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Abstract

The Tabu Search algorithm for the three-dimensional bin packing problem as
proposed by Lodi et al., 2002 has shown great merit. In practice, the algorithm
often misses out on considerations that are crucial to bin packing allocations. The
three practical extensions to the algorithm that are implemented and discussed in
this paper are: a weight limit to bins, constraining the extremity of imbalance of
the bins and the minimization of fragile bins containing at least one fragile item.
The proposed extended Tabu Search algorithms are tested on a variety of sample
sets and evaluated accordingly. A simple but effective extension is found for the
weight limit and fragility problems. The attempted algorithm for ensuring balance
clashed with the inherent imbalance of the original algorithm.
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1 Introduction

In the US alone, logistics costs were estimated at 1494.7 billion USD in 2017, of which
965.5 billion USD were transportation costs (Kearney, 2018). It is not uncommon for
transport costs to account for 10% of the total cost of a product and empirical evidence
shows that decreasing transport costs by 10%, increases trade volumes by more than 20%
(Rodrigue, 2020). Among others, these statistics made that efficient cargo handling has
become a widely discussed topic. Improvements in the sector would benefit many trans-
port businesses, as well as consumer prices and improve trade in general.

Among the three-dimensional packing problems, which nearly all apply to cargo trans-
port in some way and seek to improve efficiency, the three-dimensional bin packing prob-
lem (3D-BPP) is prominently discussed. The bin packing problem is an optimization
problem, in which items of different sizes must be packed into a finite number of bins or
containers, each of a fixed given capacity, in a way that minimizes the number of bins
used. The three-dimensional BPP concerns three-dimensional items and bins. Finding
the optimum to this problem is NP-hard. This results in a necessity for heuristics in
solving larger problems in realistic time, which is very often the case in practice.

The standard form of the problem, though, does not consider practical constraints
like weight. It only considers the volume constraint. This often makes the proposed al-
gorithms infeasible for businesses and only significant in the academic world. This paper
attempts to bridge the gap between the academic theory and the practical use by taking a
promising approach to the 3D-BPP using a Tabu Search framework as proposed by Lodi
et al. (2002) and adjust it to include certain practical constraints.

Often, volume is not the only constraint when considering cargo for a vehicle. Weight
might be a limiting factor when considering cargo; air freight rates are calculated by
weight. Allianz Global Corporate Specialty (AGCS) analysed almost 15 000 marine
liability insurance claims between 2011 and 2016 and found that human error was the
primary factor in 75% of the value of all claims analyzed - more than 1.5 billion euros of
losses (AGCS, 2019). Decreasing the amount of incidents caused by human error could
be achieved by aiming to make bins easier to handle and less likely to topple over. Lastly,
taking into account the fragility of items and therefore of bins, the value of cargo damaged
by human error could be decreased. These three practical constraints are studied in this
paper, a limit to the maximum weight of a bin (equal for all bins), weight distribution
and the fragility of items.

It was found that the implementations of a weight limit and fragility consideration are
effective. General performance was not significantly damaged and in the case of fragility,
the number of fragile bins was decreased drastically. The extension involving the stabil-
ization of bins proved fruitless, likely because the forced relocation of the centre of mass
clashes with the nature of the existing algorithm forcing items into a corner.

In Section 2, previous research on the subject is shortly discussed. In Section 3, the
Tabu Search algorithm is discussed as proposed by Lodi et al. (2002). Section 4 contains
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the methods used to adjust the algorithm and to gather results. In Section 5, the found
results are discussed and in Section 6, conclusions are drawn from these results. Lastly
in Section 7, the shortcomings of this paper and future research are discussed.

2 Literature Review

Previous literature on the 3D-BPP and concerning a weight limit is not uncommon. Bort-
feldt and Wäscher (2013) found that 14.1% of their 163 reviewed container loading papers
(3D-BPP is a version of a container loading problem) considered a bin weight limit. In all
of these the weight limit was addressed as a hard constraint. Of these container loading
papers, 26.1% (so 3.7% of total) were about the 3D-BPP. None of these, and none since,
consider a bin weight limit for the 3D-BPP in combination with a Tabu Search framework.

Weight distribution is also relatively well-discussed, with 11.7% of the papers reviewed
by Bortfeldt and Wäscher (2013) considering weight distribution. All consider the place-
ment of the centre of mass in relation to the middle of the bins in some way. Some try to
keep it near the middle of the bin floor (Davies and Bischoff, 1999; Gehring et al., 1990)
where others try keeping it as low as possible (Scheithauer and Terno, 1996; Sommerweiß,
1996).

The only class of constraints considering fragility are stacking constraints (or load-
bearing constraints). These restrict how items can be stacked inside bins and they arise
from the limited load-bearing strength, or fragility, of item cases and their materials.
From this strength, one can determine the amount of weight that can be placed upon
the items (Bischoff and Ratcliff, 1995). 15.3% of the papers reviewed by Bortfeldt and
Wäscher (2013) include stacking constraints. Many different ways of including fragility
in the model are covered. It can be assumed that nothing can be placed upon fragile
items (Bortfeldt and Gehring, 1999). Some papers assume fragile items can be stacked
upon all items while non-fragile items can only be stacked upon other non-fragile items
(Gendreau et al., 2006). Another way is giving all items some fragility index and only
allowing the placement of an item on top of another if the top item has a lower or equal
index (Scheithauer and Terno, 1996).

None of the fragility constraints however, take into account the fragility of the result-
ing bins. When considering shipping containers, this might be justified, but with other
(smaller and weaker) bins it might be necessary to mark bins that contain fragile items. If
so, it might also be desirable to minimize this number of fragile bins. There are currently
no papers discussing this extension of any container-loading problems though. This new
extension is also explored in this paper.

There are numerous papers from the last 20 years that cover bin-packing algorithms
with a Tabu Search metaheuristic. None of these however, use the framework proposed by
Lodi et al., 2002 (search algorithm and metaheuristic implementation) and modify it to
include the previously discussed practical constraints. This paper attempts the combin-
ation of this Tabu Search framework with the previously mentioned practical constraints
to see if they can be effectively implemented.
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3 Problem Description

In this section the original problem is first described. Then, the three different extensions
and how they change the problem are covered.

3.1 Original Problem

The 3D-BPP considers n three-dimensional rectangular items with a width wj, a height
hj and a depth dj (j ∈ N = {1, ..., n}), and an unlimited amount of bins with width W ,
height H and depth D to store these items in. Without loss of generality, we assume that
wj ≤ W , hj ≤ H and dj ≤ D ∀j ∈ N . The problem is to fit all these n items in as few
bins as possible. Computationally, the problem is NP-hard and the deciding if certain
items can fit into a specific number of bins is NP-complete.

3.2 Weight Limit Extension

To include a hard weight limit M (for mass to prevent confusion with w for width) to
the bins, the problem should now consider n items with a weight mj (j ∈ N = {1, ..., n})
apart from the existing width, height and depth. As with the dimensions, we assume
that, without loss of generality, mj ≤ M ∀j ∈ N (otherwise items with a weight bigger
than the limit could never be placed in a bin). Now, apart from the items fitting in the
bin, the sum of the weights of the items in the bin should also be less than the weight
limit. Still, the objective of the problem is minimizing the amount of bins.

3.3 Weight Distribution Extension

For the weight distribution, the weights wj (j ∈ N = {1, ..., n}) of items are again
necessary. To ensure stability, it is desired to have a centre of mass (CoM) for every bin
that lies near the centre of the bin floor. The centre of mass of a bin is calculated by taking
the weighted sum of the centres of mass of the items in the bin. The centre of mass of the
items is assumed to be in the middle of the item in all dimensions. The calculation is done
for the width and depth dimensions separately. To include this extension to the original
problem, constraints are added ensuring the centre of mass has a maximum distance from
the middle of the bin floor in the width and depth dimensions. This distance could also
be added as an objective to be minimized, but this would not ensure stability.

3.4 Fragility Extension

To include the fragility of bins, the problem will be extended to include fragile items.
Every item gets a fragility fj (j ∈ N = {1, ..., n}) which is equal to 1 if the item is
considered fragile and equal to 0 otherwise. This item characteristic is then used to
determine if a bin should be considered fragile. If one or more items in a bin are fragile,
the bin is considered fragile. Now the problem has two objectives - to fit all items in as
few bins as possible and to have as few fragile bins as possible amongst those.
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4 Methodology

In this section, the existing algorithm proposed by Lodi et al. (2002) is explained first,
then the modifications for each extension are covered and lastly the methods of evaluating
these extensions are discussed.

4.1 Lodi et al.

The Tabu Search algorithm proposed in Lodi et al., 2002 is a metaheuristic, meaning
that it requires a solution and uses this to explore the neighbourhood of this solution by
changing this solution slightly. This means that Tabu Search needs a search algorithm to
find an initial solution and to explore the neighbourhood. The heuristic search algorithm
proposed in Lodi et al., 2002 is called Height first - Area second (HA) and it finds a
solution for any feasible problem. We will first discuss this search algorithm.

4.1.1 Height first - Area second

In the first phase, the items are sorted by non-increasing height (height first) and clustered
based on height, depending on a parameter β (β ∈ [0, 1]). The tallest item j defines the
first cluster with height hj. All items with a height hk satisfying hk ≥ βhj are included
in this cluster. The tallest item s for which hs < βhj defines the next cluster with height
hs, and so on. The items in the clusters are sorted by non-increasing wjdj value. Now
the items are packed in layers as follows (tallest cluster first and item with biggest base
wjdj first in cluster), starting without initialized layers:

• For every normal position p - a position where the item can not move leftwards or
backwards - in an initialized layer with a height Hℓ ≥ hj, compute score function
S(j, ℓ, p) (see Equation 1 below). If the maximum found score function value is
bigger than zero, pack item j in this layer ℓ at position p.

• If item j has not been packed yet, compute S(j, ℓ, p) for all normal positions in
the remaining initialized layers (Hℓ < hj) and pack item j in the location that
corresponds to the maximum score value if this is bigger than zero.

• If item j is still not packed, initialize a new layer and pack the item at (0, 0) - the
only normal position.

S(j, ℓ, p) = ρ
P (j, ℓ, p)

2wj + 2dj
+ µ

∑
k∈Jℓ wkdk

WD
− (1− ρ− µ)

|Hℓ − hj|
Hℓ

, (1)

where ρ and µ are prefixed real valued parameters such that ρ, µ ∈ [0, 1] and ρ + µ ≤ 1
and Jℓ is the set of items already in layer ℓ. If item j does not physically fit at location
p with the current packing of ℓ, we set S(j, ℓ, p) = 0. The three terms take into account
respectively:

1. The fraction of the base perimeter of item j touching the edges of ℓ or other items
(more is better).
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2. The already packed portion of the base of ℓ (more is better).

3. The relative height difference between item j and layer ℓ (less is better).

This procedure is called PACK. After executing it, we have a number of layers with
heights H1, ..., Hg. These are then put into bins with height H by solving the one-
dimensional bin packing problem (1D-BPP) with heights H1, ..., Hg and capacity H with
exact algorithm MTP (Martello and Toth, 1990). This results in the combination of the
layers into the minimum number of bins.

Procedure PACK is executed again in a second phase, but now with all items resorted
by non-increasing wjdj value (area second) and empty layers with heights H1, ..., Hg. If
this results in empty initiated bins, these are removed.

The two phases can also be executed on synchronously rotated items and bins, resulting
in layers in the width and depth direction. HA selects the best of these six configurations
as a result.

4.1.2 Tabu Search

The Tabu Search metaheuristic is initiated by executing algorithm HA once. This result
is saved as the incumbent (best-found) solution and z denotes the number of bins used
in the incumbent solution. Then the current solution is initiated by naively packing each
every item in a separate bin. Let zc be the number of bins used in the current solution.

Tabu Search is initiated with an empty Tabu List for every neighbourhood size k with
k ∈ {1, ..., kmax} of length τk, k ∈ {1, ..., kmax}. kmax and τk are set parameters. k is
initially set to 1.

During the Tabu Search, a target bin will be selected by minimizing over all the bins
i, the filling function

ϕ(Si) = α

∑
j∈Si

wjhjdj

WHD
− |Si|

n
, (2)

where Si is the set of items currently packed in bin i and α is a specified positive weight.
This bin should be easiest to empty. A subset S is created to include the items from k
different bins and one item, j, from the target bin. Algorithm HA is performed on this
subset and if this results in k or less bins, item j has been removed from the target bin,
otherwise S is changed by selecting a different set of k bins or (if all subsets S have been
attempted) a different item j from the target bin. When a move results in a current
solution with less than z bins, the incumbent solution is updated. Removing item j from
the target bin after finding a solution to HA with ≤ k bins is called a move, and it might
be prevented from being performed if this specific move is in the Tabu List of k. The sum
of the filling functions of the k + 1 bins involved is calculated to check if that value is in
the Tabu List. If not, the move is performed and this value is added to the front of the
Tabu List of k, removing the last value.
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The current search is halted when no feasible move is found after looking through
all k bin configurations and all items j or when ℓ moves have been attempted without
improving the incumbent solution (with ℓ a set parameter). In that case, k is increased
by one if it can (k < kmax), otherwise a diversification action is performed.

There are two diversification actions that happen alternatively. A ‘soft’ diversification
happens the first time, and this simply means that the algorithm will now choose the
bin with the second smallest filling function as the target bin. The ‘hard’ diversification
consists of replacing the items in the ⌊zc/2⌋ bins with the smallest filling function values
into separate bins. Tabu Search terminates when reaching a set time limit or when some
lower bound is reached (Lodi et al., 2004).

Lodi et al., 2002 set the following parameters after doing preliminary experiments:
α = 1.5, β = 0.75, kmax = 3, τk = 20 for all k, ℓ = 100 − 25(k − 1), ρ = 0.3 for phase 1,
ρ = 0.2 for phase 2, µ = 0.7 for phase 1 and µ = 0.3 for phase 2. These parameters will
be used unless mentioned differently.

4.2 Extensions

To implement each of the extensions, the score function will need to be edited and the
way the different layers are combined (1D-BPP) adjusted. This combination of layers is
done in Lodi et al., 2002 with the exact branch-and-bound algorithm MTP (Martello and
Toth, 1990). To be more easily adapted for a specific extension, the combining of the
layers is described as a linear programming problem (Martello and Toth, 1990):

minimize z =
n∑

i=1

yi (3a)

subject to
n∑

j=1

hjxij ≤ Hyi, i ∈ N = {1, ..., n}, (3b)

n∑
i=1

xij = 1, j ∈ N, (3c)

yi ∈ {0, 1}, i ∈ N, (3d)

xij ∈ {0, 1}, i ∈ N, j ∈ N, (3e)

where yi = 1 if bin i is in use and 0 otherwise and xij = 1 if layer j is in bin i and 0
otherwise. hj is the height of layer j and H is the height of the bins. A bin is created
for every layer (n layers), that is why both the layer index j and the bin index i are
taken from N = {1, ..., n}. Equation 3b ensures that the combined layers fit in a bin and
equation 3c ensures that every layer is placed in exactly one bin.

The lower bound that is used to determine if the Tabu Search can be stopped is lower
bound L2 as described in Martello et al., 2000. It uses another proposed lower bound
L1, which produces a tight lower bound when items are relatively big by considering the
items that can only be stacked in one dimension and using a one-dimensional lower bound
on those. L1 can be performed in all three dimensions. Lower bound L2 combines this
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L1 with continuous lower bound L0, which sums the volumes of all items to compare to
the volume of a bin. L0 works well with many small items. The resulting combination L2
dominates L0 and L1.

In Sections 4.2.1, 4.2.2 and 4.2.3 the weight limit, weight distribution and fragility
extensions respectively are discussed. Note that index j is generally used for the object
to be placed in the bigger container. This might be the actual item j to be placed into a
layer, or this might be layer j to be placed in a bin.

When estimating the parameters in the next three sections, Class 5 (see Section 4.3)
was chosen as it consists of items from Types 1-5 while not favouring one dimension (like
Classes 1-3 do) and contains the relatively smallest items (Class 4 contains bigger items)
so the bins are relatively well-filled. The estimations are first run on n = 50 for the first
extension but then on n = 150 for the other two since it is decided that in bigger samples
the potential slowness of extensions is better emphasized.

4.2.1 Weight Limit Extension

To implement a weight limit, the score function receives a new term that encourages the
placement of items which bring the weight-height ratio of the layer towards that of a bin
weighing exactly the weight limit. The resulting score function is given below:

S(j, ℓ, p) = ρ
P (j, ℓ, p)

2wj + 2dj
+ µ

∑
k∈Jℓ wkdk

WD

+ γ
1∣∣∣m(Jℓ∪j)

h(Jℓ∪j)
− M

H

∣∣∣ − (1− ρ− µ− γ)
|Hℓ − hj|

Hℓ

,
(4)

where γ ∈ [0, 1] is a parameter such that ρ+ µ+ γ ≤ 1. Also, m(Jℓ∪j) and h(Jℓ∪j) are the
weight and height of layer ℓ after adding item j respectively, M is the weight limit of the
bin and H is the height of the bin.

All that remains is adjusting the original formulation of the 1D-BPP to include the
weight limit. All that needs to happen is to replace Equations 3b by the following:

n∑
j=1

hjxij ≤ Hyi, i ∈ N = {1, ..., n}, (5a)

n∑
j=1

mjxij ≤ Myi, i ∈ N = {1, ..., n}, (5b)

where hj and mj are the height and the weight of item j respectively and H and M are the
height and weight capacities of the bins respectively. Equation 5b is a simple replication
of Equation 3b ensuring the weight of a bin does not exceed the weight limit.

Due to limited time, the value of γ is estimated on a small instance of Class 5 (see
Section 4.3) with n = 50 and 10 repetitions, choosing the value where the results had
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the lowest number of total bins. The optimal value was found to be γ = 0.45. See the
following figure:

Figure 1: Graph of estimation of γ

For all data see Table 6.

4.2.2 Weight Distribution Extension

To ensure stability of bins, the centre of mass of each bin should be as centered as possible.
This is attempted by encouraging the placement of items in layers that bring the centre
of mass towards the middle of the layer. This is how the centre of mass of a layer is
calculated:

CoMw,ℓ =

∑
j∈LCoMw,jmj∑

j∈L mj

, (6)

where CoMw,ℓ is the centre of mass of layer ℓ in the width direction. CoMw,j is the centre
of mass of item j in the width direction, which is assumed to be in the centre of the
item. L is the set of items in layer ℓ and mj is the weight of item j. Equation 6 works the
same in the depth direction by interchanging CoMw,ℓ and CoMw,j with CoMd,ℓ and CoMd,j.

The score function is adjusted to look as follows:

S(j, ℓ, p) = ρ
P (j, ℓ, p)

2wj + 2dj
+ µ

∑
k∈Jℓ wkdk

WD

+ δ

(
1−

∣∣∣∣CoMw,ℓ,j

W
− 1/2

∣∣∣∣− ∣∣∣∣CoMd,ℓ,j

D
− 1/2

∣∣∣∣)− (1− ρ− µ− δ)
|Hℓ − hj|

Hℓ

,

(7)
where δ ∈ [0, 1] is a parameter such that ρ+µ+δ ≤ 1. Also, CoMw,ℓ,j and CoMd,ℓ,j are

the centres of mass of the layer after adding item j in the width and depth respectively.
W is the bin width and D the bin depth. This term motivates the placement of items
that move the centre of mass of the layer to the middle of the bin.
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The formulation of the 1D-BPP is also changed to include a weight distribution con-
straint. The following constraints are added to the original formulation (Equations 3a to
3e): ∑

j∈N CoMw,jmjxij∑
j∈N mjxij

≥ 1− pCoM

2
W, i ∈ N, (8a)∑

j∈N CoMw,jmjxij∑
j∈N mjxij

≤ 1 + pCoM

2
W, i ∈ N, (8b)∑

j∈N CoMd,jmjxij∑
j∈N mjxij

≥ 1− pCoM

2
D, i ∈ N, (8c)∑

j∈N CoMd,jmjxij∑
j∈N mjxij

≤ 1 + pCoM

2
D, i ∈ N, (8d)

where pCoM is the proportion of the bin’s width and depth around the bin floor centre
that should contain the resulting centre of mass. Equations 8a and 8b ensure that the
centre of mass is near the center in the width dimension. Equations 8c and 8d do the
same for the depth dimension.

Similar to how γ is estimated, the value of δ is estimated on a small instance of Class
5 (see Section 4.3) with n = 150 and 3 repetitions due to limited time. In this case also
weighing in the different proportion values pCoM. The value with the biggest improvement
in replacing the centre of mass towards the middle while maintaining a similar amount of
total bins used is chosen. δ = 0.2 was the only value where there was any improvement
in the centre of mass (on average). See the following figure:

Figure 2: Graph of estimation of δ

For all data see Tables 7 and 8.

When performing this extension, the HA algorithm does not perform for the rotated
items and bins (see Section 4.1.1) because this would require a very different approach to
calculating the centre of mass.
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4.2.3 Fragility Extension

Any bin containing at least one fragile item should be considered fragile. Therefore it
should be discouraged to place a fragile item in a non-fragile layer (making it fragile),
especially if it is reasonably well-filled already. This is done by adding a term to the score
function to look like this:

S(j, ℓ, p) = ρ
P (j, ℓ, p)

2wj + 2dj
+ µ

∑
k∈Jℓ wkdk

WD

− ε

∑
k∈Jℓ wkdk

WD
(fj − Fℓ)fj − (1− ρ− µ− ε)

|Hℓ − hj|
Hℓ

,

(9)

where ε ∈ [0, 1] is a parameter such that ρ + µ + ε ≤ 1. Also, fj = 1 if item j is
fragile and 0 otherwise, and Fℓ = 1 if layer ℓ is already fragile and 0 otherwise. The new
term penalizes proportional to the area of the layer that has already been filled, because
making a layer fragile while it was almost full should be strongly discouraged.

The formulation of the 1D-BPP is changed to the following:

minimize z = (1− pf )
n∑

i=1

yi + pf

n∑
i=1

fi (10a)

subject to
n∑

j=1

hjxij ≤ Hyi, i ∈ N = {1, ..., n}, (10b)

n∑
i=1

xij = 1, j ∈ N, (10c)

fi ≥ xij, j ∈ F, (10d)

yi ∈ {0, 1}, i ∈ N, (10e)

xij ∈ {0, 1}, i ∈ N, j ∈ N, (10f)

where fi = 1 if the ith bin is fragile (at least one fragile layer inside) and 0 otherwise.
Also, pf is the parameter indicating the importance of minimizing the number of fragile
bins with respect to minimizing the total number of bins. F is the set containing the
indices of all fragile layers.

The objective function is modified to include the minimization of the number of fragile
bins (Equation 10a). Equation 10d ensures that every bin containing at least one fragile
layer is considered fragile.

Again, due to limited time, ε is estimated based on a small instance of Class 5 (see
Section 4.3) with n = 150 and 5 repetitions, choosing the value that decreases the number
of fragile bins most while keeping the total number of bins somewhat the same. This
time, also the value for the fragility importance pf is estimated. Table 9 shows that there
was virtually no increase in the total number of bins for any value for ε or the fragility
importance. There was, however, a definite difference in the number of fragile bins. With
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ε = 0.5 and pf = 0.7, there was the biggest decrease in the number of fragile bins, see the
following figures:

Figure 3: Graph of estimation of ε

Figure 4: Graph of estimation of fragility importance

See Table 10 for all estimation results.

4.3 Evaluating Extension Performance

To evaluate performance of the three extensions, they are tested with samples from 8
different classes, as proposed by Faroe et al. (2003). For Classes 1-5, the bin size is
W = H = D = 100 and there are 5 types of items:

Type 1: item width, height and depth uniformly random in [1, 1
2
W ], [2

3
H,H] and

[2
3
D,D] respectively;

Type 2: item width, height and depth uniformly random in [2
3
W,W ], [1, 1

2
H] and

[2
3
D,D] respectively;
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Type 3: item width, height and depth uniformly random in [2
3
W,W ], [2

3
H,H] and

[1, 1
3
D] respectively;

Type 4: item width, height and depth uniformly random in [1
2
W,W ], [1

2
H,H] and

[1
2
D,D] respectively;

Type 5: item width, height and depth uniformly random in [1, 1
2
W ], [1, 1

2
H] and

[1, 1
2
D] respectively;

Classes k with k = 1, ..., 5 consist of items that have a 60% chance to be of type k and a
10% chance to be of each of the other types. Classes 6 are as follows:

Class 6: bin size W = H = D = 10 and all item dimensions are uniformly random
in [1, 10];

Class 7: bin size W = H = D = 40 and all item dimensions are uniformly random
in [1, 35];

Class 8: bin size W = H = D = 100 and all item dimensions are uniformly random
in [1, 100];

The original Tabu Search algorithm and the extended algorithms are run on all 8 of
these classes for n ∈ {50, 100, 150, 200}, a time limit of 60 seconds and with 10 repetitions.
Since the time limit is the same, similar results to the original algorithm, while including
other constraints or objectives, means they were implemented efficiently. How the three
extensions are evaluated exactly and how the other item parameters are set is discussed in
the next three sections. Note that the original TS algorithm and the extended algorithms
were performed on the same generated samples.

4.3.1 Weight Limit

Firstly, to implement a weight limit, the items need a weight and the bins need a weight
limit. The weight of an item is assumed to be proportional to its volume with a random
dispersion between 10% lighter and 10% heavier. So the weight is set as follows:

mj = vj(1 + dm), dm ∈ [−0.1, 0.1], (11)

where mj is the weight of item j, vj is the volume of item j and dm is a random
dispersion factor. For the results of the first extension, the number of bins in the
optimal solution is considered when setting the weight limit at three different values;
M ∈ {0.5Vbin, 0.7Vbin, 0.9Vbin}, with Vbin the volume of a bin, i.e. Vbin = WHD.

To evaluate the performance of this extension, the number of bins in the results with
the various weight limits are reported, as well as the number of bins in the result of the
original algorithm (without a weight limit). The proportion of the bins in the original
algorithm’s result that would satisfy the three different weight limits is also reported to
determine how strict the weight limits actually were.

If the weight limit extension manages to keep a similar number of bins in the result
when the weight limit constraint is non-binding (original TS result has a high proportion
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of bins satisfying the weight limit) this means that the extended algorithm is efficient.
When the weight limit becomes binding (original TS result has a low proportion of bins
satisfying the weight limit) it is possible that the number of bins in the result increased
significantly while the extension is still successful.

4.3.2 Weight Distribution

For the weight distribution, the weights of items is set the same as with the weight limit
(see Section 4.3.1). The performance of the weight distribution extension is evaluated by
comparing the following values of the algorithm’s resulting configuration; the number of
bins used, the average center of mass over all bins, the number of invalid results. The
layers that are given to the 1D-BPP might result in an infeasible problem if the centre of
mass constraint is too strict. If that is the case, the algorithm cannot come to a result and
it is considered invalid. These values are reported and compared for pCoM ∈ {0.5, 0.7, 0.9}
(see Equations 8a - 8d). Both the absolute centres of mass and the relative centres of
mass are reported, but the relative centres of mass are considered in the evaluation, to
allow for a fair comparison between the bin sizes.

If the centres of mass have moved towards the middle while not increasing the total
number of used bins and getting few invalid results, the weight distribution extension is
considered a successful extension. Note that this extension is compared to the original
TS algorithm where the HA algorithm is not executed on synchronously rotated items
and bins (see Section 4.1.1).

4.3.3 Fragility

Lastly, for the fragility extension, it is assumed that any item has a 20% chance of being
fragile. Here, the performance is evaluated by comparing the total number of bins used
and the number of fragile bins in the found optimal solution, with those in the result of
the original TS algorithm.

If the total number of used bins is not much greater than the total number of used bins
in the original TS algorithm’s result, while the number of fragile bins has significantly
decreased, this extension is considered successful.

5 Results

The algorithm is coded and run in Java IDE Eclipse on a Windows 10 computer with an
AMD Ryzen 7 5800X 8-Core 3.80GHz CPU. IBM ILOG CPLEX Optimization Studio is
the optimization software package used to solve the linear programming problems (1D-
BPP).

5.1 Weight Limit

The average increase in the resulting number of bins when introducing the weight limit
is given in Table 1:

15



Table 1: Average increase in number of bins - weight limit extension

Weight Limit

WL = 0.5Vbin WL = 0.7Vbin WL = 0.9Vbin

average increase in number of bins 41.88% 7.08% 0.26%

(vs original TS)

Also, the average proportion of the bins in the original TS solution that would have
been under the weight limit are given in Table 2:

Table 2: Average proportion of original solution under weight limit

Weight Limit

WL = 0.5Vbin WL = 0.7Vbin WL = 0.9Vbin

average percentage of bins in 12.59% 50.82% 97.10%

original TS solution meeting limit

All results from comparing the number of bins used by the extended algorithm with
the original Tabu Search algorithm can be found in Section A.4.

Table 1 shows that with a weight limit that is a very loose constraint (WL = 0.9Vbin),
the algorithm performs similar to the original Tabu Search algorithm and finds solutions
with nearly the same amount of bins (0.26% more bins on average). This indicates that
the consideration of weight does not hurt the performance of the algorithm itself much.
This minimal increase can be explained by the 2.9% (see Table 2) of bins in the original
solutions that would not have met the weight limit.

When the weight limit is more strict, the number of bins naturally grows. This is
mostly the case when WL = 0.5Vbin. At WL = 0.7Vbin, the results are still relatively close
to the optimal values found by the original algorithm (7.08% higher). This, while only
about half of the bins in the result of the original algorithm would have met this stricter
weight limit. When WL = 0.5Vbin, the 41.88% increase in number of used bins is easily
explained by the fact that 87.41% of the bins in the original algorithm’s solution would
have been over the limit. To get those bins under the limit, items in those bins would
have to be placed in other bins, but with only 12.59% of the bins under the limit, new
bins definitely need to be used to satisfy that constraint.

Considering the ease of implementation and the average performance, this extension
could be very useful when dealing with a weight limit apart from a volume constraint in a
three-dimensional bin packing scenario. The weight here could also be replaced for some
other measure that is added between items and must be limited per bin.

5.2 Weight Distribution

A summary of the results when introducing the weight distribution constraint is given in
Table 3:
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Table 3: Summary statistics - weight distribution extension

weight distribution proportion

0.5 0.7 0.9

average increase in number of bins 0.09 0.20 0.01

(vs original TS in %)

average increase in CoM towards middle 0.01 0.02 0.02

(vs original TS in %)

average proportion of invalid results 10 2.19 0

(in %)

All results of the simulation experiment are given in Section A.5, where Table 12 re-
ports the resulting centre of mass as an absolute position in the bin and Table 13 reports
the relative centre of mass with respect to the dimensions of the bin. The columns de-
noted “invalid” report the proportion of simulations resulting in an invalid result due to
an impossible 1D BPP with centre of mass constraints.

None of the three weight distribution proportion constraints had a significant effect
on moving the average centre of mass towards the middle of the bins, with at most 0.02%
movement. The average number of used bins has also increased insignificantly, with at
most 0.20%, though this increase was generally bigger than the movement of the CoM.
Lastly, a stricter weight distribution constraint has a definite effect on the number of
experiments resulting in invalid results. With the centre of mass being only allowed in
the middle half of the bin, 1/10 of the experiments leads to an invalid result.

The improvement in the centre of mass of the bins is too insignificant to be used in
practice, especially with the significant possibility for invalid results. The average centres
of mass of any sample lie at most 10% away from the middle in the results of the original
TS algorithm (values for CoMw and CoMd in Table 13 for the original TS algorithm are
at least 0.40%). This together indicates that relatively little could be gained in the weight
distribution but mostly that implementing a weight distribution constraint to the Lodi
et al. (2002) Tabu Search framework as done in this paper is not the approach to do
so. The method of placing items in the corners of layers and only in normal positions
inherently clashes with the desire to move the centre of mass towards the middle of the
bin.

5.3 Fragility

The results of the simulation experiments with fragile items and bins are given in Section
A.6. The average increase in the number of used bins and average decrease in the number
of used fragile bins for the different sample sizes and different Classes is given in the
following two tables:
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Table 4: Relative number of bins and fragile bins in Fragility TS vs original TS per sample
size

n relative nbin (%) relative nfrag (%)

50 100.98 82.81

100 101.09 75.59

150 101.19 76.51

200 100.51 75.33

Average 100.94 78.56

Table 5: Relative number of bins and fragile bins in Fragility TS vs original TS per class

Class relative nbin (%) relative nfrag (%)

1 100.46 77.28

2 100.81 90.21

3 100.78 82.50

4 100.04 81.60

5 101.39 64.13

6 100.17 82.42

7 102.19 74.01

8 101.68 76.34

From Table 4 it is evident that generally the number of fragile bins in the resulting
solution has decreased drastically (78.56%) while the total number of bins in the resulting
solution has remained close to the same (100.94% on average). The extended algorithm
seems to have a harder time finding solutions with less fragile bins in smaller samples
(82.81% on average for n = 50). This could be explained by the fact that with a smaller
sample it is more likely the original algorithm has found a near-optimal solution, so de-
creasing the number of fragile bins while keeping a similar number of total bins might be
more difficult.

Table 5 shows that the extended algorithm performs generally well on all classes. The
algorithm finds more improvement to the number of fragile bins in Class 5 (W = H =
D = 100 and items from types 1-5 with an item having 60% of being of type 5). This
is probably because the items are relatively small in these samples. Therefore a lot of
items fit in a bin which in turn produces a lot of fragile bins in the original algorithm that
does not consider fragility. Indeed, the proportion of bins in the original TS solution for
Class 5 that are considered fragile is 70.77%, where that proportion for the other Classes
is 57.54% (see Table 14). This means that an algorithm considering fragility had a lot to
improve here.
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6 Conclusions

Between the three explored expansions, using the proposed Tabu Search framework by
Lodi et al., 2002 proved effective for the introduction of a weight limit and the minimiz-
ation of fragile bins to the three-dimensional bin packing problem. Aiming to centre the
weight distribution by setting constraints on the location of the centre of mass of the bins
proved unsuccessful.

The addition of a loose weight limit resulted in allocations nearly as good as in in-
stances without a weight limit. This shows that the consideration of weight and a weight
limit does not hurt general performance of the algorithm and that the increased number
of bins in the allocation with more stringent weight constraints is a direct consequence of
the low weight limit. The ease of implementation and effectiveness of the algorithm make
this a very appealing practical extension to the existing Tabu Search algorithm.

Moving the centre of mass of bins towards the physical centre of the bins by motivat-
ing specific item placements and constraining the allowed centres of mass for bins proved
a bad fit with the proposed Tabu Search algorithm. When the constraints were easily
met, the centres of mass hardly moved from those in the result of the original algorithm
and when the constraints were more strict, it resulted in numerous invalid results because
of impossible combination of layers. All this while getting resulting configurations with
slightly more bins.

The consideration of fragile items and bins proved very effective in combination with
the Tabu Search framework. The resulting allocations of this extended algorithm used
barely any more bins while drastically reducing the number of fragile bins compared to
the original algorithm that does not consider fragility. With greater amounts of items and
relatively smaller items the extension was especially effective.

7 Discussions

Due to limited time, less attention could be paid to the estimation of parameters used
in the evaluation (γ, δ, ϵ, pf ) and as a result, these estimations are relatively unreliably.
A better approach would be to do this estimation on the same samples and sample sizes
as the final results to ensure the best values were chosen. Now the samples and sample
sizes were less carefully chosen. Also, more and more exhaustive values for the parameters
should have been considered. Now, only three or four values were considered per para-
meter.

To further evaluate the performance of the weight limit extension, one might consider
more diverse weight limits and diverse weights of items. The weight of items as they were
currently determined might be unrealistic with extreme weights. Very light and big items
and very heavy and small items exist, including these might throw off the performance of
the extension.

Adding the weight distribution to the objective could also have been explored as a
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potentially more reliable and better performing way of enforcing stability.

In the case of fragility, 20% of items being fragile could prove to be unrealistic. The
fragility of items might be correlated to the volume or weight, implementing this could
improve the reliability of the evaluation.

Further research might attempt to find a viable way of ensuring stable bin configur-
ations, like ensuring the different layers can practically be stacked and will not just fall
next to items on the layer below. Attempting to ensure a centered centre of mass clashes
with the nature of the algorithm where items are forced into a corner. This makes it
difficult to incorporate in the algorithm. It might be better as an algorithm performed
on a resulting allocation that checks and recombines layers.

Since the weight limit and fragility extensions have proved effective, further research
might consider their joint performance to see if this is as effective.
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A Tables

A.1 γ estimation

Table 6: γ parameter estimation (Class 5, n = 50, 10 repetitions)

γ Weight Limit (of volume of bin) Average

0.5Vbin 0.7Vbin 0.9Vbin

0.35 11.2 9.1 8.3 9.533333

0.4 10.7 9.5 8.6 9.6

0.45 10.1 9.7 8.3 9.366667

0.5 11.3 9.1 8.4 9.6

0.55 10.9 8.9 8.9 9.566667

A.2 δ estimation

Table 7: δ parameter estimation - number of bins (Class 5, n = 150, 3 repetitions)

δ Original
TS

Weight Distribution TS Average increase
(%)

CoM proportion

0.7 0.8 0.9

0 23.27 26.7 23.25 23.8 5.66

0.1 22.07 22 22 22.8 0.91

0.2 22.53 22.25 24.6 22.4 2.44

0.3 21.20 23.2 20.8 20.6 1.57

Table 8: δ parameter estimation - CoM improvement (Class 5, n = 150, 3 repetitions)

δ Relative CoM improvement x (%) Relative CoM improvement y (%) Average im-
provement (%)

CoM proportion CoM proportion

0.7 0.8 0.9 0.7 0.8 0.9

0 0.13 0.20 -1.47 -0.50 0.95 -0.67 -0.23

0.1 0.11 0.27 -0.35 -1.41 -1.27 -1.26 -0.65

0.2 0.63 0.46 -0.68 -0.46 0.87 -0.02 0.13

0.3 0.38 -2.17 -0.04 0.00 -0.80 0.11 -0.42
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A.3 ε estimation

Table 9: ε parameter estimation - number of bins (Class 5, n = 150, 5 repetitions)

ε Fragility TS
Average performance

(vs original TS in %)

Fragility Importance

0.1 0.3 0.5 0.7

0.1 24.4 22.2 23.2 22.2 100

0.3 21.6 22.4 21.6 24.2 100

0.5 22 23 20.2 20.4 100.23

Average performance 100.3 100 100 100

(vs original TS in %)

Table 10: ε parameter estimation - number of fragile bins (Class 5, n = 150, 5 repetitions)

ε Fragility TS
Average decrease

(vs original TS in %)

Fragility Importance

0.1 0.3 0.5 0.7

0.1 16.8 13 10 13.4 7.44

0.3 6.6 9.2 9.8 3 26.17

0.5 7.6 6.4 2.6 9.8 57.46

Average decrease 25.32 32.45 22.82 39.51

(vs original TS in %)
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A.4 Weight Limit Extension Results

Table 11: Results Weight Limit Extension Simulation (time limit = 60s, 10 repetitions)

Class n Original TS Proportion of bins under weight limit Weight Limit TS (WL = weight limit)

WL = 0.5Vbin WL = 0.7Vbin WL = 0.9Vbin WL = 0.5Vbin WL = 0.7Vbin WL = 0.9Vbin

nbins % % % nbins nbins nbins

1 50 14.6 11.7 53.4 100 20.6 15.4 14.7

100 26 9.3 51.6 98.1 37.6 27.9 26

150 40.5 5.4 42.5 98.5 58.4 42.9 40.5

200 50.6 3.9 45.5 97 73.8 53.8 50.5

2 50 14.2 4.6 60.9 100 20 15 14.2

100 26.5 4.2 51.7 98.9 37.9 28.1 26.6

150 39 2.6 50.7 99 56.4 41.1 38.9

200 50.8 2.3 46.9 98.3 73.6 54.3 50.9

3 50 14.2 9.4 67 100 19.7 14.8 14.2

100 26.7 7.1 52.1 99.6 38 27.9 26.8

150 38.8 4.7 43.5 97.9 56.6 41.3 38.8

200 50.6 4.9 46.8 97.8 73 53.8 50.7

4 50 29.2 60.3 85.2 100 33.7 29.4 29.2

100 56 55.6 86.8 100 62.2 56.5 56

150 90.1 64.8 87.3 99.9 99.4 91 90.1

200 115.9 60.8 85.7 98.9 128.5 116.9 116

5 50 8 12.9 69.7 100 10.7 8.2 8

100 15.7 7.5 52.8 99.4 22.6 16.7 15.7

150 21.3 3.8 43.7 97.7 31.4 22.9 21.3

200 27.4 2.1 34.4 97.3 41.4 30.1 27.4

6 50 12.1 10.6 51.5 94.5 17.4 13.1 11.9

100 20.1 2.9 23.3 87 32.5 23.8 20.3

150 27.5 2.5 14.7 80.4 45.6 33.2 27.9

200 37.6 1.3 13.4 74.4 63.4 46.2 38.3

7 50 7.7 12.6 69 100 10.5 7.8 7.9

100 13 7.7 52.4 100 18.3 13.8 13.1

150 19.3 2.4 31.3 100 28.8 21.1 19.3

200 23.9 3.1 26.5 97.3 36.1 26.2 23.9

8 50 10.1 12.5 67.6 100 13.8 10.5 10.2

100 18.5 3.8 48.8 99.1 27.1 20 18.5

150 26.8 3.9 34.8 98.8 39.1 29 26.8

200 34.3 1.6 34.9 97.5 51.3 37.6 34.3
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A.5 Weight Distribution Extension Results

Table 12: Results Weight Distribution Extension Simulation (time limit = 60s, 10 repetitions)

Class n Original TS Weight Distribution TS (WD = allowed centre of mass proportion)

WD = 0.5 WD = 0.7 WD = 0.9

nbins CoMw CoMd nbins CoMw CoMd invalid nbins CoMw CoMd invalid nbins CoMw CoMd invalid

1 50 14.7 46.77 42.42 14.5 46.87 43.05 0.4 14.8 46.89 42.3 0.1 14.8 46.8 42.31 0

100 26.1 47.64 43.06 25.6 47.68 43.19 0.2 26.1 47.6 43.02 0 26.1 47.6 43.02 0

150 40.7 47.65 43.39 40.8 48.02 43.38 0 40.8 47.98 43.35 0 40.8 47.98 43.35 0

200 50.6 48.09 43.52 50.7 48.11 43.59 0.1 50.6 48.05 43.57 0 50.6 48.05 43.57 0

2 50 14.5 42.53 42.48 14.4 42.01 42.4 0.1 14.6 42.41 42.44 0 14.5 42.56 42.5 0

100 26.7 42.89 42.97 27 42.9 43.03 0.1 26.8 42.79 43.01 0 26.7 42.88 42.97 0

150 39.3 43.25 43.22 39.3 43.24 43.25 0 39.3 43.23 43.24 0 39.3 43.23 43.24 0

200 51.3 43.23 43.16 51.3 43.32 42.95 0.2 51.4 43.33 43.04 0 51.4 43.33 43.04 0

3 50 14.5 42.59 46.42 14.2 42.76 46.55 0.1 14.3 42.93 46.38 0 14.4 42.67 46.24 0

100 26.9 43.46 47.18 26 42.66 47.07 0.6 26.4 43.1 47.44 0.1 26.9 43.41 47.14 0

150 38.9 43.75 47.81 38.8 43.72 47.76 0 38.9 43.74 47.85 0 38.9 43.74 47.85 0

200 50.8 43.43 48.26 50.8 43.46 48.31 0.2 50.8 43.46 48.23 0 50.8 43.46 48.23 0

4 50 29.2 40.98 39.87 29.2 40.97 39.93 0 29.2 40.97 39.92 0 29.2 40.97 39.92 0

100 56.2 40.41 40 56.1 40.42 40.18 0.1 56.2 40.37 39.97 0 56.2 40.37 39.97 0

150 90.2 40.59 39.9 90.2 40.56 39.96 0 90.2 40.56 39.96 0 90.2 40.56 39.96 0

200 116.3 39.99 40.1 116.1 39.98 40.26 0 116.1 39.98 40.26 0 116.1 39.98 40.26 0

5 50 8.3 43.7 42.88 8.5 43.69 42.78 0.2 8.4 43.89 42.97 0 8.3 43.7 43.04 0

100 15.9 45.11 45.01 15.8 45.12 45.07 0 15.8 45.1 45.04 0 15.8 45.1 45.04 0

150 21.6 45.38 45.59 22.1 45.43 45.34 0.2 22.2 45.32 45.44 0.1 21.7 45.31 45.57 0

200 27.7 45.94 45.91 27.9 45.88 45.85 0 27.9 45.88 45.85 0 27.9 45.88 45.85 0

6 50 12.1 4.61 4.51 12.3 4.62 4.52 0 12.2 4.62 4.51 0 12.1 4.61 4.52 0

100 20.3 4.67 4.69 20.3 4.67 4.69 0 20.3 4.67 4.69 0 20.2 4.67 4.69 0

150 28 4.77 4.79 27.7 4.78 4.78 0.1 27.9 4.77 4.78 0 27.9 4.77 4.78 0

200 37.8 4.82 4.83 37.6 4.82 4.83 0.2 37.7 4.81 4.82 0.1 37.8 4.82 4.82 0

7 50 8 17.29 17.45 8.3 17.15 17.38 0.1 8.2 17.4 17.35 0.1 7.9 17.21 17.57 0

100 13.2 17.62 17.82 13.1 17.6 17.85 0 13.2 17.61 17.88 0 13.3 17.62 17.9 0

150 19.6 18.18 18.1 19.7 18.19 18.1 0 19.7 18.18 18.13 0 19.7 18.19 18.13 0

200 24.1 18.3 18.49 24.3 18.28 18.46 0 24.3 18.28 18.47 0 24.3 18.28 18.47 0

8 50 10.4 43.9 43.42 10.4 43.97 43.6 0 10.2 44.26 43.49 0 10.3 44.27 43.16 0

100 19.1 44.4 45.19 19.1 44.43 45.14 0.1 19.3 44.31 45.15 0.2 19.1 44.43 45.24 0

150 27.1 45.53 44.97 27.2 45.59 45.02 0 27.2 45.6 45.03 0 27.2 45.6 45.03 0

200 34.5 45.88 46.09 34.8 45.68 46.11 0.2 34.5 45.82 46.12 0 34.5 45.82 46.12 0
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Table 13: Results Weight Distribution Extension Simulation with relative centre of mass (time limit = 60s, 10 repetitions)

Class n Original TS Weight Distribution TS (WD = allowed centre of mass proportion)

WD = 0.5 WD = 0.7 WD = 0.9

nbins CoMw CoMd nbins CoMw CoMd invalid nbins CoMw CoMd invalid nbins CoMw CoMd invalid

1 50 14.7 0.47 0.42 14.5 0.47 0.43 0.4 14.8 0.47 0.42 0.1 14.8 0.47 0.42 0

100 26.1 0.48 0.43 25.6 0.48 0.43 0.2 26.1 0.48 0.43 0 26.1 0.48 0.43 0

150 40.7 0.48 0.43 40.8 0.48 0.43 0 40.8 0.48 0.43 0 40.8 0.48 0.43 0

200 50.6 0.48 0.44 50.7 0.48 0.44 0.1 50.6 0.48 0.44 0 50.6 0.48 0.44 0

2 50 14.5 0.43 0.42 14.4 0.42 0.42 0.1 14.6 0.42 0.42 0 14.5 0.43 0.43 0

100 26.7 0.43 0.43 27 0.43 0.43 0.1 26.8 0.43 0.43 0 26.7 0.43 0.43 0

150 39.3 0.43 0.43 39.3 0.43 0.43 0 39.3 0.43 0.43 0 39.3 0.43 0.43 0

200 51.3 0.43 0.43 51.3 0.43 0.43 0.2 51.4 0.43 0.43 0 51.4 0.43 0.43 0

3 50 14.5 0.43 0.46 14.2 0.43 0.47 0.1 14.3 0.43 0.46 0 14.4 0.43 0.46 0

100 26.9 0.43 0.47 26 0.43 0.47 0.6 26.4 0.43 0.47 0.1 26.9 0.43 0.47 0

150 38.9 0.44 0.48 38.8 0.44 0.48 0 38.9 0.44 0.48 0 38.9 0.44 0.48 0

200 50.8 0.43 0.48 50.8 0.43 0.48 0.2 50.8 0.43 0.48 0 50.8 0.43 0.48 0

4 50 29.2 0.41 0.4 29.2 0.41 0.4 0 29.2 0.41 0.4 0 29.2 0.41 0.4 0

100 56.2 0.4 0.4 56.1 0.4 0.4 0.1 56.2 0.4 0.4 0 56.2 0.4 0.4 0

150 90.2 0.41 0.4 90.2 0.41 0.4 0 90.2 0.41 0.4 0 90.2 0.41 0.4 0

200 116.3 0.4 0.4 116.1 0.4 0.4 0 116.1 0.4 0.4 0 116.1 0.4 0.4 0

5 50 8.3 0.44 0.43 8.5 0.44 0.43 0.2 8.4 0.44 0.43 0 8.3 0.44 0.43 0

100 15.9 0.45 0.45 15.8 0.45 0.45 0 15.8 0.45 0.45 0 15.8 0.45 0.45 0

150 21.6 0.45 0.46 22.1 0.45 0.45 0.2 22.2 0.45 0.45 0.1 21.7 0.45 0.46 0

200 27.7 0.46 0.46 27.9 0.46 0.46 0 27.9 0.46 0.46 0 27.9 0.46 0.46 0

6 50 12.1 0.46 0.45 12.3 0.46 0.45 0 12.2 0.46 0.45 0 12.1 0.46 0.45 0

100 20.3 0.47 0.47 20.3 0.47 0.47 0 20.3 0.47 0.47 0 20.2 0.47 0.47 0

150 28 0.48 0.48 27.7 0.48 0.48 0.1 27.9 0.48 0.48 0 27.9 0.48 0.48 0

200 37.8 0.48 0.48 37.6 0.48 0.48 0.2 37.7 0.48 0.48 0.1 37.8 0.48 0.48 0

7 50 8 0.43 0.44 8.3 0.43 0.43 0.1 8.2 0.44 0.43 0.1 7.9 0.43 0.44 0

100 13.2 0.44 0.45 13.1 0.44 0.45 0 13.2 0.44 0.45 0 13.3 0.44 0.45 0

150 19.6 0.45 0.45 19.7 0.45 0.45 0 19.7 0.45 0.45 0 19.7 0.45 0.45 0

200 24.1 0.46 0.46 24.3 0.46 0.46 0 24.3 0.46 0.46 0 24.3 0.46 0.46 0

8 50 10.4 0.44 0.43 10.4 0.44 0.44 0 10.2 0.44 0.43 0 10.3 0.44 0.43 0

100 19.1 0.44 0.45 19.1 0.44 0.45 0.1 19.3 0.44 0.45 0.2 19.1 0.44 0.45 0

150 27.1 0.46 0.45 27.2 0.46 0.45 0 27.2 0.46 0.45 0 27.2 0.46 0.45 0

200 34.5 0.46 0.46 34.8 0.46 0.46 0.2 34.5 0.46 0.46 0 34.5 0.46 0.46 0
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A.6 Fragility Extension Results

Table 14: Results Fragility Extension Simulation (time limit = 60s, 10 repetitions)

Class n Original
TS

Fragility
TS

nbins nfrag nbins nfrag

1 50 14.6 7.9 14.6 6.5

100 26 14.8 26.3 11

150 40.5 21.9 40.7 16.3

200 50.6 29.2 50.7 22.8

2 50 14.2 7.1 14.4 6.9

100 26.5 14.7 26.6 13.2

150 39 22.8 39.5 20.3

200 50.8 27 50.9 22.9

3 50 14.2 7 14.4 6.4

100 26.7 14.9 26.9 12.4

150 38.8 21.8 39.1 17

200 50.6 28.3 50.7 21.9

4 50 29.2 9.3 29.2 7.3

100 56 15.9 56 13.9

150 90.1 24.2 90.1 19.9

200 115.9 35.4 116.1 27.7

5 50 8 4.8 8.1 3.2

100 15.7 12 16.1 7.6

150 21.3 15.3 21.6 10.1

200 27.4 20.5 27.5 12.4

6 50 12.1 7 12 5.6

100 20.1 11.6 20.1 9.9

150 27.5 18.5 27.7 15.5

200 37.6 25.2 37.9 20.3

7 50 7.7 5.8 7.9 4.6

100 13 10.6 13.3 8.3

150 19.3 15.9 19.8 10.7

200 23.9 20.1 24.2 14.3

8 50 10.1 6.2 10.3 5.4

100 18.5 12 18.8 9

150 26.8 17.8 27.4 12.7

200 34.3 24.2 34.6 17.4
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A.7 Variable or abbreviation explanations

Table 15: Variables and abbreviations and their explanations

Variable name or abbreviation Explanation

TS Tabu Search

N Set of all n item indices: {1, ..., n}
wj Width of item j

hj Height of item j

dj Depth of item j

mj Weight of item j

fj Fragility of item j

vj Volume of item j (= wjhjdj)

dm
Random dispersion factor for weight of items

(dm ∈ [−0.1, 0.1])

W Width of bins

H Height of bins

D Depth of bins

M Weight limit of bins

Hℓ Height of layer ℓ

Fℓ Fragility of layer ℓ

Jℓ The set of items currently packed in layer ℓ

Vbin Bin volume (= WHD)

WL Weight limit

CoMw,ℓ The centre of mass in the width of layer ℓ

CoMd,ℓ The centre of mass in the depth of layer ℓ

CoMw,j The centre of mass in the width of item j

CoMd,j The centre of mass in the depth of item j

β HA algorithm height clustering parameter

α Tabu Search algorithm filling function parameter

ρ Score function perimeter parameter

µ Score function area parameter

γ Score function weight limit parameter

δ Score function weight distribution parameter

ε Score function fragility parameter

k Neighbourhood size Tabu Search

kmax Maximum neighbourhood size Tabu Search

τk Tabu List length

ℓ
Maximum number of Tabu Search moves

before diversification

xij LPP variable indicating placement of layer j in bin i

yi LPP variable indicating usage of bin i

pCoM

The proportion of the bin around the middle of the

bin in which every centre of mass should fall
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