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Abbreviations   

For ease of reading, a comprehensive list of abbreviations and their extended form is provided below.  

1. AR - Autoregressive 

2. ARCH – Autoregressive Conditional Heteroskedasticity 

3. CBOE – the Chicago Board Options Exchange 

4. DJIA – Dow Jones Industrial Average 

5. EWMA – Exponential Weighted Moving Average 

6. FTSE – Financial Times Stock Exchange Group 

7. GARCH – Generalized Autoregressive Conditional Heteroskedasticity 

8. GJR-GARCH – Glosten-Jagannathan-Runkle GARCH 

9. HSI – Hang Seng Index 

10. iGARCH – Integrated GARCH 

11. KOSPI – Korean Composite Stock Price Indexes 

12. MAE – Mean Absolute Error 

13. MAPE – Mean Absolute Percentage Error 

14. NASDAQ – National Association of Securities Dealers Automated Quotations 

15. NIFTY – National Stock Exchange Fifty 

16. OLS – Ordinary Least Squares 

17. RMSE – Root Mean Squared Error 

18. SMI – Swiss Market Index 

19. S&P – Standard & Poor’s 

20. TSX – Toronto Stock Exchange 

21. VaR – Value-at-Risk 
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1. Introduction 

An extensive analysis of any investment is incomplete without consideration of the risk associated with it. 

An understanding of the risk profile of a given portfolio position is of particular importance for financial 

institutions as negligence in this regard can result in severe repercussions that threaten the financial health 

of the institution itself and, possibly, even the national and global economy. This has been evident in the 

financial crises of the past, where poor risk management practices have threatened global financial stability. 

Consequently, the attention devoted to risk management in financial institutions has greatly increased 

following these previous crises. 

The introduction of the Basel Regulations in 1988 is also responsible for the increased interest in financial 

risk management. The financial crisis of 1987 prompted the introduction of the Basel accord, which sought 

to formalise the process of risk management among financial institutions. This was to be achieved by 

incorporating measures to improve the capital standards among banks within the G-10 countries. However, 

following criticism on the regulations that were initially introduced, a modified version of the agreement 

was eventually implemented in 1995, which formally incorporated the requirement for banks to assess their 

liquidity risk through the use of Value-at-Risk (VaR) models (van den Goorbergh & Vlaar, 1999).  

Following its establishment as part of the Basel Regulations, the VaR has become a key instrument for 

financial institutions to quantify the market risk associated with their portfolio positions. Although different 

methods of computing the VaR exist, this paper focuses on the variance-covariance method. Within this 

framework for the VaR, an integral component is the forecasted volatility used in its calculation. Although 

an abundance of models and techniques are available to forecast volatility, there is no clear consensus on 

which method is most suited for the modelling of the VaR. The approach that is used to estimate volatility 

can have a material impact on the computed VaR, which can in turn significantly influence a financial 

institution’s investment decisions and their ability to adequately manage the risk of their investments.  

Two fundamental approaches to estimating volatility can be identified: backward-looking (ex-post) 

volatility forecasts are obtained by estimating statistical models using historical data, while forward-looking 

(ex-ante) volatility estimates are acquired by determining the implied volatility associated with an asset. In 

theory, the use of implied volatility offers practical advantages over the use of backward-looking estimates 

of volatility. For one, financial organisations require a future estimate of volatility upon which to base their 

financial decisions and the implied volatility of an asset provides such an estimate. Backward-looking 

volatility estimates are based on prior historical data, which may not necessarily be representative of future 

financial conditions. However, implied volatility estimates may suffer from measurement error, expiration 

effects, and speculative noise, all of which can distort its value (Day and Lewis, 1992). Additionally, the 
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presence of a variance risk premium may also affect implied volatility estimates. Hence, despite the 

underlying theory favouring the use of implied volatility estimates in financial decision-making, its 

practical efficacy in modelling the VaR must be determined. 

Given the uncertainty regarding the best approach and method to forecast volatility for the purposes of VaR 

modelling, the following research question is considered in this paper: 

Which approach to modelling volatility results in the most accurate one-day VaR? 

The central research question with which this paper is concerned assumes a holding period of one day for 

the computation of the VaR. Although the Basel regulations require the VaR to be calculated using a 10-

day holding period, banks generally tend to modify their portfolio positions on a daily basis. As such, this 

paper focuses on modelling the one-day VaR. By determining the answer to the aforementioned research 

question, financial institutions can be advised on the optimal application of the VaR measure. This may 

enable these institutions to obtain a more accurate assessment of the risk profile associated with their 

portfolio positions, which can then prevent excessive risk from being taken on. This could potentially 

reduce the threat of unforeseen losses leading to bankruptcy and, thus, promote greater financial stability 

for the company and the global economy. Additionally, a more accurate overview of the organisation’s risk 

exposure can better inform financial decisions and potentially also allow for more profit-maximizing 

decisions to be undertaken. 

In the academic literature, the application of volatility forecasting techniques to historical financial data 

has been extensively investigated. Despite this, there remains uncertainty on the optimal model to use for 

forecasting volatility due to the conflicting results found in the literature. In their evaluation of eight 

separate volatility forecasting techniques, Brailsford and Faff (1996) utilize daily data for an index on the 

Australian Stock Exchange and do not find conclusive evidence in favour of one particular model. On the 

other hand, Akgiray (1989) finds support for the GARCH model being superior to the ARCH, EWMA, 

and historical mean model. Contrary to these findings, Dimson and Marsh (1990) determined that an 

autoregressive model with a single lag of the prior observed volatility is superior in its ability to predict 

conditional volatility compared to more sophisticated models.  

However, these prior studies have relied on the use of error statistic(s) to evaluate the predictive ability of 

the statistical models in question. While this approach has its merits, its relevance for financial institutions 

is questionable. The most accurate volatility forecasting model (determined using a loss function) may not 

necessarily offer the optimal approach for modelling the VaR. Hence, these statistical models must be 

assessed in a risk management framework for the results to be applicable for financial institutions. 
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Additionally, the analysis conducted in each of these previous studies is centred upon a limited number of 

indices and, so, the general applicability of their results can be questioned.  

The topic of comparing forward-looking and backward-looking estimates of volatility has also been 

previously studied in the academic literature. Day and Lewis as well as Giot (2005) analyse the 

information content of implied volatility estimates in forecasting future volatility, i.e., they utilize implied 

volatility as an independent variable in various statistical models in order to predict the conditional 

volatility. In this approach, the implied volatility is treated as a supplemental measure that may contain 

useful information in predicting the conditional volatility, rather than being used directly as a measure of 

conditional volatility. 

To overcome these limitations, the analysis conducted in this paper involves modelling the daily VaR for 

13 indices using a multitude of approaches to forecast volatility. In this manner, this study provides a 

practical assessment of different volatility forecasting techniques by examining their performance in a 

risk management framework. Furthermore, the use of 13 indices, most of which are geographically 

dispersed, provides a generally applicable framework for modelling the daily VaR. Finally, this study also 

contributes to the current literature by examining the efficacy of using ex-ante estimates of volatility in 

comparison to ex-post estimates of volatility when modelling the one-day VaR. In this context, this paper 

uniquely considers the implied volatility as a measure of conditional volatility, rather than as 

supplemental information that may be useful in predicting conditional volatility. 

The theory underlying ex-post and ex-ante volatility is described in the Theoretical Framework, which 

also includes a review on relevant previous literature written on the topic of volatility forecasting and the 

VaR. Following this, the Data section highlights the sources as well as the type of data used while the 

Methodology section documents the process of using this data to construct the VaR and evaluate its 

performance. The Results section contains the outcome of this analysis and highlights the optimal 

approach to modelling the one-day VaR. Finally, the Conclusion section contains an interpretation and 

examination of the primary insights derived from the Results section. 

 

2. Theoretical Framework 

2.1. Value-at-Risk 

The VaR measures the potential loss associated with a portfolio position over a given time period with a 

prespecified probability of the realized loss exceeding this amount (Hendricks, 1996). The probability 

with which the loss on the investment exceeds the VaR is determined by the choice of the confidence 
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level, which is typically chosen to be either 1% or 5%. The VaR accounts for market or price risk, i.e., the 

risk that the price (and, hence, the value) of the portfolio declines due to changes in the interest rates, 

foreign exchange rates, equity prices, or commodity prices (Duffie & Pan, 1997).  

Under the variance-covariance method for computing the VaR, the portfolio returns are assumed to be 

normally distributed. The VaR can then be defined as shown in Equation (1). 

𝑉𝑎𝑅𝑡(𝛼) = 𝑧𝛼𝜎𝑡 

where 𝛼 represents the chosen significance level, 𝑧𝛼 denotes the critical value of the standard normal 

distribution associated with the chosen significance level, and 𝜎𝑡 refers to the forecasted volatility for the 

current period.  

 

2.2. Ex-post volatility  

 2.2.1. Overview 

The estimate for future volatility is a paramount component in the computation of the VaR (as it is 

specified in the variance-covariance method). One approach to forecasting volatility is to estimate a 

statistical model using historical data. A common characteristic found in financial data is the phenomenon 

of volatility clustering, i.e., periods of high volatility tend to be followed by subsequent periods of high 

volatility, and periods of low volatility tend to be followed by periods of low volatility (Engle, 2001). In 

other words, there is a level of predictability associated with a stock or portfolio’s volatility, which allows 

a portfolio’s volatility to be decomposed into two separate components: a predictable and an 

unpredictable component (Pagan and Schwert, 1990). The predictable component, known as conditional 

volatility, can then be forecasted through the use of different statistical models.  

One of the difficulties associated with volatility is that it is latent, i.e., it cannot be observed. As such, it is 

necessary to proxy volatility. To this end, Day and Lewis (1992) proxy ex-post volatility by relying on the 

square of the weekly observed returns. In a similar manner, this paper also makes use of the squared 

returns to proxy volatility, but utilizes daily returns as opposed to weekly returns for this purpose. 

Equation (2) defines the daily return as the sum of the average historical return of the index and an 

innovation term, where the innovation is the product of 𝜎𝑡, i.e., the conditional volatility, and 𝑧𝑡, an 

independent mean zero, stochastic error process distributed independently and identically (hereafter 

referred to as “standardized residual”). Assuming the average historical return of the asset to equal zero 

allows for Equation (2) to be simplified to Equation (3). Taking the square and the expectation of both 

(1) 
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sides of Equation (3) demonstrates that the conditional variance of the asset equals the expectation of the 

squared daily returns (as shown in Equation (4)).    

𝑟𝑡 =  𝜇 + 𝜀𝑡  =  𝜇 +  𝜎𝑡𝑧𝑡 

𝑟𝑡 =  𝜎𝑡𝑧𝑡 

𝐸(𝑟𝑡
2) =  𝐸(𝜎𝑡

2𝑧𝑡
2) = 𝜎𝑡

2 

Brailsford and Faff apply a similar approach to estimating ex-post volatility and use this to assess the 

accuracy of the volatility estimates obtained from eight different classes of statistical models. For a fair 

assessment of the predictive ability of each of these models, their forecasts are evaluated out-of-sample. 

To this end, the authors use a subset of their observations in order to estimate each of the models and then 

forecast the volatility for the subsequent periods using a rolling window. The accuracy of the forecasted 

volatility obtained from different models is then assessed using different error statistics, namely the mean 

error, the MAE, the RMSE, the MAPE, and two other loss functions created by the authors. When using 

the RMSE statistic, it is found that the historical mean model and an autoregressive model of order one 

are the best performing models. However, when using the MAE and the MAPE error statistics, they find 

the GJR-GARCH to be the most preferred model with the traditional GARCH being only marginally less 

accurate than this model. The conclusions arrived at using the other loss functions are given little 

credence by the authors and, so, are not discussed here. 

Hansen and Lunde (2005) evaluate the predictive ability of 330 ARCH-type models using a multitude of 

error statistics. Like Brailsford and Faff, the forecasting accuracy of these models are evaluated out-of-

sample and a subset of the total observations are used to estimate the model.  The scope of this paper 

includes an analysis of these different ARCH-type models using exchange rate data and data on the stock 

returns for IBM. When using exchange rate data, no clear evidence could be found that indicated the 

GARCH (1,1) model could be outperformed by other models. However, in the case of the IBM stock 

returns, the results indicated that models that accommodated an asymmetric response to positive and 

negative innovations outperformed the GARCH (1,1). This finding aligns with Brailsford and Faff’s 

conclusion that the GJR-GARCH model outperforms the GARCH (1,1) model.  

Unlike the above two papers, a study by Walsh and Yu-Gen Tsou (1998) finds evidence in favor of the 

EWMA model being the most accurate at forecasting volatility. In their analysis, the authors use data 

from three Australian value-weighted indices and compare the performance of four different volatility 

forecasting models: naïve forecasting, improved extreme-value, EWMA and GARCH. Similar to 

Brailsford and Faff and Hansen and Lunde, these models are estimated on a rolling-window basis and are 

(2) 
(2) 

(3) 

(4) 
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evaluated out-of-sample. Using this methodology, the authors find support for the EWMA model being 

the most accurate model for forecasting volatility, with the GARCH model following closely. 

Additionally, it is also found that the EWMA and GARCH models dominate the naïve forecasting and 

extreme-value models for all loss functions used.   

Based on the results from prior literature, the following models are included for analysis in this paper: 

historical mean, a modified version of the autoregressive model, exponential weighted moving average, 

GARCH, and GJR-GARCH. The results of the aforementioned studies can be seen to present conflicting 

evidence to some extent on the optimal statistical model to use when predicting volatility. However, 

Brailsford and Faff as well as Hansen and Lunde both find evidence in favor of the GJR-GARCH model 

being the most accurate statistical model for predicting volatility. The conclusions of these paper can be 

extended to the modelling of the daily VaR given that there is a direct relationship between the forecasted 

volatility and the computed VaR. Hence, the following hypothesis is derived: the GJR-GARCH model 

results in the most accurate modelling of the daily VaR in comparison to the alternate statistical models. 

An extensive theoretical exploration of the various statistical models included for analysis follows. 

 

2.2.2. Historical mean model 

The historical mean model offers a nonparametric approach to modelling volatility. The average of the 

previously observed volatilities over some prior k periods provides the estimate for the current conditional 

volatility. This average value then represents the forecasted volatility for the following period or for the 

future periods under consideration. Following Yu-Gen and Tsou, a representation of this model can be 

found in Equation 5. 

𝜎𝑡
2 =

1

𝑡−1
 ∑ (𝑟𝑖 − �̅�)2𝑡−1

𝑖=𝑡−𝑘−1       

 

2.2.3. Autoregressive (AR) model 

The autoregressive model involves a regression of the observed volatility on its immediate lag, i.e., the 

volatility observed in the preceding period. Equation (6) depicts a modified version of this model, where 

the current conditional volatility is a function of the previous days squared return. In effect, this model 

represents an ARCH (1) specification. The coefficients in this model can be estimated using OLS. 

𝜎𝑡
2 = 𝜔 + 𝛽1𝑟𝑡−1

2  

(5) 

(6) 
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Following the estimation of the coefficients in Equation (6), the current level of the volatility can be 

predicted. 

2.2.4. EWMA Model 

A simplistic approach to modelling volatility would involve the computation of an equally-weighted 

average of all prior observations of the realized volatility. However, the presence of volatility clustering 

in financial data suggests that recent information is likely to be more relevant when forecasting volatility 

as compared to observations further in the past. The EWMA model incorporates this notion by weighing 

recent observations more heavily than older observations. As its name suggests, the weights applied to the 

observations decline exponentially over time. 

𝜎𝑡
2 = (1 − 𝜆)Σ𝑗=0

∞ 𝜆𝑗(𝑟𝑡−𝑗 − �̅�)2 

The model is represented in Equation (7) and can be shown to simplify to the specification in Equation (8) 

as shown by Bollersev (2008). 

 𝜎𝑡
2 =  𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑟𝑡−1
2  

Equation (8) depicts a limiting case of the iGARCH (1,1) model (see section A1 in the Appendix), where 

restrictions are imposed on the parameters of the model. Specifically, if ω = 0, α = 1 - λ, and β = λ, then 

the EWMA model can be shown to be equivalent to an iGARCH (1,1) specification. The weights are 

represented by 𝜆, which can also be referred to as the decay factor or the smoothing factor (from here on, 

the terms “decay factor”, “smoothing factor”, “smoothing exponent”, and “lambda” will be used 

interchangeably to refer to the weight given by 𝜆). The value of this decay factor must lie between 0 and 

1, with a larger decay factor indicating that the current volatility is influenced to a greater extent by the 

prior realized volatility. 

 The optimal value for the decay factor can be determined by estimating an iGARCH (1,1) model and 

setting the value of the constant term to 0. The remaining coefficients are then estimated using Maximum 

Likelihood, i.e., by finding the values of the coefficients that maximize a log-likelihood function. The 

value of lambda found through this process can then be considered to be its optimal value. However, in 

practice, the decay factor is commonly set to 0.94 based on the methodology applied by RiskMetrics, a 

risk management tool introduced by J.P. Morgan (1996). Despite the popularity of this approach, a 

smoothing factor of 0.94 may not always be appropriate for data with different variance structures. 

 

 

(7) 

(8) 
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2.2.5. GARCH Model 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model was introduced by 

Bollerslev (1986) as an extension of the ARCH model proposed by Engle (1982). In an ARCH 

specification, the conditional variance is modelled as a linear function of the square of the previously 

observed innovation terms. In addition to this, the GARCH model incorporates lagged conditional 

variance terms, making the current forecast of volatility a function of the previously observed values of 

volatility and the lagged error terms. The GARCH model allows for a more parsimonious model to be 

estimated as an ARCH model typically requires several lags in order to capture the variance structure 

present in the data. Like the ARCH model, the GARCH model is mean reverting and has constant 

unconditional variance.  

𝑟𝑡 =  𝜎𝑡𝑧𝑡 =  𝜀𝑡 

𝜎𝑡
2 =  𝜔 + Σ𝑗=1

𝑝
𝛽𝑗𝜎𝑡−𝑗

2 +  Σ𝑘=1
𝑞

𝛼𝑘𝑟𝑡−𝑘
2  

As shown in Equations (9) and (10), the GARCH model requires the joint estimation of a conditional 

mean and conditional variance equation. The coefficients for these equations are estimated using 

Maximum Likelihood. Prior to the estimation of these equations, their specification, i.e., the number of 

lagged terms, must be determined. Prior academic literature typically utilizes a GARCH (1,1) model as it 

is assumed that it can sufficiently capture the variance structure in the data. However, the GARCH (1,1) 

may not be the optimal specification in all circumstances and, as such, the optimal lag order for the 

GARCH model must be determined. 

A possible approach that can be used to determine the optimal specification of the GARCH model is to 

use Information Criterion, such as Akaike Information Criteria, Bayensian (Schwarz) Information 

Criterion, etc. However, Brooks and Burke (2003) as well as Javed and Mantalos (2013) show that using 

Information Criteria to identify the optimal number of lags in conditional variance models would lead to 

biased results. In such cases, the Information Criteria will always prefer the most parsimonious model, 

regardless of the true variance structure present in the data. Although modified versions of the 

Information Criteria that are suitable for conditional variance models exist, their use has not been widely 

accepted and the results from these papers are conflicting.  

Instead, a general portmanteau test can be used to determine if the GARCH model is appropriately 

specified. A test of this form is the Li-Mak test (Li & Mak, 1994), which tests for the presence of ARCH 

effects in the standardized residuals of the model. If the null hypothesis of no autocorrelation in the 

(9) 

(10) 
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squared and standardized residuals is not rejected, then it can be concluded that the GARCH model has 

been appropriately specified (Lundbergh & Teräsvirta, 2002). 

 

2.2.6. GJR-GARCH Model 

The traditional GARCH model has a symmetric response to both positive and negative innovations as it 

only accounts for the magnitude of the residuals and not their direction. However, typically, the reaction 

to negative innovations is more severe than to positive innovations, i.e., the increase in volatility 

following a negative innovation is greater than for a positive innovation. This empirical regularity was 

first observed by Black (1976) and is referred to as the leverage effect. To accommodate this 

phenomenon, the GJR-GARCH model introduced by Glosten, Jagannathan, and Runkle (1993) employs 

an additional term in its specification that enables it to capture the leverage effects of negative 

innovations. Thus, by allowing for an asymmetric response to positive and negative innovations, the 

model can (theoretically) better fit the data.   

𝑟𝑡 =  𝜎𝑡𝑧𝑡 =  𝜀𝑡 

𝜎𝑡
2 = 𝜔 + 𝛴𝑗=1

𝑝
𝛽𝑗𝜎𝑡−𝑗

2 + 𝛴𝑘=1
𝑞

𝛼𝑘𝑟𝑡−𝑘
2 + 𝛴𝑘=1

𝑞
𝛾𝑘𝑟𝑡−𝑘

2 𝐼𝑟𝑡−𝑘<0
 

Similar to the GARCH model, the coefficients of the model are estimated using Maximum Likelihood 

and the optimal lag order can be determined using the Li-Mak test. 

 

2.3. Implied volatility 

Implied volatility represents the market’s assessment of the expected future volatility of a given 

underlying asset (a stock market index in this context). This estimate is derived by relating the price of 

financial options (namely, call and put options) on the underlying stock market index and a given option 

pricing formula, typically the Cox-Ross-Rubinstein binomial model or the Black-Scholes model 

(Mayhew, 1995) (see Section A2 in the Appendix). The values of all the parameters (except the volatility) 

used to price an option in the Black-Scholes model are readily available including the option price as 

well, thus allowing the formula to be inverted and the implied volatility to be calculated. If the option 

pricing formula is assumed to be correct, then the implied volatility calculated in this manner represents 

the market’s expectation of the future volatility of the underlying index. 

As the implied volatility of an index represents a forward-looking estimate of volatility, it is expected to 

overcome the difficulties of using historical data to forecast volatility, namely the potential issue of 

(11) 

(12) 
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historical data not being representative of future financial conditions. These two approaches to estimating 

volatility were examined by Day and Lewis in their 1992 paper, where they examined the information 

content of implied volatility estimates obtained from call options on the S&P 100 and compared this with 

the predictive ability of GARCH and EGARCH models. In order to do this, the authors estimated 

GARCH (1,1) and EGARCH (1,1) specifications along with an extension of these specifications in which 

an additional exogenous term that represents the derived implied volatility is included. Given that the 

GARCH (1,1) and EGARCH (1,1) specifications are nested within the extended models that include the 

implied volatility term, a likelihood ratio test was then used to assess the incremental information content 

offered by including the implied volatility in the model. Using this methodology, it is found that implied 

volatility offers additional predictive ability when modelling conditional volatility beyond that which can 

be obtained by simply modelling it with GARCH and EGARCH specifications. However, the authors find 

that implied volatility on its own is not sufficient to model the conditional volatility appropriately. The 

out-of-sample predictive ability of these models is also assessed by regressing proxies for ex-post 

volatility on the forecasts obtained from alternative models, but no conclusive results were obtained from 

this. 

The primary findings of the above paper strongly align with those found by Giot, who applies a similar 

methodology to assess the information content of the implied volatility obtained from the VXO, VXN, 

and VIX indices in the context of daily VaR application. The current volatility is forecasted using an 

EWMA model, a GJR-GARCH model, as well as an extension of these models that includes the addition 

of a lagged implied volatility term. Using the estimated volatility from each of these approaches, the daily 

VaR is modelled for three distinct subperiods that collectively range from 01/08/1994 to 31/01/2003. By 

applying this methodology, the GJR-GARCH model with the inclusion of the lagged implied volatility 

term is found to perform the best in its ability to model the daily VaR. Much like Day and Lewis, Giot 

concludes that using implied volatility can improve the modelling of the VaR, but is not sufficient on its 

own to model it. 

It is difficult to predict the efficacy of directly using implied volatility estimates in modelling the VaR 

since the aforementioned papers utilise implied volatility in an alternate methodology. From a theoretical 

standpoint, implied volatility would be expected to outperform backward-looking estimates of volatility 

in modelling the VaR since it represents the entire market’s expectation of future volatility. This would 

suggest that the computed VaR is more likely to accurately align with future market conditions as 

opposed to when backward-looking estimates of volatility are used. Furthermore, the results from Day 

and Lewis as well as Giot fail to provide conclusive evidence on whether including only an implied 

volatility term in a regression specification can outperform traditional statistical models. However, given 
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the evidence suggesting that implied volatility on its own is not optimal for modelling the conditional 

volatility or the daily VaR, a second hypothesis is constructed as follows: using ex-post measures of 

volatility results in a more accurate modelling of the daily VaR as compared to using implied volatility. 

 

3. Data  

This paper utilizes historical data for a set of stock market indices that are selected based on the 

availability of a volatility index which measures market volatility using the given index as its underlying 

asset. Following this approach, data on thirteen indices and their corresponding volatility index is 

retrieved from Bloomberg and where this is not possible, from Refinitiv Eikon. Both Bloomberg and 

Refinitiv Eikon are financial software companies that provide comprehensive financial data on a range of 

securities. The extensive coverage and duration of data available makes these sources suitable for the 

purposes of this study.  

The extent to which historical data is available for the chosen indices differs and, as such, the number of 

observations also varies between indices. The first observation corresponds to the earliest date for which 

data is available for all indices except the S&P 500 and the Dow Jones Industrial Average (DJIA). For the 

S&P 500, the data is truncated such that the first observation corresponds to March 4th, 1957. This is done 

because the S&P 500, as it is currently known, was introduced on this date. Prior to this, the index only 

contained 233 companies rather than 500 companies as it currently does (S&P Dow Jones Indices, 2022). 

For similar reasons, the first observation for the DJIA corresponds to the 1st of October, 1928 as this was 

the date on which the index was expanded to include 30 companies as it does today (S&P Dow Jones 

Indices, 2013). Table 3.1 lists the selected indices, their corresponding volatility index, the date from 

which data is available for the stock market indices and the volatility indices, and the number of 

observations for each index. 

For each stock market index listed in Column (1) of Table 3.1, daily data on the adjusted close price of 

the stock market index is obtained. The adjusted close price corrects the closing price of the index for any 

corporate decisions such as stock splits, dividends, and so on, that could affect its value and potentially 

distort results. The daily return is then computed using the following formula: 

𝑟𝑡 =  ln (
𝑃𝑡

𝑃𝑡−1
) ∗ 100 

where 𝑟𝑡 and 𝑃𝑡 denote the daily return and closing price on day t respectively. The daily logarithmic 

returns are then subsequently used to proxy ex-post volatility for each index.   

(13) 
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Table 3.1: Availability of data for each selected index and its corresponding volatility index 

Index 

(1) 

Start Date 

(2) 

No. of 

Observations 

(3) 

Volatility 

Index (4) 

Start Date 

(5) 

No. of 

Observations 

(6) 

DAX 

 

12/08/1959 15,720 VDAX 10/03/1992 6,174 

DJIA 

 

01/10/1928 23,629 CBOE VXD 09/12/1997 6,163 

FTSE 100 

 

06/06/2002 5,054 VFTSE 10/03/2000 3,344 

HSI 

 

30/09/1964 12,999 VHSI 09/03/2001 5,233 

KOSPI 

 

14/03/1980 11,288 KSVKOSPI 10/04/2009 3,248 

NASDAQ 100 

 

06/06/2002 5,032 CBOE VXN 28/06/2002 5,017 

NIFTY 50 

 

05/09/1990 7,701 India VIX 09/11/2007 3,601 

Nikkei 225 

 

11/03/1970 12,860 JNIV 03/06/2002 4,898 

Russell 2000 

 

02/01/1979 11,053 CBOE RVX 02/01/2004 4,633 

SMI 

 

06/06/2002 5,026 VSMI 28/06/1999 5,821 

S&P 100 

 

11/03/1976 11,653 CBOE VXO 07/03/1986 8,940 

S&P 500 

 

04/03/1957 16,410 CBOE VIX 02/01/1990 8,165 

S&P/TSX 60 

 

06/06/2002 5,017 VIXI 27/04/2021 275 

Notes: Column (1) lists the indices chosen based on the availability of a corresponding volatility index, which can be 

found in Column (4). The date from which the daily data is available for the given index is listed in Column (2) 

while Column (5) indicates the date from which daily data for the corresponding volatility index is available. 

Columns (3) and (6) indicate the number of observations for the given index and volatility index respectively. All 

data is gathered from Bloomberg or Refinitiv Eikon. The daily data is gathered until its latest available date as of 31-

05-2022. Note that the dates in Column (2) and Column (5) are presented in the format of DD-MM-YYYY. 

 

For the volatility indices in Column (4) of Table 3.1, daily data on the closing value is gathered. The 

closing value represents the market’s estimate of the volatility for the following 30 days in annualized 

terms at that point in time. In order to construct the daily VaR, the closing value has to be standardized to 

represent the daily volatility. Following Giot (2005), the following transformation is applied to the 

closing price of the volatility index to obtain the daily implied volatility: 
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𝜎𝑖𝑚𝑝,𝑡 =  
𝑃𝑡

√365
 

Where 𝜎𝑖𝑚𝑝,𝑡 refers to the implied volatility on day t and 𝑃𝑡 denotes the closing value of the given 

volatility index on day t.  

Table 3.2: Descriptive statistics of the daily logarithmic returns and the daily implied volatility 

 Mean of daily returns 

(1) 

Standard deviation 

(2) 

Mean of implied 

volatility 

(3) 

DAX 

 

0.030 1.449 1.132 

DJIA 

 

0.023 1.188 1.019 

FTSE 100 

 

0.011 1.151 0.978 

HSI 

 

0.008 1.437 1.188 

KOSPI 

 

0.022 1.051 0.940 

NASDAQ 100 

 

0.050 1.451 1.212 

NIFTY 50 

 

0.029 1.387 1.130 

Nikkei 225 

 

0.017 1.456 1.249 

Russell 2000 

 

0.0256 1.563 1.116 

SMI 

 

0.012 1.117 0.957 

S&P 100 

 

0.034 1.185 1.056 

S&P 500 

 

0.030 1.146 1.024 

S&P/TSX 60 

 

0.035 0.741 0.888 

Notes: Column (1) reports the mean of the daily logarithmic returns in percentages for the given stock market index, 

while Column (2) reports the percentage standard deviation. Column (3) reports the mean of the daily implied 

volatility computed from the closing values of the corresponding volatility indices. These statistics are computed 

using a common sample period for which data for the stock market index as well as its corresponding volatility 

index is available; this common sample period can be inferred from the dates presented in Column (2) and Column 

(5) in Table 3.1. 

 

(14) 
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A preliminary analysis of the data is presented in Table 3.2. The mean daily return for all indices is close 

to 0 with the standard deviation being substantially larger in comparison. This suggests that assuming the 

expected returns to equal zero in order to proxy the ex-post volatility is a fair assumption to make in the 

case of daily returns. The mean of the standardized daily implied volatility shows slight variation around 

the intervals of 0.888 to1.249. A comparison of Column (2) and Column (3) in Table 3.2 indicate that the 

standard deviation of the daily logarithmic returns displays some degree of similarity to the mean of the 

standardized daily implied volatility. However, for the DAX and Russell 2000 indices, a greater degree of 

divergence between the standard deviation of the daily logarithmic returns and the mean of the daily 

implied volatility can be observed. This is also true of the HSI, NASDAQ 100, NIFTY 50, and Nikkei 

225 indices although only to a lesser extent. 

 

4. Methodology 

4.1. Optimization 

The optimal specification for the GARCH and GJR-GARCH models are determined in-sample using the 

first 1000 observations of data for each index as it comprises the first estimation window used for the 

rolling-window estimation. The optimal lambda for the EWMA model over the first 1000 observations is 

also reported. The historical average and autoregressive model do not need to be “optimized” and, as 

such, are not included in this section. 

 

4.1.1. EWMA  

The optimal value of the decay factor in the EWMA model is determined by estimating an iGARCH (1,1) 

specification and fitting it to the data of the given stock market index (see Section 2.2.3). The β 

coefficient in this model is then considered to be the optimal value for the smoothing factor. In order to 

compare this value of lambda with that suggested by RiskMetrics (0.94), a one-sample t-test is conducted 

to determine if the optimal lambda is significantly different from 0.94. An examination of the deviation 

between the optimal lambda and the value of 0.94 for several different indices will provide insight into 

the general applicability of the RiskMetrics methodology for financial institutions. 
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4.1.2. GARCH  

To determine the optimal specification for the GARCH model, multiple GARCH specifications will be 

estimated with a varying number of lags of the previous squared innovations and the previous realized 

variances. This iterative process will begin with the estimation of a GARCH (1,1) model, following 

which subsequent GARCH specifications will be estimated with an increasing number of lags for the 

previous squared innovations and the previous realized variances. After the estimation of each 

specification, a Li-Mak test will be applied to ascertain if the estimated specification appropriately 

captures the variance structure of the data. The most parsimonious specification that returns an 

insignificant result for the Li-Mak test will be considered the “optimized specification”. 

An additional point of deliberation in the estimation of a GARCH model is the assumption of the 

distribution of the standardized residuals in the model. Given the general tendency for financial data to 

display a skewed distribution, it is possible that assuming the standardized residuals to follow a normal 

distribution limits the fit of the model to the data. In such instances, it may be more appropriate to posit 

that the standardized residuals follow a Student’s t-distribution. Hence, the aforementioned optimization 

process will be repeated twice: once for the estimation of GARCH specifications under the assumption 

that the standardized residuals follow a Gaussian distribution, and once under the assumption that they 

follow a Student’s t-distribution. Both optimized specifications determined through this process will then 

be estimated and their performance will be compared. 

 

4.1.3. GJR-GARCH 

The process for estimating the GJR-GARCH specifications will exactly follow the procedure described 

for the GARCH models. A Li-Mak test is applied to determine the optimal specification when the 

standardized residuals are assumed to follow a Gaussian distribution and when they are assumed to follow 

a Student’s t-distribution.  For both distributions considered, the most parsimonious specifications that 

results in an insignificant result for the Li-Mak test are considered the optimised specifications and used 

for further analysis.  

 

4.2. Forecasting and the construction of the VaR 

Each of the aforementioned models (as well as the historical mean and autoregressive models) will be 

estimated using a subset of data, i.e., in-sample. The performance of the models is then adjudged out-of-

sample in order to arrive at a true determination of their predictive ability. To this end, the estimation 
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window used will consist of 1000 observations following the advice of Brownlees et al. (2011), who find 

that a four-year estimation window performs best for rolling-window forecasting when applying their 

methodology. The use of 1000 observations roughly approximates the number of trading days in four 

years and, hence, is used as the estimation window. A rolling window approach is used to estimate the 

parameters of the given model, where the start and end date of the estimation period is rolled forward by 

one day between each subsequent re-estimation of the model’s parameters. The estimated parameters are 

then used to obtain one-step ahead forecasts of the conditional volatility from each of these models. 

The conditional volatility obtained from the rolling window forecasting is then used to construct the daily 

VaR using the formula displayed in Equation (1). Similarly, the daily implied volatility obtained through 

the standardization of the closing value of the volatility indices are also used to calculate the VaR. It 

should be noted that the VaR is calculated using the 5% significance level with the corresponding critical 

value for the standard normal distribution equalling 1.645.  

 

4.3. Evaluation of the VaR 

The computed daily VaR is then compared to the daily logarithmic returns for the given index. Following 

this, the number of observations for which the daily returns are lower than the estimated daily VaR is 

noted. In these instances, the realized downside loss is seen to exceed the maximum expected loss and, 

hence, is considered to be a violation of the VaR principle. The divergence between the expected number 

of violations of the daily VaR and the realized number of violations for each model will be formally 

evaluated by means of a backtest, namely the backtest proposed by Kupiec (1995). For this test, the 

failure rate of the VaR, i.e., the number of realized violations as a proportion of the overall number of 

observations, is compared with the failure rate that would be expected if the VaR is correctly specified, 

i.e., the significance level used to compute the VaR. Under the null hypothesis of the failure rate equalling 

the significance level, the computed test statistic (see section A3 in the Appendix for formula) follows a 

chi-squared distribution asymptotically. A significant result for this test indicates that the realized failure 

rate significantly differs the expected failure rate, i.e., the significance level of 5% in this case. Kupiec’s 

backtest is particularly useful as it is a two-sided test, i.e., it returns a significant result if the proportion of 

the realized number of violations exceeds the proportion of the expected number of violations, or if they 

the realized number of violations are significantly lower than expected. This process is then repeated for 

each index and approach used to estimate the VaR. 

While Kupiec’s backtest is useful in determining the degree of equality between the realized failure rate 

and the significance level, it does not provide insight into whether the VaR violations are correlated over 
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time. This is also of interest to financial institutions and, hence, should also be considered when 

determining the optimal approach to modelling the VaR. To this end, the conditional coverage test 

proposed by Christoffersen (1988) is also used to evaluate the performance of the various approaches 

used to model the VaR. Christoffersen’s conditional coverage test (hereafter referred to as “CCC test”) 

assesses the independence in the violations of the VaR over time, i.e., it examines if the probability of a 

VaR violation on a given day is dependent on the outcome that is realized on the previous day. Under the 

null hypothesis, the test statistic, i.e., a likelihood ratio (see section A4 in the Appendix), asymptotically 

follows a chi-squared distribution. For this test, a significant result would indicate that the violations of 

the VaR are not independent of each other and that consecutive violations are seen with excessive 

frequency. This test is repeated for each index and approach used to calculate the VaR. 

 

5. Results 

5.1. Optimised Specifications 

Column (1) in Table 5.1.1 reports the optimal value of the smoothing exponent for the EWMA model as 

derived from the estimation of an iGARCH (1,1) model. The optimal value can be seen to display 

variation among indices, with the value ranging from 0.860 to 0.993. The smoothing factor value of 0.94 

advocated by RiskMetrics falls within this range, with the optimal lambdas showing slight variation on 

either side of this value. Furthermore, none of the indices returned a significant result for the one-sample 

t-test, indicating that the optimal lambda value is not significantly different from 0.94 for any of the 

indices. Hence, it can be concluded that the lambda value advocated by RiskMetrics offers a generally 

applicable approach for estimating the EWMA model for financial institutions. The optimal value of 

lambda for each index can also be seen to lie close to the maximum possible value of one. This high value 

suggests that there is predictability in volatility among financial data as the current value of the forecasted 

volatility is seen to be influenced by the prior realized volatility. 

For all indices, the GARCH (1,1) and GJR-GARCH (1,1) were the most parsimonious specifications that 

returned an insignificant result for the Li-Mak test. This was found to be the case regardless of whether 

the standardized residuals were assumed to follow a Gaussian or Student’s t-distribution. The test statistic 

and the corresponding p-value for the Li-Mak test conducted on the GARCH (1,1) and GJR-GARCH 

(1,1) models is reported in Columns (2) to (5) in Table 5.1.1. These results suggest that the GARCH (1,1) 

and GJR-GARCH (1,1) specifications contain a sufficient number of lags to capture the variance structure 

of the data. These results strongly support the common academic notion that including a single lag of the 

innovations from the model as well as only the immediately preceding realized variance is appropriate for 
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specifying a GARCH model. The results of the optimization process suggests that this belief can be 

extended to the GJR-GARCH model as well. 

Table 5.1.1: Results of the optimisation process for the EWMA, GARCH, and GJR-GARCH 

models 

 EWMA    

(1)        

GARCH 

(Gaussian 

distribution) 

(2) 

GARCH 

(Student’s t-

distribution) 

(3) 

GJR-GARCH 

(Gaussian 

distribution) 

(4) 

GJR-GARCH 

(Student’s t-

distribution) 

(5) 

S&P 500 0.942 11.890 

(0.220) 

11.345 

(0.253) 

12.323 

(0.196) 

12.010 

(0.213) 

Russell 

2000 

0.915 11.747 

(0.228) 

8.092 

(0.525) 

8.681 

(0.467) 

7.230 

(0.613) 

NASDAQ 

100 

0.963 6.127 

(0.727) 

6.100 

(0.730) 

4.973 

(0.837) 

5.004 

(0.834) 

DJIA 0.890 6.314 

(0.708) 

6.117 

(0.728) 

6.713 

(0.667) 

6.700 

(0.668) 

S&P100 0.969 6.316 

(0.708) 

5.940 

(0.746) 

5.852 

(0.755) 

5.775 

(0.762) 

S&P/TSX 

60 

0.939 2.954 

(0.966) 

3.021 

(0.963) 

3.304 

(0.951) 

3.363 

(0.948) 

FTSE 100 0.931 9.470 

(0.395) 

9.964 

(0.353) 

7.137 

(0.623) 

7.073 

(0.630) 

DAX 0.861 4.456 

(0.879) 

4.853 

(0.847) 

3.272 

(0.953) 

3.046 

(0.963) 

SMI 0.941 10.231 

(0.332) 

10.718 

(0.296) 

7.200 

(0.616) 

7.211 

(0.615) 

HSI 0.862 6.832 

(0.655) 

4.520 

(0.874) 

6.839 

(0.654) 

4.827 

(0.849) 

KOSPI 0.993 1.575 

(0.997) 

1.012 

(0.9994) 

1.636 

(0.996) 

0.947 

(0.999) 

NIFTY 50 0.916 14.050 

(0.121) 

14.354 

(0.110) 

13.330 

(0.148) 

14.042 

(0.121) 

Nikkei 225 0.860 1.565 

(0.997) 

1.572 

(0.997) 

1.696 

(0.995) 

1.579 

(0.997) 

Notes: Column (1) reports the optimal value of the decay factor in the EWMA model, which equals the value of the 

β coefficient obtained from the estimation of an iGARCH (1,1) model. The results of the one-sample t-test is also 

displayed, where the significance of the test statistic and its corresponding p-value is represented using stars 

(*p<0.10, **p<0.05, ***p<0.01). Columns (2), (3), (4), and (5) report the test statistic and the corresponding p-value 

for the Li-Mak test conducted on the GARCH (1,1) and GJR-GARCH specifications under the null hypothesis that 

there is no autocorrelation in the squared and standardized residuals of the model. The p-values are reported in 

parentheses. All statistics are computed using the first 1000 observations of data for each index. All figures are 

reported to 3 decimal places. 
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For comparison, the results of the optimization process over the entire data sample for each index is 

reported in Table A5.1 (see Section A5 in the Appendix).  

 

5.2. Daily VaR modelling using ex-post volatility 

 5.2.1. Results 

Table 5.2.1 reports the expected and realized violations of the VaR for all indices when using different 

approaches to estimate the conditional volatility. The results of Kupiec’s backtest as well as the CCC test 

are also displayed. The best performing model is determined on the basis of these tests, where the model 

that results in a significant result for the fewest number of indices is considered to be the optimal 

approach for modelling the VaR. Considering Kupiec’s backtest first, the best performing model is found 

to be the GJR-GARCH model (assuming that the standardized residuals follow a Gaussian distribution). 

Of the 13 stock market indices, this model displayed a significantly different failure rate from the 

expected rate of 5% for three indices i.e., NASDAQ 100, S&P/TSX 60, and the FTSE 100. For all three 

of these indices, the realized violations substantially exceeded the expected number of violations, 

resulting in a test statistic that is significant at the 1% level. Interestingly, assuming the standardized 

residuals to follow a Student’s t-distribution worsens the performance of the GJR-GARCH model. In this 

case, the failure rate is found to significantly differ from 5% for two additional indices, namely the SMI 

and HSI indices. However, the test statistic is only significant at the 10% level for these two indices, 

suggesting that the change in performance is marginal. 

The model closest in its performance to the GJR-GARCH model is the traditional GARCH model. When 

assuming the standardized residuals to follow a Gaussian distribution, a significant result for Kupiec’s 

backtest is found for four indices, while this increases to five indices when assuming a Student’s t-

distribution instead. However, as was seen for the GJR-GARCH model, the additional significant result 

found when assuming a Student’s t-distribution is only significant at the 10% level, which again suggests 

that the difference in performance when assuming a Gaussian or Student’s t-distribution is minimal when 

modelling the daily VaR. Comparing the performance of the GARCH model to the GJR-GARCH model, 

it can be seen that the inclusion of the asymmetric term in the GJR-GARCH specification improves its 

ability to model the daily VaR, thus resulting in significantly different failure rate from 5% for fewer 

indices.  
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Table 5.2.1: VaR violations for each statistical model and index 

 Expected 

violations 

(1) 

Historical 

Mean 

(2) 

AR 

(3) 

EWMA 

(4) 

GARCH 

(5) 

GARCH (t-

distribution) 

(6) 

GJR-

GARCH 

(7) 

GJR-

GARCH (t-

distribution) 

(8) 

DAX 736 

 

708### 693### 870***### 752 757# 743 731 

DJIA 1131 

 

1019***### 1043***### 1285***### 1122### 1100### 1106## 1096### 

FTSE 100 

 

203 211### 211 266***### 232**## 231**## 242***## 243***## 

HSI 600 

 

523***### 563### 676***### 567### 559*### 565### 558*### 

KOSPI 514 

 

511### 525### 594***### 520### 525### 503# 511 

NASDAQ 

100 

202 

 

236**### 239***## 260***### 243***### 232**# 247***### 235**### 

NIFTY 50 335 

 

282***### 297**# 367*## 314 320 314 320 

Nikkei 225 593 

 

565### 609### 723***### 623## 619### 625 631 

Russell 2000 503 

 

522### 501# 625***### 537 521 528 534 

SMI 201 

 

200### 234**### 254***### 235**### 239***### 224 227* 

S&P 100 533 

 

520### 521 600***### 535 525 550 537 

S&P 500 771 

 

772### 770### 899***### 784### 766### 782 769 

S&P/TSX 60 201 

 

217### 218## 281***### 258***### 259***### 254***### 252***### 

Notes: this table depicts the performance of each given statistical model in modelling the VaR using the historical 

data of each specific index. Column (1) displays the expected number of violations based on the number of 

observations for which the volatility was forecasted multiplied by the significance level at which the VaR will be 

evaluated, i.e., 5%. Column (2) indicates the number of violations of the VaR computed using the volatility forecasts 

from the historical mean model while Column (3) and (4) report the same for the autoregressive model and EWMA 

model respectively. Column (5) and (7) display the performance of the GARCH and GJR-GARCH models when the 

standardized residuals are assumed to follow a Gaussian distribution, while Columns (6) and (8) display the results 

when the standardized residuals are assumed to follow a Student’s t-distribution for each respective model. The 

results of Kupiec’s two-sided backtest is also displayed in the above table, where the significance of the test statistic 

and its corresponding p-value is represented using stars (*p<0.10, **p<0.05, ***p<0.01). The results for the CCC 

test are also shown, where the significance of the test statistic and its corresponding p-value is represented using 

hashtags (#p<0.10, ##p<0.05, ###p<0.01). 
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In comparison to the GARCH and GJR-GARCH models, the historical mean and autoregressive models 

offer a similar level of performance in modelling the daily VaR despite their apparent simplicity. Both 

models display a significantly different failure rate from 5% for four indices. For three of the four indices 

in which a significant result is found, the historical mean model overestimates the VaR resulting in the 

expected number of violations exceeding the realized violations. In fact, this general pattern of the 

realized violations being less than the expected number of violations can be observed for the historical 

mean model as well as the autoregressive model albeit to a lesser extent for the latter. This suggests that 

these models tend to overestimate the conditional volatility in some situations and, hence, also the VaR. 

This is likely because the volatility decreases over the sample period in these instances and the adjustment 

to this decreasing level of volatility is delayed for these models. This inference is supported by Figure 

5.2.1, which shows the VaR for the DJIA index, which is computed using the conditional volatility from 

the historical mean model. The moderate upward trend in the VaR indicates that the volatility has 

generally shown a decline over the sample period. Hence, due to the delayed adjustment to the decreasing 

volatility over time, the VaR is overestimated in this case. In such instances, a potential consequence for 

financial institutions of using the such models is that profit-maximizing decisions may be foregone as the 

risk (as measured by the VaR) is overestimated. 

 

 

Figure 5.2.1: Evolution of the VaR for the DJIA index computed using the historical mean model  

Notes: the above figure displays a time-series line plot that depicts the VaR over the entire sample period for the 

DJIA index. The VaR is computed using the conditional volatility estimated by the historical mean model. The Y-

axis displays the VaR, while the X-axis displays the date. The DJIA is used as an example amongst the indices that 

displayed a significant result and where the realized violations exceeded the expected violations. 
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At the opposite end of the spectrum, the EWMA model is seen to display the worst performance amongst 

the different statistical models in Table 5.2.1. The EWMA model returns a significant result for Kupiec’s 

backtest at the 1% level for all indices (except the NIFTY 50 which shows significance at the 5% level), 

which indicates that this model fails to appropriately model the daily VaR for all indices as the failure rate 

is found to significantly differ from the expected rate. A further inspection of the results for the EWMA 

model shows that the realized number of violations always substantially exceeds the expected number of 

violations. This suggests that the EWMA model consistently underestimates volatility and, hence, the 

VaR is also consistently underestimated.  

The results found for Kupiec’s backtest is generally comparable across the different statistical models. 

However, a greater degree of variation can be found amongst the result for the CCC test. Once again, the 

GJR-GARCH model is found to be the best performing statistical model in this regard. When it is 

assumed that the standardized residual follows a Gaussian distribution, a significant result for six indices 

can be found, which improves to five indices when assuming a Student’s t-distribution. However, even in 

the case of this test, the difference in performance obtained when assuming a Gaussian or Student’s t-

distribution is marginal, as the additional result is found to only be significant at the 10% level. Overall, 

these results suggest that the GJR-GARCH is the least prone to excessive consecutive violations of the 

calculated VaR. 

In a similar manner to the results obtained for Kupiec’s backtest, the second-best performing model is 

found to be the GARCH model. In this case, significant evidence is found indicating that the violations of 

the VaR are correlated for nine indices when a Gaussian distribution is assumed and for ten indices when 

a Student’s t-distribution is assumed instead. A noticeable deterioration in performance can be observed 

when employing the GARCH model in comparison to a GJR-GARCH specification. This could 

potentially be due to the ability of the GJR-GARCH model to account for leverage effects, where the 

additional increase in conditional volatility following a negative innovation leads to the one-day VaR 

being appropriately adjusted such that excessive consecutive violations are avoided.    

Unlike for Kupiec’s backtest, the historical mean model is found to perform much worse than the 

GARCH and GJR-GARCH models on the basis of the CCC test. For the historical mean model, a 

significant result is obtained for all indices, indicating that the use of this model will likely lead to 

consecutive violations being seen with excessive frequency. While the autoregressive model does 

outperform the historical mean model for this test, it still performs rather poorly. A significant result is 

found for all but two indices for the autoregressive model. While the simplicity of the historical mean and 

autoregressive models did not appear to hinder their performance with regards to Kupiec’s backtest, it is 

likely that it prevents these models from being able to adequately capture the dynamic structure of the 
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conditional volatility in the data. In turn, this results in the violations of the VaR being correlated over 

time. Finally, the EWMA model is once again found to be the worst performing model as a significant 

result for the CCC test is found for every index. Its performance is on-par with the historical mean model 

and worse than the autoregressive model despite the implementation of an exponential weighting scheme 

intended to lead to a superior modelling of the conditional volatility (and, hence, the one-day VaR).  

Based on the results of Kupiec’s backtest and the CCC test, it is clear that the GJR-GARCH model 

performs best with respect to both criteria. Hence, the first hypothesis which states that the GJR-GARCH 

model will be most accurate at modelling the daily VaR in comparison to other statistical models is not 

rejected. 

 5.2.2. Comparing the models 

Despite sharing commonalities in their specifications, a strong divergence in performance can be 

observed between the autoregressive, EWMA, and GARCH models. When comparing the autoregressive 

model with the GARCH model, the results for Kupiec’s backtest are found to be similar for both models. 

However, when considering the CCC test, the GARCH model is found to be marginally superior. The 

primary difference between the autoregressive and GARCH model is the exclusion of the lagged 

conditional variance term in the former, which suggests that this term is likely required in order to 

adequately adjust the forecasted volatility in times of extreme returns. Without this term, the adjustment, 

i.e., the lagged response to an increase in volatility, is likely to take longer, thus leading to excessive 

consecutive violations and correlation amongst the violations. 

However, the poor performance of the EWMA model cannot be attributed to the same reason as its 

specification contains a lagged squared innovation term as well as the lagged conditional variance (see 

Equation (8) in Section 2.2.3). Given this, the poor performance of this model is rather surprising given 

its apparent similarity to the GARCH (1,1) model. However, a few differences between the EWMA and 

GARCH specifications can be noted. Firstly, the coefficients of the EWMA model, i.e., λ and (1-λ), are 

required to sum to one while this is not the case for the traditional GARCH model. Typically, however, 

the coefficients in the GARCH model, i.e., α and β, tend to sum to a value that is extremely close to one. 

This suggests that the restriction imposed on the coefficients of the EWMA model are unlikely to be the 

source of its relatively poor performance. The other discernible difference between the EWMA and 

GARCH model is the exclusion of the constant term, i.e., ω, in the former. The constant term in a 

GARCH model represents a proportion of the long-term unconditional variance and the minimum 

conditional variance that can result in any period. Hence, omitting the constant term in the specification is 
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likely to lead to an underestimation of volatility as this minimum conditional variance is not accounted 

for.  

In order to verify if the exclusion of the constant term is responsible for the poor performance of the 

EWMA model, the VaR is computed using the conditional volatility obtained from the estimation of an 

autoregressive model without a constant. The results of this are presented in Table A6.1 (see Section A6 

in the Appendix). In comparison to the results obtained from the standard autoregressive model, the 

performance can be seen to deteriorate tremendously when the constant term is eliminated from the 

specification. The realized violations increase considerably and much like the EWMA model, the realized 

violations are seen to exceed the expected number of violations for all indices. This suggests that the 

exclusion of the constant term is indeed responsible for the poor performance of the EWMA model as it 

results in an underestimation of the conditional volatility and, consequently, also the one-day VaR. 

 

5.3. Comparison of daily VaR modelling with ex-ante and ex-post volatility 

The results shown in Table 5.3.1 differ from those displayed in Table 5.2.1. In order to facilitate 

comparison between the ex-ante and ex-post approaches to modelling the VaR, the results obtained using 

these approaches are compared over a common time period, i.e., a period over which data for both the 

stock market index and the corresponding volatility index are available. These results are displayed in 

Table 5.3.1. 

Considering again the results of Kupiec’s backtest first, utilizing implied volatility to model the VaR 

returns a significant result for five indices, which indicates that the failure rate is significantly different 

from 5%. Amongst the indices for which a significant result was found, the VIX and the VXO display a 

severe overestimation of the VaR as the expected violations far exceed the realized violations. The same 

is true for the VXD but the degree of underestimation is not as severe as for the VIX and VXO. On the 

other hand, for the VDAX and VHSI, the implied volatility estimates tend to underestimate the VaR as 

the realized number of violations exceed the expected number of violations. In this case, the VDAX in 

particular fails to accurately model the VaR since it displays a large difference between the expected and 

realized number of violations. Hence, for those indices that returned a significant result, the volatility 

indices for the US in particular tend to result in the VaR being overestimated, which in turn implies that 

the implied volatility estimates derived from these indices tend to be exaggerated. However, this cannot 

be said for all the US-based volatility indices, as the VaR computed using the implied volatility estimates 

from the RVX and the VXN do not return a significant result for Kupiec’s backtest. For the NASDAQ 
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100, using the implied volatility from the VXN is the only approach that results in an accurate modelling 

of the one-day VaR as a significantly different failure rate from 5% is found for all the statistical models. 

The behavior of the VIX in modelling the one-day VaR is consistent with the findings of Zakamulin 

(2016). The VIX displays periodic peaks and troughs in its value that coincides with the respective 

troughs and peaks in the value of the underlying index, i.e., the S&P 500. However, the average duration 

of a phase in which the value of the VIX is falling is found to be 1.4 times longer than the duration of a 

phase in which its value is rising. An implication of this is that when the value of the VIX is at a peak, it 

tends to stay at this higher level of volatility for longer than would be expected. The slow decline from its 

peak value to a more typical level of implied volatility is attributed to investor overreaction. As such, it 

can be posited that the expected number of violations exceeds the realized violations for the VIX due to 

investor overreaction resulting in an overestimation of the implied volatility. This is likely to also be the 

case for the VXO and VXD. 

Figure 5.3.1 and 5.3.2 compare the calculated VaR when using implied volatility estimates and when 

using volatility estimates from the GJR-GARCH model (Gaussian distribution). Both figures show 

extended periods of time during which the VaR computed using the conditional volatility from the GJR-

GARCH model lies above that calculated using the implied volatility from the VIX. This supports the 

prior conclusion that the implied volatility indicated by the VIX tends to be exaggerated. However, when 

considering all indices overall, utilizing implied volatility to model the daily VaR can be seen to lead to a 

comparable performance to that obtained when using the historical mean, autoregressive, GARCH, and 

GJR-GARCH models on the basis of Kupiec’s backest. For the GARCH and GJR-GARCH models, a 

significant result for four indices is obtained when assuming the standardized residuals follow a Gaussian 

distribution, and for five indices when assuming that they follow a Student’s t-distribution. In 

comparison, the historical mean and autoregressive models display a significantly different failure rate 

from 5% for four indices.  

 



29 

 

 

Figure 5.3.1: Comparison of VaR for the S&P 500 modelled with implied volatility and the GJR-GARCH 

model 

Notes: the above figure displays a time-series line plot that depicts a comparison of the VaR computed using the 

daily implied volatility obtained by standardizing the values of the VIX and the conditional volatility from the GJR-

GARCH model. The Y-axis displays the VaR, while the X-axis displays the date. The VaR is computed over the 

common sample period for which data for the S&P 500 and the VIX are both available. However, Figure 5.3.1 only 

displays the VaR for the first half of this common sample period, i.e., 02/01/1990 to 10/03/2006, for a clear 

depiction. 

 

However, once again, the EWMA model is found to perform the worst in its ability to model the one-day 

VaR. The EWMA model displays a significantly different failure rate for all but one index, namely the 

S&P/TSX 60. However, little credence can be placed on this given the limited number of overlapping 

observations for this index and its corresponding volatility index. Hence, using the implied volatility 

approach offers a superior alternative to using the EWMA model for the computation of the one-day VaR. 

Considering the results of the CCC test, the implied volatility approach displays a significant result for 

five indices. Hence, for these indices, using the implied volatility to model the one-day VaR leads to its 

violations being correlated over time. Additionally, four of these five indices also returned a significant 

result for Kupiec’s backtest, indicating that these volatility indices in particular are unsuitable for 

modelling the one-day VaR across both evaluation criteria. In comparison, the GJR-GARCH model can 

be seen to outperform the implied volatility approach along the basis of the CCC test as it displays a 

significant result for four and three indices when assuming a Gaussian and Student’s t-distribution 
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respectively. This indicates that the GJR-GARCH model offers a superior alternative to using the implied 

volatility approach in modelling the daily VaR. 

 

 

Figure 5.3.2: Comparison of VaR modelled with implied volatility and the GJR-GARCH model 

Notes: the above figure displays a time-series line plot that depicts a comparison of the VaR computed using the 

daily implied volatility obtained by standardizing the values of the VIX and the conditional volatility from the GJR-

GARCH model. The Y-axis displays the VaR, while the X-axis displays the date. The VaR is computed over the 

common sample period for which data for the S&P 500 and the VIX are both available. However, Figure 5.3.2 only 

displays the VaR for the second half of this common sample period, i.e., 11/03/2006 to 31/05/2022, for a clear 

depiction. 

 

The results for the GARCH model are similar to those obtained from using the implied volatility 

approach. The GARCH model (both Gaussian and Student’s t-distribution) is found to show significant 

correlation amongst the VaR violations for five indices. Although the implied volatility approach returns 

a significant result for the same number of indices, it should be noted that all of the violations are 

significant at the 1% level for the former, while this is only true of three indices for the latter (the 

remaining two indices are only significant at the 10% level). This indicates that the GARCH model 

marginally outperforms the implied volatility approach along this dimension.  
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Table 5.3.1: VaR violations for implied volatility and ex-post volatility estimates 

 Expected 

Violations 

(1) 

Implied 

Volatility 

(2) 

Historical 

Avg. 

(3) 

AR 

(4) 

EWMA 

(5) 

GARCH 

(6) 

GARCH 

(t-dist.) 

(7) 

GJR-

GARCH 

(8) 

GJR-

GARCH 

(t-dist.) 

(9) 

DAX 

 

309 410***### 333### 325 378***### 345**# 346**# 345**# 340* 

DJIA 

 

308 237***### 326### 317 379***### 332 315 321 317 

FTSE 

100 

 

167 160# 165### 166 227***### 188# 190*# 194**# 196**# 

HSI 

 

262 292* 255### 272## 323***### 272 266 276 270 

KOSPI 

 

162 152 131***### 154### 216***### 187*### 185*## 187*## 181## 

NASDAQ 

100 

202 205 236**### 239***## 260***### 243***### 232**# 247***### 235**### 

NIFTY 

50 

180 167 154**### 157* 204* 172 174 174 175 

Nikkei 

225 

245 243 236### 267 317***### 267 262 270 264 

Russell 

2000 

232 215 245### 233 301***### 255# 246 253# 261*# 

SMI 

 

203 183### 200### 235**### 256***### 237**### 241***### 226 229* 

S&P 100 

 

447 269***### 439### 430 511***### 458 448 470 461 

S&P 500 

 

408 257***### 408### 410## 474***### 410 396 428 419 

S&P/TSX 

60 

14 9 6**## 7** 15 15 14 17 16 

Notes: this table displays the performance of implied volatility estimates and backward-looking estimates of 

volatility in VaR modelling. It should be noted that this analysis is conducted over a time period that is common for 

both the stock market index and its corresponding volatility index. Column (1) displays the expected number of 

violations based on the number of observations for which the volatility was forecasted multiplied by the significance 

level at which the VaR will be evaluated, i.e., 5%. Column (2) indicates the number of violations of the VaR 

computed using the implied volatility derived from the values of the volatility indices. Columns (3) – (9) report the 

realized number of violations of the various statistical models shown in Table 5.2.1 over the same time period. The 

results of Kupiec’s two-sided backtest is also displayed in the above table, where the significance of the test statistic 

and its corresponding p-value is represented using stars (*p<0.10, **p<0.05, ***p<0.01). The results for the CCC 

test are also shown, where the significance of the test statistic and its corresponding p-value is represented using 

hashtags (#p<0.10, ##p<0.05, ###p<0.01). 
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Similar to the GARCH model and the implied volatility approach, the autoregressive model also returns a 

significant result for five indices and, hence, is seen to offer a comparable level of performance to these 

approaches to modelling the VaR (on the basis of the CCC test). However, this is not true of the historical 

mean and EWMA models, both of which perform significantly worse than when using the implied 

volatility to model the one-day VaR. The historical mean and EWMA model return a significant result for 

all but two indices, indicating that there is a significant deterioration in performance when using these two 

models as it results in excessive consecutive VaR violations.  

Therefore, the second hypothesis stating that the use of ex-post measures of volatility will result in a more 

accurate modelling of the VaR in comparison to using implied volatility is rejected. Although some 

measures of ex-post volatility do result in an improved modelling of the daily VaR in comparison to using 

implied volatility, this is not the case for all ex-post volatility measures. The EWMA model performs 

worse than the implied volatility approach on the basis of both Kupiec’s backtest and the CCC test, while 

the historical mean model performs worse on the basis of the CCC test. Hence, a broad generalization that 

ex-post measures of volatility outperform implied volatility in modelling the one-day VaR cannot be 

made. 

 

6. Conclusion 

The primary objective of this paper has been to answer the question: which approach to modelling 

volatility results in the most accurate one-day VaR? To answer this question, two fundamental 

approaches to estimating the conditional volatility required to model the VaR were considered: using ex-

post measures of volatility that involve the estimation of a multitude of statistical models on historical 

data, and an ex-ante approach that involves obtaining the implied volatility from volatility indices. The 

performance of these approaches was evaluated by means of Kupiec’s backtest and Christoffersen’s 

conditional coverage test. 

 Of the ex-post measures of volatility, the GJR-GARCH model was shown to outperform all alternate 

statistical models across both the aforementioned tests. The GARCH model was found to be the next best 

model as it returned a significant result for the fewest indices (after the GJR-GARCH model) for both 

Kupiec’s backtest and the CCC test. Despite displaying a significantly different failure rate for a similar 

number of indices as the GARCH and GJR-GARCH models, the autoregressive and historical mean 

model are found to be suboptimal alternatives as they are more likely to result in correlation amongst the 

VaR violations over time. This is especially true for the historical mean model, which displays a 

substantial deterioration in performance along the basis of the CCC test in comparison to the other 
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models. Of all the statistical models considered, the EWMA model is found to offer the least accurate 

approach to modelling the VaR due to its extremely poor performance for both Kupiec’s backtest and the 

CCC test. 

The above findings align with those of Brailsford and Faff’s, where they find the GJR-GARCH to be the 

best performing model followed by the traditional GARCH model when using the MAE and MAPE error 

statistics. The conclusions of Hansen and Lunde were also found to be in accordance with the results 

found in this analysis as the GJR-GARCH model did show an improvement in performance over the 

traditional GARCH model, especially when considering the results of the CCC test. However, the 

findings of Walsh and Yu-Gen Tsou stand in strong contrast to the results of this paper as the EWMA 

model is found to be the worst performing model in its ability to model the VaR.  

In the analysis of ex-post and ex-ante measures of volatility, it was found that using implied volatility 

leads to a more accurate modelling of the daily VaR in comparison to the historical mean and EWMA 

models. However, the best performing model remained the GJR-GARCH, while the GARCH and 

autoregressive models can also be seen to marginally outperform the implied volatility approach. 

Although this study employs a differing methodology, the results show some similarity with those found 

by Giot as implied volatility on its own does not offer the optimal approach to modelling the daily VaR. 

Hence, to answer the main research question of this paper, using the GJR-GARCH model provides the 

optimal approach to modelling the one-day VaR over all other approaches considered. 

However, the aforementioned results should be interpreted with some amount of caution due to potential 

limitations associated with this paper. The proxy for ex-post volatility that is utilized in the analysis 

conducted in this paper represents one such limitation. Following the approach used by Day and Lewis, 

the square of the daily returns is used to proxy the ex-post volatility for each stock market index. 

However, as noted by Andersen and Bollersev (1998), this measure of volatility is rather noisy as the 

standardized residual tends to display significant variation between observations relative to the 

conditional variance. An alternative approach that may be more accurate is to proxy volatility by using 

data of a higher frequency, i.e., intraday data. Andersen and Bollersev suggest squaring the hourly returns 

and summing them over the course of the trading day offers a more accurate proxy of the daily volatility. 

Using such an approach in future research could identify whether the noise involved in the current proxy 

for daily volatility materially affects the results presented in this paper. If the results are found to align 

with those presented in this study, then greater confidence can be attached to the insights derived in this 

paper. 
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Despite these limitations, the results of this study can be beneficial for financial institutions in their 

application of the VaR. As shown in this paper, the optimal approach to modelling the one-day VaR is to 

use a GJR-GARCH model to forecast the conditional volatility. A more accurate computation of the VaR 

will enable financial institutions to make more prudent financial decisions that reduce the risk of 

bankruptcy, which in turn promotes greater national and global economic stability. Additionally, financial 

organizations also stand to gain as a more accurate assessment of their risk exposure could potentially 

lead to additional profit-maximizing decisions being undertaken. Beyond this, the results of this paper 

also offer additional insight into the much-deliberated topic of volatility forecasting in the academic 

literature. The conflicting evidence found in the current stock of papers makes it difficult to obtain a clear 

consensus on the best approach to modelling volatility within a VaR framework. This paper provides a 

definitive answer that can resolve this uncertainty, while also introducing a novel approach for treating 

implied volatility in this context. 
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Appendix 

A1. iGARCH 

The iGARCH or Integrated GARCH model introduced by Engle and Bollerslev (1986) is an extension of 

the GARCH model with an additional restriction imposed on it. This restriction requires that the α and β 

coefficients in a traditional GARCH model must sum to 1, thus allowing Equation (10) (which is 

redisplayed here from Section 2.2.5 for convenience) to be re-written as shown in Equation (15). 

𝜎𝑡
2 =  𝜔 + Σ𝑗=1

𝑝
𝛽𝑗𝜎𝑡−𝑗

2 + Σ𝑘=1
𝑞

𝛼𝑘𝜀𝑡−𝑘
2  

𝜎𝑡
2 =  𝜔 + Σ𝑗=1

𝑝
𝛽𝑗𝜎𝑡−𝑗

2 + Σ𝑗=1
𝑞

(1 − 𝛽𝑗)𝜀𝑡−𝑘
2  

 

A2. Cox-Ross-Rubinstein and Black-Scholes model 

The binomial option pricing framework introduced by Cox, Ross, and Rubinstein (1979) offers a 

simplified approach to option pricing. In this model, the price of the stock (the underlying asset of the 

option) is assumed to follow a binomial distribution such that there are two possible states of the world 

that can be considered: one in which the price of the stock is assumed to increase by a fixed factor and the 

other state of world where its price is assumed to decline by a fixed factor. The price of the option can 

then be determined by finding the value of a replicating portfolio that consists of a given number of shares 

of the stock and a specific amount of money that is either borrowed or lent (depending on whether a call 

or a put option is under consideration). This model can then be extended for multiple periods. 

The Black-Scholes model (Merton, 1973; Scholes & Black, 1973) can be seen as a limiting case of the 

Cox-Ross-Rubinstein binomial framework for option pricing, where an infinite number of periods are 

assumed to exist between the time at which the option price is obtained and the time at which the option 

matures. Five inputs are required to price an option under this framework: the option’s strike price, the 

current price of the option’s underlying asset, the time to expiration, the risk-free rate, and the volatility.   

 

A3. Formula for Kupiec’s backtest  

The test statistic for Kupiec’s backtest can be computed using the following formula: 

𝐿𝑅 =  −2 ln(∝𝑇−𝑁 (1−∝)𝑁) + 2ln ([1 − (𝑁/𝑇)]𝑇−𝑁(𝑁/𝑇)𝑁) 

Where α refers to the significance level, T is the total number of observations, and N is the number of 

realized violations of the computed VaR. 

 

 

(10) 

(15) 

(16) 
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A4. Formula for Christoffersen’s test 

For Christoffersen’s conditional coverage test, a dummy variable 𝐼𝑡 must be defined such that it takes a 

value of 1 when there is a violation of the VaR at time t and 0 otherwise. If 𝜋𝑖,𝑗 = 𝑃(𝐼𝑡 = 𝑗|𝐼𝑡−1 = 𝑖), i.e., 

the transition probability for two consecutive dummy variables, then the likelihood function for the series 

of 𝐼𝑡 can be defined as follows 

𝐿1  =  𝜋0,0

𝑛0,0𝜋0,1

𝑛0,1𝜋1,0

𝑛1,0𝜋1,1

𝑛1,1 

where 𝑛𝑖,𝑗 is the number of observations for which value i is followed by value j. The maximized 

likelihood function can then be seen to equal: 

𝐿1̂  =  [
𝑛0,0

𝑛0,0 + 𝑛0,1
]

𝑛0,0

 [
𝑛0,1

𝑛0,0 + 𝑛0,1
]

𝑛0,1

 [
𝑛1,0

𝑛1,0 + 𝑛1,1
]

𝑛1,0

 [
𝑛1,1

𝑛1,0 + 𝑛1,1
]

𝑛1,1

 

Under the null of first-order independence, the likelihood can then be represented as  

𝐿2 = (1 − 𝜋)𝑛0,0+𝑛1,0𝜋𝑛0,1+𝑛1,1 

The maximized likelihood function is then: 

𝐿2̂  = [ 1 −
𝑛0,1 + 𝑛1,1

𝑛0,0 + 𝑛1,0 + 𝑛0,1 + 𝑛1,1
]

𝑛0,0+𝑛1,0

[ 
𝑛0,1 + 𝑛1,1

𝑛0,0 + 𝑛1,0 + 𝑛0,1 + 𝑛1,1
]

𝑛0,1+𝑛1,1

 

The likelihood-ratio test statistic for first-order independence of the VaR violations is given by 

𝐿𝑅𝑖𝑛𝑑 = −2(𝑙𝑛(𝐿2̂) − 𝑙𝑛(𝐿1̂)) 

The likelihood-ratio test statistic for conditional coverage is then given by  

𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑  

where 𝐿𝑅𝑢𝑐 represents the test statistic for unconditional coverage (computed as in Section A4). 

 

A5. Full-sample optimization results 

The process outlined in Section 4.1 is repeated over the entire data sample in order to facilitate 

comparison with the results obtained when using only the first 1000 observations. The results are 

presented in Table A5.1. 

For the EWMA model, the optimal lambda varies between 0.915 and 0.952. In comparison to the results 

displayed in Column (1) of Table 5.1.1, this range of values is smaller. Regardless, the results for the 

optimal value of lambda over the first 1000 observations and over the entire data sample show substantial 

similarity. As in Column (1) of Table 5.1.1., none of the optimal lambdas for each index were found to be 

significantly different from 0.94, which again reinforces the prior conclusion that the RiskMetrics 

methodology for the EWMA model is generally applicable. Additionally, it can also be seen that the 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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optimal value of the smoothing exponents lies close to the maximum possible value of one. Hence, the 

results found over the entire sample of data can be seen to align with the results found when considering 

only the first 1000 observations. 

Table A5.1: Results of the optimisation process for the EWMA, GARCH, and GJR-GARCH 

models over the full data sample 

 EWMA 

(1) 

GARCH 

(Gaussian 

distribution) 

(2) 

GARCH 

(Student’s t-

distribution) 

(3) 

GJR-GARCH 

(Gaussian 

distribution) 

(4) 

GJR-GARCH 

(Student’s t-

distribution) 

(5) 

DAX 0.925 

(0.017) 

13.535 

(0.1399) 

14.667 

(0.1005) 

11.662 

(0.233) 

12.641 

(0.1795) 

DJIA 0.941 

(0.002) 

6.3746 

(0.7019) 

8.0438 

(0.5297) 

5.994 

(0.7405) 

5.9687 

(0.7431) 

FTSE 100 0.934 

(0.005) 

8.8319 

(0.4529) 

7.5989 

(0.575) 

4.4369 

(0.8804) 

4.946 

(0.839) 

HSI 0.919 

(0.013) 

10.885 

(0.2837) 

10.316 

(0.3255) 

9.6924 

(0.376) 

8.9662 

(0.4404) 

KOSPI 0.952 

(0.002) 

3.5244 

(0.9343) 

4.4084 

(0.8825) 

3.2852 

(0.9519) 

4.3095 

(0.8899) 

NASDAQ 100 0.932 

(0.005) 

13.396 

(0.1455) 

9.357 

(0.405) 

5.2227 

(0.8145) 

4.227 

(0.8958) 

NIFTY 50 0.923 

(0.004) 

3.8043 

(0.9238) 

4.0336 

(0.9092) 

4.6134 

(0.8666) 

4.7685 

(0.854) 

Nikkei 225 0.915 

(0.004) 

6.5734 

(0.6814) 

7.0543 

(0.6315) 

7.0543 

(0.6315) 

4.6677 

(0.8623) 

Russell 2000 0.926 

(0.004) 

8.7222 

(0.4633) 

9.7386 

(0.3721) 

12.063 

(0.2098) 

13.592 

(0.1376) 

SMI 0.919 

(0.005) 

6.0078 

(0.7391) 

5.6672 

(0.7727) 

7.5364 

(0.5815) 

7.0192 

(0.6351) 

S&P 100 0.942 

(0.003) 

5.9267 

(0.7472) 

7.5844 

(0.5765) 

2.9909 

(0.9647) 

3.0464 

(0.9624) 

S&P 500 0.934 

(0.003) 

6.7771 

(0.6603) 

7.656 

(0.5691) 

4.1022 

(0.9046) 

4.8326 

(0.8487) 

S&P/TSX 60 0.916 

(0.005) 

14.442 

(0.1074) 

12.941 

(0.1653) 

11.332 

(0.2537) 

10.831 

(0.2875) 

Notes: Column (1) reports the optimal value of the decay factor in the EWMA model, which equals the value of the 

β coefficient obtained from the estimation of an iGARCH (1,1) model. The results of the one-sample t-test is also 

displayed, where the significance of the test statistic and its corresponding p-value is represented using stars 

(*p<0.10, **p<0.05, ***p<0.01). Columns (2), (3), (4), and (5) report the test statistic and the corresponding p-value 

for the Li-Mak test conducted on the GARCH (1,1) and GJR-GARCH specifications under the null hypothesis that 

there is no autocorrelation in the squared and standardized residuals of the model. The p-values are reported in 

parentheses. All statistics are computed using the first 1000 observations of data for each index. All figures are 

reported to 3 decimal places. 
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However, for the GARCH models, some divergence can be seen between the results over the first 1000 

observations and the results for the entire data sample. The GARCH (1,1) specification was found to be 

optimal for all indices except the DAX and the S&P/TSX 60. In the case of the DAX, the optimal 

specification was found to be a GARCH (2,1) when assuming the standardized residual to follow a 

Student’s t-distribution, whereas assuming a Gaussian distribution resulted in a GARCH (1,1) 

specification being optimal. On the other hand, the optimal specifications for the S&P/TSX 60 index 

displayed considerable divergence from the results for the rest of the indices. When assuming the 

standardized residuals to follow a Gaussian distribution, the GARCH (3,3) model was the most 

parsimonious specification that resulted in an insignificant result for the Li-Mak test, while this was the 

case for the GARCH (6,3) specification when assuming a Student’s t-distribution. Overall, the GARCH 

(1,1) is still found to be the optimal specification for the majority of indices, thus echoing the prior 

conclusion of this specification being generally suitable when using the GARCH model. However, this 

slight heterogeneity shows the importance of determining the optimal lag structure on a case-by-case 

basis. 

For the GJR-GARCH model, the results strongly align with those found over the first 1000 observations 

of data. The optimal specification was found to be the GJR-GARCH (1,1) model for all indices except for 

the Russell 2000. Specifically, when assuming a Student’s t-distribution for the standardized residual, the 

optimal specification is a GJR-GARCH (2,1) model, but this is the only exception. 

 

A6. Importance of the constant term in the autoregressive model specification 

 

As Table A6.1 shows, excluding the constant term in the autoregressive model results in a severe 

deterioration in performance. The realized violations increase substantially in comparison to the 

autoregressive model with a constant, with some indices showing almost five times as many violations. 

Like the EWMA model, the realized violations are seen to exceed the expected number of violations for 

every index, suggesting that the volatility and, hence, the VaR have been consistently underestimated. As 

a result, each index displays a significant result at the 1% level for both Kupiec’s backtest and the CCC 

test. This indicates that the realized failure rate is significantly different from 5% and that the VaR 

violations are correlated over time for all indices.  

The severe decline in performance of the autoregressive model following the exclusion of the constant 

term suggests that the lack of a constant term in the specification for the EWMA model is indeed 

responsible for its poor performance. 
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Table A6.1: VaR violations for the autoregressive model with and without the constant term 

 Expected violations 

(1) 

AR model 

(2) 

AR model w/o constant 

(3) 

DAX 

 

736 693### 4649***### 

DJIA 

 

1131 1043***### 6869***### 

FTSE 100 

 

203 211 1135***### 

HSI 

 

600 563### 3564***### 

KOSPI 

 

514 525### 3089***### 

NASDAQ 100 

 

202 239***## 1023***### 

NIFTY 50 

 

335 297**# 2018***### 

Nikkei 225 

 

593 609### 3506***### 

Russell 2000 

 

503 501# 2773***### 

SMI 

 

201 234**### 1031***### 

S&P 100 

 

533 521 3165***### 

S&P 500 

 

771 770### 4551***### 

S&P/TSX 60 

 

201 218## 1078***### 

Notes: this table compares the performance of the autoregressive model with and without a constant in modelling the 

VaR using the historical data of each specific index. Column (1) displays the expected number of violations based 

on the number of observations for which the volatility was forecasted multiplied by the significance level at which 

the VaR will be evaluated, i.e., 5%. Column (2) indicates the number of violations of the VaR computed using the 

volatility forecasts from the autoregressive model with a constant, while Column (3) reports the same for the 

autoregressive model without a constant. The results of Kupiec’s two-sided backtest is also displayed in the above 

table, where the significance of the test statistic and its corresponding p-value is represented using stars (*p<0.10, 

**p<0.05, ***p<0.01). The results for the CCC test are also shown, where the significance of the test statistic and its 

corresponding p-value is represented using hashtags (#p<0.10, ##p<0.05, ###p<0.01). 

 


