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Abstract 

 

This paper investigates the effect of energy commodities on EUA futures using econometric 

models. Using daily data from 2021 to May 2022, an OLS and VAR model are estimated to 

capture the influence of energy commodities in the trading phase IV. Based on the VAR model 

and the Granger causality analysis, coal is the most important short-term driver of EUA futures. 

In contrast, both coal and oil have a significant influence in the medium term. Secondly, the paper 

investigates if the impact of energy commodities changes between trading phases III and IV with 

a regression analysis and a Chow break test. The results of the regression analysis show a 

significant decline in the impact of energy commodities from phase III to IV. Based on the results 

of the Chow break test, there was a structural change between trading phases III and IV.  

 

JEL-codes: Q52 Q53 G13 
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1. Introduction 

 

Fighting climate change is one of the key policy challenges for the European Union this century. 

One of the central aspects of an effective climate change policy is the reduction of greenhouse 

gas emissions. By setting the right incentives, the annual amount of emitted greenhouse gases 

can be reduced significantly. Following the Kyoto agreement in 1997, the European Union 

developed an emissions trading scheme to reduce greenhouse gas emissions. The EU emissions 

trading scheme has since become one of the central pillars of Europe's environmental policy.  

 

The emissions trading scheme was one of the first of its kind and is based on a cap-and-trade 

mechanism. The EU emissions trading scheme (EU ETS) imposes a cap on greenhouse gas 

emissions emitted by specific sectors and creates tradeable certificates (EU, 2022). Companies 

that fall under the scheme need to surrender an allowance certificate at the end of the year for 

each ton of Co²  (carbon dioxide) or equivalent greenhouse gas emitted during that year to avoid 

facing substantial fines. Since its establishment in 2005, the trading scheme has undergone four 

phases. Throughout each phase, the cap on total emissions has been reduced (EU, 2022).  

 

One of the most important instruments under the EU ETS is the European Union Allowance (EUA) 

which gives the owner the right to emit one ton of CO² or equivalent greenhouse gas. The EUA 

is traded in spot, futures, and options markets, with the European Energy Exchange (EEX) and  

Intercontinental Exchange (ICE) as the main trading platforms. Of these markets, the futures 

market is the most important, making up 88% of total trading volume in carbon allowances 

(Sandor et al., 2014). The ICE EUA, December futures contract, can be considered a benchmark 

for the carbon price in the EU (Palao & Pardo, 2021). In order to obtain a better understanding of 

the market efficiency of the EUA market, it is important to understand which factors drive the EUA 

price. One of the key factors affecting the price of EUA futures are energy prices (Aatola et al., 

2013). This paper aims to investigate the relationship between EUA futures and energy 

commodities with the following research question:   

 

"What is the effect of energy commodities on EUA futures?" 

 



- 5 - 
 

1.1 Relevance and background 

CO² emissions certificates are based on a cap-and-trade system. Firstly, a maximum number of 

available certificates is defined, determining the total allowed emissions in a given calendar year. 

Then allocated certificates can be traded in spot futures and options markets. This mechanism 

goes back to the theorem of (Coase, 1960), who describes how individuals reach an optimal 

solution through negotiation after the allocation of property rights. In a cap and trade scheme, 

emissions certificates are first allocated by either auction or free allocation. Thus the property 

rights are clearly defined, fulfilling the first condition of the Coase theorem. Secondly, the 

marketplaces give companies the ability to trade certificates at relatively low transaction costs. In 

this way, market participants can find an efficient solution without direct government intervention. 

 

The EU carbon allowance certificates are a relatively new asset class, and the market has 

significantly changed since it was established. The European emissions trading system started 

with a pilot phase from 2005 to 2007. The main goal of the first phase was to build up the 

infrastructure needed for verifying and measuring emissions. Initially, CO2 certificates based on 

historical emission data were granted to most businesses for free in a process called 

grandfathering. Phase I covered energy-intensive industries' emissions and power generation 

(EU, 2022). At the start of Phase II in 2008, the emission cap was reduced by 6.5% compared to 

the start of the trading scheme (EU, 2022). Furthermore, the proportion of freely allocated 

certificates was slightly reduced, and the system was expanded to Norway, Iceland, and 

Liechtenstein.  

 

Trading Phase III started in 2013 and saw the introduction of a single EU-wide emission cap rather 

than the previous national caps. Moreover, Phase III also switched from free allocation to 

auctioning as the default allocation method, and more sectors were included. Since 2021 the 

market for carbon emissions has entered phase IV of the trading scheme. In phase IV, the annual 

reduction is set to 2.2% of total emissions, currently covering 40% of total emissions (EU, 2022). 

Moreover, the market stability reserve (MSR) will be used to reduce the surplus in allowances 

and make the mechanism more resilient against shocks.  

 

The price of EUA futures is determined as a commodity by the supply and demand for the 

certificates (Sandor et al., 2014). As the supply is fixed for a given year by the predetermined 

emission cap, the demand side is the only factor affecting the price in the short to medium term. 

The demand for emission certificates depends on the excepted emissions in each period. These 
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emissions are affected by multiple factors such as macroeconomic conditions, energy prices, and 

weather events. This paper will focus on the short to medium-term link to energy commodities.  

 

Within the energy commodities, it is important to make to look at the relative emissions of the 

energy commodities. Natural gas burning causes about half of the Co² emissions for the same 

amount of energy output compared to oil and coal (Hammoudeh et al., 2014). Due to the 

difference in relative emissions, the impact of price changes in coal and oil is opposite to the 

impact of price changes in natural gas. With rising coal and oil prices, the quantity demanded will 

be reduced, leading to lower consumption of these high-emission fossil fuels. At the same time, 

the consumption of lower emission fuels will increase due to their now relatively lower price. With 

the substitution of high emission fuels for natural gas, the expected emissions will be reduced, 

leading to a lower price for emission certificates (Aatola et al., 2013). The opposite is true for 

natural gas here; an increased price also leads to increased use of higher emission fuels such as 

oil and gas and thus to an increased price of emission certificates. Thus economic theory would 

predict a negative impact of coal and oil price increase and a positive impact of natural gas price 

increases.  

 

This paper aims to expand on the current literature and establish whether the relationships 

between commodity prices and EUA futures found in the earlier phases of the mechanism are still 

present today. In this way, the paper will contribute to a better understanding of the price dynamics 

behind EUA futures. This analysis will help shed light on the market efficiency of the EUA futures 

market. As the emissions trading scheme is at the core of Europe's climate policy, the efficiency 

of the carbon allowance market has significant societal implications. An efficient carbon market 

has a stable relationship with market fundamentals and would provide a reliable base for EU 

climate policy. Furthermore, this paper will develop an understanding of trading rules' impact on 

the market mechanism. This will be valuable information for future changes to the emissions 

trading rules. Moreover, this understanding will also help guide company and investor decisions. 

 

The rest of this paper will be structured as follows; in chapter two, the existing literature on carbon 

certificates and their price drivers will be reviewed, and the hypothesis will be introduced. Chapter 

three will explain the data sources, and chapter four will discuss the methodology. Finally, chapter 

five will lay out the results, and chapter six will discuss the main takeaways of the analysis.  
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2. Literature review 

 

This chapter will discuss the existing literature about carbon emission certificates. Firstly, section 

2.1 will introduce the general concept of emission certificates and examine the literature on early 

examples like SO² (sulfur dioxide) certificates. Afterward, 2.2 will discuss the European carbon 

certificates and their price drivers in trading phases I and II. Next, section 2.3 will discuss the 

research on trading phases III and IV. Moreover, section 2.4 will discuss the literature on structural 

breaks, and section 2.5 will examine the influence on other markets. Finally, section 2.6 will 

discuss the main takeaways and introduce the hypothesis.  

2.1 Early applications of cap and trade systems  

To understand the EU ETS market, it is important to examine earlier applications of cap and trade 

schemes. One of the first applications of a cap-and-trade system was the market for SO² 

emissions in the electricity industry in the United States. In 1990 the US government instituted a 

cap on aggregate SO² emissions from electricity production and created a mechanism where 

firms could transfer the emission rights to each other. Burtraw (1998) analyses the market 

performance and economic efficiency of the SO² emissions market. He concludes that the 

benefits of the market greatly outweigh the cost. Furthermore, he points out the significant 

contribution of the market to reducing SO² emissions. Colby (2000) analyzes the impact of cap-

and-trade systems based on three different markets. The market for SO² shows the most potential 

for welfare gains, while the markets for water rights and fishery permits suffer from low trading 

activity. While the research on early applications of cap and trade schemes established the 

economic benefits, little research has been done on the market dynamics and price drivers of 

these certificates.  

2.2 Price drivers of EUAs in trading phases I and II 

As the goal of this paper is to identify the current price drivers behind EUA futures, its useful to 

examine the research on the early trading phases. The relationship between market fundamentals 

and EUA futures in trading phases I and II has been well documented. Christiansen et al. (2005), 

Benz & Trück (2006), Bunn & Fezzi (2007) all find evidence for a relationship between carbon 

markets and market fundamentals in trading phase I. Christiansen et al. (2005) analyze key price 

determinates for EUA prices during the first trading phase. Based on market data between 2005 

and 2007, the authors investigate the impact of policies, market fundamentals, and market 
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psychology. Firstly, they point out that policies such as the national allocation plan applied in 

phase I will likely impact EUA prices significantly. Secondly, the paper also highlights the growing 

importance of market fundamentals such as weather events, fuel prices, and economic growth. 

Benz & Trück (2006) classify the EU emission certificate as a new commodity. Furthermore, they 

point out that the EU emissions trading scheme is the largest of its kind covering about 45% of 

total emissions. Based on empirical analysis, they identify that emission certificate prices show 

excess kurtosis and asymmetry. They also mention that an adequate pricing model should 

account for regulatory issues and market fundamentals. Bunn & Fezzi (2007) investigate the 

relationship between carbon electricity and gas prices from April 2005 to May 2006. The authors 

construct a structural cointegrated vector autoregressive model to capture the relationship 

between EUA prices, UK electricity, and UK gas prices. They conclude that gas drives EUA prices 

while EUA and gas prices drive electricity. 

 

For trading phases I and II, Chevallier (2011), Aatola et al. (2013), and Yu et al. (2015) also 

establish a link between energy commodities and EUA certificates. Chevallier (2011) looks at the 

impact of macroeconomic conditions and energy prices on EUA futures prices. Based on a 

Markov switching vector autoregressive model investigates the link between macroeconomic 

shocks and EUA prices from 2005 to 2010. The paper establishes that an increase in industrial 

production leads to an increase in EUA prices. Moreover, this relationship persists after 

accounting for shocks in energy commodities. Aatola et al. (2013) investigate the price 

determination of daily EUA futures prices. Based on an OLS, IV, and VAR model, the examines 

the relationship between market fundamentals and carbon certificates from 2005 to 2010. The 

authors find that market fundamentals determine about 40% of the EUA futures prices, with 

electricity prices being the most important determinant. Additionally, gas and coal prices are 

shown to impact the price of EUA futures significantly. Yu et al. (2015) examines the causality 

between Crude oil and EUA futures using linear and nonlinear Granger causality tests. The 

authors state that there is no short-term causality between both markets. On the other hand, the 

paper finds evidence for a significant linear relationship between the long-term trends.   

 

All in all, it can be said that energy commodities are an important driver of EUA futures in phases 

I and II. Additionally, macroeconomic conditions (Chevallier, 2011) and electricity prices (Aatola 

et al., 2013) also play a significant role. 
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2.3 Research on trading phases III and IV 

This section will focus on the literature on EUA futures for trading phases III and IV. The research 

on trading phases III and IV is less developed than on the earlier trading phases, but it covers 

more aspects of the EUA market than the earlier research. One of the major changes in Phase III 

compared to earlier trading phases was the introduction of a market stability reserve (MRS) that 

absorbs excess allowances to preserve the stability of the EUA prices. Bruninx et al. (2020) show 

that the introduction of the MRS has greatly strengthened the stability of EUA prices and is one 

of the key drivers for the increase in EUA prices. Zhu et al. (2019) conducted a multiscale analysis 

of the drivers of the EUA price in phases II and III. Based on EUA futures prices from 2008 to 

2016, the authors analyze the drivers for the carbon price on a short, medium, and long-term time 

scale. On a short time scale, the authors find a significant impact on electricity and stock markets. 

On a long-term time scale, both natural gas and oil prices have a significant adverse effect, while 

the effect of stock indices is also stronger. Ghazani & Jafari (2021) investigate the market 

efficiency of the EUA futures market in trading phase III. The authors confirm that the adaptive 

market hypothesis holds for EUA futures in phase III based on two different statistical techniques. 

Moreover, the paper states that the market has become more mature due to the increased use of 

auctions and the induction of the market stability reserve. Wang & Zhao (2021) examine global 

energy and stock markets on the EUA futures markets between 2015 and 2020. Based on 

structural equation models, the authors find that macroeconomic conditions and energy markets 

influence the EUA futures market. The paper identifies the CAC40 index, the natural gas price, 

and Brent crude oil price as the most important direct determinants of EUA price.  

 

The topic of volatility spillover between energy and carbon markets has gained interest in recent 

research. Zhang & Sun (2016) examine dynamic volatility spillovers between the European 

carbon market and fossil energy markets. Based on EUA futures, natural gas, Brent crude oil, 

and coal prices from 2008 to 2014, the paper first constructs a VAR model and then uses the 

resulting residuals to construct various GARCH models. The authors conclude that there is strong 

evidence for dynamic volatility spillover between carbon and energy markets. Dai et al. (2021) 

explore the high-order spillover between the EUA and energy markets. The authors find that 

spillovers are weak in the short term but more substantial in the long term. Moreover, the paper 

finds that the switch to a more auction-based system has led ability of the carbon market to 

transmit information to energy markets. 
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To conclude, the research existing on trading phases III and IV has given some evidence for an 

interaction between energy commodities and EUA futures (Zhu et al., 2019) and (Dai et al., 2021). 

Nevertheless, the price drivers for EUA futures are much less established than for the earlier 

trading phases. This paper aims to add to the current research on trading phases III and IV by 

capturing the impact of energy commodities in these phases.  

2.4 Structural breaks in the EUA market 

Another important aspect in understanding the dynamics behind EUAs are structural changes in 

the relationship between market fundamentals and EUAs. Structural breaks have been a focus of 

academic literature on EU carbon throughout its existence. Alberola et al. (2008) analyze trends 

in the EUA spot price from 2005 to 2007. The authors identify two structural breaks, one in April 

2006 and another in October of the same year, based on the chow break test. The authors identify 

electricity in the markets as the key determinant for EUA prices in the structural break. After the 

second structural break, the paper finds a significant relationship between market fundamentals, 

such as crude oil and temperature changes. Hinterman (2010) analyses the price determinants 

of the EUA allowance prices. The paper identifies a structural break in April 2006 due to a market 

crash caused by a shift in expectations on aggregate emissions. The author points out a stronger 

nonlinear relationship to market fundamentals and increased market efficiency after the crash. 

Based on daily over-the-counter prices, the paper identifies fuel prices, temperature, and 

precipitation as the most important drivers of the EUA price after the structural break.  

 

Certi et al. (2012) examine the price drivers of the EUA price in trading phases I and II. Using 

cointegration techniques, the authors conclude that both periods have an equilibrium between 

carbon prices and market fundamentals. Furthermore, the relationship to market fundamentals is 

getting stronger in trading phase II. Dai et al. (2021) found evidence for a structural break between 

EUA and energy markets on September 15, 2016, using a nonparametric approach. While there 

was a stable bearish for energy and carbon in Phase III before the break, both markets are more 

volatile and bullish after the breakpoint. 

 

 All in all, it can be said that structural breaks are important aspects of the analysis of EUA markets 

in trading phases I and II. Moreover, Dai et al. (2021) established a structural break in trading 

phase III. This paper will add to the existing literature by investigating the existence of a structural 

break between trading phases III and IV. 
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2.5 Impact of EUAs on other markets 

While the main focus of this paper lies on the impact of energy commodities on the EUA market, 

it is also important to view this relationship in the context of the impact of EUAs on other markets. 

With the increasing importance of the EUA market, the likelihood of spillovers to other markets 

has also been increasing. Oestreich & Tsiakas (2015) examine the existence of a carbon risk 

premium based on German and UK stock market data in trading phases I and II. To capture the 

carbon risk premium, the authors build a portfolio that goes long in the stock with the highest 

emissions and short in the ones with the lowest emissions. The authors find a significant carbon 

risk premium of 15.7% in trading phase I, which they attribute to the free allocation of carbon 

certificates in the first phase. With the increasing use of auctions in trading period II, the carbon 

premium becomes negative and insignificant. Dutta et al. (2018) investigated the return and 

volatility linkages between EUA and clean energy stock prices between 2009 and 2017. Based 

on a VAR-GARCH model, the authors examine the relationship between EUA spot prices and 

two clean energy indices. The authors conclude that there is no significant relationship between 

EU clean energy returns and EUA returns. For volatility, on the other hand, the paper finds a 

significant linkage between the EUA market and Erix, the European clean energy portfolio, but 

not to the Us clean energy portfolio Eco.  

 

The Chinese market for carbon emissions is one of the largest trading schemes for greenhouse 

gas emissions (Wen et al., 2020), making the Chinese carbon market one of the most important 

comparisons to the European carbon market. Ji et al. (2021) identify regulatory changes, energy, 

and product prices as key drivers of the Chinese carbon price. This shows that similar factors 

drive the Chinese carbon price as the EUA price in its early stages (Christiansen et al., 2005). 

Wen et al. (2020) investigate the link between stock returns and the price of Chinese carbon 

certificates. The authors identify a significant positive carbon risk premium. Contrary to the 

declining premium identified by (Oestreich & Tsiakas, 2015) for the European market, ( Wen et 

al., 2020) find that the premium is increasing over time. 

2.6 Main takeaways 

All in all, it can be said that price drivers for the first two trading phases are well documented. 

Christiansen et al. (2005), Chevallier (2011), Aatola et al. (2013), and Certi et al. (2012) all find 

evidence for a relationship between market fundamentals and the EUA price. For trading phases 

III and IV, the research is much less developed, but there is some evidence for a relationship 
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between carbon prices and market fundamentals (Zhu et al., 2019). This paper aims to contribute 

to the existing research by empirically investigating the relationship between energy commodities 

and EUA futures in trading phase IV with the following hypotheses: 

 

H1: Brent crude oil, coal, and natural gas drive the price of EUA futures   

 

H2: Brent crude oil, coal, and natural gas Granger cause EUA futures  

 

Secondly, it can be concluded that structural breaks between market fundamentals and EUA 

futures are present in the first two trading phases. Alberola et al. (2008), (Dai et al., 2021), and 

(Hinterman, 2010) found evidence for structural breaks in trading phases I and II. Moreover, Certi 

et al. (2012) established the presence of a structural break between trading phases I and II. This 

paper will build on the existing research on structural breaks by exploring the following hypothesis: 

 

H3: The impact of energy commodities on EUA futures changed significantly from trading phase 

III to IV 

 

3.  Data  

This chapter will give an overview of the data used in this research. Firstly, the selected 

commodities and their characteristics will be discussed. Moreover, the data sources and the 

observation periods will be covered. Finally, the data clean-up and the number of observations 

will be described. 

 EUA price (Euro/megaton) This paper selects the EUA futures contract traded on the ICE futures 

Europe commodities exchange. Following Aatola et al. (2013), Zhang & Sun (2016), and Zhu et 

al. (2019), the active EUA December futures is chosen due to its trading volume and role in price 

discovery.  

Oil price (Euro/barrel) The monthly Brent crude oil futures contract traded on the ICE futures 

Europe commodities exchange is chosen for this research. Following Alberola et al. 2008 and 

Zhu et al. (2019), this contract is selected due to its role as a reference point for European oil 

prices. 
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Coal price (Euro/megaton) Following Hinterman (2010) and Zhu et al. (2019), the monthly coal 

futures contract on the ICE futures Europe commodities exchange was chosen. 

Gas price (Euro/megawatt hour) Following Hinterman (2010) and Zhu et al. (2019), this research 

uses the monthly natural gas futures contract negotiated at the title transfer facility in the 

Netherlands 

Table 1: Overview of data series and sources  

Series Ticker Unit Specification Source 

EUA price 

 

MOA 

Comdty 

(Euro/MT) EUA futures, active contract ICE futures Europe 

commodities 

Brent crude oil 

price 

COA 

Comdty 

(Euro/BBL) Brent crude oil futures, active 

contract 

ICE futures Europe 

commodities 

Coal price XAA Comdty (Euro/MT) Coal, Rotterdam monthly active 

contract 

ICE futures Europe 

commodities 

Gas price TTFG1MON (Euro/MWh) Netherlands TTF natural gas 

forward month 1 

Bloomberg OTC 

composite 

Notes: Carbon and energy commodities, with their respective units, tickers, specifications, and sources  

The daily closing prices for the four commodities were extracted from the Bloomberg commodities 

database. The observation period starts on January 2, 2019, to cover the last two years of trading 

phase III and ranges until May 16, 2022, to cover the first one and a half years of trading phase 

IV. Due to missing data points in the EUA time series, all observations on 26.12.2019, 13.04.2020, 

and 05.04.2021 were excluded from the data set. As the primary analysis relies on daily log 

differences, classic imputation techniques like the last observation carried forward or the last 

observation carried backward would have caused a bias towards zero in the relationship between 

the commodities. This is due to the fact that by imputing either the previous or next value, one of 

the differences will be equal to zero as the two values are identical. Thus, all observations were 

dropped to maintain consistency between the time series.  

Figure I shows the price development of the EUA and energy commodities from 2019 to May 

2022. All commodities show a relatively stable trend until mid-2021, when an increasing trend in 

all four commodities can be observed. Coal and gas prices increased the most, with EUA prices 

increasing the least. 
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Figure I: EUA and energy commodity prices 

 

Notes: EUA and energy commodity prices in Euros from 2019 to May 2022 

 

Table 2: Descriptive statistics 

Variable Obs. Mean Std. Dev. Max Min 

EUA 868 40.48 21.06 96.93 16.12 

Oil 868 54.42 14.66 109.58 36.31 

Coal 868 80.13 50.97 359.23 46.54 

Gas 868 28.24 28.39 210.80 12.31 

Notes: Descriptive statistics for the full sample from 2019 to May 2022 

The full sample consists of 3472 observations, with 868 observations for each price series. The 

mean price of EUA futures is 40.48 Euros, with a maximum price of 96.93 Euros and a minimum 

of 16.12 Euros. Of the energy commodities, Brent crude oil has the highest average price at 80.13, 

with gas having the lowest at 28.24 Euros. 
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4. Methodology 

This chapter will lay out the methodology used in this research to test the hypothesis and answer 

the research question. The methodology is split into two main sections. In the first part, the dataset 

will be restricted to data from 2021 to May 2022 to empirically investigate the relationship between 

carbon energy commodity markets in trading Phase IV. The methodology's second part aims to 

test for a structural break between trading phases III and IV. 

4.1 Price determinants in trading phase IV 

To establish the relationship between energy commodity futures and EUA futures in trading phase 

IV, firstly, econometric models will be estimated based on daily market data from January 2021 

to May 2022. An OLS and a vector autoregressive (VAR) model will be constructed in the spirit of 

(Aatola et al., 2013). Firstly, descriptive statistics for the price of EUA futures and energy 

commodities will be calculated. Afterward, the stationarity of the time series will be assessed using 

the augmented Dicky-fuller test and the Phillips-perron test. The non-stationary are then variables 

are transformed into log differenced form. Then the tests are repeated to confirm the stationarity 

of the log differenced time series. Furthermore, descriptive statistics and a correlation matrix of 

transformed data are estimated. Then an OLS model will be estimated with deua as the 

dependent variable representing the daily returns of EUA futures. The model will include dbrent 

for the Brent crude oil returns, dcoal for coal returns, and dgas representing gas returns. Newey-

west standard errors will be applied to account for autocorrelation and heteroskedasticity: 

𝑑𝑒𝑢𝑎 =  𝜶 +  𝜷𝟏𝑑𝑏𝑟𝑒𝑛𝑡 +  𝜷𝟐𝑑𝑐𝑜𝑎𝑙 + 𝜷𝟑𝑑𝑔𝑎𝑠 + 𝜺          (𝟏) 

Secondly, a VAR model will be constructed to overcome the OLS model's possible endogeneity 

and improve the results' robustness. The VAR model jointly estimates the EUA futures and the 

three energy commodities. The optimal order of lags included for each variable was selected 

based on the Akaike information criterion (AIC), following (Aatola et al., 2013) and (Zhang & Sun, 

2016). The VAR model follows the general form of:  

𝐗 =  𝐂 +  𝐁(𝐋)𝐗 +  𝛆        (𝟐) 

With X as a vector representing the endogenous variables, C for the constant terms, B for the 

polynomials representing the lags, and 𝜺 for the error terms. To confirm the stability of the model, 

the Eigenvalues will be estimated. Moreover, the residuals will be predicted and visualized in a 
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graph. Then an impulse response function analysis based on the selected VAR model will be 

carried out. The impulse response function will capture the dynamic impact of shocks in one 

variable on the other variables by plotting the size and sign of the response over time.  

Finally, a Granger causality test at three different lag lengths will provide additional insight into 

the relationship between energy commodities and EUA futures. The Granger causality test is 

based on the VAR with five, eight, and sixteen lags, respectively. A Granger causality test 

assesses the predictive value of an independent variable, compared to only using own past 

values. In this way, each energy commodities' predictive power for EUA futures will be evaluated. 

The impact of each energy commodity will be captured based on the size and significance of the 

estimated coefficients from the OLS and VAR models. Moreover, the impulse response function 

and the Granger causality analysis results will also be considered to establish which commodity 

is the most critical driver of EUA futures prices.  

4.2 Structural change between trading phases III and IV 

The second part of the methodology examines whether the relationship between energy 

commodities and carbon prices significantly changed from trading period III to trading period IV. 

Firstly, an OLS regression model including a structural change dummy for 04.01.2021 and 

interaction terms for each commodity is estimated based on log-returns of EUA and energy prices: 

𝑑𝑒𝑢𝑎 =  𝜶 + 𝜷𝟏𝑑𝑏𝑟𝑒𝑛𝑡 +  𝜷𝟐𝑑𝑐𝑜𝑎𝑙 + 𝜷𝟑𝑑𝑔𝑎𝑠 + ß𝟒𝑏𝑟𝑒𝑎𝑘 + ß𝟓𝑏𝑟𝑒𝑎𝑘 ∗ 𝑑𝑏𝑟𝑒𝑛𝑡 + ß𝟔𝒃𝑟𝑒𝑎𝑘

∗ 𝑑𝑔𝑎𝑠 + ß𝟕𝑏𝑟𝑒𝑎𝑘 ∗ 𝑑𝑐𝑜𝑎𝑙 + 𝜺       (𝟑)  

Then the null hypothesis of no structural change is tested using the Chow break test. The Chow 

break test assesses whether the linear relationship between the energy commodities was 

significantly different by estimating a regression model for the full sample and one restricted one. 

Following (Chow, 1960), the following F-test statistic is estimated: 

𝐹 =
(𝑅𝑆𝑆𝑟 − 𝑅𝑆𝑆𝑢)/(𝑘 + 1)

𝑅𝑆𝑆𝑢/𝐷𝑓
      (4) 

Where RSSr is the residual sum of squares of the restricted model and RSSu is the residual sum 

of squares of the unrestricted model. K the number of restrictions and Df the degrees of freedom. 
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5. Results 

This chapter will present the results of the econometric analysis described in the previous chapter 

and connect them to existing research. First, the results for trading phase IV will be explored, 

starting with the OLS model (Table 3), followed by the VAR model (Table 4), and the Granger 

causality tests. The second section will focus on the structural break test regression in table 6 and 

the results of the Chow break test in table 7. 

5.1 Price determinants in trading phase IV 

In order to investigate the impact of energy commodities in trading phase IV, we start by 

estimating an OLS model with Newey-west standard errors. The results of the OLS model are 

presented in table 3. The table shows the coefficients for and standard errors for the regression 

of log-returns of EUA futures on the log-returns of three energy commodities. Dbrent shows a 

positive insignificant coefficient, while dcoal and dgas have insignificant negative coefficients.  

Table 3: OLS regression  

 Deua 

Dbrent 0.039 
 (0.080) 

Dcoal -0.020 
 (0.070) 

Dgas -0.020 
 (0.051) 

Constant 0.003* 
 (0.00155) 

Observations 352 

Notes: OLS regression on log returns for the restricted sample from 2021 to May 2022 using Newey-west standard 
errors, Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

While the OLS model indicates no significant causal relationship, at first sight, the OLS model is 

unlikely to represent the true causal relationship. The model most likely suffers from endogeneity 

due to omitted variables such as electricity prices, macroeconomic conditions, and simultaneous 

causality between the variables. To obtain a more accurate estimate of the true causal 

relationship between the energy commodities and EUA futures, a VAR model is estimated. 

Compared to the OLS model, the VAR allows all four variables to be endogenous at the same 

time. In this way, the relationship between the variables is not assumed to be unidirectional, and 

more complex feedback relationships can be captured.   
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Based on the minimization of the AIC criterion, a VAR model with eight lags is chosen (see table 

A1). After selecting a model with eight lags, the model was estimated using the maximum 

likelihood technique. In order to obtain valid interpretations from a VAR, the stability condition 

needs to be satisfied. To test the stability conditions of the VAR model, the eigenvalues were 

plotted. Figure A1 shows that all eigenvalues lie within the unit circle, and the VAR model fulfills 

the stability condition.  

Table 4 shows the estimates of the VAR(8) model with the coefficients of each variable for their 

respective lags. For deua, its own lags one and five have a significant negative impact, while lag 

eight of dbrent has a significant negative impact. This confirms the earlier findings of (Martin et 

al., 2020), who identified a negative impact of oil on the EUA market using a VAR model. The 

negative impact of oil is likely explained by the decrease in oil consumption following an oil price 

increase leading to lower excepted emissions and thus lower demand for emission certificates. 

Lag three of dcoal have also had a significant negative impact on deua. This is in line with the 

research of (Aatola et al., 2013), who also found a negative impact of coal on EUA prices. As with 

oil, this negative effect of coal can be explained by an expected decrease in emissions following 

an increase in coal price.  

Dgas, lag six is significant and positive, while lag seven is negative and significant. This goes 

contrary to existing literature, as both (Martin et al., 2020) and (Aatola et al., 2013) have pointed 

out a positive effect of gas due to its lower emissions compared to other fossil fuels. One possible 

explanation for the inconclusive effect of gas in the VAR model could be unique shocks to the gas 

prices following fears of gas shortages in Europe in 2022. For dbrent lags two, three, and five of 

deua have a significant negative impact. This points to a bidirectional relationship between both 

markets. A similar relationship can be found between dcoal and deua, where lags two and four of 

deua are significant and negative.  
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Table 4 : VAR(8) model 

VARIABLES Deua Dbrent Dcoal Dgas 

L.deua -0.108** -0.039 -0.065 0.064 

L2.deua -0.031 -0.116*** -0.215** -0.277** 

L3.deua 0.028 -0.107*** -0.031 -0.114 

L4.deua 0.001 -0.145*** -0.213** -0.004 

L5.deua -0.128** 0.022 0.003 -0.092 

L6.deua -0.055 0.051 0.083 0.100 

L7.deua -0.075 0.050 0.049 0.277** 

L8.deua -0.015 -0.037 0.109 -0.103 

L.dbrent -0.027 -0.0984* 0.328** -0.125 

L2.dbrent 0.046 -0.087 -0.158 -0.326** 

L3.dbrent 0.128 -0.061 -0.170 0.080 

L4.dbrent 0.147* -0.120** -0.080 -0.136 

L5.dbrent 0.047 -0.047 0.251* -0.134 

L6.dbrent -0.101 -0.127** -0.089 0.027 

L7.dbrent 0.102 -0.018 -0.148 -0.186 

L8.dbrent -0.168** -0.114** 0.072 0.084 

L.dcoal -0.016 0.008 0.130* 0.001 

L2.dcoal -0.010 0.033 0.193*** 0.105 

L3.dcoal -0.155*** 0.021 -0.017 0.167* 

L4.dcoal -0.032 0.0571* -0.082 0.108 

L5.dcoal 0.048 -0.049 0.104 -0.089 

L6.dcoal -0.045 -0.080*** -0.065 -0.192** 

L7.dcoal 0.065 -0.015 0.014 0.165* 

L8.dcoal 0.063 0.094*** -0.181*** -0.189** 

L.dgas -0.035 0.003 -0.095 0.172** 

L2.dgas 0.043 -0.009 -0.104* -0.107 

L3.dgas -0.0590* -0.008 -0.048 -0.170** 

L4.dgas -0.026 0.030 0.310*** 0.147** 

L5.dgas -0.043 -0.024 -0.311*** -0.062 

L6.dgas 0.077** 0.024 0.117* 0.075 

L7.dgas -0.078** -0.043 -0.087 -0.167** 

L8.dgas -0.011 0.006 0.093 0.147** 

Notes: VAR (8) model on log returns for the restricted sample from 2021 to May 2022 *** p<0.01, ** p<0.05, * 

p<0.1 

The interpretation of the VAR model is not as straightforward as just looking at the lags and their 

significance. Thus, it is helpful in also take impulse response functions and the Granger causality 

test into account. Figure II shows the impulse response functions for each commodity to shocks 

of the other commodities. Deua has a slightly positive response to shocks in dbrent that stays 
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relatively stable of the eight periods considered in the graphic. For dcoal, the response is initially 

slightly negative but then turns positive for the later periods. For dgas, the impulse response is 

initially negative, then positive, and the end positive again. Thus, confirming the inconclusive 

influence of gas on the Eua market seen in the VAR. 

Figure II: Impulse response functions per commodity 

Notes: Impulse response functions based on the VAR(8) model 

Although the OLS model did not provide any significant coefficients, the VAR analysis showed 

that there is an influence of energy commodities on EUA futures. Coal seems to have the 

strongest initial negative response, which confirms the findings of (Zhu et al., 2019), who identified 

coal as the most short-term driver important driver of EUA futures. Brent crude oil has an initial 

positive response that turns negative after lag 5. From the magnitude of the coefficients and the 

impulse response function, gas has the smallest impact on EUA futures.  

 

The second hypothesis focused on the Granger causality between energy commodities and EUA 

futures. Table 6 shows the pairwise Granger causality test for five, eight, and sixteen lags. For 

five lags, deua is Granger caused by dcoal only. For eight and sixteen lags, deua is Granger 

caused by both dbrent and dcoal at a 5% significance level but not by dgas. Thus, in the short 
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term, only coal gas has significant predictive power. In the medium-term, Brent crude oil and coal 

Granger cause EUA futures while gas does not Granger cause EUA futures.  

 

The results from the Granger causality analysis go in the same direction as (Yu et al., 2015), who 

found that there was no short-term Granger causality for crude oil, but significant Granger 

causality for the medium term. Zhu et al. (2019) also found that coal was the only short-term driver 

of EUA futures with a negative significant negative relationship to EUA futures. In the medium 

term, on the other hand, oil, coal, and gas all had a significant influence. This mostly confirms the 

findings of this paper, apart from the significant effect of gas.  

 

The Granger causality analysis in Table 6 also shows a significant unidirectional Granger 

causality from deua to dgas after eight and sixteen lags. This confirms the findings of (Chung & 

Young, 2018), who identified a Granger causal relationship between EUA and natural gas in 

trading phase III. Fuel switching effects can explain this Granger causal relationship. If the EUA 

price decreases, high carbon emission fuels such as coal and oil become more attractive 

compared to natural gas, thus decreasing the demand for natural gas. An increase in EUA prices, 

on the other hand, has the opposite effect and thus leads to increased demand for natural gas.  

Table 5: Pairwise Granger causality tests between energy commodities and EUA futures 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Pairwise Granger causality tests P-values for different lag lengths, *** p<0.01, ** p<0.05, * p<0.1 

 

Based on the Granger causality analysis and VAR model results, it can be concluded that Brent 

crude oil and coal are the most influential energy commodities for EUA futures in trading phase 

IV. This is in line with the research on earlier trading periods and economic theory. For gas, on 

Dependent 
variable 

Independent 
variable 

Lag(5) Lag(8) Lag(16) 

Deua Dbrent 0.121 0.034** 0.028** 

Deua Dcoal 0*** 0.002*** 0.005*** 

Deua Dgas 0.558 0.142 0.251 

Dbrent Deua 0*** 0*** 0*** 

Dbrent Dcoal 0.01** 0*** 0.005 

Dbrent Dgas 0.434 0.746 0.363 

Dcoal Deua 0.034** 0.064 0.034 

Dcoal Dbrent 0.003*** 0.037** 0*** 

Dcoal Dgas 0*** 0*** 0*** 

Dgas Deua 0.223 0.015** 0.01** 

Dgas Dbrent 0.22 0.45 0.013** 

Dgas Dcoal 0.147 0.003*** 0***   
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the other hand, both the VAR model and the Granger causality analysis did not point towards a 

significant influence on EUA futures. All in all, it can be said that energy prices still remain an 

important driver of EUA futures in trading phase IV. 

5.2 Structural change between trading phases III and IV 

The second part of chapter five covers the investigation of the structural break between trading 

phases III and IV. Table 6 shows the results of an OLS regression for the full sample period, 

including dummies for a structural break on 04.01.2021 and their interaction terms with the three 

energy commodities. All three energy commodities have positive significant coefficients, with dgas 

having the highest one of 0.867. The coefficient of the break itself is positive but insignificant, 

while the interaction terms with the energy commodities are negative and significant at one 

percent. This suggests that the relationship between energy commodities has changed 

significantly after the switch to trading phase IV at the beginning of 2021. All energy commodities 

have a decreased importance for the returns of the EUA futures. Table 7 shows the joint 

significance of the structural break terms assessed by the Chow break test. Based on the P value 

of 0.0 in the Chow break test, one can reject the null hypothesis that there was no structural 

change in the relationship between the energy commodities and EUA futures. 

Table 6: Structural break regression 

 

 

 

 

 

Notes: OLS regression on log returns for the full sample from 2019 to May 2022 with break dummies for 04.01.2021 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

Table 7: Chow break test 

Test F statistic P-value 

Chow-break 36.97 0.00*** 

Notes: Structural break test on 04.01.2021 for the full sample from 2019 to May 2022*** p<0.01, ** p<0.05, * p<0.1 

 Deua  

Dbrent 0.274*** (0.089) 

Dcoal 0.321*** (0.111) 

Dgas 0.867*** (0.114) 

Break 0.002 (0.002) 

Break*dbrent -0.232** (0.113) 

Break*dcoal -0.344*** (0.116) 

Break*dgas -0.877*** (0.118) 

Constant 0.001 (0.001) 
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Based on the results of the regressions and Chow break test, the expectations from hypothesis 

three hold true. The relationship between energy commodities changed significantly between 

trading phases III and IV. While all three commodities had significant positive coefficients before 

the structural break, the interaction terms are all negative and significant, indicating a weaker 

relationship to energy commodities after the break. Although there is no other research that 

investigates the structural break between phases III and IV, the concept of structural breaks has 

been well documented in other trading phases. Alberola et al. (2008), (Dai et al., 2021), and 

(Hinterman, 2010) all found evidence for structural breaks between market fundamentals and 

EUA commodities. The structural break on 04.01.2021 that was established in this paper thus 

further supports the existence of structural breaks between market fundamentals and EUA 

futures. 

  

Certi et al. (2012) also find evidence for a structural break between two trading phases. The 

authors conclude that the relationship between market fundamentals and carbon price got 

stronger in trading phase II compared to phase I. While the sign of the change is the opposite 

compared to the structural change established in this paper, their research still supports the 

general idea that trading rules can fundamentally change the price drivers of EUA futures. The 

changes in the trading rules between trading phases I and II were different in nature compared to 

the ones between trading phases III and IV. The transition to trading phase II saw an immediate 

reduction of the emissions cap by 6.5% and a cutback on the freely allocated certificates. Between 

trading phases III and IV, the changes were more focused on preventing carbon leakage and 

increasing the annual emissions reduction. Through the new carbon leakage rules, more 

certificates were allocated to new and growing industries and sectors at the highest risk of 

relocating production (EU, 2022). This increased free allocation could provide an explanation 

behind the weakening of the relationship to market fundamentals in trading phase IV. 

 

Another possible explanation for the declining importance of energy commodities from trading 

phase III to IV could be the increasing use of renewable energy sources. The share of renewable 

energy sources increasing to 40% in 2020 (Melnyk et al., 2020), leading to lower emissions in 

electricity production than in previous periods. With the significant expansion of renewable energy 

sources such as solar, wind, and hydropower, this trend is likely to continue over the following 

decades. With the decreasing importance of fossil fuels for energy production, the influence on 

EUA futures will also likely continue to decline.  
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All in all, it can be said that there was a structural break in the relationship between energy 

commodities and EUA futures between trading phases III and IV. This builds on the existing 

literature on structural breaks for EUA futures and proves that the trading rules influence the 

relationship between market fundamentals and EUA futures. The structural break on 04.01.2021 

led to a reduction of the impact of energy commodities on EUA futures in trading phase IV. This 

could be explained by the new carbon leakage rules that change increase the free allocation of 

certificates and by the increasing importance of renewable energy sources. 

 

6. Discussion and conclusion 

 

This chapter will discuss the main takeaways from the analysis and explore its implications for 

policymakers and investors. Additionally, the robustness of the results will be examined. Next, the 

limitations of the paper will be mentioned, and ideas for further research will be outlined. Finally, 

the research question will be answered, and a conclusion will be drawn. 

 

The first part of the research investigated the influence of energy commodities on EUA futures in 

the trading phase IV using various econometric techniques. While the OLS model did not reveal 

any significant influence of energy commodities, both coal and oil showed a significant negative 

influence in the VAR model. The first hypothesis is that energy commodities influence EUA 

futures, which can thus be mostly confirmed with the barring the caveat of gas, where the 

influence was inconclusive in both the IRF analysis and VAR model. 

 

The results of the Granger causality analysis go in a similar direction. In the short term, only coal 

had a significant impact on EUA futures. In the medium term, however, both oil and coal were 

significantly granger causal. Therefore, the second hypothesis stating that energy commodities 

Granger cause EUA futures can be mostly confirmed with the exception of the Granger causal 

effect of gas. Furthermore, gas was significantly Granger caused by EUA futures in the medium 

term while not having a significant influence on EUA futures in the medium term. Oil was Granger 

caused by EUA futures for all lag lengths, while coal had a significant effect for both five and 

sixteen lags. This provides interesting insight into the influence of EUA futures on energy markets. 

Through fuel switching effects, the EUA market seems to give incentives to switch to low 

emissions fuel such as gas or alternative sources when EUA price is high. This should be a signal 

to policymakers to continue with incentives like the market stability reserve to achieve a high 

stable carbon price. In this way, the emissions will be reduced, and the climate policy objectives 
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will be easier to achieve. Investors could also make use of this connection between energy and 

carbon markets in their portfolio optimization. Carbon certificates could offer protection against 

falling energy prices, while energy commodities could be used as a hedge against increasing 

carbon prices.  

 

The second part of this paper focuses on establishing a structural break in the relationship 

between energy commodities and EUA futures between trading phases III and IV. Firstly, an OLS 

model with structural break dummies was estimated. The interaction terms between the energy 

commodities and the break dates were significant and negative, indicating a decrease in the 

impact of energy commodities. This negative impact could have been caused by the increase in 

freely allocated certificates for at-risk industries. This points to a trade-off for policymakers, as the 

free allocation, on the one hand, serves to protect domestic production from competition abroad 

that does face an emissions trading scheme. On the other hand, this free allocation could lead to 

a loss in efficiency in the emissions trading scheme as these producers would not face the cost 

of carbon certificates. This provides support for the Eu's plan of facing out most of the free 

allocated certificates by 2026 (EU, 2022). Secondly, a Chow break test was conducted to test 

whether there was a structural break on 04.01.2021. The test rejects the null hypothesis that there 

was a structural break at a 1% significant level. Thus the third hypothesis that there was a 

structural break between trading phase III can be confirmed.  

 

In order to increase the validity of the results, some robustness checks have been carried out. In 

a VAR model, the number of lags included follows a trade-off between the loss of information by 

including too few lags and the over-specification of the model by including too many. Thus it's 

useful to look at different lag specifications as a comparison. Table A3  for shows the VAR (2) 

model, in which the only significant coefficient for deua is its own first lag. Deua, on the other 

hand, still has a significant negative influence on both dcoal and dgas with its first lag. In the IRF 

analysis, the impact of dcoal and dbrent on deua is very slightly positive in the beginning, while 

gas seems to have no impact. All in all, it can be said that the VAR(2) fails to capture the 

complexity of the relationship between energy commodities and Eua futures. Table A4 shows the 

Var(5) model where the third lag of coal is negative while the fourth lag dbrent is positive. The IRF 

analysis shows a slightly positive impact of dbrent, while dcoal seems to have a slightly negative 

impact on deua. The VAR(5) already captures more impact of energy commodities, but the 

VAR(8) model chosen for the main part of this analysis seems to offer the most accurate picture 

of the relationship between energy commodities and EUA futures. To improve the robustness of 
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the second part of the analysis, a few alternative structural break tests were carried out. Table A2 

shows the results of the Fisher, Wald, likelihood ratio, and Lagrange multiplier test. All tests reject 

the null hypothesis that there was no structural break on 04.01.2021. Therefore, it can be said 

that the results of the Chow break test seem to be robust. 

 

While this paper has followed the methodology carefully, there are still some limitations that need 

to be considered. Firstly, the missing data points for the EUA series on 26.12.2019, 13.04.2020, 

and 05.04.2021 should be considered when evaluating the analysis. While the impact of this on 

the econometric models is likely negligible due to the removal of all data points on these days, it 

still needs to be kept in mind. One other limitation was the relatively small sample size for trading 

phase IV (353 observations). Although that sample size is still large enough to capture the 

dynamics of the relationship between market fundamentals and EUA futures, the market 

continues to evolve, and a conclusion on trading phase IV can not be made yet. Therefore, I would 

recommend repeating the analysis in a few years when more data on trading phase IV becomes 

available.  

 

With the target of reaching net-zero emissions by 2050, the topic of European emissions trading 

will remain relevant over the next few decades. Thus, further research is needed to capture the 

market dynamics of the EU ETS market. As this paper relied on daily returns to capture the 

dynamics between energy and carbon commodities, the focus was mostly on the short and 

medium-term relationships. To gain a deeper understanding of the medium to long-term 

dynamics, the models discussed in this paper should be repeated on a weekly and monthly time 

scale. While this paper examined the impact of energy commodities on EUA futures, there are 

other factors affecting demand for EUA futures. Research on earlier trading periods shows that 

both macroeconomic conditions and electricity prices influenced EUA futures. Therefore, it would 

be interesting to estimate a model for trading phase IV controlling for both macroeconomic 

conditions and electricity prices.  

 

Another aspect that could improve the understanding of the EUA futures market is the impact of 

freely allocated certificates. By investigating the impact of freely allocated certificates, the future 

policy could take the potential loss of market efficiency into account. Moreover, investigating the 

impact of the increase in renewable energy sources could also provide further insight into the 

EUA futures market. 
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This paper investigated the impact of energy commodities on EUA futures. All in all, it can be said 

that energy commodities remain an important driver of EUA futures. For trading phase IV, this 

paper found evidence that coal is the most important driver of EUA futures in the short term, with 

gas and oil not having a significant influence. Coal and oil have a significant influence in the 

medium term, while gas remains insignificant. While the structural break analysis established that 

the importance of energy commodities declined from trading phase III to IV, energy commodities 

still have a significant impact on EUA futures in both periods. This is in line with the research of 

(Alberola et al., 2008), (Aatola et al., 2013), and (Certi et al., 2012), who all found a significant 

influence of energy commodities for earlier trading phases. The declining impact of energy 

commodities from trading phase III to IV could have multiple explanations. One possible 

explanation could be the increase of freely allocated certificates to industries at risk of relocating 

production to countries without a price on carbon. Another explanation could be the increasing 

importance of renewable energy sources. In order to identify the cause of this change, further 

research on both of these aspects is required  
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8.  Appendix  

 

Table A1: VAR Akaike information criterion (AIC) 

Lags Log likelihood AIC 

0 2526.22 -15.01 

1 2552.02 -15.07 

2 2567.77 -15.07 

3 2590.94 -15.11 

4 2614.82 -15.16 

5 2647.74 -15.26 

6 2662.81 -15.25 

7 2679.75 -15.26 

8 2703.19 -15.30* 

9 2716.76 -15.29 

10 2728.68 -15.27 

11 2737.28 -15.22 

12 2745.39 -15.17 

13 2762.96 -15.18 

14 2787.8 -15.24 

15 2803.61 -15.24 

16 2817.71 -15.22 

Notes: AIC for different VAR lag lengths * indicating the preferred lag length according to AIC 

 

 

Figure  A1: VAR stability test 

 

Notes: VAR eigenvalues graph 
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Table A2: Additional structural break test 

Test Test statistic P-value 

Chow-break 36.97 0*** 

Fisher 2.26 0*** 

Wald 149.28 0*** 

Likelihood ratio 137.73 0*** 

Lagrange Multiplier 127.35 0*** 

Notes: Structural break test for 04.01.2021 for the full sample from 2019 to May 2022 *** p<0.01, ** p<0.05, * 

p<0.1 

Table A3: VAR(2) model 

VARIABLES Deua dbrent Dcoal Dgas 

L.deua -0.113** -0.108*** -0.215** -0.101 

L2.deua -0.0127 -0.0605 -0.136 -0.194* 

L.dbrent -0.054 -0.035 0.432*** 0.0364 

L2.dbrent 0.0779 -0.061 -0.048 -0.354** 

L.dcoal -0.0635 -0.0267 0.0139 -0.0321 

L2.dcoal 0.0467 0.0610** 0.204*** 0.202** 

L.dgas -0.0112 0.0264 -0.0661 0.152** 

L2.dgas -0.00878 -0.0363 -0.117** -0.173** 

Notes: VAR (2) model on log returns for the restricted sample from 2021 to May 2022 *** p<0.01, ** p<0.05, * 

p<0.1 
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Figure A2: IRF functions VAR(2) 

 

Notes: Impulse response functions based on the VAR(2) model 
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Table A4: VAR(5) model 

VARIABLES deua Dbrent Dcoal Dgas 

L.deua -0.117** -0.0735* -0.132 -0.0173 

L2.deua -0.0152 -0.126*** -0.243*** -0.291*** 

L3.deua 0.0171 -0.056 -0.0484 -0.0358 

L4.deua -0.0133 -0.146*** -0.160* -0.0179 

L5.deua -0.152*** -0.0287 0.0363 -0.0567 

L.dbrent -0.0612 -0.0557 0.430*** 0.017 

L2.dbrent 0.0635 -0.103* -0.0891 -0.394** 

L3.dbrent 0.126 -0.105* -0.13 0.0449 

L4.dbrent 0.156** -0.103* -0.0941 -0.128 

L5.dbrent 0.0894 -0.0245 0.260* -0.0871 

L.dcoal -0.0467 -0.0137 0.0952 -0.00471 

L2.dcoal 0.0377 0.0468 0.210*** 0.148* 

L3.dcoal -0.163*** 0.0139 -0.0485 0.0926 

L4.dcoal -0.0556 0.0429 -0.0923 0.0966 

L5.dcoal 0.0478 -0.0869*** 0.0596 -0.0993 

L.dgas -0.0178 0.0253 -0.0821 0.151** 

L2.dgas 0.0157 -0.029 -0.0982* -0.128* 

L3.dgas -0.0543 -0.00802 -0.0412 -0.126* 

L4.dgas -0.0156 0.0417 0.289*** 0.124* 

L5.dgas -0.0255 -0.0167 -0.272*** -0.062 

Notes: VAR (5) model on log returns for the restricted sample from 2021 to May 2022 *** p<0.01, ** p<0.05, * 

p<0.1 
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Figure A3: IRF functions VAR(5)  

Notes: Impulse response functions based on the VAR(5) model 


