while still bypassing the need to determine factors

a priori. This last attribute combined with the dynamic loading is crucial to the success of IPCA

according to Kelly et al. (2019). We argue that these features are theoretically well suited for options,

due to their rapidly evolving risks at the individual level. Another benefit of IPCA is its ability to

impose a dimension reduction by selecting a small number of linear combinations of characteristics

that are most informative about the cross-section.

Furthermore, IPCA does not enforce no-arbitrage computations, which increases the flexibility

of the model when fitting the cross-section. Büchner and Kelly (2022) argue that while no-arbitrage

restrictions offer economical meaning and consistent pricing across moneyness and maturities, they

2
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eventually lead to sacrificing realism for mathematical elegance as they tend to be unsuccessful in

describing empirically observed patterns. For instance, the empirical evidence of a volatility skew

proves the Black-Scholes model of Black and Scholes (1973) to be flawed. This skew follows from

a vast increase in risk aversion after the Black Monday crash of 1987 (Hull, 2003), (Benzoni et al.,

2011). One after-effect is the realization of traders that extreme events need to be better factored

into option pricing, as implied volatility adjusts when options move deeper in-the-money or out-of-

the-money. Additionally, empirical research as Ofek and Richardson (2003) and Ofek et al. (2004)

have established that arbitrage opportunities occur in the option market. Israelov and Kelly (2017)

further discuss the inadequacy of no-arbitrage models to capture the empirical behaviour of option

returns. Hence, we avoid these pricing issues by resorting to IPCA.

Since stocks are well-known financial assets, there has been decades of research with regards to

its underlying structure. Unfortunately, stock market risk factors have little to no explanatory power

with respect to the cross-section of option returns, following Horenstein et al. (2020), Büchner and

Kelly (2022), and Zhan et al. (2022). This is not a surprise considering the complex structure of

options. As for instance, options are contracts that have a duration, whereas stocks are securities that

represent partial ownership. The short lives of options combined with fluctuating risk attributes as

moneyness make it problematic to estimate betas with standard time series regressions. Furthermore,

for a comprehensive analysis the IPCA framework requires insightful and up-to-date data, which in

our research focuses on numerous characteristics of publicly traded companies. While obtaining the

necessary data could prove troublesome in the past, by virtue of an increase in transparency and a

continuing development of specialised databases, many research ventures have been created.

According to Büchner and Kelly (2022), the most vital driver of option returns is the variation

in the price of the underlying. We apply a strategy to our near-the-money options that is known as

delta-hedging, which generates a return in excess of the variation in the underlying and is crucial

in finding relevant drivers. Therefore, this strategy is the common choice in the literature. In a

frictionless market the net investment of a delta-hedged portfolio earns the risk-free rate. However,

we find negative average returns approaching 1% per month, which is in line with similar research

as Coval and Shumway (2001), Cao and Han (2013), and Zhan et al. (2022).

To compare the benefits of the dynamic IPCA, we implement the static PCA as a benchmark.

Furthermore, a common problem over the last decades regarding factor models is overfitting the

cross-section. In the context of the IPCA model, it is probable that there are several redundant

characteristics and including these parameters may lead to suboptimal out-of-sample performance.
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Therefore, we aim to enhance the IPCA model by applying well-known shrinkage estimators and

obtain a more parsimonious model. We incorporate ridge regression as proposed by Tikhonov

and Arsenin (1977), the least absolute shrinkage and selection operator (Lasso) as popularised in

Tibshirani (1996), and a convex combination of these two methods introduced in Zou and Hastie

(2005), which is generally known as the elastic net. These three techniques operate through a

regression with a penalty term that restricts the optimisation function. This restriction ensures

the model to counter overparameterization by shrinking or even discarding the least informative

parameters.

We find that an model with four latent factors explains more than 26% of the variation in a

panel of near-the-money equity option returns. For the ETF option returns, this increases up to

40%. These numbers decrease by around one-half out-of-sample, suggesting excellent model fit.

Moreover, IPCA identifies a constant and implied volatility as vital drivers of delta-hedged returns.

Additional drivers include operating leverage, market capitalization, and total assets for the equity

options and average daily bid-ask spread of the underlying, gamma, and theta for the ETF options.

Additionally, we observe that regularization improves the model fit, yet it does not outperform basic

IPCA in terms of Sharpe ratios. This suggests that there is less overfitting than expected. While

basic IPCA generates annual out-of-sample Sharpe ratios above two, it remains a question whether

this is a viable trading strategy due to the absence of transaction costs and considerable turnover.

The rest of the paper is organised as follows. We give a deeper exploration of the research field

and further elaborate on its relation to our paper in Section 2. The framework of the IPCA, the

corresponding regularization extensions, the significance tests of drivers and the evaluation criteria

are described in Section 3. Next, the constructed data sets and decisions that we made regarding

its features are discussed in Section 4. Then, the findings are discussed in Section 5. And lastly, we

conclude our research in Section 6 and put our findings into perspective in Section 7.

2 Literature Review

The essence of factor analysis revolves around obtaining a small number of common factors that

drive the variation of a large cross-section (Mulaik, 2009). The creation of hypothetical variables

additionally ensures a desirable dimension reduction. After the introduction of the Arbitrage Pricing

Theory (APT) of Ross (1976), PCA became popular in the field of analyzing returns at the hand

of Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986, 1988). Moreover, PCA
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is closely related to the aforementioned common factor analysis, which is also known as principal

factor analysis (PFA). When put in conceptual terms, PCA analyzes variance and PFA analyzes

covariance. This implies that PCA is favoured when the goal is to discover patterns in the data,

while PFA is preferred when there are strong beliefs about the relationship among variables (Rao,

1964), (Schneeweiss and Mathes, 1995), (Jolliffe, 2002) and (Brown, 2009). Our research favors a

PCA based approach as we do not want to make assumptions regarding the underlying structure.

In hindsight, many researches in finance following Spearman (1904) are regarded as blind factor

analysis due to invalid motivations and misplaced applications (Mulaik, 2009). It is not until after

the introduction of the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965),

which build on the revolutionary ideas on diversification of Markowitz (1952), that factor analysis

solidified its place in the world of financial analysis. In this model, the return of a security depends

on its exposure to market risk, which is expressed by a single factor.

A few years later, Fama and MacBeth (1973) introduced the idea of analyzing the relationship

between characteristics and returns. This inspired Basu (1977) to examine whether price-earning

ratios indicate future performance. For decades, researchers came across factors that have explana-

tory power in the cross-section of stock returns, such as the size factor of Banz (1981), the reversal

factor of Jegadeesh (1990), and the value factor of Chan et al. (1991). Thereafter, Fama and French

(1992) analyze the effect of the size and value factors on the return of a asset, which was followed by

an extension and improvement of the CAPM in Fama and French (1993). Next, Jegadeesh and Tit-

man (1993) created a momentum factor that lead to Carhart (1997), after which Fama and French

(2015) extended their former work by including a profitability and investment factor. Eventually,

Harvey et al. (2016) found that using classical tests, at least 316 factors significantly explain the

cross-section of stock returns.

This raises the question when to stop creating factors. Since there is no known truth about which

factors are correct and which are acting as proxies for other risks, Cochrane (2011) speaks of a zoo

of factors. This alleged surplus of factors is further discussed in Fama and French (2018). They

elaborate on a fear for a dark age of data dredging, where empirically robust factors lack theoretical

motivation. Nonetheless, all these factors share the idea that there is essential information behind

returns hidden in asset and firm characteristics, which could lead to new perspectives on price

fluctuations in the market.

In a static factor loading setting, Stock and Watson (2002), Bai and Ng (2002) and Bai (2003)

tackle the high-dimensional framework and find that under certain assumptions principal components
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are consistent estimators of the factor space. Fan et al. (2016) take a large step by bridging the

gap between static latent factor models and characteristic-based models through the introduction of

projected principal component analysis (P-PCA). This technique implements PCA to a matrix of

returns that is projected onto a linear space which is spanned by covariates that are deemed relevant.

P-PCA includes similar to IPCA covariates that are tied to factors loadings to make estimation more

efficient. However, the P-PCA framework only allows loadings and covariates that are constant over

time. Hence, it can be viewed as a mix of PCA and IPCA. The time-variance restriction of static

factor models lead Forni et al. (2000) to extend PCA by allowing for dynamic components, creating

the generalized dynamic factor model (Barhoumi et al., 2013).

Almost two decades after the introduction of dynamic factors, Kelly et al. (2017) propose IPCA

to obtain accurate estimates of latent factor models when loadings are time-varying. By conditioning

on beta to instrument for the factor loadings, IPCA incorporates external information in the model

and brings structure to factor loadings. Due to the advent of big data, Kelly et al. (2017) claim

that exposures to fluctuations are ripe for harvesting through IPCA. Kelly et al. (2019) extend their

former work with an asset pricing application for the cross-section of stock returns. They conclude

that IPCA outperforms PCA, Fama and French (2015), and other well-known observable factor

models in describing systematic risk and risk compensation. Additionally, IPCA estimates roughly

95% fewer parameters than the other models when five factors are selected.

Büchner and Kelly (2022) is the first paper to extend the IPCA framework to option returns.

Since options are more complex securities than stocks, they are prone to be linked to more char-

acteristics, making IPCA potentiality well-suited to shed light upon a hidden factor structure in

option returns. Büchner and Kelly (2022) analyze a panel of monthly S&P 500 option returns and

find that the characteristics moneyness, implied volatility, and gamma are responsible for most of

the variation. And now our research further continues on this path by seeking the drivers of delta-

hedged equity and ETF option returns using IPCA. Büchner and Kelly (2022) argue that a single

latent factor is able to describe around 73% of the variation in their delta-hedged returns. This

increases up to 91% for a four-factor model. Through a correlation analysis with relevant financial

time series, Büchner and Kelly (2022) aim to interpret the generated latent risk factors. They find

that the IPCA factors correspond to common option factors discussed in Karakaya (2014). Similar

to Kelly et al. (2019), Büchner and Kelly (2022) claim that IPCA outperforms pre-specified factor

models. They conclude that for index options, IPCA generates the most accurate explanation of the

risk-return trade-off.
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Other literature handle the complex nature of options by implementing pre-specified factors. One

direction is by constructing portfolios sorts, such as Coval and Shumway (2001), Bakshi and Kapadia

(2003), Goyal and Saretto (2009), Frazzini and Pedersen (2012), Cao and Han (2013), Vasquez (2017)

and Cao et al. (2016), which generally leads to mediocre performances. Cao et al. (2016) discovers

various characteristics that have positive or negative relations with the cross-section of delta-hedged

equity option returns. Despite finding profitable option portfolio strategies after transaction costs,

they emphasize the complexity of option return predictability. A different direction is through

recognising the limitations of no-arbitrage option pricing models. Jones (2006) estimates non-linear

factor models for short-term deep out-of-the-money S&P 500 options and finds that volatility and

jump risk premia contribute substantially to the expected returns. Brooks et al. (2018) analyze a

large set of characteristics to predict the expected returns of individual equity options. Similar to our

motivation of including regularization, they find profitable option portfolio strategies by removing

characteristics using the adaptive Lasso.

Christoffersen et al. (2018) and Horenstein et al. (2020) estimate latent factors through PCA and

play an important role in our research motivation. The former constructs an equity option valuation

model and finds a strong factor structure in single-name equity options. They argue that the first

principal components of equity volatility, skews and term structures are highly correlated with the

S&P 500 index option volatility, skew and term structure. The latter focuses on the factor structure

of delta-hedged equity option returns by analyzing eleven characteristics and two market factors.

Horenstein et al. (2020) claim that a four-factor model consisting of the market volatility risk factor

and three characteristic-based factors captures the cross-section. Additionally, they find that stock

return factors have little to no explanatory power in explaining delta-hedged equity option returns.

The recent rise of machine learning made it possible to evaluate enormous sets of parameters

and apply algorithms that diminish the effects of uninformative variables for the sake of efficiency.

Specifically, regularization in the form of ridge regression, Lasso and elastic net has been an increas-

ingly popular technique in the asset pricing literature to tackle the challenges of a high-dimensional

cross-section. For instance, Kozak et al. (2020) implement adaptations of ridge regression and elastic

net to integrate numerous explanatory variables in a robust stochastic discount factor (SDF) to cap-

ture the cross-section of stock returns. Other research, such as Han et al. (2018), Rapach and Zhou

(2020) and Freyberger et al. (2020) solely focus on predicting asset returns using various machine

learning tools. We resemble these papers by applying machine learning techniques to find the most

relevant drivers through modeling and shrinkage.
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3 Methodology

In this section we discuss the framework of the constructed models. We start with the basic PCA

model, then we elaborate on the IPCA structure, describe asset pricing tests and outline the im-

plementation of regularization. Subsequently, we discuss the selected evaluation criteria and some

general aspects of the implementation process. Additionally, we express the total number of distinct

option issuers by N , the number of distinct option returns present at time t by Nt, the number of

characteristics by L, the number of factors by K and the size of the sample period by T .

For the last 50 years, asset pricing has mostly been focused on the question why different assets

earn different average returns. The general consensus has always been that higher returns reflect

compensation for additional risks, despite the lack of an empirical sound model. The empirical

search follows from the Euler equation for investment returns. This equation assumes no-arbitrage

and leads to the existence of an SDF mt+1, which for any excess return ri,t+1 satisfies the equation

Et [mt+1ri,t+1] = 0, and leads to:

Et [ri,t+1] =
Covt(mt+1, ri,t+1)

Vart(mt+1)︸ ︷︷ ︸
βi,t

(
−Vart(mt+1)

Et [mt+1]

)
︸ ︷︷ ︸

λt

, (1)

where βi,t represents the loadings that can be interpreted as the exposures to systematic risk factors,

and λt denotes the price of risk associated with the factors. Following Ross (1976) and Hansen and

Richard (1987), when the SDF is linear in factors ft+1, a factor model for excess returns can be

constructed of the following form:

ri,t+1 = αi,t + βi,tft+1 + ϵi,t+1, (2)

with Et [ϵi,t+1] = 0,Et [ϵi,t+1ft+1] = 0K×1, Et(ft+1) = λt, and most importantly αi,t = 0 for all

assets i and time periods t. This framework is essential for a general analysis of expected returns

across assets.

3.1 PCA

PCA is the most common factor analytic technique to discover latent factors. Two important

features of this method are that it requires no ex ante knowledge about the return structure and

that it has does not have time-varying loadings. To obtain the static PCA estimator, we drop αi,t

from Equation (2), which implies the assumption that the model captures all risk and that anomalies
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do not exist. Next, we remove the time-varying feature of the loading β and define the objective

function by minimizing the error terms, which looks as follows:

rt = βft + ϵt, (3)

min
β,F

T∑
t=1

(rt − βft)
′(rt − βft), (4)

where rt is an N × 1 vector that contains the delta-hedged option returns of the N firms at time t,

β is an N ×K matrix that denotes the loadings, ft is a K × 1 vector that represent the orthogonal

factors, ϵt is an Nt × 1 matrix that expresses the errors and F is an N × K matrix that stacks

all vectors ft over time. This implies that we consider one return for company i at time t. The

unbalanced data panel this creates is controlled through an approach discussed in Section 3.7.1. We

continue Equation (4) by taking the first-order condition (FOC) with respect to ft, which leads to:

β′(rt − βft) = 0K×1 ⇐⇒ f̂t = (β′β)−1β′rt, (5)

which is reminiscent of an OLS estimator. Next, we substitute the optimal value of ft in the objective

function of Equation (4) and obtain the following objective function for β:

max
β

tr

(
T∑
t=1

(β′β)−1β′rtr
′
tβ

)
. (6)

This function aims to maximise a sum of Rayleigh quotients. In this particular case, the PCA

solution is given by the first K eigenvectors of the sample second moment matrix of delta-hedged

returns, namely
∑

t rtr
′
t. The PCA estimator implements the singular value decomposition (SVD)

to the panel of delta-hedged returns.1

In terms of the characteristic-managed portfolios that are introduced in Section 3.3, the PCA

solution is given by the sample second moment matrix of portfolio returns
∑

t xtx
′
t. Kelly et al.

(2019) claim that PCA is very well suited for these portfolios, which is in line with the findings

of Kozak et al. (2020). However, they also find inferior results in other areas. This instability in

performance further substantiate the claim that PCA is prone for misspecification. Nevertheless, it

remains a relevant benchmark for the IPCA model.

3.2 IPCA framework

The IPCA framework implements observable characteristics that instrument for the latent condi-

tional loadings. The mapping between loadings and characteristics generate an environment where
1SVD is a factorisation that generalises the eigendecomposition of an m × n matrix M as follows: M = UΣVT,

where U and V are square unitary orthogonal matrices that form an orthonormal eigenbasis of M.
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characteristics are linked to expected returns, while retaining the general consensus that risk premia

are exclusively linked to risk exposures. This approach includes external information, yet avoids

defining risk factors a priori. The central motivation lies in the assumption that the characteristics

proxy for risk exposures and are therefore linked to compensation.

We continue with Equation (2) and focus on the dynamic factor loadings βi,t. The key feature

of IPCA is the next step, which is anchoring the loadings to observable instruments. According

to Kelly et al. (2017), this not only provides an economical interpretation, it increases the overall

estimation efficiency as well. We formulate the IPCA framework of Kelly et al. (2019) for an excess

return as follows:

ri,t+1 = αi,t + βi,tft+1 + ϵi,t+1, (7)

αi,t = z′i,tΓα + να,i,t, , (8)

βi,t = z′i,tΓβ + νβ,i,t, , (9)

where zi,t is an L × 1 instrument vector that contains the characteristics, Γα is an L × 1 vector

that denotes the weights of the instruments for the anomaly intercept, Γβ is an L×K matrix that

defines the mapping from a large number of characteristics to a relatively small number of risk

exposures, and να,i,t and νβ,i,t stand for the error terms with the former being a scalar and the latter

being a 1×K vector. The relation between the dynamic loadings and the option characteristics is

summarised in the L× (K + 1) matrix Γ = [Γα,Γβ]. This matrix is time-invariant, making it equal

for every option return.

The dimensions reduction feature of IPCA lies in the matrix Γβ . The estimation of this matrix

comes down to finding a number of linear combinations of characteristics that describe the latent

factor structure with the highest accuracy. This approach reduces the characteristic space. For

instance, when a number of characteristics contain informative but noisy signals, the aggregation

of the characteristics in linear combinations tends to average out the noise and isolate the signal to

reveal true risk exposures. That is why a relatively large number of characteristics is preferred in the

IPCA environment. Through the error terms να,i,t and νβ,i,t, the model accepts the possibility that

characteristics cannot capture all existing risk exposures. While ϵi,t+1 contains the idiosyncratic

mispricing that is neither associated with the characteristics nor the systematic risk exposures.

Kelly et al. (2017) describes the N ×K number of estimated parameters for PCA as an unneces-

sary excess. An important aspect of Γβ is that its size does not increase when the panel data either

increases in Nt or T . According to Kelly et al. (2017), this results in that for fixed K, L and N , T

10
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approaching infinity, the IPCA estimator for Γ = [Γα,Γβ] convergence rate is
√
NT , while the PCA

convergence rate of β is only
√
T .

Before the implications of the Γα vector are discussed, we need to state the assumptions that are

required for the IPCA model to achieve reliable estimations. Following the work of Kelly et al. (2017),

we create a new variable that denotes the compound errors, namely ei,t+1 = ϵi,t+1+να,i,t+νβ,i,tft+1.

Next, we define six assumptions in total that need to hold. Regarding consistency, the following

three assumptions are required.

• Assumption A. The instruments must be orthogonal to the error terms, which means

E [zi,tei,t] = 0L×1. In the context of Equation (7) - (9), this can be written as E [zi,tϵi,t] =

E [zi,tνα,i,t] = E [zi,tνβ,i,tft+1] = 0L×1.

• Assumption B. The following moments must exist: (1) E
(
||ftf ′

t ||2
)
, (2) E

(
||z′i,tei,t||2

)
, (3)

E
(
||zi,tz′i,t||2

)
, (4) E

(
||zi,tz′i,t||2||ft||2

)
.

• Assumption C. The parameter space of Γ is compact and away from rank deficient. This

means that det (Γ′Γ) > ϵ for some ϵ > 0. Almost surely, zi,t is bounded. Next, we define

Ωz,z
t = E

[
zi,tz

′
i,t

]
, then almost surely det (Ωz,z

t ) > ϵ for some ϵ > 0.

The orthogonality condition between instruments and errors can be seen as the adaption of IPCA

of the exclusion restriction in common instrumental variable regression. Assumptions B and C are

regularity conditions for consistency. Specifically, assumption B lists the requirements for the panel

Law of Large Numbers to hold, while assumption C ensures that matrix Γ′Z ′
tZtΓ, which will be

implemented frequently in later sections, remains nonsingular. The matrix Zt is an Nt × L matrix

that denotes all options characteristics at time t. For asymptotic normality and to obtain the

asymptotic variance, we impose the following three assumptions.

• Assumption D. (1) As N,T −→ ∞, 1√
NT

∑
i,t vec (zi,tei,tf ′

t)
d−→ Normal

(
0,Ωz,e,f

)
. (2) For

any t, as N −→ ∞, 1√
N
Z ′
tet

d−→ Normal (0L×1,Ω
z,e
t ). (3) As N,T −→ ∞, 1√

T

∑
t vecb

(
ftf

′
t − V f,f

) d−→

Normal
(
0K×1,V[3]

)
, where V f,f = E [ftf

′
t ].2

• Assumption E. There exists an M < ∞, such that ∀N,T, 1
NT

∑
i,j,t,s||τij,ts||≤ M , where

τij,ts = E
[
zi,tei,tej,sz

′
j,s

]
.

2vec(M) is an operator that transforms a matrix M to a column vector by stacking the rows in order vertically.

vecb(Q) vectorizes the upper triangle entries of a square matrix Q in a similar manner to vec. However, vecb does

not include the diagonal.
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• Assumption F. Ωz,z
t is constant at Ωc,c.

Assumption D consists of a panel-wise central limit theorem and a cross-sectional central limit

theorem. Assumptions E and F limit the cross-sectional dependency of zi,tei,t and restrict the

variation of the cross-sectional second moment of zi,t to have concise expressions. These assumptions

are similar to the ones discussed in Bai (2003).

3.2.1 Restricted IPCA (Γα = 0L×1)

Equation (3) applies a common choice in asset pricing, which is releasing the anomaly intercept

αi,t. In the context of IPCA, this implies that conditional expected returns have no intercept that

depends on characteristics, which leads to a restriction in the form of Γα = 0L×1. Restricting all αi,t

to zero is equivalent to the underlying belief that the characteristics are fully capable of describing

the risk exposures. This discards the idea that characteristics also represent anomaly intercepts.

Similar to Kelly et al. (2019), we derive from Equation (7) and (9) the following function:

ri,t+1 = z′i,tΓβft+1 + ϵ∗i,t+1, (10)

where ϵ∗i,t+1 = ϵi,t+1+ να,i,t+ νβ,i,tft+1 is a composite error. When this equation is transformed into

vector form, we obtain the following formula:

rt+1 = ZtΓβft+1 + ϵ∗t+1, (11)

where Zt is an Nt ×L matrix that denotes all options characteristics at time t and ϵ∗t+1 is an Nt × 1

vector that represents composite errors. This leads to the following objective function that minimizes

the sum of squared composite model errors:

min
Γβ ,F

T−1∑
t=1

(rt+1 − ZtΓβft+1)
′ (rt+1 − ZtΓβft+1) , (12)

which is quite similar to Equation (4). However, in this environment we need to find values for

ft+1 and Γβ due to the anchoring of loading to observable characteristics, as described in Equation

(9). Since applying the FOC requires only one non-constant variable, we need to consider either

ft+1 or Γβ constant when optimizing the IPCA objective function. Taking into account that the

characteristic matrix Zt and return vector rt+1 are known, the FOC with respect to ft+1 generates

similar to Equation (5) the following optimal value:

f̂t+1 =
(
Γ̂′
βZ

′
tZtΓ̂β

)−1
Γ̂′
βZ

′
trt+1, (13)
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3.2 IPCA framework Master Thesis

which holds for a given value of Γ̂β and for all values of t. The same logic applies to obtaining

Γ̂β . However, the matrices Zt and ft+1 do not have the same dimensions. Therefore, we implement

the Kronecker product.3 Through this operator, Equation (12) can, for a given value of f̂t+1, be

rewritten as follows:

min
Γβ

T−1∑
t=1

(
rt+1 − Zt ⊗ f̂ ′

t+1vec
(
Γ′
β

))′ (
rt+1 − Zt ⊗ f̂ ′

t+1vec
(
Γ′
β

))
. (14)

Next, we take the FOC with respect to vec
(
Γ′
β

)
and retrieve the following equation:

vec
(
Γ̂′
β

)
=

(
T−1∑
t=1

Z ′
tZt ⊗ f̂t+1f̂

′
t+1

)−1( T−1∑
t=1

[
Zt ⊗ f̂ ′

t+1

]′
rt+1

)
. (15)

According to Kelly et al. (2019), Equation (13) and (15) have no closed-form solution and require

numerical optimization. Additionally, one might wonder how Γ̂β and f̂t+1 are sequentially considered

as given values. The answer lies in the estimation method that is discussed in Section 3.7.1.

A common issue in latent factor models is the rotational unidentification problem of esti-

mators. Without additional assumptions, any set of solutions can be transformed and generate

equivalent results by implementing a non-singular K × K matrix R. For instance, we observe(
Γ̂βR

−1
)(

Rf̂t+1

)
= Γ̂βIK f̂t+1 = Γ̂β f̂t+1 where IK is the K-dimensional identity matrix. Therefore,

to realize a unique solution we impose the following three restrictions following Kelly et al. (2017):

(1) Γ′
βΓβ = IK ensuring that Γβ is orthonormal, (2) E [ft] ≥ 0 and (3) 1

T

∑T
t=1 ftft = diag (a) with

ai > ai+1 ∀i. According to Kelly et al. (2019), these three assumptions serve as a dynamic coun-

terpart to the static PCA identification, as described in Stock and Watson (2002). Furthermore,

the three assumptions do not interfere with the outcome of the IPCA model nor the economical

interpretation of the results.

3.2.2 Unrestricted IPCA (Γα ̸= 0L×1)

In contrast, releasing the restriction (Γα = 0L×1) accepts the possibility that characteristics represent

anomaly intercepts. Or in other words, that characteristics describe expected returns in a manner

that is not fully explained by risk exposures. Hence, when characteristics align differently with

returns than they align with factor loadings, IPCA identifies compensation for holding risk that is

not incorporated in the systematic risk exposures and estimates a nonzero Γα. Similar to Equation
3The Kronecker product is an operation on two matrices of arbitrary size that generates a block matrix. For

instance, if A is an m× n matrix and B is a p× q matrix, then A⊗B is an mp× nq block matrix.
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(10), we derive with the help of Equation (8) the following equation:

ri,t+1 = z′i,tΓα + z′i,tΓβft+1 + ϵ∗i,t+1, (16)

which can be rewritten in vector form:

rt+1 = ZtΓα + ZtΓβft+1 + ϵ∗t+1 = ZtΓf̃t+1 + ϵ∗t+1, (17)

where we have Γ = [Γα,Γβ] and f̃t+1 =
[
1, f ′

t+1

]′ to have an analogous representation as Equation

(11). This leads to the following optimal equations when applying the FOC:

f̃∗
t+1 =

(
Γ̂′
βZ

′
tZtΓ̂β

)−1
Γ̂′
βZ

′
t (rt+1 − ZtΓα) , (18)

vec
(
Γ̂′
)
=

(
T−1∑
t=1

Z ′
tZt ⊗ f̃∗

t+1f̃
∗′
t+1

)−1( T−1∑
t=1

[
Zt ⊗ f̃∗′

t+1

]′
rt+1

)
. (19)

Equation (18) displays the unrestricted estimator that optimally allocates the panel variation in

returns to the anomaly and the risk exposures. Despite the three identification assumptions of the

restricted IPCA model, we are now faced with another identification problem due to the additional

estimation of Γα. For example, for non-singular Γα and Γβ we find Zt (Γα + Γβζ)+ZtΓβ (ft+1 − ζ) =

ZtΓα+ZtΓβft+1, which holds for any constant K×1 vector ζ. To counter the identification problem,

we introduce another assumption on top of the three assumptions discussed in Section 3.2.1. We

impose that Γα and Γβ are orthogonal, hence Γ′
αΓβ = 01×K . This is realized by the following steps.

We start by generating estimates of ft+1 and Γ through Equations (18) and (19). Then, we apply

Γ̂′
βΓ̂α = ξ, where ξ is a K × 1 vector. We follow this step by computing new values f̂∗

t+1 = f̂t+1 + ξ

and Γ̂∗
α =

(
IL − Γ̂βΓ̂

′
β

)
Γ̂α. Lastly, a sign adjustment will be applied to the new optimal estimates

f̂∗
t+1 and Γ̂∗ =

[
Γ̂∗
α, Γ̂β

]
based on the sign of the mean per row of F .

3.3 Characteristic-managed portfolios

In this research we also examine the returns of portfolios that are managed by the characteristics.

This perspective offers great insight into the data and its corresponding portfolio performance. We

construct these portfolios following Kelly et al. (2019) by interacting the option returns with the

instruments as follows:

xt+1 =
Z ′
trt+1

Nt+1
, (20)

where xt+1 is an L×1 vector that expresses the return on a characteristic-managed portfolio at time

t + 1. This means that we obtain a weighted average of option returns for the l-th element of xt+1.
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The weights are driven by the value of the l-th characteristic at time t and then normalised by the

number of option returns at time t+ 1. Through normalising, the portfolio is not affected by a lack

of availability. By stacking the time series, we obtain the T ×L matrix X = [x1, ..., xT ]
′, where each

column represents a return series of a portfolio based on the l-th characteristic. This procedure is

more convenient than sorting portfolios, as for example in Fama and French (2015). In our research,

double sorting would lead to an exorbitant number of portfolios.

Furthermore, restating the cross-section trough characteristic-managed portfolios allows us to

analyze the data in much lower dimensions (T × L) than using options returns (T × Nt), which

reduces computational cost. Kelly et al. (2019) suggest that IPCA is a generalisation of period-

by-period cross-section regression as introduced in Fama and MacBeth (1973). For instance, when

K = L the ft+1 estimates are the characteristic-managed portfolios and therefore equivalent to the

Fama-MacBeth regression coefficients. Another perspective presents itself when we rewrite Equation

(6) with the dynamic betas of Equation (9). This generates for the restricted IPCA model the

following objective function:

max
Γβ

tr

(
T−1∑
t=1

(
Γ′
βZ

′
tZtΓβ

)−1
Γ′
βZ

′
trt+1r

′
t+1ZtΓβ

)
. (21)

This function aims to maximise a sum of Rayleigh quotients where it is impossible to retrieve the first

K eigenvectors due to the complexity of the time-variant Zt. Nevertheless, the dynamic problem of

Equation (21) is strongly related to the static problem, which is why Kelly et al. (2019) claim that

the IPCA problem can be approximated by implementing SVD to characteristic-managed portfolios.

If Z ′
tZt is replaced by their time series average 1

T

∑T
t=1 Z

′
tZt, the solution to Equation (21) for Γβ

is the first K eigenvectors of the sample second moment matrix of portfolio returns X ′X =
∑

t xtx
′
t,

which is identical to the PCA solution for β for characteristic-managed portfolios as discussed in

Section 3.1. This results in that the first K principal components of the characteristic-managed

portfolio panel are the estimates of ft+1. Hence, conditional that Z ′
tZt is not too volatile, this

solution is a useful initialization for the optimization process.

Perhaps the most significant benefit from implementing characteristic-managed portfolios is that

they avoid the problem of the unbalanced panel that torments individual contract data. To construct

xt+1, the inner product of rt+1 and Zt is obtained using only the coincident non-missing elements.

Following Kelly et al. (2019), this leads to the following computations of two imperative matrix

multiplications:

Z ′
tZt =

∑
i∈Nt+1

zi,tz
′
i,t , Z ′

trt+1 =
∑

i∈Nt+1

zi,tri,t+1 , (22)
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where Nt+1 denotes the set of options that have no missing elements in terms of characteristics at

time t and returns at time t+1. This process revolves around the belief that the estimator considers

the L-dimensional Z ′
tZt and Z ′

trt+1 to contain sufficient information for the N -dimensional option

data. The fact that these portfolios can be constructed with or without missing data is crucial

because of the inevitable features of our data set, which are further discussed in Section 4.3. Further

implications of characteristic-managed portfolios are discussed in the next sections.

3.4 Asset pricing tests

A growing problem in the asset pricing literature is the choice of relevant test assets that need to be

priced before a model is generally approved (Lewellen et al., 2010), (Daniel and Titman, 2012). IPCA

tests offer two perspectives (Kelly et al., 2019). The first being a set of test assets that contains

the best resolution, which are raw delta-hedged returns. The second are characteristic-managed

portfolios, as they have relatively low dimensions and average out a vast part of idiosyncratic risk.

In this section, we elaborate on the required tests to determine which characteristics are sta-

tistically significant when describing the cross-section of the delta-hedged returns. It is also of

importance to determine whether these characteristics are related to the risk exposures or if they

contribute via an intercept. This directly calls for a test that focuses on Γα and test the hypothesis

if it is significantly different from zero. Testing the anomaly in the IPCA framework generalises

alpha-based tests as the GRS-test of Gibbons et al. (1989). The distinction between the two tests

lies in a subtle difference in their motivations. Where the former searches for latent risk factors to

explain the anomaly, the latter asks the same question yet searches in a pre-specified factor space.

Lastly, we analyze ceteris paribus the incremental significance of a characteristic in the IPCA model.

3.4.1 Testing the anomaly (Γα = 0L×1)

The key feature of the dynamic loadings in the IPCA framework is that the estimator decides how the

insightful information of characteristics is distributed over the parameters. When the characteristic

proxy for exposure to risk factors, the characteristic information is attributed to Γβ . This implies

that if IPCA is unable to identify the latent risk factors that compensate for exposures, the model

concludes that the characteristic effect is riskless compensation and allocates it to Γα. In this case,

the compensation raises several questions, among which if the model is correctly specified.

We define the null hypothesis H0 : Γα = 0L×1, making the alternative hypothesis H1 : Γα ̸= 0L×1.

The reason that we are not testing whether αi,t is equal to zero stems from that IPCA does not care
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about mispricing, as long as it is entirely idiosyncratic and unrelated to the characteristics. Hence,

the alternative is not focused on values of αi,t. Instead, it is interested in the characteristics that

cause the rejection of the null hypothesis and the corresponding economical meaning.

The test implements a Wald-type statistic that measures the distance between zero and the

unrestricted anomaly estimates. This captures the increase in model fit from releasing the no-

anomaly restriction. This research applies a ’residual’ bootstrap procedure following Kelly et al.

(2019). Bootstrapping is known to be reliable in finite samples and valid under weak assumptions

on residual distributions. We start by obtaining estimates of parameters Γα,Γβ and {ft}Tt=1 using

the unrestricted model of Section 3.2.2. The aforementioned distance is acquired by Wα = Γ̂′
αΓ̂α.

In the bootstrapping procedure, we choose to implement characteristic-managed portfolio residuals

as they involve lower dimensions and avoid missing data issues. Moreover, the objective function of

Equation (21) will unintentionally and inevitably be rewritten in terms of xt when the normalisation

is dropped. We combine Equation (17) and (20) and obtain:

xt+1 =
(
Z ′
tZt

)
Γα +

(
Z ′
tZt

)
Γβft+1 + Z ′

tϵ
∗
t+1. (23)

Next, we define the portfolio residuals as dt+1 = Z ′
tϵ

∗
t+1, which is an (L× 1) vector that we store in

a set {d̂t}Tt=1. Then, we create the b-th bootstrap sample of returns as follows:

x̃
(b)
t+1 =

(
Z ′
tZt

)
Γ̂β f̂t+1 + d̃

(b)
t+1 , d̃

(b)
t+1 = q

(b)
t+1d̂h(b)

t+1

, (24)

where b = 1, ..., 1000, h(b)t+1 represents a random time index drawn uniformly without replacement

from the available periods 1 to T − 1 and q
(b)
t+1 is a random variable that follows a Student t-

distribution with five degrees of freedom and unit variance. The motivation for the Student t-

distribution stems from the consensus that asset returns tend to suffer from heteroskedasticity and

that it increases efficiency of the bootstrap inference (Fama, 1965), (Lamoureux and Lastrapes,

1990), (Nelson, 1991), (Goncalves and Kilian, 2004).

Using Equation (24), the unrestricted IPCA model of Equation (23) is re-estimated and generates

1000 estimations of Γα. Then, we compute the test statistics as W̃
(b)
α = Γ̃

(b)′
α Γ̃

(b)
α , which summarises

the amount of sampling variation under the null hypothesis. For the last step, we count the number

of times that the bootstrapped test statistic exceeds the test statistic from the real data. In statistical

terms, this comes down to a p-value of 1
1000

∑1000
b=1 I

(
W̃

(b)
α > Wα

)
, where IA denotes an indicator

function that equals one when the inner statement is true and zero otherwise. Through the p-value,

we can determine whether Γα = 0L×1 holds and if not, we can simply detect the characteristics that

cause the rejection by looking at the individual magnitudes in Γα.
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3.4.2 Testing the characteristic (γβ,l = 0K×1)

The second test that we implement focuses on the impact characteristics. This process starts at the

partition of the loading matrix Γβ . We define for L characteristics Γβ = [γβ,1, ..., γβ,L]
′, where each

γβ,l is an K × 1 vector that connects characteristic l to the K factors. Hence, γβ,l,k is a scalar that

represents the loading of characteristic l on factor k. For this test, we discard the idea of an existing

anomaly, which means that we assume Γα = 0L×1 and estimate the restricted IPCA model.

The null hypothesis is H0 : Γβ = [γβ,1, ..., γβ,l−1,0K×1, γβ,l+1, ...γβ,L]
′ and the alternative hy-

pothesis is constructed as H1 : Γβ = [γβ,1, ..., γβ,L]
′ with γβ,l ̸= 0K×1. These hypothesis stem from

the idea that the characteristic of interest does not influence the K factors in any way. Following

the same residual bootstrap concept as the anomaly test, we obtain the following sets of parameters

{γ̂β,l}Ll=1, {f̂t}Tt=1 and {d̂t}Tt=1 by estimating Equation (11) under the alternative hypothesis with

Γα = 0L×1. We measure the distance between the two hypothesis using a Wald-type statistic, which

is computed as Wβ,l = γ̂′β,lγ̂β,l. In the next step, we define Γ̃β = [γ̂β,1, ..., γ̂β,l−1,0K×1, γ̂β,l+1, ...γ̂β,L]
′

and incorporate this estimation in the b-th bootstrap sample of returns under the null hypothesis

for b = 1, ..., 1000. This is constructed as x̃
(b)
t+1 = (Z ′

tZt) Γ̃β f̂t+1 + d̃
(b)
t+1, where d̃

(b)
t+1 is obtained

similar to to Equation (24). This action is followed by re-estimating the restricted IPCA model

under the alternative hypothesis for each sample b, which generates the test statistic W̃
(b)
β,l . Lastly,

the p-value of the test is computed as 1
1000

∑1000
b=1 I

(
W̃

(b)
β,l > Wβ,l

)
. In case the interest shifts to the

joint significance of characteristics, we can easily extend the framework through an addition in the

computation of the test statistic. Similarly, if one element in γβ,l is notable due to its size, we can

restrict this parameter to zero and perform a similar bootstrap to analyze its significance.

3.5 Regularization

Kelly et al. (2019) claim that the IPCA method has excellent performance compared to well-known

factor models. Not only is it capable in describing systematic risks and risk compensation, IPCA

proves to be more computational efficient due to its dimension reduction feature. Nevertheless,

an IPCA model with a limited number of characteristics, factors, and observations still contains a

substantial number of parameters. This increases the chance of overfitting what generally reduces

out-of-sample performance tremendously. Following recent literature, we utilize the opportunities

given by regularization machine learning approaches to counter overfitting and improve model per-

formance in high-dimensional data. In this section, we elaborate on the process of implementing

ridge regression, Lasso and elastic net to enhance the IPCA framework.
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There are a few distinctions to be made before we discuss the techniques. The first is that

we do not regularize the factors ft. The reason being that our interest lies in the weights of the

characteristics and not the pricing of systematic risks. Hence, we solely focus on the Γ matrix.

Secondly, the input data needs to be standardised before the regularization can be applied, which

consists of two parts. The first is removing the need for an intercept by centering the data through a

demeaning process. And the second is scaling that results in all characteristics having equal variance,

which is required to interpret and compare the generated coefficients in a coherent manner. Lastly,

the assumptions to counter the rotational unidentification problems of Section 3.2.1 and 3.2.2 do

not change when we regularize the loading matrix Γ.

3.5.1 Ridge regression

The concepts of ridge regression are first introduced as Tikhonov regularization in Tikhonov and

Arsenin (1977), making it one of the earliest implementations of regularization. Similar to the IPCA

objective function, ridge regression aims to minimize the sum of squared errors (SSE). Only in this

environment, there is a regularization term that penalises the square magnitudes of all coefficients

in Γ, which is known as L2 regularization or the Euclidean norm. For the restricted IPCA model,

we adjust Equation (12) and obtain the following objective function:

min
Γβ ,F

T−1∑
t=1

(rt+1 − ZtΓβft+1)
′ (rt+1 − ZtΓβft+1) + λ

L∑
l=1

K∑
k=1

γ2β,l,k, (25)

where λ denotes the penalty parameter with a non-negative value that determines the effect of the

penalty term. For λ → 0, we obtain identical estimates as for the restricted IPCA model. And

when λ → ∞, we observe that all estimates move towards zero. It is important to note that due to

the construction of the ridge estimator the γβ,l,k coefficients can approach zero, yet never reach it.

Next, we implement the optimal value for f rdg
t+1 from Equation (13) where we replace Γ̂β with Γ̂rdg

β

and then take the FOC with respect to Γrdg
β , which leads to the following IPCA ridge estimator:

vec
(
Γ̂rdg ′
β

)
=

(
T−1∑
t=1

Z ′
tZt ⊗ f̂ rdg

t+1f̂
rdg ′
t+1 + λ ILK

)−1( T−1∑
t=1

[
Zt ⊗ f̂ rdg ′

t+1

]′
rt+1

)
, (26)

where an increase in λ directly results in a decrease in Γβ . Analogously, we obtain the IPCA ridge

estimator for the unrestricted IPCA model:

vec
(
Γ̂rdg ′

)
=

(
T−1∑
t=1

Z ′
tZt ⊗ f̃ rdg ∗

t+1 f̃ rdg ∗′
t+1 + λ ILK

)−1( T−1∑
t=1

[
Zt ⊗ f̃ rdg ∗′

t+1

]′
rt+1

)
, (27)

where we obtain f̃ rdg ∗
t+1 in a similar manner as f rdg

t+1.
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3.5.2 Lasso

The Lasso is popularised in Tibshirani (1996) and functions as an regression technique that simul-

taneously performs regularization and variable selection. This last feature generates sparsity and is

the most important difference with ridge regression. The Lasso is able to set coefficients equal to

zero by utilising an absolute value in the penalty term, which is known as the L1 norm. Including

an absolute value function leads to jumps in the derivative, opposing to ridge where the derivative is

smooth. This allows the Lasso to remove uninformative variables in its entirety, making the model

more parsimonious and interpretable. We refer to Hastie et al. (2009) for a deeper understanding of

the distinctions between Lasso and ridge. By adjusting the penalty function of Equation (25) and

adding a scalar for convenience, we obtain for restricted IPCA the following objective function:

min
Γβ ,F

1

2

T−1∑
t=1

(rt+1 − ZtΓβft+1)
′ (rt+1 − ZtΓβft+1) + λ

L∑
l=1

K∑
k=1

|γβ,l,k| , (28)

where we regard 1
2 in the penalty term to be subsumed by λ. Due to the absolute value function,

this objective function is not differentiable at zero. Nevertheless, since the function is continuous

for all values that are not zero, we can take the derivative and consider zero as a special case. We

start by rewriting Equation (28):

min
Γβ ,F

1

2

T−1∑
t=1

(
rt+1 −

(
Zt ⊗ f ′

t+1

)
(γβ,1, ..., γβ,LK)

′)′ (
rt+1 −

(
Zt ⊗ f ′

t+1

)
(γβ,1, ..., γβ,LK)

′)
+ λ

LK∑
i=1

|γβ,i| , (29)

where we vectorised Γβ and summarised the elements of γβ,l,k in a vector to obtain a single summation

in the penalty term. To simplify the function, we introduce Gt = Zt ⊗ f ′
t+1 which is an Nt × LK

matrix that can also be expressed as LK column vectors gt,lk. Further simplification leads to the

following function:

min
Γβ ,F

1

2

T−1∑
t=1

(
rt+1 −

LK∑
i=1

(gt,iγβ,i)

)′(
rt+1 −

LK∑
i=1

(gt,iγβ,i)

)
+ λ

LK∑
i=1

|γβ,i| . (30)

Next, we implement an adaptation of Equation (13) and denote the corresponding objective function

with Q (γβ,i, λ). This action is followed by taking the derivative with respect to γβ,j , which produces:

∂Q (γβ,i, λ)

∂γβ,j
= −

T−1∑
t=1

g′t,j

(
rt+1 −

LK∑
i=1

(gt,iγβ,i)

)
+

∂λ|γβ,j |
∂γβ,j

, (31)

where the summation of γβ,i can be rewritten to single out γβ,j . This leads to the following FOC:

∂Q (γβ,i, λ)

∂γβ,j
= −

T−1∑
t=1

g′t,j

rt+1 −
∑
i ̸=j

(gt,iγβ,i)

+
T−1∑
t=1

g′t,lkgt,lkγβ,j + λ
∂|γβ,j |
∂γβ,j

= 0 . (32)
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The problem that we face is that the absolute value term is not differentiable in the origin. Nonethe-

less, due to its convexity we are able to analyze its subderivative. According to Wriggers and

Panagiotopoulos (1999), the subdifferential at the origin is the interval [−1, 1]. We apply this sub-

differential using Equation (32) with γβ,j = 0 and obtain: −
T−1∑
t=1

g′t,j

rt+1 −
∑
i ̸=j

(gt,iγβ,i)

− λ , −
T−1∑
t=1

g′t,j

rt+1 −
∑
i ̸=j

(gt,iγβ,i)

+ λ

 .

If we want the FOC to provide a global minimum, this interval must contain zero. Combining this

information with the FOC generates three scenarios for the regularized γβ,j : (1) when this interval

contains zero, we set γ̂lasβ,j equal to zero, (2) the left-hand side of the interval exceeds zero ⇐⇒ γβ,j < 0,

and we compute γ̂lasβ,j by solving Equation (32), (3) the right-hand side of the interval subceeds zero

⇐⇒ γβ,j > 0, and we compute γ̂lasβ,j by again solving Equation (32). In a similar manner, we derive

the FOC for unrestricted IPCA and obtain a procedure for γ̂lasj . The optimization approach of the

Lasso is further discussed in Section 3.7.

3.5.3 Elastic net

Theoretically, one would be inclined to prefer Lasso over ridge because of its sparsity feature. How-

ever, Zou and Hastie (2005) finds three major flaws in the Lasso framework. First, in an environment

where the number of predictors exceeds the number of observation, also known as p ≫ n, the Lasso

is unable to select more than n parameters regardless of relevance. Second, the Lasso has an incon-

sistent selection procedure, as it is prone to select only one parameter of a group of variables with

high pairwise correlations. And third, ridge generally outperforms Lasso when the predictors are

highly correlated. Especially this last flaw inspired Zou and Hastie (2005) to create a technique that

would possess the best of both worlds. They introduce a convex combination of Lasso and ridge,

which is known as the elastic net. Including the L1 and L2 norm in the penalty term generates for

the restricted IPCA model the following objective function:

min
Γβ ,F

1

2

T−1∑
t=1

(rt+1 − ZtΓβft+1)
′ (rt+1 − ZtΓβft+1)+ρλ

L∑
l=1

K∑
k=1

|γβ,l,k| +
1

2
(1−ρ)λ

L∑
l=1

K∑
k=1

γ2β,l,k , (33)

where ρ ∈ [0, 1] regulates the ratio of Lasso and ridge regression. Additionally, two scalars are added

for convenience, as is common in the literature. By applying identical steps from the Lasso, we

obtain the following FOC for the elastic net:

∂Q (γβ,i, ρ, λ)

∂γβ,j
= −

T−1∑
t=1

g′t,j

rt+1 −
∑
i̸=j

(gt,iγβ,i)

+

T−1∑
t=1

g′t,lkgt,lkγβ,j +ρλ
∂|γβ,j |
∂γβ,j

+(1−ρ)λγβ,j = 0 . (34)
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The addition of the ridge penalty in this framework does not lead to new adversities. Therefore, we

apply the subdifferential of the absolute value at the origin using Equation (34) with γβ,j = 0 and

obtain: −
T−1∑
t=1

g′t,j

rt+1 −
∑
i ̸=j

(gt,iγβ,i)

− 1

2
ρλ , −

T−1∑
t=1

g′t,j

rt+1 −
∑
i ̸=j

(gt,iγβ,i)

+
1

2
ρλ

 .

Similar to the Lasso, the generated interval leads to three scenarios for the regularized γβ,j : (1)

when this interval contains zero, we set γ̂enetβ,j equal to zero, (2) the left-hand side of the interval

exceeds zero ⇐⇒ γβ,j < 0, and we compute γ̂enetβ,j by solving Equation (34), (3) the right-hand side

of the interval subceeds zero ⇐⇒ γβ,j > 0, and we compute γ̂enetβ,j by again solving Equation (34). In

a similar manner, we derive the FOC for unrestricted IPCA and obtain a procedure for γ̂enetj . The

optimization approach of the elastic net is further discussed in Section 3.7.

3.6 Evaluation criteria

In addition to the significance analysis of the anomaly and characteristics in Section 3.4, this paper

researches if IPCA suits the cross-section delta-hedged options. To assess the model performance in

an accurate manner, we incorporate three criteria. The first is the well-known R2 statistic, which will

be referred to as total R2. This measure indicates how well a model describes the common variation

in returns, which are the systematic risk exposures. The second criteria is an adaptation of the first

and is called predictive R2. This criteria indicates the ability of a model to describe differences in

average returns across assets, also known as the ability to describe risk compensation. The third

criteria is the Sharpe ratio of Sharpe (1966) and is a prominent measure for the performance of an

investment. We define Sharpe ratio as the expected excess return divided by its standard deviation.

A general weakness of total R2 is its framework tends to reward the addition of predictors. This

means that the measure increases or remains unchanged when more variables are included, regardless

of relevancy. To counter this issue, predictive R2 reflects the amount of random noise in a model. By

excluding data points and then predicting the missing data, predictive R2 measures the accuracy of

model-implied conditional expected returns. Poor R2 performance indicates overfitting and can be

used as motivation to reduce the number of parameters. This is especially interesting for regularized

IPCA that is constructed to reduce unnecessary information and prevent overfitting.
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3.6 Evaluation criteria Master Thesis

3.6.1 In-sample

Following Kelly et al. (2019), the in-sample total R2 and predictive R2 for the option returns rt are

defined as follows:

R2
r,tot = 1−

∑
i,t

(
ri,t+1 − z′i,t

(
Γ̂α + Γ̂β f̂t+1

))2
∑

i,t r
2
i,t+1

, R2
r,pred = 1−

∑
i,t

(
ri,t+1 − z′i,t

(
Γ̂α + Γ̂βλ̂

))2
∑

i,t r
2
i,t+1

, (35)

where λ̂ is a K × 1 vector that denotes the unconditional mean estimates of factors f and can be

seen as the price of risk. Moreover, to not overcomplicate the model structure, we do not incorporate

risk price dynamics in the IPCA framework. The computations of the R2 statistics for the IPCA

characteristic-managed portfolios xt and the benchmark PCA model can be found in Appendix C.

3.6.2 Out-of-sample

The in-sample performance of a model quantifies the capability of capturing dynamics in the fitted

data. For our research, this represents an understanding of historical drivers of delta-hedged returns.

Nonetheless, an understanding in this context is truly beneficial when its extends to generating

decent forecasts. Furthermore, great performance in all sample periods diminishes the probability

that one views successful results as statistical overfit. Following Kelly et al. (2019), we apply recursive

backward-looking estimation. This approach involves using all available data up to and including

time t. For the restricted IPCA model, we estimate the backward-looking parameter Γβ|t and use this

estimate to compute the out-of-sample realized factor return f̂t+1|t =
(
Γ̂′
β|tZ

′
tZtΓ̂β|t

)−1
Γ̂′
β|tZ

′
trt+1.

We incorporate a rolling window approach as proposed in Tashman (2000), which is visually displayed

in Appendix D.

Since we now evaluate out-of-sample R2, an alteration of Equation (35) is required. For out-of-

sample total R2, we compare rt+1 to ZtΓ̂β|tf̂t+1|t. This applies as well to out-of-sample predictive

R2, where we replace f̂t+1|t with λ̂t, which is the factor mean over time t. Analogously, we obtain

the out-of-sample performance for characteristic-managed portfolios, PCA, unrestricted IPCA and

regularized IPCA through similar adaptations per approach.

Sharpe ratio

To explore whether exceptional sample fits lead to profitable investments, we analyze unconditional

annualized out-of-sample Sharpe ratios. As higher-order principal components tend to suffer from

in-sample overfit that generate unreasonably high Sharpe ratios, we will not consider in-sample per-

formance (Kozak et al., 2020). Similar to Kelly et al. (2019), we consider three investment strategies.
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First, we report the unconditional efficiency of individual factors. Second, we describe multivariate

efficiency for a set of factors through ex ante unconditional tangency portfolios. The corresponding

tangency weights follow from Brandt (2010) and incorporate the mean and covariance matrix of

estimated factors through the rolling window. And third, we implement pure-alpha portfolios with

weights wt−1 = Zt−1

(
Z ′
t−1Zt−1

)−1
Γα.

This last investment is also known as anomaly or “arbitrage” portfolios and contain the risks that

are not captured by the factor exposures. Moreover, the pure-alpha portfolio selects assets based

on their conditional expected returns in excess of risk-based compensation, making the portfolio

conditionally factor neutral. Hence, it exploits the mispricing through the IPCA intercept. Lastly,

we re-sign portfolios to ensure positive means and assume a volatility target of 10% per year.

3.7 Implementation

In this section, we elaborate on decisions regarding model construction, estimation techniques, ro-

bustness analyses and other implementations.

3.7.1 Alternating Least Squares

As described under Equation (12), there can only be one non-fixed variable when applying the FOC

to minimize the SSE. Therefore, we implement an adaptation of Alternating Least Squares (ALS).4

This technique allows us to use analytical optimization, such as Equation (13) and (15), to generate

numerical solutions to the objective function of IPCA. The ALS algorithm works as follows: we

start by initializing using the aforementioned approximations discussed in Section 3.3. In the next

step, the model iterates between optimal values of Γ̂ and f̂t until the SSE convergences to a value

under a predetermined tolerance.5 Kelly et al. (2017) proves the notably fast convergence of ALS

through various simulations. Without this quick convergence, the bootstrap tests of Section 3.4

become infeasible to perform.

Furthermore, due to the substantial size of our data set in combination with the complexity of

delta-hedged options, it is almost unavoidable to not have missing data. Nonetheless, since the ALS

framework consists of straightforward regressions, it can be rewritten in a manner that excludes the

return and characteristics of company i at time t when one or more data points are missing. This
4We implement the IPCA adaptation in MATLAB of Kelly et al. (2019) for model fit and bootstrapping Γα, and

apply the Python adaptation of Büchner and Kelly (2022) for bootstrapping Γβ and regularization. The code is avail-

able at https://sethpruitt.net/2019/12/01/characteristics-are-covariances/ and https://github.com/bkelly-lab/ipca
5The PCA for rt and xt is obtained using MATLAB’s pca.m function with the flag ’Algorithm’ set to ’als’.
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leads to roughly 20% of the initially required data to be classified as either unavailable or discarded.

Additionally, the introduction of characteristic-managed portfolios allows us to handle the returns

in constant L-dimensional objects, opposing to the time varying Nt. This feature side steps the

unbalanced panel data by construction. Furthermore, we realize the regularized IPCA models using

the conditions described in Sections 3.5.2 and 3.5.3 and the coordinate descent solver of Friedman

et al. (2010).

3.7.2 Number of common factors K

In contrast to Kelly et al. (2019) where the choice for including six factors seems arbitrary, we im-

plement an analytical approach in determining the required number of factors. This is an important

trade-off as a parsimonious factor model is preferred, yet the exclusion of essential factors dimin-

ishes performance. We implement the first two identification methods described in Horenstein et al.

(2020) to characteristic-managed portfolios, as they capture the cross-section in lower dimensions.

We define the Eigenvalue Ratio (ER) and the Growth Ratio (GR) estimators of Ahn and Horenstein

(2013) as follows:

k̃ER = max
1≤k≤kmax

ER(k) = max
1≤k≤kmax

µ̃LT,k

µ̃LT,k+1
, k̃GR = max

1≤k≤kmax
GR(k) = max

1≤k≤kmax

ln
(
1 + µ̃∗

LT,k

)
ln
(
1 + µ̃∗

LT,k+1

) , (36)

for k = 1, 2,...,kmax, where µ̃LT,k = Ψk [X
′X/(LT )], Ψk(A) denotes the k-th largest eigenvalue

of a positive semidefinite matrix A, and µ̃∗
LT,k = µ̃LT,k/V (k) with V (k) =

∑m
j=k+1 µ̃LT,j and m =

min (L, T ). In addition, we generate the scree plot of Cattell (1966) for extra insight in the L × L

matrix X ′X. The corresponding figures can be found in Appendix E.

The ER and GR ratios suggest that one factor is optimal for the equity data and two factors

is sufficient for the ETF data. While our findings substantiate this claim by frequently obtaining

maximum predictive R2 for these number of factors, they are insufficient for a coherent analysis.

Moreover, similar research such as Jones (2006) notes that mispricing is reduced by increasing the

number of factors. This is confirmed by Büchner and Kelly (2022), as they argue that pricing the

cross-section of index option returns requires at least three factors. By increasing K, they find

that the difference between the restricted and unrestricted IPCA model disappears and leads to

the insignificance of Γα. Combining this information with the ER and GR ratios that display a

substantial drop after the fourth factor, we increase the number of factors and set K = 4.
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3.7.3 Robustness

It is important to emphasize the risk of data dependence in a research of this nature. Therefore,

we apply several robustness checks to analyze whether our findings are consistent for various data

periods. If this is the case, it will strengthen the validity of our findings and corresponding conclu-

sions. Our overall sample period consists of 143 months. We assign the first 100 observations to

the in-sample period and the last 43 observations to the out-of-sample period, which results in a

70-30 split of the data set. For example, month 102 is the second month in the out-of-sample period

and is estimated via a rolling window that consists of months 1 to 101. To ensure a good margin,

we re-estimate certain models with an in-sample period of 80 observations for robustness analyses,

which are reported in Appendix J.

4 Data

In this section we elaborate on the obtained and constructed data sets that we implement in this

paper. First, we discuss the equity options. Second, we review the ETF options. Third, we explain

the data-filtering and the delta-hedging process. Fourth, we specify the chosen and computed

characteristics that function as instrumental variables in the IPCA framework. And lastly, we

comment on the descriptive statistics of the delta-hedged returns.

Regarding the sample period, we refer to Cochrane (2011), who openly requests for the rep-

etition of Fama and French’s anomaly digestion in high dimensions. Green et al. (2017) accepts

this challenge and analyzes 94 firm characteristics. They find that return predictability sharply fell

in 2003, which holds for hedged portfolio returns that exploit characteristics-based predictability.

They advise future research to favour post-2003 data. However, Han et al. (2018) attribute earlier

conclusions due to overfitting. Nevertheless, we avoid this issue by selecting a sample period of June

2006 to May 2018, with October 2014 closing the in-sample period. These years include several

crises and bull markets that should offer a balanced data set in economical terms. Similar to the

works of Fama and French (1993) and Freyberger et al. (2020), we estimate the returns from months

June to May using balance sheet data from the previous fiscal year. This timing convention should

avoid the look-ahead bias, which is important to evade for drawing realistic conclusions.

Furthermore, we analyze over the eleven economic sectors defined by the Global Industry Classi-

fication Standard (GICS), also known as the Standard & Poor’s (S&P) sectors. This method assigns

companies to a sector that best defines its business operations. The GICS defines the following
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eleven sectors that we ordered on size at the time of this paper: Information Technology, Financials,

Health Care, Consumer Discretionary, Industrials, Communication Services, Consumer Staples, En-

ergy, Materials, Real Estate, and lastly Utilities. We merge Energy and Utilities, as the companies

in this sector are extensively intertwined.

4.1 Equity options

We obtain 92,596 monthly delta-hedged call single-name equity option returns of 1007 companies.

The option data and the corresponding stock data are retrieved from the OptionMetrics IvyDB US

database, which covers NYSE, NASDAQ and NYSE American. Our focus is on near-the-money

American call options with time to maturity that ranges from 40 to 50 days. We choose call options

as they are most common in the literature. We avoid survivorship biases in our data set by including

companies that merged with another firm, had their initial public offering (IPO), went bankrupt

or got acquired during our sample period. Additionally, to ensure that our analysis over the GICS

industry sectors is balanced, we assign 100 companies with all corresponding option data to each

of the ten industry groups. In rare occasions when a company is significantly present in multiple

sectors, we assign it to each individual industry. However, the number of times this occurred is

relatively negligible.

4.2 ETF options

To analyze whether the factor structure for single-name equity options changes when the underlying

is grouped together, we resort to index trackers. Specifically, an ETF that strives to replicate the

performance of an index or sector. Our interest in these products originates from the remarkable

expansion after its introduction in 1993. At the start of our sample period in 2006 there were around

750 ETFs traded on U.S. exchanges, while in 2018 there were approximately 6,500 ETFs. Moreover,

Ben-David et al. (2017) state that in 2016 the trading volume of ETFs exceeded 30% of total trades

on U.S. exchanges, while only consisting of 10% of total market capitalization. Lettau and Madhavan

(2018) argue that ETFs are one of the most important financial innovations in decades and that its

performance greatly benefits from the diversification feature of indices. ETFs are also attractive as

passive investment vehicles for all types of investors due to its accessibility, index tracking ability,

high liquidity and low transaction costs. This flexibility over index options results in a substantially

higher trading volume.

The features and retrieval of the data for the ETF options and underlying are identical to that

27



4.3 Delta-hedging Master Thesis

of the the equity data. Overall, we find 448 ETFs of which 278 contain options that match our

requirements and generate a total of 16,572 monthly delta-hedged call option returns. Of these

ETFs, 188 are focused on our ten industry sectors and 90 vary across markets.6 This last group

contains for instance several S&P 500 trackers.

4.3 Delta-hedging

This research focuses on the drivers of equity and ETF option returns beyond the price fluctuations

of the underlying. Therefore, we implement delta-hedged returns that are theoretically insensitive

to changes in stock prices, which is in line with the literature (Cao and Han, 2013), (Horenstein

et al., 2020), (Büchner and Kelly, 2022). Before the returns are computed, we apply similar filters

as Horenstein et al. (2020) to the option data. First, we exclude illiquid options where the bid quote

is zero, the trading volume is zero, the bid quote is smaller than the ask quote, or when the average

of the bid and ask price is lower than 0.125 dollars. Second, we discard American options whose

underlying stock pays a dividend to shareholders during the life of the option. This filter aims to

remove the early exercise premium of American options, which allows us to regard them as European

style. Third, we eliminate options that are not between 0.8 and 1.2 in terms of moneyness.

We obtain a delta-hedged position by going long in a call option and hedge this position by going

short in a delta number of the underlying stock. Since option contracts represents 100 shares, an

option with a delta of 0.8 is delta-hedged when the investor shorts 80 shares. Following Bakshi and

Kapadia (2003), the delta-hedged option gain for some time period τ is constructed as follows:

Πt,t+τ = Ot+τ −Ot −
∫ t+τ

t
∆udSu −

∫ t+τ

t
rfu (Ou −∆uSu) du, (37)

where Ot is the price of the option at time t, ∆u = ∂Cu
∂St

is the delta of an option at time u with Ct

denoting the price of an European call option at time t, Su is the daily close price of the underlying

stock and rfu represents the annualised risk-free rate at time u, which is the 10-year U.S. bond

yield retrieved from Federal Reserve Economic Data (FRED). We can distinguish three parts of

Equation (37). The first part indicates the price change of the option, the second part represents

the adjustments from delta-hedging the position, and the last term computes the cost of funding

the delta-hedged position using the risk-free rate, which ensures we generate excess returns.

Since this study focuses on an empirical analysis and not a simulation study, we cannot work in

a continuous time framework. Therefore, we transform Equation (37) to a discrete form, which is
6The information regarding the various ETFs and its holdings are retrieved from ETF Database, which is owned

by the nonprofit organization Mitre Media.
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defined as follows:

Πt,t+τ = Ot+τ −Ot −
N−1∑
n=0

∆tn

[
Stn+1 − Stn

]
−

N−1∑
n=0

anr
f
tn

365
(Otn −∆tnStn) , (38)

where an expresses the number of calendar days between tn and tn+1. This means that we hedge N

times in a discrete manner over the time period [t, t+ τ ], which can be seen as rebalancing at each

traded day tn for n = 0, 1, ..., N − 1. Since we are interested in returns and not gains, we scale the

delta-hedged gains by the investment price. Hence, we obtain the delta-hedged return as follows:

ri,t+1 =
Πt,t+τ

∆tSt −Ot
. (39)

After applying the data filters, we find the option in month t that is closest to being at-the-money.

If we find several options with the same moneyness, we select the earliest observation. In the next

step, we gather all filtered options that are traded up to a month after the selected observation.

Next, we create a subgroup that contains traded options in a three to five week range from the

initial observation. We then select the option in this window that is closest to being at-the-money.

This generates a path of near-the-money options over which we delta-hedge. If there are no options

available in a month that meet the data filters or requirements, we leave the return as undefined.

As this procedure starts with buying an option in month t and ends roughly four weeks later, we

assign the return to month t+ 1.

The combination of the aforementioned data filters and actions to avoid survivorship biases

create a data set where companies start or cease to exist during the sample period. This leads to an

unbalanced data panel that is handled via the ALS algorithm discussed in Section 3.7.1.

4.4 Characteristics

To find the drivers of the delta-hedged returns, we require a substantial set of informative charac-

teristics that will function as instrumental variables in the IPCA framework. These variables will

be a combination of firm and option characteristics and are obtained from OptionMetrics, Standard

and Poor’s Compustat database and the Center for Research in Security Prices (CRSP). Following

Kelly et al. (2019) and Kim et al. (2021), we implement the set of firm characteristics discussed

in Freyberger et al. (2020). Where Kelly et al. (2019) include an older version of the paper that

considers 36 characteristics, we include a more recent version. Additionally, we add several option

characteristics, such as implied volatility, moneyness, trading volume and the Greeks from Black

and Scholes (1973). Unlike the balance sheet data, the delay in option and stock characteristics is
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only one month as it contains the features of the bought option Ot in Equation (38). The delta,

gamma, vega, theta and the implied volatility are obtained from OptionMetrics and computed using

the binomial tree of Cox et al. (1979).

In terms of delta-hedged option returns, Cao and Han (2013) observe that the return decreases

monotonically when the idiosyncratic volatility of the underlying stock increases. This is due to

the additional costs that are required to continuously hedge the volatile security. Furthermore, Cao

et al. (2016) claim that delta-hedged calls are positively correlated with the cash flow variance, cash

holding and the change in shares outstanding. They are on the other hand negatively correlated

with stock price and the profitability of a firm. These characteristics are either subsumed in the

variable set of Freyberger et al. (2020), or specifically added by us.

We categorise the characteristics for equity options similar to Freyberger et al. (2020): (1) Past

returns, (2) Investment, (3) Profitability, (4) Intangibles, (5) Value, (6) Trading frictions and add

a new category (7) Option features. An overview of the set of equity characteristics that are im-

plemented in this research can be found in Appendix A. Since the holdings of ETFs are complex

and consist of numerous companies, balance sheet data cannot be applied. Therefore, we can only

consider a subset of the equity characteristics for the ETFs, which are listed in Appendix B. Addi-

tionally, we include a constant in Zt to absorb shared variation that does not involve characteristics.

Including this constant, we obtain a total number of 70 equity characteristics and 30 ETF character-

istics, which is denoted as L. This leads to 8,866,082 characteristic observations for the equity data

and 898,617 characteristic observations for the ETF data. The corresponding descriptive statistics

are listed in Appendix A.1 and B.1.

In order to limit the impact of outliers and to aid the interpretation of the IPCA results, we

re-scale all characteristics. This is done by cross-sectionally transforming the characteristics period-

by-period. Specifically, we rank the firms per characteristic, subtract one, then divide by the number

of non-missing observations at that particular period in time minus one. Next, we subtract 0.5, which

maps all characteristics in the [-0.5, 0.5] interval. This means that the IPCA framework only values

the ordering of characteristics at a certain time, regardless of dispersion.

4.5 Descriptive statistics

Before the IPCA models are applied, we analyze our data sets to get a better understanding of its

features. The descriptive statistics of the delta-hedged option returns are listed in Table 1.
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Table 1: Descriptive statistics of the monthly delta-hedged call option returns.

1st-P Mean Median 99th-P Std.

All Equity -0.343 -0.006 -0.005 0.316 0.130
ETF -0.320 -0.010 -0.005 0.296 0.254

Equity Sectors Information Technology -0.350 -0.009 -0.008 0.312 0.124
Financials -0.303 -0.003 -0.004 0.307 0.180
Health Care -0.325 -0.010 -0.008 0.298 0.119
Consumer Discretionary -0.374 -0.009 -0.007 0.320 0.128
Industrials -0.297 -0.006 -0.006 0.309 0.112
Energy & Utilities -0.365 -0.002 -0.002 0.351 0.130
Communication Services -0.332 -0.006 -0.005 0.321 0.120
Consumer Staples -0.308 -0.004 -0.004 0.275 0.105
Materials -0.412 -0.005 0.000 0.352 0.148
Real Estate -0.301 -0.005 -0.004 0.266 0.098

Note. This table displays the descriptive statistics of the equity and ETF monthly delta-hedged call option returns.
The equity sectors each contain 100 companies and are ordered on size at the time of this paper. The sample period
runs from July 2006 to May 2018. Moreover, there are 92,596 equity option returns of 1007 companies and 16,572 ETF
returns from 278 ETFs. Hence, there are 109,168 returns in total. The columns represent the 1st percentile, mean,
median, 99th percentile and the standard deviation of the corresponding returns.

The first thing that draws our attention in Table 1 is its negative mean for all data sets. Taken into

account that these are monthly returns, the annualized loss across all data sets is on average two

to twelve percent a year. This can be explained by the fact that delta-hedging is by construction a

defensive strategy, as an investor strives to offset the risk of price changes in the underlying instead

of looking for the most profitable assets. Moreover, avoiding risk should theoretically never be

rewarded. The poor performance of delta-hedging is the consequence of the negative volatility risk

premium (Coval and Shumway, 2001), (Bakshi and Kapadia, 2003), (Cao and Han, 2013), (Zhan

et al., 2022). These papers find that delta-hedged call portfolios statistically underperform zero and

that the losses are the largest for at-the-money options. The negative mean also further proves

the flaws of the Black-Scholes model, as under the assumptions of Black and Scholes (1973), delta-

hedged option returns have a symmetric distribution with zero mean. Additionally, the process of

delta-hedging is accompanied with considerable transaction costs due to the constant rebalancing,

which will decrease the returns of investors even more.

As can be observed in the last column of Table 1, the returns are quite volatile. This suggests

that theoretically avoiding risk does not automatically translate well in the real world. Instead of

listing the minima and maxima, we prefer the 1st and 99th percentile of the returns as these offer a

better representation of the distribution. For instance, the two largest losses of the equity and ETF

returns are roughly 1300%, which suggests a terrible short position as long position losses are always
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capped at 100%. Furthermore, losses beyond 100% are approximately 0.2% of all returns, while only

0.02% of the returns contain profits that exceed 100%, with a maximum of 140%. Combining this

information with the kurtosis and skewness measures, we conclude that the returns are negatively

skewed and have fat tails, which is in line with the general consensus in the asset pricing literature.

Moreover, the returns of all data sets reject the null hypothesis of normality at the 0.1% significance

level via the Jarque-Bera test of Jarque and Bera (1987).

5 Results

In this section, we discuss our findings when applying IPCA models to the constructed data sets. We

divide the results into four major sections. First, we analyze the in-sample fit, anomaly existence,

characteristic significance, out-of-sample fit and sector performance of the delta-hedged equity op-

tions. Second, we examine similar components for the delta-hedged ETF options and compare the

findings of the two data sets. Third, we evaluate regularization in the IPCA framework by inspecting

its shrinkage feature on the coefficient matrix Γβ and its out-of-sample performance. And fourth,

we explore the potential of a trading strategy.

5.1 Equity options

To illustrate the IPCA framework, we start by visualizing the factor loadings Γβ and Γα. Therefore,

we estimate the unrestricted four-factor IPCA model of Equation (17). The k-th column of the Γβ

matrix indicates how the characteristics map into the beta of a company on the k-th factor. The

analysis of this mapping produces insight into the estimated IPCA risk factors. Figure 1 shows the

third column of Γβ , while the other estimates of Γ are displayed in Figure 5 - 8 in Appendix F.1.

We observe in Figure 5 that loadings on Factor 1 are dominated by two characteristics, assets-

to-market (a2me) and Tobin’s q (q). Since we enforced a non-negative mean restriction on ft in

Section 3.2.1, all factors have positive expected returns. This means that companies with larger

total assets to size and Tobin’s Q have higher betas on Factor 1 and earn higher average returns.

The loadings on Factor 2 in Figure 6 are almost exclusively determined by the stock price

(underlying) and the strike price (strike), which are among the fundamental features of an option

contract. These characteristics are similar in magnitude and have opposing signs. This means that

all else equal, options with higher stock price relative to strike price have higher betas on Factor

2. In other words, when call options are in-the-money, their average return increases. However,
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moneyness has a very small loading. This indicates that the proportion of stock and strike price

may not be relevant. Additionally, since stock and strike price are strongly correlated for near-the-

money options, we conclude that the effects of these two loadings counter each other in Factor 2.

Nevertheless, the relevancy of stock price in delta-hedged returns is in line with the findings of Zhan

et al. (2022).

Figure 1: Estimates of Γβ for Factor 3 in the unrestricted K = 4 IPCA specification.

Note. This figure displays the third column of Γβ in the unrestricted IPCA model with K = 4 and Γα ̸= 0. The data contains

all equity data for the in-sample period July 2006 to October 2014. The variables are the 70 equity characteristics of Table 11

in Appendix A

As can be observed in Figure 1, the loadings that correspond to Factor 3 are much more diverse than

the other factors. We find that operating leverage (ol), stock price (underlying), gamma (gamma),

sales over total assets (sat), and vega (vega) primarily determine the loadings on Factor 3. Where

the former three variables have a positive loading, the opposite is true for the latter two variables.

This means that larger values of ol, stock price, and gamma will result in higher average returns

and larger values of sales over total assets and vega result in lower average returns.

Exposure to Factor 4 in Figure 7 is primarily determined by the constant (constant), which

means that all options share a common baseline exposure to this factor via the constant. Moreover,

the constant has at all times the maximum value of 0.5 in the transformed characteristic matrix Zt,

opposed to other variables that vary between -0.5 and 0.5. This means that the constant has an

immense impact on the model through the fourth factor, and as this loading is negative, this factor

partially captures the negative average return.

Lastly, we examine Γα, which represents intercepts that depend on characteristics and describe
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the expected returns beyond the systematic risk. The corresponding loadings are an indicator which

characteristics contribute to the anomaly effect. We see in Figure 8 that there are several variables

with relatively large loadings. However, the loading values are quite small compared to Γβ . This is

due to the unrestricted IPCA framework of Equation (17), where the periodic return is equal to one

for Γα. We find large positive magnitudes for totalvol, dshrout and underlying, which indicates

that large values for the volatility in stock prices, the change in number of outstanding shares, and

the stock price result in relatively higher anomaly returns. In contrast, earnings per share (eps),

the ratio of market value of equity plus long-term debt minus total assets over cash and short-term

investments (roc), and delta (delta) have large negative magnitudes and large values lead to lower

anomaly returns.

5.1.1 In-sample fit

Before we further extend the analysis that examines the drivers of delta-hedged equity option returns,

we need to make sure that IPCA is the suited model choice for the option data. Therefore, we need

to compare the IPCA performance to its predecessor, which is the PCA of Section 3.1. The in-sample

performance of IPCA and PCA can be observed in Table 2.

Table 2: IPCA in-sample performance of equity options.

K
1 2 3 4

Panel A: Individual returns (rt)
Total R2 Γα = 0 20.0 22.7 24.3 25.7

Γα ̸= 0 20.8 23.5 25.1 26.2
PCA 24.5 41.8 45.8 48.2

Predictive R2 Γα = 0 0.30 0.28 0.53 0.70
Γα ̸= 0 0.97 0.93 0.92 0.88
PCA < 0 < 0 < 0 < 0

Panel B: Managed portfolios (xt)
Total R2 Γα = 0 72.9 78.4 83.7 87.2

Γα ̸= 0 74.3 79.6 84.5 88.1
PCA 63.2 68.8 73.3 80.4

Predictive R2 Γα = 0 0.91 0.80 1.82 1.48
Γα ̸= 0 2.12 1.87 1.72 1.56
PCA 1.98 2.02 2.02 2.02

Panel C: Testing the anomaly (H0 : Γα = 0)
Wα p-value 0.216 0.322 0.511 0.881

Note. This table displays the performance of the IPCA model with K factors using the equity data for the in-sample
period July 2006 to October 2014. Panel A and B report the total and predictive R2 in percentages for the restricted and
unrestricted IPCA model with 70 lagged characteristics. Panel C presents the bootstrapped p-values for the anomaly test
as described in Section 3.4.1.
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Table 2 contains several interesting findings. For instance, Panel A reports the individual monthly

returns and shows that while PCA outperforms IPCA in terms of total R2 up to 48.2%, it is

unable to generate positive predictive R2. This means that PCA has no explanatory power for

differences in individual average delta-hedged equity option returns. Moreover, for K = 4 the

PCA model estimates NK + KT = 4428 parameters, while IPCA only estimates LK + KT =

680 parameters. Due to estimating more than six times the number of parameters, we deem PCA

computationally inferior to IPCA. Additionally, as total R2 generally increases with the number of

predictors, we consider the PCA total R2 performance for individual returns as statistical overfit

from over-parameterization.

When characteristic-managed portfolios are implemented, the variables N and L are equal,

and so are the number of estimated parameters. In this case, we observe in Panel B that IPCA

explains up to 88.1% of the total variation in delta-hedged equity option returns. While IPCA

consistently outperforms PCA in terms of total R2, the predictive R2 performance of PCA is very

competitive for all values of K. Therefore, we need to evaluate out-of-sample predictions before we

can determine the true potential of IPCA. Nonetheless, including dynamic factor exposures that

depend on characteristics produce promising results.

Next, we observe in Panel A and B that as K increases the R2 of the restricted (Γα = 0) and

unrestricted (Γα ̸= 0) IPCA models slowly converge, which is in line with the findings of Büchner

and Kelly (2022). The reason for this is the relatively poor performance of restricted IPCA for lower

values of K. Specifically for one or two factors, where restricted IPCA captures less than one-half

of the return predictability compared to its unrestricted counterpart. Nevertheless, this difference

does not expand to statistically significant Γα, as can be observed in Panel C. This implies that

IPCA is able to describe risk compensation solely through exposures to systematic risk in Γβ and

that the anomaly intercepts are never statistically significant at the 10% level. In other words, for

one to four factors Γα does not contribute significantly to the IPCA performance.

For robustness analysis, we re-estimate Table 2 with 80 months instead of 100 months and

display the results in Table 30 in Appendix J. We argue that while overall fit slightly increases, all

aforementioned claims still apply. However, for one or two factors the predictive R2 for unrestricted

IPCA is now more than four times as high as for restricted IPCA. Remarkably, this does still not

lead to significant Γα as the p-values of Panel C barely change. It is also quite intriguing to see

the resemblance in developments around K in Panel A and B with Table 1 in Kelly et al. (2019).

This suggests that there are similarities in the cross-section of stock returns and delta-hedged equity
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option returns when comparing IPCA and PCA performance.

5.1.2 Characteristic significance

To determine which characteristics are most important for capturing the cross-section in the IPCA

framework, we apply the bootstrap procedure for Γβ of Section 3.4.2. Since Table 2 argues that Γα

is not significant, we apply the restricted IPCA Γβ in this section. The corresponding p-values are

listed in Table 3.

Table 3: p-values of the equity characteristic coefficients in Γβ .

Characteristic \ K 1 2 3 4 Characteristic \ K 1 2 3 4

Past returns: Value:
or6 0.79 0.82 0.31 0.50 A2ME 0.01 0.98 1.00 1.00
or12 0.47 0.32 0.66 0.86 BEME 0.44 0.32 0.58 0.36
or36 0.50 0.97 0.97 0.29 C 0.16 0.13 0.12 0.37
sr2−1 0.43 0.54 0.48 0.80 C2D 0.18 0.22 0.36 0.52
sr6−2 0.74 0.54 0.15 0.18 ∆SO 0.56 0.81 0.97 0.94
sr12−2 0.90 0.29 0.77 0.85 Debt2P 0.27 0.66 0.94 0.03
sr12−7 0.98 0.46 0.41 0.38 E2P 0.38 0.14 0.40 0.76
sr36−13 0.66 0.82 0.86 0.70 Free CF 0.60 0.94 1.00 0.66

LDP 0.94 0.27 0.77 0.70
Investment: NOP 0.69 0.34 0.60 0.79
Invest 0.49 0.04 0.29 0.44 O2P 0.86 0.34 0.50 0.66
∆CEQ 0.93 0.16 0.44 0.79 Q 0.05 0.99 1.00 1.00
∆PI2A 0.98 0.61 0.80 0.58 S2P 0.55 0.82 0.98 0.78
∆Shrout 0.69 0.31 0.68 0.71 Sales_g 0.70 0.34 0.78 0.76
IVC 0.59 0.33 0.70 0.80
NOA 0.75 0.65 0.44 0.11 Trading frictions:

AT 0.22 0.01 0.07 0.03
Profitability: Beta 0.18 0.90 0.18 0.01
ATO 0.19 0.59 0.21 0.28 Beta daily 0.17 0.26 0.27 0.12
CTO 0.73 0.74 0.95 0.73 DTO 0.41 0.38 0.40 0.36
∆(∆GM-∆Sales) 0.88 0.34 0.68 0.65 LME 0.36 0.02 0.08 0.04
EPS 0.45 0.44 0.59 0.55 Lturnover 0.86 0.57 0.55 0.62
IPM 0.26 0.76 0.71 0.93 Rel_to_high_price 0.15 0.82 0.10 0.17
PCM 0.62 0.50 0.45 0.65 Ret_max 0.69 0.70 0.91 1.00
PM 0.56 0.08 0.19 0.30 Spread 0.24 0.22 0.33 0.33
Prof 0.57 0.66 0.54 0.57 Std turnover 0.54 0.38 0.59 0.69
RNA 0.26 0.58 0.28 0.37 Std volume 0.99 0.41 0.26 0.28
ROA 0.26 0.19 0.20 0.76 SUV 0.70 0.46 0.72 0.79
ROC 0.90 0.83 0.96 0.70 Total vol 0.77 0.91 0.74 0.68
ROE 0.25 0.63 0.26 0.54
ROIC 0.34 0.43 0.04 0.08 Option features:
S2C 0.42 0.31 0.26 0.44 Impl vol 0.25 0.10 0.23 0.08
SAT 0.72 0.74 0.51 0.34 Moneyness 0.26 0.80 0.77 0.35

Delta 0.42 0.87 0.96 0.94
Intangibles: Gamma 0.82 0.49 0.64 0.38
OA 0.85 0.63 0.92 0.54 Vega 0.50 0.95 0.57 0.70
OL 0.93 0.09 0.05 0.02 Theta 0.79 0.36 0.86 0.66
Tan 0.20 0.32 0.32 0.27 Trad volume 0.34 0.08 0.06 0.12
AOA 0.85 0.95 0.80 0.28 Underlying 0.50 0.08 0.25 0.58

Strike 0.90 0.02 0.19 0.53

Constant 0.00 0.02 0.00 0.00

Note. This table displays the p-values of the equity characteristics in Γβ of the restricted IPCA model with K factors.
The corresponding data contains all available equity options for the in-sample period July 2006 to October 2014.
Furthermore, values in bold are significant at the 10% level, following the bootstrap test of Section 3.4.2. A description
of the listed characteristics can be found in Appendix A.

We observe in Table 3 that the following characteristics are statistically significant at the 10% level

for at least two of the four IPCA models: return on invested capital (roic), operating leverage (ol),

total assets (at), market capitalization (lme), implied volatility (implvol), trading volume of the
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option (tradvolume), and the constant (constant). The only characteristic that is significant for

all IPCA models, of which 3 at the 1% level, is the constant. This suggests that all delta-hedged

equity option returns share a significant common baseline exposure. Table 3 further shows significant

values for at and lme when K = 2 or larger. For K = 1, we observe the importance of these two

characteristics as their ratio a2me is significant at the 1% level. Additionally, one might wonder

why the significance of a particular characteristic seems to vary with the number of factors. This is

because when a factor is added or removed, the factor loadings alter and former explanatory power

can disappear or be absorbed by another characteristic.

Analyzing over the different categories, we see that Trading frictions and Option features contain

two times as many significant characteristics as the other categories. This is surprising with respect

to Profitability as Zhan et al. (2022) argue a significant relation between the returns of delta-hedged

calls and firm profitability. Some profitability characteristics are significant in Table 3, yet they

are more scarce than one would expect. Furthermore, we see that Past returns has no significant

characteristics at all, which suggests two things. First, delta-hedged option returns do not exhibit

strong mean reversion for time periods under three years. Second, the momentum and reversal

factors of the underlying do not significantly contribute to describing the cross-section. This implies

that the delta-hedging process of being invariant to price fluctuations of the underlying has been

successful.

Despite the insignificance of Γα in the four-factor IPCA model, we cannot directly compare the

results of Table 3 with the figures in Appendix F.1 as they are different models. Nonetheless, it is

evident that larger magnitudes of Γβ for factor K are often followed by relatively low p-values in

Table 3. Specifically, regarding the dominance of (a2me) and (q) for Factor 1 and (underlying) and

(strike) for Factor 2.

5.1.3 Out-of-sample performance

In order to test the true potential of IPCA, we extend the analysis from in-sample to out-of-sample.

This offers insight into the ability of the model to make accurate predictions that may lead to

profitable trading strategies. The out-of-sample fit is reported in Table 4.

We observe in Table 4 that the IPCA total R2 of individual returns is around one-half of the

in-sample fit. This drop is less apparent for predictive R2, which further supports the explanatory

abilities of IPCA. Especially, the increase in out-of-sample performance from the second to the third

factor is relatively substantial. In terms of managed portfolios, the out-of-sample total R2 decreases
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as well, but with a lower amount. One of the most interesting findings is the unrestricted predictive

R2 performance with values up to 2.09% for K = 3. This even exceeds the in-sample performance

of the same model.

Table 4: IPCA out-of-sample performance of equity options.

Individual returns (rt) Managed portfolios (xt)
Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0
1 8.80 9.16 0.26 0.63 43.6 43.9 0.92 1.70
2 9.54 9.95 0.24 0.66 49.2 49.8 0.60 1.84
3 10.7 11.1 0.05 0.67 58.8 59.2 < 0 2.09
4 11.3 12.4 0.20 0.65 59.3 69.6 < 0 1.48

Note. This table displays the performance of the IPCA model with K factors using the equity data for the out-of-sample
period November 2014 to May 2018. The total and predictive R2 are reported in percentages for the restricted and
unrestricted IPCA model with 70 lagged characteristics.

Despite insignificant in-sample Γα, we see that unrestricted IPCA seems to outperform restricted

IPCA, especially in terms of predictive R2. Where unrestricted IPCA excels the most, the restricted

model is unable to produce positive predictive R2. This indicates that restricted IPCA fits the

equity data with three or four factors rather poorly. Additionally, Table 4 does not include out-

of-sample PCA performance as it generates negative R2, which implies that its predictions tend

to be less accurate than the average value of the out-of-sample returns over time. This confirms

misspecification in the static latent factor model and further substantiates the need for a dynamic

model as IPCA.

5.1.4 Sector analysis

At this point, we analyzed equity options over a large set of well-diversified companies and their

corresponding characteristics. However, these characteristics may differ substantially across the

GICS economic sectors and impact the IPCA model in various manners. Therefore, we examine

the in- and out-of-sample performance of the ten sectors described in Section 4, with each group

containing exactly 100 companies for a balanced analysis. Table 5 displays the sector with the most

intriguing findings. The other sectors are reported in Table 16 to Table 24 in Appendix G.

In terms of in-sample fit, we observe that the Information Technology sector slightly outper-

forms all equity data for individual returns, yet slightly underperforms for managed portfolios. The

intriguing difference occurs when we compare the out-of-sample performance. Both the total and

predictive R2 of individual returns are almost twice as high for the Information Technology sector.
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And most importantly, where the equity data fails to produce positive out-of-sample predictive R2

for the managed portfolios, the Information Technology sector generates R2 up to 1.26%. Moreover,

it is quite remarkable how the out-of-sample predictive R2 of this sector is higher than its in-sample

counterpart for almost all models, which underlines its outstanding out-of-sample fit.

Table 5: IPCA performance of equity options in the Information Technology sector.

Individual returns (rt) Managed portfolios (xt)
Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0
Panel A: In-sample

1 31.5 37.8 0.29 1.22 57.8 58.8 0.65 1.18
2 34.9 36.0 0.60 1.16 65.9 65.9 1.08 0.97
3 38.8 39.9 0.57 1.10 72.4 72.6 1.14 0.90
4 42.4 43.3 0.51 1.09 74.5 75.4 1.19 0.78
Panel B: Out-of-sample

1 14.7 14.5 1.16 0.94 33.3 33.4 2.35 2.63
2 15.9 16.1 0.88 0.83 36.7 37.2 1.72 2.72
3 17.7 17.5 0.84 1.00 39.0 45.0 1.26 3.17
4 19.8 19.8 0.73 1.13 45.3 46.8 1.02 3.19

Note. This table displays the performance of the IPCA model with K factors using the equity data exclusive to the
Information Technology sector. The data contains the in-sample period July 2006 to October 2014 and the out-of-sample
period November 2014 to May 2018. The total and predictive R2 are reported in percentages for the restricted and
unrestricted IPCA model with 70 lagged characteristics.

Compared to the other sectors, we find that Information Technology is unrivaled in its performance.

To be more specific, the Financials, Health Care, Industrials, Energy & Utilities, Consumer Staples,

and Real Estate sectors are unable to consistently generate positive predictive R2, especially out-

of-sample. While Consumer Discretionary, Communication Services, and Materials do substantially

better, they do not come close to the Information Technology sector. Nonetheless, we see that all

sectors produce similar or higher total R2 than the entire equity data set. These findings are most

likely the result of severe overfitting, which is due to maintaining the same number of predictors

while the cross-section for individual returns shrinks in N from 1007 to 100. However, Table 24 in

Appendix G contains on occasion a positive predictive R2 for higher values of K, suggesting that

inferior sector performance could simply be the outcome of egregious fit.

5.2 ETF options

In this subsection, we study if the drivers of delta-hedged returns change when the underlying

is combined in the form of ETFs. This change in data is followed by reducing the number of

characteristics from 70 to 30. Similar to before, we start by estimating the unrestricted four-factor
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IPCA model of Equation 17 to illustrate the Γ loadings. Figure 2 displays the second column of Γβ ,

while the other estimates of Γ can be observed in Figure 9 - 12 in Appendix F.2.

Figure 2: Estimates of Γβ for Factor 2 in the unrestricted K = 4 IPCA specification.

Note. This figure displays the second column of Γβ in the unrestricted IPCA model with K = 4 and Γα ̸= 0. The data

contains all ETF data for the in-sample period July 2006 to October 2014. The variables are the 30 equity characteristics of

Table 13 in Appendix B

For Factor 1 we observe that it is dominated by the ETF price (underlying) and the strike price

(strike), which are similar in magnitude and have opposing signs. This result is remarkably rem-

iniscent of the second factor for the equity data in Figure 6. Hence, it holds for equity and ETF

options that when all things equal, higher underlying price relative to strike price leads to higher

average returns. In this environment, it means that in-the-money options correspond with higher

betas on Factor 1.

Factor 2 displays the largest loadings in Figure 2 for the average daily bid-ask spread (spread),

gamma (gamma), theta (theta), and implied volatility (implvol). Where larger bid-ask spreads im-

ply less liquid markets of the underlying, the other three characteristics all involve option sensitivity.

Since these four loadings are all negative, we argue that less liquid ETF markets or higher values in

gamma, theta or implied volatility lead to lower average returns.

Factor 3 is well diversified in its loadings. The largest notable loadings are the negative market

capitalization (lme) and the positive standard deviation of daily ETF trading volume (stdvolume).

As higher trading volume results in more liquid markets and lower spreads, this finding strongly

agrees with the negative loading on average daily bid-ask spread for Factor 2.

Exposure to Factor 4 is primarily determined by vega (vega), and the ETF momentum from 12
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to 2 months before prediction (sr12−2). It appears that similar to stock returns, momentum has

a positive effect on the returns of delta-hedged ETF options. In terms of vega, we observe that

higher values lead to lower betas on Factor 4, which implies that options on ETFs that are sensitive

to volatility earn lower average returns. This could be due to the delta-hedging process becoming

unstable for unusually volatile ETFs.

Lastly, we examine Γα where the loadings suggest which characteristics contribute to the anomaly

effect. We find relatively large positive values for totalvol and reltohighprice, which implies that

large values for the volatility in ETF prices and the ETF price over its 250 trading day maximum

price lead to higher anomaly returns. In contrast, short-term reversal (sr12−2) from Jegadeesh

(1990) has a large negative loading. This implies that relatively large reversal effects generate lower

anomaly returns.

5.2.1 In-sample fit

We report the in-sample fit of the delta-hedged ETF options in Table 6.

Table 6: IPCA in-sample model performance of ETF options.

K
1 2 3 4

Panel A: Individual returns (rt)
Total R2 Γα = 0 22.3 29.8 35.1 39.2

Γα ̸= 0 23.4 30.8 36.0 40.0
PCA 24.7 47.7 58.2 72.3

Predictive R2 Γα = 0 2.76 2.72 2.83 2.90
Γα ̸= 0 3.93 3.88 3.75 3.73
PCA < 0 < 0 < 0 < 0

Panel B: Managed portfolios (xt)
Total R2 Γα = 0 54.1 79.8 83.1 84.9

Γα ̸= 0 56.5 81.7 84.5 86.0
PCA 54.8 74.2 81.9 82.7

Predictive R2 Γα = 0 5.39 5.43 5.62 5.98
Γα ̸= 0 8.12 7.60 7.23 7.22
PCA 3.89 3.89 3.89 3.89

Panel C: Testing the anomaly (H0 : Γα = 0)
Wα p-value 0.375 0.038 0.441 0.312

Note. This table displays the performance of the IPCA model with K factors using the ETF data for the in-sample
period July 2006 to October 2014. Panel A and B report the total and predictive R2 in percentages for the restricted
and unrestricted IPCA model with 30 lagged characteristics. Panel C presents the bootstrapped p-values for the
anomaly test as described in Section 3.4.1.

Table 6 shows that IPCA is capable to describe the cross-section of delta-hedged ETF option returns

with total R2 up to 40.0% and predictive R2 up to 3,93%. Similar to before, we see that PCA overfits

individual returns due to an excessive number of parameters. Although this leads to high total R2,
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the predictive R2 is negative for all values of K. In terms of managed portfolios, we argue that

IPCA outperforms PCA for all specifications. In terms of predictive R2, IPCA is able to produce

roughly two times the value of PCA, with a maximum of 8.12%.

As K increases, the restricted and unrestricted IPCA models converge relatively slowly in perfor-

mance when compared to the equity options of Table 2. However, this still does not lead to significant

Γα in Panel C, with the exception of K = 2. This means that for our ETF data the IPCA model is

capable to describe risk compensation solely through exposures to systematic risk. For IPCA with

two factors, it is interesting to see whether the significant in-sample Gammaα translates to favorable

pure-alpha portfolios.

The robustness analysis with an in-sample period of 80 months instead of 100 months is displayed

in Table 31 in Appendix J. We find that the same arguments hold for Panel A and B. Therefore,

we claim that in-sample the IPCA framework is superior to PCA. The anomaly test finds similar

p-values for one to three factor specifications. However, for four-factor IPCA, Γα becomes significant

at the 1% level. This is surprising as the relative difference in performance between restricted and

unrestricted IPCA does not increase when we expand the model from three to four factors. Hence,

significant Γα does not directly result in better R2 performance.

When we compare Table 2 to the in-sample equity performance of Table 2, we observe that the

same relations hold. However, it is evident that for individual returns the IPCA model describes the

risk factors remarkably better for ETFs than equity firms. The reason for this could be that reducing

N from 1007 to 278 makes it easier for a model to capture the cross-section. Additionally, the most

compelling difference between the two tables is the predictive R2, which is roughly four times as

high for ETF options. This means that IPCA is more accurate at describing risk compensation for

ETF options and raises the question whether this converts to superior out-of-sample Sharpe ratios.

5.2.2 Characteristic significance

To compare the drivers of delta-hedged equity and ETF returns, we estimate the same restricted

IPCA model of Section 5.1.2 using the ETF data. The corresponding p-values are listed in Table 7.

According to Table 7, the following characteristics are statistically significant at the 10% level for

at least two of the four IPCA models: the ETF momentum from 12 to 2 months before prediction

(sr12−2), the CAPM beta (beta), the average daily bid-ask spread (spread), the implied volatility

(implvol), gamma (gamma), theta (theta), and the constant (constant). We observe that (spread)

and (implvol) are significant for all IPCA models at the 5% level. Moreover, (spread) and (constant)
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are significant at the 1% level for three of the four specifications. Including the information from

the Γ loading figures, we argue that the average daily bid-ask spread and implied volatility are the

main drivers of delta-hedged ETF option returns.

Table 7: p-values of the ETF characteristic coefficients in Γβ .

Characteristic \ K 1 2 3 4 Characteristic \ K 1 2 3 4

Past returns:
or6 0.34 0.09 0.22 0.46 Spread 0.01 0.03 0.00 0.00
or12 0.32 0.11 0.44 0.71 Std turnover 0.63 0.38 0.67 0.82
or36 0.24 0.36 0.47 0.62 Std volume 0.13 0.42 0.22 0.02
sr2−1 0.58 0.08 0.54 0.49 SUV 0.69 0.13 0.31 0.48
sr6−2 0.51 0.05 0.15 0.27 Total vol 0.18 0.54 0.36 0.31
sr12−2 0.63 0.05 0.06 0.13
sr12−7 0.37 0.11 0.14 0.39 Option features:

Impl vol 0.01 0.03 0.02 0.04
Investment: Moneyness 0.50 0.90 0.52 0.25
∆Shrout 0.26 0.34 0.73 0.04 Delta 0.27 0.79 0.48 0.21

Gamma 0.05 0.24 0.06 0.04
Trading frictions: Vega 0.54 0.16 0.09 0.17
Beta 0.08 0.07 0.15 0.22 Theta 0.02 0.06 0.04 0.11
Beta daily 0.65 0.98 0.82 0.80 Trad volume 0.91 0.10 0.21 0.63
DTO 0.14 0.41 0.36 0.20 Underlying 0.13 0.59 0.51 0.69
LME 0.32 0.48 0.29 0.02 Strike 0.01 0.27 0.34 0.56
Lturnover 0.16 0.43 0.62 0.46
Rel_to_high_price 0.34 0.18 0.41 0.63 Constant 0.64 0.00 0.00 0.00
Ret_max 0.97 0.12 0.48 0.58

Note. This table displays the p-values of the ETF characteristics in Γβ of the restricted IPCA model with K factors.
The corresponding data contains all available ETF options for the in-sample period July 2006 to October 2014.
Furthermore, values in bold are significant at the 10% level, following the bootstrap test of Section 3.4.2. A description
of the listed characteristics can be found in Appendix B

In contrast to the equity data, we see that there are various significant values in the Past returns

category. This implies that the price movements of ETFs influence the delta-hedged option return,

which by construction should not be possible. Hence, we have to assume that either we have

exposures due to inconsistent rebalancing or the deltas of the ETF options occasionally suffer from

estimation errors. Additionally, we notice that Table 7 contains relatively and absolutely more

significant characteristics than Table 3. This could be due to an excessive number of predictors for

the equity data, or the predictors are simply a better fit for the ETF data, which can be exemplified

by the disparity in relevance of gamma and theta.

5.2.3 Out-of-sample performance

Table 8 displays the out-of-sample performance of the ETF options. Similar to before, we find

inconsistent out-of-sample PCA performance, which we leave undisclosed. When comparing the

sample period, we observe that the IPCA total R2 drops by one-half for the individual returns and

barely decreases for managed portfolios. The most interesting finding is the notably high out-of-

sample predictive R2. Specifically, the managed portfolios generate predictive R2 that exceed the

in-sample fit with values up to 10.7%. This is further evidence of the capabilities of IPCA. Moreover,
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it also indicates that the model captures the ETF data much better than the equity data. However,

our ETF options findings are not close in any capacity to the IPCA R2 performance of index options

from Büchner and Kelly (2022).

Table 8: IPCA out-of-sample performance of ETF options.

Individual returns (rt) Managed portfolios (xt)
Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0
1 9.35 9.99 1.64 2.23 59.8 61.9 8.08 10.7
2 12.0 12.7 1.51 2.22 69.4 71.8 7.36 10.6
3 13.3 14.0 1.54 2.19 71.5 72.9 7.36 10.4
4 18.6 19.7 1.20 2.14 72.2 76.7 6.96 10.4

Note. This table displays the performance of the IPCA model with K factors using the ETF data for the out-of-sample
period November 2014 to May 2018. The total and predictive R2 are reported in percentages for the restricted and
unrestricted IPCA model with 30 lagged characteristics.

5.3 Regularized IPCA

The IPCA framework contains a substantial number of parameters for larger K, making it prone to

overfit the cross-section. By removing redundant information from the model, IPCA could poten-

tially improve out-of-sample performance. We resort to three well-known regularization techniques,

ridge, Lasso, and the elastic net. Where the first shrinks the noise in Γ, the second and third tech-

nique also function as variable selection operators that can make the model sparse and easier to

interpret. Figure 3 displays an example of the effects of the Lasso on Γβ .

As this section is merely an exploration of regularized IPCA, we only focus on the equity data

due to its larger number of predictors and we do not optimize over the penalty parameter λ. Hence,

we choose λ such that the Lasso removes around one-half of the characteristics, ridge re-assigns the

weights sufficiently, and elastic net offers an acceptable balance of the two techniques. Moreover,

we find that generally λ values over 10−3 lead to a non-positive definite matrix, which makes it

impossible to impose the IPCA restriction of orthonormalization on Γβ . To counter this, one could

replace this restriction with orthogonalization and transfer the orthonormalization restriction to the

factors ft to ensure a unique solution. However, this implies that we cannot compare factors across

models, which is necessary to examine a potential trading strategy.

We observe in Figure 3 that Lasso assigns the largest loadings to the constant, the implied

volatility, the stock price over its highest 250 trading days price, and the daily CAPM beta. Where

the former two predictors are established as important drivers, the latter two are not, which is

important if the Lasso performs well out-of-sample. Furthermore, we find that the Lasso mostly
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deems the Past returns, Investment, Profitability, and Intangibles catergories as unimportant relative

to Value, Trading frictions and Option features.

Figure 3: Lasso estimates of Γβ for Factor 1 in the restricted K = 1 IPCA specification.

Note. This figure displays the Lasso regularized Γβ in the restricted IPCA model with K = 1 and Γα = 0. The data contains

all equity data for the in-sample period July 2006 to October 2014. The variables are the 70 equity characteristics of Table 11

in Appendix A and λ is set at 10−5

Since regularization aims to prevent overfitting, we solely focus on the out-of-sample performance.

Table 9 reports the out-of-sample fit of the elastic net. The performance of the Lasso and ridge are

listed in Appendix H. When compared to the basic IPCA model of Table 4, we observe that the

out-of-sample total R2 are all comparable with a slight edge to the regularized models. The most

remarkable finding is the predictive R2. While sporadically competitive, regularized IPCA performs

well for all values of K in contrast to basic IPCA.

Table 9: Elastic net IPCA out-of-sample fit of equity options.

Individual returns (rt) Managed portfolios (xt)
K Total R2 Predictive R2 Total R2 Predictive R2

1 8.76 0.21 42.8 0.85
2 10.1 0.20 60.0 0.79
3 11.1 0.21 67.8 0.90
4 11.6 0.22 72.2 0.90

Note. This table displays the performance of restricted IPCA with K factors using elastic net regularization where ρ is
equal to 0.03 and λ is set at 10−3. We implement the equity data with 70 lagged characteristics for the out-of-sample period
November 2014 to May 2018. The total and predictive R2 are reported in percentages.
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Of the three regularization techniques, we find that ridge generates the best results. This implies

that while shrinkage increases performance, it is not beneficial to reduce the model by removing

predictors. Closer inspection of regularized IPCA tells us that this success stems from the distri-

bution of the loadings. More specifically, the initially large weight for the constant is consistently

amplified due to the orthonormalization of Γβ in each ALS iteration. Overall, these findings suggest

that regularization proves beneficial for the IPCA framework. However, the question arises whether

this converts to profitable investments.

5.4 Trading strategy

The annualized out-of-sample Sharpe ratios are shown in Table 10 to describe the mean-variance

efficiency of the IPCA factors. The K-th column denotes the Sharpe ratios for univariate factor K,

the tangency allocation based on factors 1 through K, and the pure-alpha portfolio for a K factor

IPCA specification.

Table 10: Out-of-sample Sharpe ratios.

K
1 2 3 4

Panel A: Equity options
Univariate 0.62 0.27 0.17 0.43
Tangency 0.62 0.82 0.05 2.38
Pure-alpha 0.22 0.17 0.15 0.20

Panel B: Ridge regularization
Univariate 0.58 0.20 0.67 0.31
Tangency 0.58 0.24 0.72 0.79

Panel C: ETF options
Univariate 1.68 0.21 1.28 1.14
Tangency 1.68 1.78 1.66 1.69
Pure-alpha 1.01 0.74 0.26 0.77

Panel D: Information Technology sector
Univariate 1.15 1.07 0.86 0.93
Tangency 1.15 1.21 1.06 0.57
Pure-alpha 0.61 0.48 0.95 0.45

Note. This table displays annualized Sharpe ratios of the IPCA model with K factors using the equity and ETF data
for the out-of-sample period November 2014 to May 2018. The rows represent individual factors (“univariate”) and
mean-variance efficient portfolio of factors in each model (“tangency”) that are all based on the restricted IPCA
specification. Lastly, the pure-alpha portfolios are based on Γα of unrestricted IPCA.

The first IPCA factor of the equity options produces a Sharp ratio of 0.62, as opposed to 1.68 for the

ETF options. Adding factors increases the Sharpe ratios further to 2.38 and 1.69, respectively. To

add perspective, the Sharpe ratio is 1.02 for the stock market over the same time period. Notably,

this was an exceptionally good time for this market, as the Sharpe ratio is only 0.67 over our full
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sample period. Nevertheless, these findings imply that there is potential for profitable investments

for both equity and ETF options.

The pure-alpha Sharpe ratios of Table 10 range from 0.15 to 1.01, and are substantially smaller

than the factor risk premium portfolios. This performance does not make pure-alphas portfolios

attractive investments in terms of mean-variance efficiency, regardless of factor neutrality. Further-

more, we report additional Sharpe ratios of unrestricted IPCA, Lasso and elastic net, and the other

nine industry sectors in Appendix I. While regularization generates better out-of-sample fits, it does

not transfer to Sharpe ratios as we observe that its performance remains modest. The same argu-

ment holds for the industry sectors, as seven of the ten sectors do not exceed a Sharp ratio above

one. The other three sectors are Information Technology, Health Care, and Consumer Discretionary

and generate maximum Sharpe ratios of 1.21, 1.29, and 2.15, respectively. Furthermore, we find

that unrestricted IPCA produces tangency Sharpe ratios that are more consistent and occasionally

superior. Hence, despite insignificant values for Γα, the unrestricted IPCA seems favorable.

The relatively high tangency Sharpe ratios suggest that IPCA is successful in capturing the

comovement among delta-hedged options while simultaneously aligning their factor loadings with

differences in average returns. However, it is nearly impossible for an investor to obtain these

Sharp ratios due to two reasons. First, the tangency allocation comes with high turnover, which

partially originates from the fast-moving characteristics, as can be observed in Appendix A.1 and

B.1. Second, the delta-hedging process requires nearly daily rebalancing. This leads to substantial

implementation costs that will considerably reduce profits. While research as Zhan et al. (2022) find

Sharpe ratios above two for delta-hedged equity options using common option factors, the question

remains whether this holds for IPCA.

6 Conclusion

In this paper, we apply a conditional latent factor model to analyze the drivers of delta-hedged

returns for equity and ETF call options. Through IPCA, the model incorporates observable pricing-

relevant characteristics via time-varying loadings that instrument for unobservable dynamics. This

originates from the assumption that characteristics proxy for systematic risk exposures and are

therefore linked to compensation. We consider 70 firm and option-related characteristics for the

equity options and 30 for the ETF options. Additionally, the IPCA framework is extended through

regularization to counter the risk of overfitting the cross-section. The models are then evaluated
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based on sample fit and Sharpe ratio, where the latter examines whether IPCA offers potential for

profitable trading strategies.

Our findings show that for equity and ETF options the largest and most significant predictor of

delta-hedged returns is the constant. This implies that all options share a common baseline exposure

that cannot be described by time-varying characteristics. As its corresponding loadings are generally

negative, the constant captures a substantial amount of the negative average delta-hedged return.

Moreover, we find that implied volatility is a vital driver for all options and has a negative relation

with the returns.

Focusing on the equity options, we find that operating leverage, market capitalization, and total

assets further describe the delta-hedged returns. Where the former two are positively related to the

returns, the latter exhibits a negative relation. This suggests that companies with a considerable

amount of intangible assets that are reflected in the stock price generally produce higher delta-hedged

returns. Kelly et al. (2019) argue that market capitalization and total assets are the most significant

drivers of stock returns. However, they find the opposite relation to returns as our research, which

can be explained by our delta-hedged position where we short the underlying stock. Overall, this

implies that market capitalization and total assets are fundamental drivers across multiple asset

classes.

In terms of ETF options, we find the average daily bid-ask spread of the underlying, gamma,

and theta as additional drivers of delta-hedged returns. This strong significance of multiple option

features is in line with Büchner and Kelly (2022). Similar to implied volatility, the three charac-

teristics exhibit a negative relation to the returns. This suggests that less liquid ETF markets and

more sensitive options in terms of gamma and theta lead to lower average returns. Therefore, we

argue that when stocks are combined in the form of ETFs, the corresponding delta-hedged option

returns generally have different drivers.

An IPCA model with four latent factors generates up to 26.2% in-sample and 12.4% out-of-sample

total R2 for the equity options. For the ETF options, these R2 are 40.0% and 19.7%, respectively.

In terms of predictive R2, both data sets show consistent results for both sample periods that range

from 0.7% to 3.9%. Moreover, IPCA generates tangency Sharpe ratios above two. However, these

are obtained without taking transaction costs into account. We observe that separating the data

on industry sectors can lead to improved out-of-sample fits. Unfortunately, this does not convert

to favorable Sharpe ratios. The same observation is made for regularization, which indicates that

there is less overfitting than expected. Furthermore, despite frequent insignificant values for Γα, we
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find that unrestricted IPCA consistently produces favorable results for all criteria when compared

to restricted IPCA.

Additionally, the IPCA R2 performance of stock returns in Kelly et al. (2019) is remarkably

similar to our equity options. However, their Sharpe ratios are far superior to ours. A similar

argument holds when we compare the ETF options performance to the delta-hedged index options

of Büchner and Kelly (2022). Therefore, we argue that in terms of profit, one should favor stocks

over delta-hedged equity options. And if one prefers to invest in diversified products, they should

favor delta-hedged index options over delta-hedged ETF options.

7 Discussion

The core idea of IPCA, which is that characteristics proxy for risk exposures, has not been generally

accepted. Hornuf and Fieberg (2020) criticise Kelly et al. (2019) and question whether characteristics

are capable of resembling covariances. They claim that the explanatory power of unrestricted IPCA

originates from a return phenomenon that is unrelated to risk. Moreover, their findings argue

that characteristics act as characteristics in describing stock returns, and characteristics function

as covariances in describing risk. Despite of Hornuf and Fieberg (2020) view that some of the

conclusions of IPCA might be premature, they still praise and recommend IPCA as an insightful

benchmark in the asset pricing literature.

A closer look at the data of this paper reveals several limitations. For instance, our delta-hedged

returns are rebalanced on a near-daily basis. However, the underlying is often volatile and prices

change every second. Hence, insufficient rebalancing might lead to exposures. The reduction from

70 to 30 characteristics could also play an important role in determining the drivers. Since it is

not improbable that some characteristics suffer from too much noise in the model, the question

arises how comparable the significance statistics are for the two sets of characteristics. Furthermore,

an asymptotic property of IPCA relies on a large number of time periods. It is debatable if our

in-sample period of 100 months suffices. Especially, since the sample period of Kelly et al. (2019)

contains decades of data. It could prove beneficial to either experiment with daily returns or extend

the sample period similar to Büchner and Kelly (2022). This could also lead to an analysis of out-

of-sample IPCA performance during economic recessions. However, it must be noted that ETF data

is relatively limited before 2010.
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While regularization did not have the anticipated performance, we are still intrigued by a more

parsimonious IPCA model. Specifically, if we would expand the set of characteristics by for instance,

incorporating time-invariant asset-specific instruments or second-order Greeks. Kelly et al. (2019)

find that their ten most significant characteristics are responsible for nearly 100% of the model’s

performance. It would be interesting to see if this holds for our paper. Moreover, one can also explore

the significance of characteristics before initializing IPCA by performing Fama and MacBeth (1973)

cross-sectional regressions (Zhan et al., 2022), or applying the adaptive Lasso (Brooks et al., 2018).

In addition, one might apply the Γβ significance test to the various industry sectors, or apply it

to regularized IPCA, which could also benefit from cross-validation in determining the optimal

shrinkage parameters.

Furthermore, adding a transaction cost framework, such as Zhan et al. (2022), offers a more

realistic view of the potential of trading strategies using IPCA. However, one has to take into account

that implementing transaction costs can alter the significant characteristics (DeMiguel et al., 2020).

Additionally, it could be insightful for investors to apply Jobson and Korkie (1981) and test whether

our Sharpe ratios are significantly different from one another.

A different direction could be to extend the IPCA framework with pre-specified observable fac-

tors. It could be interesting to explore the explanatory power of macroeconomic trends as the CBOE

Volatility Index or common factors from option markets. Several known option factors, such as the

embedded leverage factor and the straddle factor, are discussed in Coval and Shumway (2001), Frazz-

ini and Pedersen (2012), Karakaya (2014), and Zhan et al. (2022). To this end, one can also perform

interpretation analyses to explore the relation between estimated IPCA factors and common option

factors, which leads to a better understanding of the behavior of the IPCA model.

Finally, Gu et al. (2021) propose a conditional latent factor model similar to IPCA. The difference

is where IPCA enforces a linear relation, Gu et al. (2021) allow the loadings to be a non-parametric

function of characteristics. This flexibility is realized through intensive machine learning in the

form of autoencoder neural networks. Future research could examine whether this non-linearity

property better suits the cross-section of delta-hedged options. Overall, we find promising results

using the innovative IPCA, yet there are still a lot of questions regarding the puzzling cross-section

of delta-hedged option returns.
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Master Thesis

Appendices

A Equity Characteristics by Category

Table 11: Equity characteristics sorted by category.

Past returns: Value:
(1) or6 DHO return average over the last 6 months (34) A2ME Assets-to-market
(2) or12 DHO return average over the last 12 months (35) BEME Book-to-market ratio
(3) or36 DHO return average over the last 36 months (36) C Cash to AT
(4) sr2−1 Stock return 1 month before prediction (37) C2D Cash flow over total liabilities
(5) sr6−2 Stock return from 6 to 2 months before prediction (38) ∆SO Log change in split-adjusted shares outstanding
(6) sr12−2 Stock return from 12 to 2 months before prediction (39) Debt2P Total debt over size
(7) sr12−7 Stock return from 12 to 7 months before prediction (40) E2P Income before extraordinary items over size
(8) sr36−13 Stock return from 36 to 13 months before prediction (41) Free CF Free cash flow over BE

(42) LDP Trailing 12-months dividends over price
Investment: (43) NOP Net payouts over size

(9) Invest % change in AT (44) O2P Operating payouts over market cap
(10) ∆CEQ % change in BE (45) Q Tobin’s Q
(11) ∆PI2A Change in PP&E and inventory over lagged AT (46) S2P Sales over price
(12) ∆Shrout % change in shares outstanding (47) Sales_g Sales growth
(13) IVC Change in inventory over average AT
(14) NOA Net-operating assets over lagged AT Trading frictions:

(48) AT Total assets
Profitability: (49) Beta Correlation × ratio of vols

(15) ATO Sales over lagged net operating assets (50) Beta daily CAPM beta using daily returns
(16) CTO Sales over lagged total assets (51) DTO De-trended Turnover
(17) ∆(∆GM-∆Sales) ∆(% change in gross margin and % change in sales) (52) LME Price × shares outstanding
(18) EPS Earnings per share (53) Lturnover Last month’s volume over shares outstanding
(19) IPM Pretax income over sales (54) Rel_to_high_price Price over 250 trading days high price
(20) PCM Sales minus costs of goods sold over sales (55) Ret_max Maximum daily return
(21) PM OI after depreciation over sales (56) Spread Average daily bid-ask spread
(22) Prof Gross profitability over BE (57) Std turnover Standard deviation of daily turnover
(23) RNA OI after depreciation over lagged net operating assets (58) Std volume Standard deviation of daily volume
(24) ROA Income before extraordinary items over lagged AT (59) SUV Standard unexplained volume
(25) ROC Size + long-term debt - total assets over cash (60) Total vol Standard deviation of daily returns
(26) ROE Income before extraordinary items over lagged BE
(27) ROIC Return on invested capital Option features:
(28) S2C Sales over cash (61) Impl vol Implied volatility
(29) SAT Sales over total assets (62) Moneyness Underlying price over strike price

(63) Delta Delta
Intangibles: (64) Gamma Gamma

(30) OA Operating accruals (65) Vega Vega
(31) OL Costs of goods sold + SG&A over total assets (66) Theta Theta
(32) Tan Tangibility (67) Trad volume Trading volume of the option
(33) AOA Absolute value of operating accruals (68) Underlying Underlying price

(69) Strike Strike price

(70) Constant Constant

Note. This table displays the equity characteristics that we analyze by category. The computation of each variable is either
discussed in Section 4.4 or extensively described in the online appendix of Freyberger et al. (2020). Lastly, delta-hedged option

is abbreviated as DHO and ∆ stands for difference in.
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A.1 Descriptive statistics

Table 12: Descriptive statistics of the equity characteristics.

Mean Median Std. Freq Mean Median Std. Freq

Past returns: Value:
or6 -0.01 -0.01 (0.06) m A2ME 2.56 1.02 (11.84) y
or12 -0.01 -0.01 (0.05) m BEME 0.63 0.43 (3.61) y
or36 -0.01 -0.01 (0.04) m C 0.14 0.08 (0.17) y
sr2−1 0.01 0.01 (0.20) m C2D 0.18 0.14 (0.59) y
sr6−2 0.05 0.03 (0.48) m ∆SO 0.02 0.00 (0.13) y
sr12−2 0.13 0.08 (0.84) m Debt2P 0.76 0.28 (3.44) y
sr12−7 0.06 0.04 (0.54) m E2P 0.01 0.05 (0.60) y
sr36−13 0.27 0.13 (1.28) m Free CF 0.08 0.10 (8.95) y

LDP 17.88 3.70 (73.62) m
Investment: NOP 0.02 0.02 (0.26) y
Invest 0.13 0.06 (0.46) y O2P 0.04 0.03 (0.29) y
∆CEQ 0.12 0.07 (2.58) y Q 1.66 0.97 (5.19) y
∆PI2A 0.05 0.03 (0.19) y S2P 1.28 0.58 (5.89) y
∆Shrout 0.78 0.00 (176.82) m Sales_g 0.55 0.067 (36.36) y
IVC 0.04 0.04 (10.18) y
NOA 0.48 0.54 (0.41) y Trading frictions:

AT 4.7e+04 5.3e+03 (2.2e+05) y
Profitability: Beta 0.98 0.87 (0.95) m
ATO 2.68 1.44 (72.73) y Beta daily 1.03 0.99 (1.12) m
CTO 0.90 0.68 (0.87) y DTO 0.00 0.00 (0.67) m
∆(∆GM-∆Sales) 1.71 -0.89 (358.67) y LME 2.6e+10 5.3e+09 (9.9e+10) m
EPS 2.61 1.75 (18.90) y Lturnover 0.05 0.01 (13.99) m
IPM -1.07 0.11 (39.28) m Rel_to_high_price 0.82 0.88 (0.18) m
PCM -0.43 0.38 (30.10) y Ret_max 0.05 0.03 (0.05) m
PM -1.00 0.14 (39.14) y Spread 1.28 0.89 (12.78) m
Prof 0.62 0.50 (41.09) y Std turnover 0.01 0.00 (3.05) m
RNA 0.28 0.18 (24.63) y Std volume 1.5e+06 5.1e+05 (5.7e+06) m
ROA 0.05 0.05 (0.15) y SUV -0.13 -0.14 (0.14) m
ROC 253.84 132.55 (7.3e+06) m Total vol 0.02 0.02 (0.02) m
ROE 0.05 0.12 (5.67) y
ROIC 0.08 0.08 (0.13) y Option features:
S2C 113.20 7.40 (2.8e+03) y Impl vol 0.34 0.30 (0.16) m
SAT 0.82 0.62 (0.78) y Moneyness 1.00 1.00 (0.03) m

Delta 0.51 0.52 (0.08) m
Intangibles: Gamma 0.12 0.09 (0.10)) m
OA -0.08 -0.07 (0.19) y Vega 7.74 5.71 (10.26) m
OL 0.71 0.49 (0.75) y Theta -9.95 -7.39 (12.40) m
Tan 0.42 0.44 (0.18) y Trad volume 224.07 20.00 (1.4e+03) m
AOA 0.14 0.10 (0.14) y Underlying 57.17 42.99 (74.59) m

Strike 57.31 43.00 (74.67) m

Constant 1.00 1.00 (0.00)

Note. This table displays the descriptive statistics of the 8,866,082 characteristic observations for all equity options.
The columns represent means, medians, standard deviations and the frequency of variation, which is either monthly
or yearly. The characteristics are organized by category and range from July 2006 to May 2018. The computation of
each variable is either discussed in Section 4.4 or extensively described in the online appendix of Freyberger et al. (2020).
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B ETF Characteristics by Category

Table 13: ETF characteristics sorted by category.

Past returns:

(1) or6 DHO return average over the last 6 months (16) Spread Average daily bid-ask spread

(2) or12 DHO return average over the last 12 months (17) Std turnover Standard deviation of daily turnover

(3) or36 DHO return average over the last 36 months (18) Std volume Standard deviation of daily volume

(4) sr2−1 Security return 1 month before prediction (19) SUV Standard unexplained volume

(5) sr6−2 Security return from 6 to 2 months before prediction (20) Total vol Standard deviation of daily

(6) sr12−2 Security return from 12 to 2 months before prediction

(7) sr12−7 Security return from 12 to 7 months before prediction Option features:

(21) Impl vol Implied volatility

Investment: (22) Moneyness Underlying price over strike price

(8) ∆Shrout % change in shares outstanding (23) Delta Delta

(24) Gamma Gamma

Trading frictions: (25) Vega Vega

(9) Beta Correlation × ratio of vols (26) Theta Theta

(10) Beta daily CAPM beta using daily returns (27) Trad volume Trading volume of the option

(11) DTO De-trended Turnover (28) Underlying Underlying price

(12) LME Price × shares outstanding (29) Strike Strike price

(13) Lturnover Last month’s volume over shares outstanding

(14) Rel_to_high_price Price over 250 trading days high price (30) Constant Constant

(15) Ret_max Maximum daily return

Note. This table displays the ETF characteristics that we analyze by category. The computation of each variable is either

discussed in Section 4.4 or extensively described in the online appendix of Freyberger et al. (2020). Lastly, delta-hedged

option is abbreviated as DHO and ∆ stands for difference in.
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B.1 Descriptive statistics

Table 14: Descriptive statistics of the ETF characteristics.

Mean Median Std. Freq Mean Median Std. Freq

Past returns:
or6 -0.01 -0.01 (0.12) m Spread 0.98 0.70 (1.09) m
or12 -0.01 -0.01 (0.08) m Std turnover 49.93 10.88 (1.1e+03) m
or36 -0.01 0.00 (0.05) m Std volume 1.5e+06 1.9e+05 (5.6e+06) m
sr2−1 0.01 0.01 (0.29) m SUV -0.18 -0.20 (0.14) m
sr6−2 0.04 0.03 (0.45) m Total vol 0.02 0.01 (0.01) m
sr12−2 0.09 0.07 (0.74) m
sr12−7 0.05 0.04 (0.50) m Option features:

Impl vol 0.29 0.23 (0.18) m
Investment: Moneyness 1.00 1.00 (0.02) m
∆Shrout 0.07 0.01 (2.23) m Delta 0.51 0.52 (0.08) m

Gamma 0.12 0.09 (0.10) m
Trading frictions: Vega 8.32 6.76 (6.03) m
Beta 0.32 0.07 (0.91) m Theta -9.19 -7.23 (7.41) m
Beta daily 0.60 0.80 (1.03) m Trad volume 351.67 10.00 (2.5e+03) m
DTO 11.91 2.24 (235.57) m Underlying 61.89 50.33 (44.23) m
LME 4.2e+06 9.2e+05 (1.2e+07) m Strike 62.02 50.00 (44.27) m
Lturnover 82.11 14.62 (473.13) m
Rel_to_high_price 0.89 0.94 (0.16) m Constant 1.00 1.00 (0.00)
Ret_max 0.03 0.02 (0.03) m

Note. This table displays the descriptive statistics of the 898,617 characteristic observations for all ETF options. The
columns represent means, medians, standard deviations and the frequency of variation, which is either monthly or yearly.
The characteristics are organized by category and range from July 2006 to May 2018. The computation of each variable is
either discussed in Section 4.4 or extensively described in the online appendix of Freyberger et al. (2020).
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C R2 Statistics Computations

This section features the computations of the total R2 and predictive R2 of the IPCA characteristic-

managed portfolios and the benchmark PCA model.

IPCA Characteristic-managed portfolios

Following Kelly et al. (2019), the total R2 and predictive R2 for the characteristic-managed portfolio

returns xt in an IPCA model are defined as follows:

R2
x,tot = 1−

∑
t

(
xt+1 − Z ′

tZt

(
Γ̂α + Γ̂β f̂t+1

))′ (
xt+1 − Z ′

tZt

(
Γ̂α + Γ̂β f̂t+1

))
∑

t x
′
t+1xt+1

, (40)

R2
x,pred = 1−

∑
t

(
xt+1 − Z ′

tZt

(
Γ̂α + Γ̂βλ̂

))′ (
xt+1 − Z ′

tZt

(
Γ̂α + Γ̂βλ̂

))
∑

t x
′
t+1xt+1

. (41)

PCA

Regarding the PCA model, we compute the total R2 and predictive R2 for the option returns rt as

follows:

R2
r,tot = 1−

∑
i,t

(
ri,t − β̂if̂t

)2∑
i,t r

2
i,t

, R2
r,pred = 1−

∑
i,t

(
ri,t − β̂iλ̂

)2∑
i,t r

2
i,t

, (42)

where the static βi is a 1×K vector which is the i-th row of the static matrix β. Additionally, the

total R2 and predictive R2 for characteristic-managed portfolios xt are obtained in a similar manner:

R2
x,tot = 1−

∑
t

(
xt − β̂f̂t

)′ (
xt − β̂f̂t

)
∑

t x
′
txt

, R2
x,pred = 1−

∑
t

(
xt − β̂λ̂

)′ (
xt − β̂λ̂

)
∑

t x
′
txt

, (43)

where the static β is an L×K matrix.
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D Rolling Window

A visualisation of the rolling window approach to generate the out-of-sample forecasts is displayed

in Table 15.

Table 15: The rolling window approach for the one month ahead out-of-sample forecasts.

1 2 3 ... 99 100 101 102 103 104 ... 141 142 143

Origin = 100
Origin = 101
Origin = 102
Origin = 103
Origin = ...
Origin = 140
Origin = 141

Origin = 142

Note. White cells correspond to the in-sample period, while the grey cells correspond to the out-of-sample
estimate. The forecast computation follows 3.6.2. The numbers correspond to the months in our sample
period starting at July 2006. The first out-of-sample month is November 2014 and the last is month 143,
which is May 2018.
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E Number of Common Factors

Figure 4: Scree plot, ER ratio and GR ratio for delta-hedged equity options (a)-(c) and
delta-hedged ETF options (d)-(f).

(a) Scree plot - Equity. (d) Scree plot - ETF.

(b) ER ratio - Equity. (e) ER ratio - ETF.

(c) GR ratio - Equity. (f) GR ratio - ETF.

Note. The computations for the ER and GR ratios are discussed in Section 3.7.2. The data for these calculations
ranges from the full sample period July 2006 - May 2018.
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F IPCA Figures

F.1 Equity options

Figure 5: Estimates of Γβ for Factor 1 in the unrestricted K = 4 IPCA specification.

Note. This figure displays the first column of Γβ in the unrestricted IPCA model with K = 4. The data contains all

equity data for the in-sample period July 2006 to October 2014. The variables are the 70 equity characteristics of

Table 11 in Appendix A

Figure 6: Estimates of Γβ for Factor 2 in the unrestricted K = 4 IPCA specification.

Note. This figure displays the second column of Γβ in the unrestricted IPCA model with K = 4. The data contains

all equity data for the in-sample period July 2006 to October 2014. The variables are the 70 equity characteristics of

Table 11 in Appendix A
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Figure 7: Estimates of Γβ for Factor 4 in the unrestricted K = 4 IPCA specification.

Note. This figure displays the fourth column of Γβ in the unrestricted IPCA model with K = 4. The data contains

all equity data for the in-sample period July 2006 to October 2014. The variables are the 70 equity characteristics of

Table 11 in Appendix A

Figure 8: Estimates of Γα in the unrestricted K = 4 IPCA specification.

Note. This figure displays Γα in the unrestricted IPCA model with K = 4. The data contains all equity data for the

in-sample period July 2006 to October 2014. The variables are the 70 equity characteristics of Table 11 in Appendix

A

67



F.2 ETF options Master Thesis

F.2 ETF options

Figure 9: Estimates of Γβ for Factor 1 in the unrestricted K = 4 IPCA specification.

Note. This figure displays the first column of Γβ in the unrestricted IPCA model with K = 4 and Γα ̸= 0. The data

contains all ETF data for the in-sample period July 2006 to October 2014. The variables are the 30 ETF

characteristics of Table 13 in Appendix B

Figure 10: Estimates of Γβ for Factor 3 in the unrestricted K = 4 IPCA specification.

Note. This figure displays the third column of Γβ in the unrestricted IPCA model with K = 4 and Γα ̸= 0. The data

contains all ETF data for the in-sample period July 2006 to October 2014. The variables are the 30 ETF

characteristics of Table 13 in Appendix B
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Figure 11: Estimates of Γβ for Factor 4 in the unrestricted K = 4 IPCA specification.

Note. This figure displays the fourth column of Γβ in the unrestricted IPCA model with K = 4 and Γα ̸= 0. The

data contains all ETF data for the in-sample period July 2006 to October 2014. The variables are the 30 ETF

characteristics of Table 13 in Appendix B

Figure 12: Estimates of Γα in the unrestricted K = 4 IPCA specification.

Note. This figure displays Γα in the unrestricted IPCA model with K = 4. The data contains all ETF data for the

in-sample period July 2006 to October 2014. The variables are the 30 ETF characteristics of Table 13 in Appendix B
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G Equity Sector Fit

Table 16: IPCA performance of equity options in the Financials sector.

Individual returns (rt) Managed portfolios (xt)

Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0

Panel A: In-sample

1 72.9 73.4 < 0 < 0 60.5 62.1 < 0 < 0

2 82.8 83.2 < 0 < 0 83.6 84.3 < 0 < 0

3 84.7 85.2 < 0 < 0 89.3 89.9 < 0 < 0

4 86.1 86.5 < 0 < 0 91.1 91.8 < 0 < 0

Panel B: Out-of-sample

1 3.94 4.76 < 0 < 0 4.79 4.51 < 0 < 0

2 32.6 33.2 < 0 < 0 64.3 65.0 < 0 < 0

3 33.4 33.7 < 0 < 0 67.2 67.4 < 0 < 0

4 35.2 35.6 < 0 < 0 70.5 72.3 < 0 < 0

Note. This table displays the performance of the IPCA model with K factors using the equity data exclusive

to the Financials sector. The data contains the in-sample period July 2006 to October 2014 and the

out-of-sample period November 2014 to May 2018. The total and predictive R2 are reported in percentages

for the restricted and unrestricted IPCA model with 70 lagged characteristics.

Table 17: IPCA performance of equity options in the Health Care sector.

Individual returns (rt) Managed portfolios (xt)

Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0

Panel A: In-sample

1 19.6 21.5 0.59 2.31 39.7 42.5 1.01 4.05

2 32.6 34.0 < 0 < 0 52.9 55.2 < 0 < 0

3 38.1 39.2 < 0 < 0 63.7 66.0 < 0 < 0

4 43.0 44.0 < 0 < 0 71.1 72.1 < 0 < 0

Panel B: Out-of-sample

1 14.0 14.1 1.33 0.89 35.3 36.2 4.79 6.25

2 17.5 18.2 < 0 < 0 41.5 42.3 1.03 4.54

3 19.7 20.5 < 0 < 0 49.6 51.4 < 0 < 0

4 20.9 21.7 < 0 < 0 52.2 52.5 < 0 < 0

Note. This table displays the performance of the IPCA model with K factors using the equity data exclusive

to the Health Care sector. The data contains the in-sample period July 2006 to October 2014 and the

out-of-sample period November 2014 to May 2018. The total and predictive R2 are reported in percentages

for the restricted and unrestricted IPCA model with 70 lagged characteristics.
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Table 18: IPCA performance of equity options in the Consumer Discretionary sector.

Individual returns (rt) Managed portfolios (xt)

Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0

Panel A: In-sample

1 34.3 35.5 0.87 2.14 61.1 62.4 1.28 2.56

2 39.0 40.1 0.88 2.09 68.2 69.1 1.30 2.36

3 42.5 43.5 1.30 2.03 71.9 73.4 0.88 2.23

4 45.8 46.6 1.28 2.05 77.5 78.3 1.02 2.27

Panel B: Out-of-sample

1 10.9 10.7 0.05 < 0 26.0 26.2 < 0 < 0

2 12.6 12.3 0.11 < 0 32.0 32.2 < 0 < 0

3 14.3 14.5 0.12 < 0 33.5 38.9 < 0 < 0

4 17.2 15.8 0.39 < 0 43.5 42.1 0.90 0.11

Note. This table displays the performance of the IPCA model with K factors using the equity data exclusive

to the Consumer Discretionary sector. The data contains the in-sample period July 2006 to October 2014

and the out-of-sample period November 2014 to May 2018. The total and predictive R2 are reported in

percentages for the restricted and unrestricted IPCA model with 70 lagged characteristics.

Table 19: IPCA performance of equity options in the Industrials sector.

Individual returns (rt) Managed portfolios (xt)

Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0

Panel A: In-sample

1 34.7 36.5 0.20 2.11 62.2 64.3 0.55 3.33

2 44.4 45.6 < 0 < 0 69.2 70.6 < 0 < 0

3 48.1 49.4 < 0 < 0 74.2 74.5 < 0 < 0

4 51.5 52.7 < 0 0.09 78.1 78.9 < 0 0.33

Panel B: Out-of-sample

1 20.8 19.7 0.82 < 0 41.8 39.5 1.27 < 0

2 22.4 21.7 < 0 < 0 43.9 41.9 < 0 < 0

3 24.7 23.4 < 0 < 0 48.1 45.9 < 0 < 0

4 26.2 26.7 < 0 < 0 50.8 51.7 < 0 < 0

Note. This table displays the performance of the IPCA model with K factors using the equity data exclusive

to the Industrials sector. The data contains the in-sample period July 2006 to October 2014 and the

out-of-sample period November 2014 to May 2018. The total and predictive R2 are reported in percentages

for the restricted and unrestricted IPCA model with 70 lagged characteristics.
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Table 20: IPCA performance of equity options in the Energy & Utilities sector.

Individual returns (rt) Managed portfolios (xt)

Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0

Panel A: In-sample

1 32.9 34.7 0.21 1.97 62.5 64.9 0.42 2.40

2 43.3 44.9 < 0 1.30 74.4 76.2 < 0 0.43

3 48.9 50.1 < 0 < 0 77.3 78.7 < 0 < 0

4 52.6 53.7 < 0 < 0 81.3 82.3 < 0 < 0

Panel B: Out-of-sample

1 26.3 26.0 < 0 < 0 60.1 59.3 < 0 < 0

2 29.7 29.3 < 0 < 0 72.3 71.3 < 0 < 0

3 32.1 31.7 < 0 < 0 72.4 72.1 < 0 < 0

4 33.4 33.3 < 0 < 0 73.8 73.6 < 0 < 0

Note. This table displays the performance of the IPCA model with K factors using the equity data exclusive

to the Energy & Utilities sector. The data contains the in-sample period July 2006 to October 2014 and the

out-of-sample period November 2014 to May 2018. The total and predictive R2 are reported in percentages

for the restricted and unrestricted IPCA model with 70 lagged characteristics.

Table 21: IPCA performance of equity options in the Communication Services sector.

Individual returns (rt) Managed portfolios (xt)

Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0

Panel A: In-sample

1 28.5 30.5 0.27 2.14 53.9 57.0 0.04 2.95

2 35.7 37.4 0.00 1.55 63.8 65.7 0.04 1.94

3 42.0 43.6 < 0 1.18 69.5 71.7 < 0 1.73

4 46.9 48.6 0.33 0.18 76.0 77.8 < 0 0.48

Panel B: Out-of-sample

1 12.3 12.8 0.28 0.83 28.3 30.4 0.66 2.96

2 14.6 14.9 < 0 0.27 35.1 38.1 < 0 2.34

3 17.3 17.5 < 0 < 0 44.7 45.3 < 0 1.09

4 18.6 17.7 < 0 < 0 49.3 48.2 < 0 < 0

Note. This table displays the performance of the IPCA model with K factors using the equity data exclusive

to the Communication Services sector. The data contains the in-sample period July 2006 to October 2014 and

the out-of-sample period November 2014 to May 2018. The total and predictive R2 are reported in percentages

for the restricted and unrestricted IPCA model with 70 lagged characteristics.
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Table 22: IPCA performance of equity options in the Consumer Staples sector.

Individual returns (rt) Managed portfolios (xt)

Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0

Panel A: In-sample

1 21.1 22.5 0.62 1.94 44.3 46.8 1.23 3.95

2 27.4 28.8 0.60 1.80 51.0 52.9 1.22 3.69

3 33.3 34.3 0.88 1.79 61.6 62.5 2.17 3.29

4 38.8 40.1 0.61 < 0 65.0 65.7 1.95 < 0

Panel B: Out-of-sample

1 6.80 6.26 < 0 < 0 17.6 16.8 < 0 < 0

2 8.56 8.46 < 0 < 0 21.6 19.6 < 0 < 0

3 10.7 10.2 < 0 < 0 25.4 24.5 < 0 < 0

4 13.0 11.9 < 0 < 0 30.2 25.9 0.31 < 0

Note. This table displays the performance of the IPCA model with K factors using the equity data exclusive

to the Consumer Staples sector. The data contains the in-sample period July 2006 to October 2014 and the

out-of-sample period November 2014 to May 2018. The total and predictive R2 are reported in percentages

for the restricted and unrestricted IPCA model with 70 lagged characteristics.

Table 23: IPCA performance of equity options in the Materials sector.

Individual returns (rt) Managed portfolios (xt)

Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0

Panel A: In-sample

1 31.4 33.0 0.03 1.88 51.2 53.1 < 0 2.77

2 40.0 41.4 0.22 1.67 77.2 78.3 0.50 1.26

3 44.4 45.7 0.64 1.45 82.0 83.0 0.22 0.41

4 48.0 49.6 0.64 1.44 85.0 85.9 0.23 0.72

Panel B: Out-of-sample

1 14.6 14.3 0.15 < 0 41.5 39.3 < 0 < 0

2 20.8 20.7 0.15 < 0 63.4 64.4 < 0 < 0

3 21.6 22.3 0.23 < 0 66.3 67.4 < 0 < 0

4 23.5 24.1 < 0 < 0 68.7 70.8 < 0 < 0

Note. This table displays the performance of the IPCA model with K factors using the equity data exclusive

to the Materials sector. The data contains the in-sample period July 2006 to October 2014 and the

out-of-sample period November 2014 to May 2018. The total and predictive R2 are reported in percentages

for the restricted and unrestricted IPCA model with 70 lagged characteristics.

73



Equity Sector Fit Master Thesis

Table 24: IPCA performance of equity options in the Real Estate sector.

Individual returns (rt) Managed portfolios (xt)

Total R2 Predictive R2 Total R2 Predictive R2

K Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0 Γα = 0 Γα ̸= 0

Panel A: In-sample

1 44.3 46.6 0.39 2.53 64.3 65.7 0.29 0.90

2 53.4 55.4 0.53 2.29 71.9 73.2 0.38 0.80

3 60.1 61.7 < 0 1.51 80.9 81.7 < 0 0.00

4 66.3 67.3 < 0 < 0 84.3 84.7 < 0 < 0

Panel B: Out-of-sample

1 17.2 14.0 < 0 < 0 31.5 30.0 < 0 < 0

2 22.3 19.2 < 0 < 0 39.7 37.5 < 0 < 0

3 25.4 22.5 < 0 < 0 43.6 40.7 0.07 < 0

4 26.5 25.0 < 0 < 0 50.9 48.9 < 0 < 0

Note. This table displays the performance of the IPCA model with K factors using the equity data exclusive

to the Real Estate sector. The data contains the in-sample period July 2006 to October 2014 and the

out-of-sample period November 2014 to May 2018. The total and predictive R2 are reported in percentages

for the restricted and unrestricted IPCA model with 70 lagged characteristics.

74



Regularization Out-of-sample Fit Master Thesis

H Regularization Out-of-sample Fit

Table 25: Lasso IPCA out-of-sample fit of equity options.

Individual returns (rt) Managed portfolios (xt)

K Total R2 Predictive R2 Total R2 Predictive R2

1 8.82 0.25 43.5 0.92

2 10.5 0.21 61.3 0.56

3 11.4 0.15 68.7 0.64

4 12.1 0.18 69.9 0.47

Note. This table displays the performance of restricted IPCA with K factors using Lasso regularization where λ is set at

10−5. We implement the equity data with 70 lagged characteristics for the out-of-sample period November 2014 to May

2018. The total and predictive R2 are reported in percentages.

Table 26: Ridge IPCA out-of-sample fit of equity options.

Individual returns (rt) Managed portfolios (xt)

K Total R2 Predictive R2 Total R2 Predictive R2

1 8.72 0.21 42.7 0.87

2 10.2 0.19 63.8 0.80

3 11.1 0.22 71.3 0.95

4 11.8 0.22 77.1 1.00

Note. This table displays the performance of restricted IPCA with K factors using ridge regularization where λ is set at

10−3. We implement the equity data with 70 lagged characteristics for the out-of-sample period November 2014 to May

2018. The total and predictive R2 are reported in percentages.

75



Sharpe Ratios Master Thesis

I Sharpe Ratios

Table 27: Out-of-sample Sharpe ratios for unrestricted IPCA.

K

1 2 3 4

Panel A: Equity options

Univariate 1.00 1.29 0.76 1.32

Tangency 1.00 1.69 2.33 1.89

Panel C: ETF options

Univariate 1.49 0.44 1.02 0.89

Tangency 1.49 1.37 1.70 1.76

Panel D: Technology sector

Univariate 1.10 1.19 0.64 1.70

Tangency 1.10 0.61 2.01 1.30

Note. This table displays annualized Sharpe ratios of the IPCA model with K factors using the equity and ETF data
for the out-of-sample period November 2014 to May 2018. The rows represent individual factors (“univariate”) and
mean-variance efficient portfolio of factors in each model (“tangency”) that are based on unrestricted IPCA.

Table 28: Elastic net and Lasso out-of-sample Sharpe ratios.

K

1 2 3 4

Panel A: Lasso

Univariate 0.63 0.61 0.67 0.63

Tangency 0.63 0.22 0.41 0.90

Panel B: Elastic net

Univariate 0.59 0.22 1.04 1.40

Tangency 0.59 0.20 0.85 1.45

Note. This table displays annualized Sharpe ratios of restricted IPCA with K factors using Lasso and elastic net
regularization. For the former we set λ at 10−5 and for the latter we set ρ equal to 0.03 and λ is set at 10−3.
We implement the equity data for the out-of-sample period November 2014 to May 2018. The rows represent individual
factors (“univariate”) and mean-variance efficient portfolio of factors in each model (“tangency”) that are based on the
unrestricted IPCA specification.
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Table 29: Out-of-sample Sharpe ratios for the equity sectors.

K

1 2 3 4

Panel A: Financials

Univariate 0.50 0.24 0.38 0.42

Tangency 0.50 0.10 0.22 0.51

Panel B: Health Care

Univariate 1.29 1.09 1.07 0.06

Tangency 1.29 1.11 1.05 1.12

Panel C: Consumer Discretionary

Univariate 0.62 0.82 0.23 0.86

Tangency 0.62 0.79 1.63 2.15

Panel D: Industrials

Univariate 0.72 0.20 1.13 0.44

Tangency 0.72 0.24 0.27 0.53

Panel E: Communication Services

Univariate 0.71 0.24 0.33 0.60

Tangency 0.71 0.13 0.48 0.65

Panel F: Consumer Staples

Univariate 0.26 0.32 0.36 0.35

Tangency 0.26 0.26 0.24 0.42

Panel G: Energy & Utilities

Univariate 0.14 0.55 0.53 0.30

Tangency 0.14 0.03 0.07 0.14

Panel H: Materials

Univariate 0.20 1.00 0.37 0.51

Tangency 0.20 0.15 0.81 0.96

Panel I: Real Estate

Univariate 0.15 0.43 0.30 0.12

Tangency 0.15 0.62 0.39 0.01

Note. This table displays annualized Sharpe ratios of the IPCA model with K factors using the equity sectors data
for the out-of-sample period November 2014 to May 2018. The rows represent individual factors (“univariate”) and
mean-variance efficient portfolio of factors in each model (“tangency”) that are all based on the restricted IPCA specification.
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J Robustness

J.1 Equity options

Table 30: IPCA robustness performance of equity options for 80 months.

K
1 2 3 4

Panel A: Individual returns (rt)
Total R2 Γα = 0 21.1 24.1 25.9 27.4

Γα ̸= 0 22.0 25.0 26.7 27.7
PCA 28.1 45.9 50.0 52.4

Predictive R2 Γα = 0 0.18 0.17 0.52 0.71
Γα ̸= 0 0.99 0.95 0.92 0.88
PCA < 0 < 0 < 0 < 0

Panel B: Managed portfolios (xt)
Total R2 Γα = 0 74.6 80.4 86.0 89.4

Γα ̸= 0 76.3 81.7 86.7 89.8
PCA 65.0 65.3 74.9 81.9

Predictive R2 Γα = 0 0.54 0.44 1.81 1.48
Γα ̸= 0 2.23 1.97 1.78 1.58
PCA 1.99 1.99 1.99 1.99

Panel C: Testing the anomaly (H0 : Γα = 0)
Wα p-value 0.171 0.322 0.445 0.953

Note. This table displays the performance of the IPCA model with K factors using the equity data for the
sample period July 2006 to February 2013. Panel A and B report the total and predictive R2 in percentages for
the restricted and unrestricted IPCA model with 70 lagged characteristics. Panel C presents the bootstrapped
p-values for the anomaly test as described in Section 3.4.1.
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J.2 ETF options

Table 31: IPCA robustness performance of ETF options for 80 months.

K
1 2 3 4

Panel A: Individual returns (rt)
Total R2 Γα = 0 23.7 33.1 39.7 43.3

Γα ̸= 0 24.7 34.1 40.7 44.2
PCA 30.3 56.0 70.3 80.1

Predictive R2 Γα = 0 2.72 2.62 2.66 2.70
Γα ̸= 0 3.80 3.71 3.54 3.57
PCA < 0 < 0 < 0 < 0

Panel B: Managed portfolios (xt)
Total R2 Γα = 0 49.8 79.1 82.4 88.5

Γα ̸= 0 52.2 80.7 84.1 89.7
PCA 52.4 74.0 74.2 83.8

Predictive R2 Γα = 0 4.73 4.81 4.94 5.31
Γα ̸= 0 7.53 6.98 6.58 6.85
PCA 3.42 3.42 3.42 3.42

Panel C: Testing the anomaly (H0 : Γα = 0)
Wα p-value 0.382 0.036 0.188 0.008

Note. This table displays the performance of the IPCA model with K factors using the ETF data for the
sample period July 2006 to February 2013. Panel A and B report the total and predictive R2 in percentages for
the restricted and unrestricted IPCA model with 70 lagged characteristics. Panel C presents the bootstrapped
p-values for the anomaly test as described in Section 3.4.1.
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