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1 Introduction

The European Union aims to be climate-neutral in 2050. One important step towards this goal
is the construction of wind farms, as wind turbines are an efficient source of sustainable energy.
To illustrate, the European Commission aims at generating 60GW of power in offshore wind
parks by 2030, which is enough to power approximately 45 million homes (The European Com-
mission, 2021). By 2050, this amount should be increased to 340 GW. Wind turbines at offshore
wind farms are exposed to severe weather, including lightning, snow and extreme temperatures.
Consequently, operation and maintenance costs amount to 15-30% of the cost of energy gener-
ated by offshore wind farms (Besnard et al., 2013). The optimization of these costs impacts the
competitiveness of wind energy considerably.

Wind turbine maintenance can be classified into preventive maintenance (PM) and corrective
maintenance (CM) (Dao et al., 2021). CM takes place when a system is not working properly
and performs below the intended level. However, for offshore wind turbines this is not suitable,
as failures often have serious consequences, such as severe damage to the gear box or rotor blades
(Tchakoua et al., 2014). PM is done before a system fails and can be time-based or condition-
based. Two common time-based maintenance (TBM) policies are the age-replacement policy
(ARP) and the block-replacement policy (BRP) (de Jonge & Scarf, 2020). An ARP strategy
performs maintenance at a certain critical age, whereas with a BRP approach one performs
maintenance after a fixed time interval.

The ARP and BRP models assume costs to be constant over time, however, wind turbine main-
tenance costs are likely to vary over the year. To illustrate, the average wind speed in IJmuiden,
a coastal city in the Netherlands, was measured to be 9.6 m/s in January and 7.4 m/s in July
between 1971 and 2022 (Royal Netherlands Meteorological Institute, 2022). When maintenance
is performed in winter, there is a higher loss of production due to the higher average wind speeds.
Therefore, maintenance costs are likely to be higher in winter. Schouten et al. (2022) introduce
the p-ARP and p-BRP policies, which improve upon the ARP and BRP strategies by considering
time-varying costs. These policies reach savings by shifting more maintenance to summer.

Whereas TBM schedules maintenance by a time-dependent policy, condition-based maintenance
(CBM) uses condition monitoring to schedule maintenance. Measuring instruments or visual
inspections are used to monitor the state of a wind turbine component, after which a maintenance
decision is made. For instance, the temperature and oil level can be measured. Over the past
decades, CBM approaches have been gaining popularity due to the increase in possibilities of
real-time monitoring and the analysis of the condition of a component without visual inspection
(Tchakoua et al., 2014). One advantage of condition-based maintenance (CBM) is that it usually
leads to a better timing of the maintenance, as one ideally conducts maintenance just before the
performance of a component deteriorates. However, the effectiveness of CBM largely depends on
the quality of the condition monitoring (Kim et al., 2016). Low quality data on the condition
of a wind turbine component can lead to an unnoticed failure, which results in high CM costs.
Additionally, malfunctions of measuring equipment may require costly visual inspections, due to
labor and transportation costs.
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On the one hand, we thus see that TBM is easy to plan, while CBM depends on the changing
state of the wind turbine components. On the other hand, CBM results in lower costs due to
a more effective maintenance planning when condition monitoring is accurate. This paper aims
to overcome the disadvantages of the separate strategies by combining a TBM and a CBM
approach. When using a combined technique, one uses TBM to spot failures that are missed by
the condition monitoring. At the same time, the CBM component of the policy leads to an early
identification of imminent failures, which results in a reduction of maintenance costs. Moreover,
time-varying costs are considered to adjust for the difference in production loss over the year.
This leads to the following research question:

What is the effect of jointly optimizing a combined TBM and CBM model for a single wind
turbine under time-varying costs?

While there is a large body of literature on both TBM and CBM approaches, research combining
the two approaches is sparse. Dao et al. (2021) take a first step in this direction by integrating
an imperfect TBM approach with a CBM strategy under constant costs, which results in lower
costs compared to the separate strategies. However, in this approach the TBM interval is fixed at
one year, whereas different TBM approaches may yield better results. Furthermore, the option
to coordinate maintenance with periods of low wind speeds is neglected.

This paper contributes to the existing literature in three ways. First, it extends the existing
literature by optimizing a model that combines TBM and CBM, which is a novel method for
handling imperfect condition monitoring. These findings have practical value, as an increasing
number of wind turbines contain sensors that transmit real-time information regarding the con-
dition of the components (Tchakoua et al., 2014). Second, it considers time-varying costs for a
combined TBM and CBM model, whereas previously time-varying costs have only been analysed
in separate models (Schouten et al., 2022). Maintenance costs are reduced by shifting mainte-
nance to periods with lower average wind speeds. Last, both an approach based on a Markov
decision process (MDP) and an approach based on a marginal cost analysis (MCA). While a
MDP is suitable for finding the optimal maintenance policy, a MCA provides more insights into
the analysis by using interpretable criteria.

The main findings of this paper show that both under constant costs and under time-varying
costs a combined TBM and CBM model outperforms the separate strategies. We find that the
accuracy of the condition monitoring largely determines the proportion of TBM and CBM in
the optimal maintenance schedule. Additionally, we find that a TBM approach benefits more
from incorporating time-varying costs than a CBM strategy. This illustrates that TBM can more
easily be postponed than CBM, as the delay of CBM is more likely to result in the failure of a
component.

The paper continues as follows. In Sect. 2, the relevant literature is summarized, after which
the model is outlined in Sect. 3. Then, the different maintenance policies are described in more
detail in Sect. 4. The corresponding numerical results are discussed in Sect. 5. Then, a marginal
cost approach is presented in Sect. 6. Last, we conclude and provide recommendations for future
research in Sect. 7.
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2 Literature review

In this section, we will first give a brief overview of literature reviews regarding maintenance
optimization related to wind energy. Afterwards, specific research on TBM and CBM models
is described. Then, literature on deterioration modelling and imperfect condition monitoring is
discussed. Subsequently, literature on the incorporation of time-varying costs into maintenance
optimization is reviewed. Last, we summarize literature on the application of a marginal cost
analysis in the analysis of maintenance policies.

2.1 Maintenance optimization in the context of wind energy

When optimizing all aspects of an offshore wind park, one encounters several challenges. To
illustrate, there are many components that each deteriorate in a different way, the accessibility
for maintenance is limited and weather conditions can impair the transportation of material
and manpower. Research into maintenance optimization in this field has increased over the last
decade and an extensive review of maintenance optimization models and strategies is given by
Shafiee and Sørensen (2019). In this review, literature is classified based on five criteria: the
type of system, the planning horizon, the failure modelling, the optimization model and the
maintenance strategy. Two other reviews on maintenance optimization that are relevant for
this paper are written by de Jonge and Scarf (2020) and Ding and Kamaruddin (2015). These
reviews explicitly distinguish single-component and multi-component systems, alongside different
condition monitoring methods.

2.2 TBM and CBM models

The two most common TBM strategies are the age-replacement policy (ARP) and the block-
replacement policy (BRP). An ARP strategy schedules maintenance at a critical age, while under
a BRP components are replaced at a given interval. When PM and CM costs are constant and
the probability of failure is increasing, an ARP policy is optimal for minimizing average costs
(Ross, 1970). The disadvantage of TBM policies is that maintenance may be carried out too
early. Consequently, a component is sometimes replaced while it could have functioned well for
a longer period.

A concise review on CBM strategies is given by Kang et al. (2019). CBM strategies aim at
monitoring the state of wind turbine components and choosing the optimal maintenance activity
accordingly. CBM consists of three primary phases: condition monitoring, fault diagnosis and
prognosis (Kang et al., 2019). In the condition monitoring phase, one gathers information re-
garding the state of the wind turbine components. Several examples of condition monitoring are
vibration analysis, oil monitoring and temperature measurement. In the fault diagnosis phase,
the data from condition monitoring is used to identify potential system failures. Last, one must
make a prognosis regarding the remaining lifetime of the wind turbine components and choose
the optimal maintenance activity accordingly.

Although there is a large amount of research on TBM and CBM models, literature comparing
and integrating the two types of strategies is sparse. Both de Jonge et al. (2017) and Kim et al.
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(2016) conclude that the quality and costs of condition monitoring determine which strategy is
dominant. To illustrate, when one can visually inspect a component at a low cost, CBM will result
in better maintenance decisions. Dao et al. (2021) analyse a combined imperfect TBM and CBM
approach by performing yearly PM alongside frequent inspections that may lead to additional
maintenance. They find that, under constant costs, combining a TBM and CBM approach yields
better results compared to applying the approaches separately. This paper builds upon this work
by jointly optimizing a combined TBM and CBM model in a setting with time-varying costs.

2.3 Deterioration modelling

Since a CBM approach relies on the state of a component, modelling the degradation process
is an essential part of finding the optimal policy. There is a large body of literature regarding
deterioration modelling, which provides useful insights for this paper. One common approach
is to base the model on the P-F curve, as depicted in Figure 1. The P-F curve shows how a
component deteriorates over time. While operating, a component deteriorates until it cannot
carry out its function anymore. This point of failure is called functional failure ‘F’. The first
point where an indication of the deterioration of the component may be detected is referred to
as a potential failure ‘P’. The deterioration process can be modelled by dividing the P-F curve
into several regions. To illustrate, van Horenbeek et al. (2013) divide the curve into five regions:
a working stage, three deteriorating stages and a failed stage. Tchakoua et al. (2014) use the P-F
curve to classify different methods of condition monitoring. Methods such as vibration analysis
and the detection of noise can be used to spot early signs of failure, whereas heat and smoke will
only be observed when failure is imminent.

Fig. 1: P-F curve.

A common method to model the deterioration process is by means of a MDP. The system state is
normally divided into three types: perfect functioning, deteriorating and functional failure. This
three-state Markov model has been applied by McMillan and Ault (2008), who subsequently
use a Monte Carlo simulation to evaluate the performance. When analysing a CBM approach,
one usually divides the deteriorating stage into several sub-types, such as minor degradation
and severe degradation. Two examples of such approaches are given by Besnard and Bertling
(2010) and Ossai et al. (2016), who respectively use a five-state and six-state Markov model for
wind turbine maintenance optimization. Besnard and Bertling (2010) show that for a high failure
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rate online inspections are more efficient than visual inspections, as the high costs of a visual
inspection outweigh the loss of precision due to online monitoring. For a more extensive review of
the application of Markov models we refer to Dawid et al. (2015), who consider different Markov
models, such as a hidden Markov model and a partially observable MDP.

2.4 Imperfect condition monitoring

It is a common assumption to consider condition monitoring to be perfect. This is demonstrated
by Raza and Ulansky (2019) in their categorization of CBM models according to underlying
assumptions. However, Kang et al. (2019) emphasize that the accuracy of condition monitor-
ing is largely responsible for the effectiveness of a CBM policy. When the data regarding the
performance of a wind turbine component is noisy, it becomes difficult to make condition-based
maintenance decisions. On the one hand, the data may indicate a failure while the component
is in a good condition, resulting in unnecessary maintenance costs. On the other hand, it can be
the case that the condition monitoring misses a fault, leading to costly CM. In fact, Schouten
et al. (2022) motivate the use of TBM approaches over CBM approaches by the limited accuracy
of condition monitoring.

There has been little research on incorporating imperfect condition monitoring into a mainte-
nance optimization model. The most important works are written by Raza and Ulansky (2019)
and van Horenbeek et al. (2013). In a case study, van Horenbeek et al. (2013) show that the
effectiveness of a CBM policy highly depends on the quality of the condition monitoring. When
the accuracy of the condition monitoring goes down, the performance of a CBM policy declines
rapidly. Raza and Ulansky (2019) built a model for the optimization of a CBM approach with
online condition monitoring. They make use of a confusion matrix to distinguish between false
positives and false negatives that arise from the imperfect information from the condition mon-
itoring system. Both works thus show that imperfect information leads to higher maintenance
costs. This paper extends upon the existing literature by considering a combined TBM and CBM
model to reduce the impact of imperfect information, in a setting with time-varying costs.

2.5 Incorporating time-varying costs

In maintenance optimization models it is commonly assumed that maintenance costs are constant
over time (Ding & Kamaruddin, 2015). However, for wind turbine maintenance this assumption
does not hold, as the costs of lost production mainly depend on the wind speed. Since the wind
speed largely depends on the season, these costs vary in a cyclic way. Schouten et al. (2022) use
this by extending the ARP, BRP and modified block replacement policy (MBRP) to a time-
varying cost setting. This leads to the the p-ARP, p-BRP and p-MBRP models. For each of
these models, Schouten et al. (2022) find that a higher degree of variation in costs over the
months leads to larger savings compared to the constant cost setting. These savings are obtained
by shifting more PM towards the summer months. While Schouten et al. (2022) only considers
TBM models under time-varying costs, we will also analyse a CBM model and a combined TBM
and CBM model under time-varying costs. Therefore, we will show under what circumstances it
is beneficial to take into account time-varying costs.
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2.6 Marginal cost analysis

A last stream of literature that is relevant for this paper is the application of a MCA in the
analysis of maintenance policies. The main approach in the literature described in previous
sections is based on a MDA. One advantage of such an approach is that it provides optimal
policies for certain maintenance strategies, such as the BRP and ARP policies (Schouten et al.,
2022). However, the optimization of a MDP does not give many insights into the analysis. In fact,
Ding and Kamaruddin (2015) and de Jonge and Scarf (2020) indicate that the complexity of many
maintenance optimization models contributes to the gap between academia and the industry. A
MCA narrows this gap, since it is an approach at a micro-level that gives more insights into the
analysis. Therefore, a MCA can be more easily applicable in the industry. However, due to the
short-term perspective of the approach there may be losses compared to the optimal maintenance
schedule (Dekker & Roelvink, 1995).

The MCA is based on the marginal cost function, which represents the costs of postponing PM
for one period. The analysis makes use of a well-known economic principle: at the optimum, the
marginal cost is equal to the average costs. When the average costs exceed the marginal costs,
the long-run average costs will go down when postponing maintenance. Similarly, if the marginal
cost is higher than the average costs, postponing maintenance will increase the long-run average
costs. Berg (1980) first introduced MCA in the field of maintenance optimization and proves
the aforementioned optimality condition for an ARP and BRP approach. A big advantage of
this criterion is that it has a clear interpretation, which is important for usage in the industry.
Additionally, with a MCA one may find maintenance policies for problem structures that are
not easily solved with a MDP. To illustrate, Dekker and Roelvink (1995) use a MCA to find a
maintenance policy for a group of wind turbine components. The results indicate that using the
marginal cost function reduces the costs by 0% to 10% over the optimal BRP policy.

3 Model description

In this section, we will describe our model specifications and the cost structure. After giving an
overview of the model, we introduce the state space in Sect. 3.1. Afterwards, the modelling of
the deterioration process is specified in Sect. 3.2. Finally, the transition probabilities between
states and the cost structure are presented in Sect. 3.3 and Sect. 3.4 respectively.

This paper extends the model of Schouten et al. (2022) and thus uses a similar notation. To give
a brief overview of our model, we will explain it based on the four features that were introduced
by Dekker (1996). Specifically, we describe the technical system, the deterioration process, the
available information and the model objective:

1. The technical system that we will consider is a single wind turbine component. When it
breaks down, it should be repaired immediately, as the wind turbine cannot function without
it. When it is repaired, it is replaced by an as-good-as-new component.

2. The deterioration process consists of two stages and is described in more detail in Sect. 3.2.
The first stage corresponds to the transition of a working component to showing the first
signs of failure. The second stage reflects the transition from showing the first faults to a
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functional failure, which happens through a maximum of m stages. The two stages follow
independent stochastic deterioration processes.

3. The deterioration process in each stage is assumed to be known. Additionally, the PM and
CM costs are time-varying over the seasons. We consider pure TBM policies, pure CBM
policies and combined policies.

4. The aim of the model is to minimise the long-run average costs. The models are solved by
means of time discretization and the formulation of a discrete-time MDP. The MDP is solved
by means of a mixed integer linear programming (MILP) formulation. This is described more
thoroughly in Sect. 4.3.

In the remainder of this section, the model will be described in more detail. First, the state space
and the deterioration process are extended upon. Afterwards, the transition probabilities and
the time-varying cost structure are outlined. A nomenclature is given in Table 1 below and a list
of abbreviations can be found in Appendix A.1.

Table 1 Nomenclature
Symbol Description
N Number of periods in a year
N+ Set of positive integers, {1, 2, ...}
N̄ Set of extended natural numbers, {0, 1, 2, ..., ∞}
I1 Set of periods within a year
I2 Set of component condition states
I2,observed Set of observed condition states
I2,unobserved Set of unobserved condition states
I3 Set of component ages
I State space of Markov decision process
T Random lifetime of a component
Tk Random lifetime of a component in stage i (k = 1, 2)
m Number of deteriorating stages
cp(i1) Costs of PM in period i1
cf (i1) Costs of CM in period i1
c̄p Average PM costs
c̄f Average CM costs
pobserved The probability of observing the deterioration process of a component
F The state representing the failure of a component
M A large number representing the maximum age of a component
A(i1, i2, i3) The set of possible actions in the Markov decision process in state (i1, i2, i3)
FL(t) Distribution function for stage 2, i.e., probability of failure after t periods in stage 2
cT Coefficient of variation for T
pi3 The chance of a component leaving stage 1 at age i3
pi2,j2 The chance of a component going from condition i2 to condition j2 in stage 2

3.1 State space

The life of a component is represented by a discrete-time MDP. Let I1 ⊂ N+ be the periods in
a year, I2 ⊂ N̄ the condition of a component and I3 ⊂ N̄ the age of a component. Note that
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N̄ is the set of extended integers and I1 = {0, 1, ..., N}, where N is the number of periods in a
year. Furthermore, I2 = {1, ..., F}, where a higher value for i2 ∈ I2 reflects a worse state and
state F represents a functional failure. We have I3 = {0, 1, ...,M}, where M is the maximum
age, at which PM must be performed. The maximum age is solely considered to have a finite
state space and should not influence the outcome. Therefore, we take M sufficiently large, such
that it is never reached under the optimal policy. In each state we can take an action, we either
replace a component (a = 1) or do nothing (a = 0). When a component has failed, CM is
mandatory. Under a pure CBM approach, we do not maintain if there are no observed signs of
failure. Therefore, the state-dependent action space for a CBM approach is:

ACBM (i1, i2, i3) =


{1} if i2 = F ∨ i3 ≥ M

{0} if i2 = 1

{0, 1} otherwise
(1)

When there is a TBM component in the maintenance approach, one may also perform mainte-
nance when there are no observed signs of failure. Therefore, the state-dependent action space
is expanded to:

A(i1, i2, i3) =

{
{1} if i2 = F ∨ i3 ≥ M

{0, 1} otherwise
(2)

Note that for combined approaches, the action space A is used, as ACBM ⊂ A.

3.2 Deterioration process

We consider a wind turbine component in a discrete time setting. The deterioration process is
modelled similar to van Horenbeek et al. (2013) and Tchakoua et al. (2014), by considering the
P-F curve as introduced in Sect. 2.3. Specifically, we thus consider a two-stage approach. The
first stage corresponds to the transition from a fully functional component to a potential failure
P, which takes time T1. From this point onward, the component enters a second stage in which it
deteriorates through a maximum of m states. The second stage is either observed or unobserved.
The time that passes from the potential failure P to the functional failure F is denoted by T2.
The model is depicted in Figure 2. We divide the condition state space into an observed and
an unobserved part, thus I2 = I2,observed ∪ I2,unobserved. Let I2,observed = {1, 2, ...,m+ 1, F} and
I2,unobserved = {m+2, ..., F −1}, where the as-good-as-new state corresponds to condition 1 and
the state of failure corresponds to condition F = 2m+ 2.

To further illustrate the deterioration process, we consider the deterioration of a wind turbine
blade. One of the most severe failures for a wind turbine is the failure of a rotor blade, which
results in approximately 11 days of downtime (Tchakoua et al., 2014). One common way of
monitoring the condition of a rotor blade is by using acoustic emission sensors that detect high
frequencies, often caused by cracks in the rotor blades. However, these sensors only detect failures
that are nearby (Li et al., 2016). Consequently, only a section of the blades is monitored. When
a crack forms, it occurs with a probability pobserved in a section of the blade that is monitored. In
this case, the whole deterioration process is observed. With a probability 1− pobserved, the crack
is unobserved and the fault is only observed when there is a functional failure. Note that once
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the observed deterioration process is entered, there is no transition to the unobserved states, and
vice versa.

Fig. 2: Visual representation of the condition state space

3.3 Transition between states

The transition between states depends on whether maintenance is performed or not. If mainte-
nance is performed, a component reaches an as-good-as-new status. Let π(i1,i2,i3),(j1,j2,j3)(a) be
the transition probability from state (i1, i2, i3) to state (j1, j2, j3) under action a. For the first
stage, the probability of failure only depends on the age of the component i3. This gives

π(i1,1,i3),(j1,j2,j3)(0) =


(1− pobserved) · pi3 for j1 = i1 + 1 (mod N), j2 = m+ 2, j3 = i3 + 1

pobserved · pi3 for j1 = i1 + 1 (mod N), j2 = 2, j3 = i3 + 1

1− pi3 for j1 = i1 + 1 mod(N), j2 = 1, j3 = i3 + 1

0 otherwise,

(3)

Where pi3 = P(T1 = i3 | T1 ≥ i3), which is the probability that the component shows the first
signs of faults at age i3, given that it has age i3. When this has happened, the component moves
into the second stage. Here, the transition probabilities depend both on the current condition i2

and the new condition j2. This gives for the conditions i2 > 1:

π(i1,i2,i3),(j1,j2,j3)(0) =

{
pi2,j2 for j1 = i1 + 1 (mod N), j3 = i3 + 1, i2 > 1

0 otherwise,
(4)

where pi2,j2 represents the probability of going from condition i2 to condition j2. Whenever
maintenance is performed (a = 1), the component returns to condition 1 with age 0. This gives:
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π(i1,i2,i3),(j1,j2,j3)(1) =


(1− pobserved) · p1 for j1 = i1 + 1 (mod N), j2 = m+ 2, j3 = 1

pobserved · p1 for j1 = i1 + 1 (mod N), j2 = 2, j3 = 1

1− p1 for j1 = i1 + 1 (mod N), j2 = 1, j3 = i3 + 1

0 otherwise.

(5)

3.4 Cost parameters

This paper follows the approach of Schouten et al. (2022) and considers time-dependent main-
tenance costs. It is assumed that the costs for PM are equal to cp(i1) and the costs for CM
are cf (i1), with i1 ∈ I1. The costs for CM are likely to be higher than the costs for PM, since
complete failure of one component is often accompanied by damage to other components. The
cost of taking action a in state i = (i1, i2, i3) is thus:

c(i1,i2)(a) =


0, if a = 0

cp(i1), if a = 1, i2 ̸= F,

cf (i1), if a = 1, i2 = F.

(6)

4 Maintenance policies

In this section, various maintenance policies will be discussed. First, pure TBM and CBM main-
tenance strategies are described. Next, a combined approach is introduced. For each approach,
we distinguish between a policy under constant costs and a policy under time-varying costs.

4.1 TBM and CBM approaches

Pure TBM and CBM policies will be considered as benchmark policies, to which the combined
approach will be compared. The ARP and p-ARP policies as described in Schouten et al. (2022)
will be considered as the benchmark TBM policies. In a p-ARP policy, each period i1 ∈ I1 has
a critical maintenance age t(i1) ∈ N̄\{0} at or above which PM is performed. In an ARP policy,
costs are constant over the periods and we have t(i1) = t, ∀i1 ∈ I1. The ARP and p-ARP policies
are based on the age since the component was first used. Alongside the TBM benchmark policies,
we will also consider two CBM benchmark maintenance policies. Let us first define a condition
replacement policy (CRP), under constant costs.

Definition 1 A CRP policy is a policy with a threshold condition k, such that maintenance is
performed when i2 ≥ k, i2, k ∈ {2, ...,m+ 1}.

A CRP policy thus has a threshold structure that is similar to an ARP policy, however, the
critical threshold is based on the condition instead of the age. Note that when we set k = F , we
only perform CM. When the costs are time-varying, it may be optimal to do more maintenance
in months with lower maintenance costs (Schouten et al., 2022). This leads to the introduction
of a period-dependent condition replacement policy (p-CRP).
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Definition 2 A p-CRP policy is a policy in which each period i1 ∈ I1 has a threshold k(i1). If
the wind turbine has condition i2 ≥ k(i1) in period i1, PM is performed.

One may set k(i1) = F for i1 ∈ I1, which means that in period i1 no PM is performed, regardless
of the condition of the component. In fact, when k(i1) = F , ∀i1 ∈ I1, the p-CRP policy reduces
to a CM approach.

4.2 Combined TBM and CBM approach

When there is imperfect condition monitoring, it may be the case that there are unobserved signs
of failure. If we use a pure CBM approach in this setting, there will be unexpected failures that
lead to CM. On the other hand, if we use a pure TBM approach, we neglect the information
that is provided by the condition monitoring. This paper extends upon the existing literature by
combining a TBM and a CBM approach, in order to reach potential savings in case of imperfect
condition monitoring. Specifically, an ARP and CRP approach are integrated, which leads to the
policy as defined below.

Definition 3 A combined age and condition replacement policy (CACRP) is a policy in which
there is a condition threshold k. If a component is in a condition k or worse, PM is performed.
Additionally, PM is performed when a critical age threshold t is exceeded.

The CRP, ARP and CM policies are nested within the CACRP policy. Specifically, if we set
k = F , CBM is never performed and we obtain an ARP policy. Similarly, if t = M , TBM never
occurs and the policy reduces to a CRP approach. Last, if both k = F and t = M , the CACRP
approach reduces to a CM policy. As with the ARP and CRP strategies, we also introduce a
time-dependent variant of the CACRP policy.

Definition 4 A period-dependent combined age and condition replacement policy (p-CACRP)
is a policy in which there is a period-dependent condition threshold k(i1). If a component is in a
condition state k(i1) or worse in period i1, PM is performed. Additionally, for each period there
is a critical age threshold t(i1). If in period i1 the age t(i1) is exceeded, PM is performed.

The p-ARP and p-CRP approach are nested in the p-CACRP policy and can be obtained by the
same restrictions as described before for the CACRP policy. Additionally, the p-CACRP strategy
reduces to the CACRP approach by setting k(i1) = k and t(i1) = t for ∀i1 ∈ I1.

4.3 LP formulations

In this section the linear programming (LP) formulations of the maintenance strategies are given,
which are constructed by following the approach of Tijms (2003). For the p-CACRP policy, we
introduce the decision variables yi1,i3 :

yi1,i3 =

{
1, if we maintain at age i3 in period i1 with no observed signs of failure,
0, else.

(7)
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This following LP formulation leads to the optimal p-CACRP policy with respect to the long-run
average cost.

minimize
∑
i∈I

ci(1)xi,1 (8a)

subject to
∑
i∈I

∑
a∈A(i)

π(i,j)(a)xi,a =
∑

a∈A(j)

xj,a ∀j ∈ I, (8b)

xi1,i2,i3,0 + yi1,i3 ≤ 1 i2 ∈ {1} ∪ I2,unobserved,∀(i1, i3) ∈ I1 × I3, (8c)

xi1,i2,i3,1 − yi1,i3 ≤ 0 i2 ∈ {1} ∪ I2,unobserved,∀(i1, i3) ∈ I1 × I3, (8d)∑
i2∈I2

∑
i3∈I3

∑
a∈A(i1,i2,i3)

xi1,i2,i3,a =
1

N
∀i1 ∈ I1, (8e)

xi,a ≥ 0 ∀i ∈ I, a ∈ ACBM (i), (8f)

yi1,i3 ∈ {0, 1} ∀i1 ∈ I1, i3 ∈ I3. (8g)

The decision variables xi,a can be interpreted as the long-run probability of being in state i =

(i1, i2, i3) ∈ I and taking action a ∈ A. As maintenance costs are only incurred when taking
action a = 1, the objective function 8a minimizes the maintenance costs. Constraint 8b ensures
that in the steady state the transitions into a state and out of a state are equal. The constraints
8c and 8d ensure that one cannot take a different action in an unobserved condition than in
condition 1. To illustrate, if one would not perform maintenance at age 5 in condition 1, one
must do the same in each unobserved condition. This must be the case, as in practice you cannot
distinguish condition 1 from the unobserved conditions.

Since it is possible to move to the failed state (i2 = F ) from any other state, the LP formulation
satisfies the weak unichain condition. Therefore, it will provide the optimal p-CACRP policy.
Let x∗i,a be the optimal solution to the LP problem. Similar to Schouten et al. (2022), we define
ILP = {i|∃a ∈ A with x∗i,a > 0}. Now we define the strategy R∗ by R∗(i) = a if x∗i,a > 0. For
each remaining state i ∈ I, we choose an action a ∈ A such that πij(a) > 0 for some j ∈ ILP .
In this way we add the states i recursively to ILP until no state remains. With this algorithm,
the average optimal strategy R∗ is obtained.

The optimal maintenance strategies for the ARP, p-ARP, CRP and p-CRP approaches can
be obtained with similar LP formulations. Specifically, one can obtain these formulations by
enforcing the model restrictions as depicted in Table 2. Note that all models are nested within
the p-CACRP model.

Table 2 Overview of maintenance policies and the
restrictions on the LP as formulated in Sect. 4.3

Policy Restriction

ARP pobserved = 0 and ∆ = 0
p-ARP pobserved = 0
CRP State-dependent action space ACBM and ∆ = 0
p-CRP State-dependent action space ACBM

CACRP ∆ = 0
p-CACRP
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5 Numerical results

In this section the numerical results will be presented. First, we replicate a section of Schouten
et al. (2022), to obtain benchmark TBM models. Then, the two-stage deterioration process that
will be used in the numerical analysis is described. Specifically, we discuss the parameters that
can be altered and analyse the failure rate. Afterwards, the results in a constant cost setting
and the results in a time-varying costs setting are discussed. Both the costs and the resulting
maintenance policies are considered.

5.1 Replication of Schouten et al. (2022)

To obtain a benchmark for the combined models that are discussed in subsequent sections, we
first replicate the models as described in Schouten et al. (2022). Specifically, we replicate Table
2 on page 985. Besides the p-ARP strategy, we also compute the cost for the p-BRP and the
p-MBRP policies. For a thorough explanation of these policies, we refer to Schouten et al. (2022).

Table A1 in Appendix A.2 shows that the same results were obtained up to the third decimal.
The only difference can be found in the computation time for the p-MBRP model. Whereas
the original paper shows a computation time of 3 seconds, our computation time was approx-
imately 1 second. This difference may be explained by the solver that was used. Our results
were obtained by using Gurobi 9.5.1 in Python, whereas the results from Schouten et al. (2022)
are obtained via CPLEX 12.8.0 in Java (Gurobi Optimization, LLC, 2022). Additionally, the
results may differ due to the hardware that was used. Our results are obtained by means of
an HP envy x360 convertible pc, which has an i7 core processor. The tolerance used in our
optimization is 10−4. Our code for the replication of the results is made publicly available on
https://github.com/asternfeld/repl_schouten2022.

Note that in the following description, we use the notation of Schouten et al. (2022), which
differs from the notation that is used in other parts of this paper. While replicating the results,
we encountered two flaws in the original paper. First, in MILP formulation 12 in Section 4.3 of
Schouten et al. (2022) there are no constraints that formulate the relationship between x and z.
In our implementation, the following two constraints were added:

zi1,i2 + xi1,i2,0 ≤ 1 (9)

xi1,i2,1 − zi1,i2 ≤ 0 (10)

If zi1,i2 = 1, maintenance is performed in period i1 when age i2 is exceeded. Constraint (9) ensures
that if zi1,i2 = 1, it must hold that xi1,i2,0 = 0. This ensures that the decision variables x and z

do not contradict each other. Similarly, constraint (10) ensures that if there is no maintenance
(zi1,i2 = 0), it must hold that xi1,i2,1 = 0. With these added constraints, the same results were
obtained as in Schouten et al. (2022). Therefore, it is likely that the constraints were used in
their computations but were omitted in the paper by mistake. A second minor flaw can be found
in the cdf of the Weibull distribution in Section 5. The correct cdf is F (x) = 1− exp

(
−
(
x
α

)β),
whereas the minus sign inside the exponent is missing in Schouten et al. (2022).
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5.2 Weibull and Gamma deterioration process

The first stage is assumed to follow a discretized Weibull distribution, which is in line with
Schouten et al. (2022). From condition 1, it is only possible to go to the observed condition 2
or the unobserved condition m + 2. The probability of observing the transition to condition 2
is reflected by pobserved, where pobserved ∈ [0, 1]. For the second stage we follow the approach of
de Jonge (2019) and assume a gamma process, which is a flexible distribution and thus suitable
for a wide variety of deterioration processes. This process is most appropriate for a monotonically
degrading component (van Noortwijk, 2009). It is not possible to transition from an observed
state to an unobserved state, nor is it possible to transition the other way around. Additionally,
a wind turbine can only improve by means of maintenance. Let us denote the time spent in stage
1 by T1 and the time spent in stage 2 by T2.

Stage 1: Weibull distribution deterioration

The first stage is modelled by means of a discretized Weibull distribution with cdf F (x) =

1 − exp
(
−
(
x
α

)β) for x ∈ N̄, where α > 0 is the scale parameter and β > 0 is the shape
parameter. Therefore, the probability pi3 of showing the first signs of failure at age i3 can be
calculated as shown in equation (11). One can then calculate the transition probabilities according
to the specification in equation (3) (Schouten, 2019).

pi3 = P(i3 ≤ T1 ≤ i3 + 1)

= 1− exp

{
−
(
i3 + 1

α

)β

+

(
i3
α

)β
}

(11)

For the analysis of maintenance policies, it is of interest to consider the expected time spent in
stage 1 (E(T1)) and the variance of the time spent in stage 1 (Var(T1)). The expected value can
be calculated as shown below in Eq. (12) (Schouten, 2019). It follows from this expression that
an increase in the scale parameter α leads to an increase in the average time spent in stage 1.
On the other hand, a change in the shape parameter β does not have a large effect on the mean.

E(T1) =

n∑
k=0

exp

{
−
(
k

α

)β
}

for large n (12)

The variance of the time spent in stage 1 can be calculated as shown below. An increase in the
scale parameter α results in an increase of the variance, whereas increasing β leads to a decrease
in the variance.

Var(T1) = E(T 2)− (E(T1))
2

=

n∑
k=0

(2k + 1)exp

{
−
(
k

α

)β
}

−

(
n∑

x=0

exp

{
−
(
k

α

)β
})2

for large n
(13)

Stage 2: Gamma deterioration process

Whereas in the first stage the deterioration depends on the age of the component, the deteriora-
tion in the second stage depends on the condition of the component. The additional deterioration
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per period is modelled by a discretized homogeneous gamma process. We use the following density
function, with scale parameter δ > 0 and shape parameter θ > 0:

fδ,θ(x) =
1

Γ (θ)δθ
xθ−1e−

x
δ , (14)

where Γ (θ) =
∫∞
0 zθ−1e−zdz is the gamma function. The corresponding cdf is denoted by Fδ,θ.

As a closed-form expression does not exist, the cdf must be calculated numerically. We follow
the discretization approach of de Jonge (2019), by considering the stochastic process X(t), which
reflects the amount of deterioration after spending t periods in stage 2. The process {X(t), t ≥ 0}
has shape function b(t) and scale a. Additionally, one must specify the period length ∆t and the
number of intervals of equal length that the condition state space is divided into, denoted by
m. We then see that the independent increments satisfy X(t+∆t)−X(t) ∼ fa∆t,b for ∆t > 0.
Therefore, E(X(t)) = abt and Var(X(t)) = a2bt reflect the expectation and variance of the
deterioration level at time t respectively. When the variance is higher, there is a larger probability
of observing a large jump in the deterioration level. To compute the transition probabilities, we
first consider the probability hi of moving from condition k to condition k + i:

hi =

{
q0, if i = 0,

qi − qi−1, if i = 1, 2, ...,
(15)

with qi =
1
∆x

∫ ∆x
0 Fa∆t,b((i+ 1)∆x− x)dx. This results in the transition probabilities:

pi2,j2 =


hj2−i2 , if i2 < j2 ∧ (i2, j2 ∈ I2,unobserved ∨ i2, j2 ∈ I2,observed) ,

1−
∑m+1−i

k=1 hk, if 1 < i2 < F ∧ j2 = F,

0, otherwise.
(16)

A functional failure F corresponds to the critical deterioration threshold L. Therefore, the prob-
ability of failure at time t can be represented by P (X(t)) ≥ L. This probability can be computed
by

FL(t) = P(X(t) > L) =

∫ ∞

L
fbt,a(x)dx. (17)

In the remainder of this paper, we rescale the deterioration levels, such that failure occurs when
the deterioration level is higher than L = 1. As for stage 1, we will consider the mean and
variance of the time spent in stage 2 for the analysis of maintenance policies. We therefore note
that the probability of failure between t1 and t2 is FL(t2; a, b) − FL(t1; a, b), which means that
the expected time spent in stage 2 can be computed as

E(T2) =

∞∑
i=0

iϵ(FL((i+ 1)ϵ; a, b)− FL(iϵ; a, b)), (18)

for sufficiently small ϵ. Whereas de Jonge et al. (2017) and de Jonge (2019) use Var(X(1)) = ba2

as a measure of the variation in the deterioration process, we are specifically interested in the
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variance of the time spent in stage 2. The variance can be computed as

Var(T2) =
∞∑
i=0

P(iϵ ≤ T2 ≤ (i+ 1)ϵ)(iϵ− E(T2))
2

=
∞∑
i=0

(FL((i+ 1)ϵ; a, b)− FL(iϵ; a, b)(iϵ− E(T2))
2.

(19)

Parameter settings

Overall, the deterioration process is determined by six parameters. We can adjust the shape
parameters α and a, the scale parameters β and b and the discretization parameters m and
∆T . For the remainder of this paper, we fix m = 3, as we focus our analysis on the effects
of the shape and scale parameters and on the effects of considering time-varying costs . It is of
particular interest to consider the mean time to failure (MTTF), where MTTF = E(T ), as this is
useful for the interpretations of the results. Additionally, we consider the coefficient of variation

cT =

√
Var(T )

E(T ) , as this is a unitless measure of the variability with respect to the mean. When
the coefficient of variation is increases, the distribution of the lifetime of a component becomes
less peaked around the mean. Generally, this results in a worse performance of TBM strategies,
as planning maintenance based on the lifetime of a component is harder. Since the deterioration
processes of stage 1 and 2 are independent, we can calculate these measures as illustrated below.

MTTF = E(T1) + E(T2), (20)

cT =

√
Var(T )
E(T )

, where Var(T ) = Var(T1) + Var(T2). (21)

Failure rate

Based on the two stages as described before, we can now analyse the probability of failure under
different parameter settings. Figure 3 shows the rate of transitioning from stage 1 to stage 2 and
the probability of failure in stage 2 for varying values of α, β, a and b. The discrete analog of the
failure rate as described in Dekker and Roelvink (1995) is used. The failure rates in stage 1 and
stage 2 are thus P(T1 = t | T1 ≥ t) and P(T2 = t | T2 ≥ t), respectively. Note that the failure rate
in stage 2 is independent of the time spent in stage 2 and only depends on the current condition.
In fact, P(T2 = t | T2 ≥ t) = pi2,F .

Figure 3a demonstrates that an increase of the scale parameter α results in a steeper curve, which
indicates that on average a component shows the first faults at a lower age. When β = 1, the
curve is flat, which means that the probability of showing the first signs of failures is independent
of the age. Specifically, when β = 1, it holds that T1 ∼ exp(α). Figure 3b illustrates that an
increase of the scale parameter a results in a higher failure probability in each condition. An
increase in the shape parameter b also leads to a higher failure probability in each condition, but
also results in a steeper curve. This means that for higher values of b, a component in a worse
state will deteriorate relatively faster. This is in line with the P-F curve as described in Sect.
3.1, therefore different values of b will be considered in the analysis.
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(a) Rate of leaving stage 1 (b) Failure rate stage 2

Fig. 3: Rate of leaving stage 1 and failure rate in stage 2 for various parameter settings.

5.3 Constant costs setting

Let us start by considering a constant costs setting, thus cp(i1) = c̄p,∀i1 ∈ I1. We discretize
time into months, hence ∆T = 1

12 . The LP given in Sect. 4.3 is then solved using Gurobi 9.5.1 in
Python. Table 3 shows the results for various values of pobserved and the stage 2 shape parameter
b, with α = 1 year. The differences are calculated with respect to the benchmark ARP model
with the same parameters for the deterioration process.

The results show that for small values of pobserved, a CRP approach performs worse than the
ARP approach. However, for larger values of pobserved the CRP approach outperforms the bench-
mark ARP model. This illustrates that a CRP approach is highly dependent on the quality of
the condition monitoring. When the condition monitoring is accurate, one may rely fully on
the observations. If there are severe measurement errors, it is necessary to also use periodic
maintenance. For larger values of the shape parameter b, CRP and CACRP approaches perform
better. This can be explained due to the coefficient of variation being larger for higher values
of b. Therefore, there is more variability in the time of failure, which means the failure times
are less concentrated. Consequently, the ARP policy performs worse, as the failures are centered
less around a critical age. In contrast, a CRP approach is affected less by a change in the shape
parameter b. A CRP approach depends on the observations of faults and on the expected dura-
tion of the two stages but does not rely on the failure times being concentrated around one age.
Furthermore, the results demonstrate that a CACRP approach reduces to an ARP approach for
pobserved = 0 and reduces to a CRP approach for pobserved = 1. Since the ARP and CRP strategies
are thus nested within the CACRP policy, the CACRP approach always performs best.

Table A2 in Appendix A.4 shows the results for α = 3 years. Generally, these results reflect the
same findings as described before. Note that a higher value of α results in a relatively higher
duration of stage 1. Consequently, the MTTF is higher and the costs for each maintenance
policy decrease. For higher values of pobserved, the CRP and CACRP policies outperform the
ARP approach by relatively more compared to the setting with α = 1. This is caused by the
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higher MTTF, as this increases the benefit of performing CBM. When early signs of failure are
observed, it is more beneficial to perform PM, since a component is likely to remain working for
a long time after maintenance. Additionally, one can see that the coefficient of variation is lower
compared to the setting with α = 1. This means that the failure times are more concentrated,
which results in a better performance of the ARP policy. Consequently, the ARP approach
outperforms the CRP by more for low values of pobserved.

Table 3 Yearly costs in thousands of euros and the corresponding differences with respect to
the ARP benchmark model, under constant costs.

b = 1
MTTF = 2.4 years

cT = 0.56

b = 3
MTTF = 1.6 years

cT = 0.69

b = 5
MTTF = 1.2 years

cT = 0.76
Benchmark ARP costs Benchmark ARP costs Benchmark ARP costs

13.791 20.782 24.420
CRP CACRP CRP CACRP CRP CACRP

pobserved Costs Difference Costs Difference Costs Difference Costs Difference Costs Difference Costs Difference
0* 18.269 32.47% 13.791 0% 33.234 59.92% 20.782 0% 39.295 60.91% 24.420 0%
0.2 16.809 21.88% 13.463 -2.38% 29.996 44.34% 19.813 -4.67% 34.756 42.33% 23.004 -5.80%
0.4 15.918 15.42% 13.134 -4.76% 26.275 26.43% 18.650 -10.26% 29.731 21.75% 21.388 -12.42%
0.6 14.952 8.42% 12.767 -7.43% 21.954 5.64% 17.169 -17.39% 24.139 -1.15% 19.311 -20.92%
0.8 13.903 0.81% 12.138 -11.99% 16.874 -18.80% 15.052 -27.57% 17.877 -26.79% 16.340 -33.09%
1 10.817 -21.56% 10.817 -21.56% 10.817 -47.95% 10.817 -47.95% 10.817 -55.70% 10.817 -55.70%

Note. In each model, we have c̄p = 10 and c̄f = 50. Let α = 1 year and β = 2, which gives E(T1) = 0.9 years. For
stage 2 we set a = 1 and let b vary.
*A CRP model with pobserved = 0 is equivalent to a pure CM approach. The costs in this setting are thus the same
as doing no PM.

We have thus seen that a CACRP approach leads to cost savings compared to the ARP and CRP
policies, when there is imperfect condition monitoring. To further investigate this maintenance
strategy, Table 4 displays the optimal CACRP strategies for different parameter settings. One
can see that when pobserved increases, the critical age for TBM increases. This indicates that when
condition monitoring is more accurate, there is more reliance on CBM and thus less frequent
TBM. The same conclusion can be drawn by the proportion of TBM relative to all PM. For
higher values of pobserved, there is relatively less TBM and more CBM. On the other hand, when
condition monitoring is inaccurate, there is relatively more TBM, as there is a higher chance of
unobserved failures.

Furthermore, when the gamma parameter b is higher, a component deteriorates faster after the
first faults are observed. Therefore, when considering a setting with α = 1 year, the critical
maintenance condition is lower for b = 3 compared to b = 1. When α increases, the expected
time until the first faults occur rises, which leads to two changes. First, the critical age for TBM
increases, which is caused by the slower deterioration process in stage 1. Second, the critical
condition for performing CBM goes down. This effect demonstrates how the two stages of the
deterioration process are interconnected. When the expected time a component stays in condition
1 increases, performing CBM will yield a higher benefit. This is the case because performing CBM
will bring a component back to condition 1, in which it will now stay longer. Therefore, a higher
value of α thus leads to a policy which performs CBM sooner.
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Table 4 Maintenance strategies for a CACRP approach under differing parameters for the
deterioration process.

α = 1 year, β = 2 α = 3 years, β = 2
a = 1, b = 1 a = 1, b = 3 a = 1, b = 1 a = 1, b = 3

CACRP CACRP CACRP CACRP
pobserved Age Condition %TBM Age Condition %TBM Age Condition %TBM Age Condition %TBM
0 14 F 100% 9 F 100% 25 F 100% 20 F 100%
0.2 14 3 86.12% 9 2 86.90% 27 2 90.27% 22 2 92.27%
0.4 3 3 69.72% 10 2 74.76% 29 2 78.67% 24 2 81.24%
0.6 3 3 51.39% 11 2 53.97% 33 2 62.25% 29 2 65.79%
0.8 2 2 24.51% 14 2 32.13% 40 2 38.57% 39 2 38.63%
1 M 2 0% M 2 0% M 2 0% M 2 0%

Note. The critical age in stage 1 and the critical condition in stage 2 are given, alongside the percentage
TBM, with respect to all PM. In each model, it holds that cp = 10 and cf = 50.

5.4 Time-varying costs

In this section, the effects of time-varying costs are discussed. The model can be applied with time-
varying costs over the weeks or months, but this requires a high level of computational power.
Therefore, we consider time-varying costs over the seasons, hence N = 4. Specifically, periods 1,
2, 3 and 4 are winter, spring, summer and fall respectively. We follow the approach of Schouten
et al. (2022) and set cp(i1) = c̄p+∆ · c̄p · cos

(
2πi1
N − 2π

N

)
and cf (i1) = c̄f +∆ · c̄f · cos

(
2πi1
N − 2π

N

)
.

In this specification, maintenance costs are highest in winter and lowest in summer. The cost
structure is described more thoroughly in Appendix A.3. In this section, we first give the cost
savings for various parameter settings and then analyse the resulting maintenance policies.

Cost savings

Table 5 shows the costs and savings for different values of ∆. These results demonstrate that
taking into account time-varying costs results in cost savings for each maintenance approach.
However, these savings are smaller for a p-CRP approach compared to the p-ARP policy. This
illustrates that CBM is more urgent and harder to postpone. With TBM, one can more easily
delay maintenance until summer, as there is no indication the wind turbine will fail imminently.
This is harder for CBM, as there is a higher risk for a component to fail soon.

Table 5 Yearly costs and differences with respect to
the constant cost model (∆ = 0).

p-ARP p-CRP p-CACRP
∆ Costs Savings Costs Savings Costs Savings
0 12.694 0% 12.746 0% 11.768 0%
10% 11.795 7.08% 12.376 2.90% 11.494 5.33%
20% 10.673 15.92% 11.904 6.61% 10.473 11.00%
30% 9.552 24.75% 11.431 10.32% 9.397 20.15%
40% 8.424 33.64% 10.959 14.02% 8.312 29.37%
50% 7.296 42.52% 10.487 17.72% 7.226 38.60%
Note. Let c̄p = 10 and c̄f = 50. In each model, α = 1 year,
β = 2, a = 1, b = 1 and pobserved = 0.6.
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In a constant cost setting, a p-CRP approach outperforms a p-ARP strategy for high values
of pobserved. However, in a setting with time-varying costs, there are more savings for a p-ARP
approach compared to the p-CRP policy. Figure 4 displays the long run average costs for a
p-ARP and p-CRP strategy for different values of ∆ and pobserved. This figure shows that ∆

affects the costs for a p-CRP strategy less than the costs of a p-ARP approach, which confirms
that p-ARP has more benefit from the consideration of time-varying costs. In this setting, p-
ARP generally outperforms p-CRP. Only for a small value of ∆ and a high pobserved, the p-CRP
approach obtains lower costs. However, these results depend on the parameter setting. Figure A3
in appendix A.5 shows that the performance of the p-ARP strategy deteriorates when β = 1. As
described in Sect. 5.3, this is caused by a higher coefficient of variation. Now, it largely depends
on pobserved and ∆ whether p-ARP or p-CRP results in lower costs.

Fig. 4: Long run yearly average costs for p-ARP and p-CRP approaches, for varying levels of
pobserved and ∆. Let β = 2, α = 1 year and a = 1.

The savings depend highly on the parameter setting in the deterioration process. Therefore, we
consider α = 0.5, 1, 3 years, β = 1, 2, a = 1, 3, 5 years and b = 1, 2 and compute the savings for
each combination. Table 6 summarizes the results for the p-ARP, p-CRP and p-CACRP model
for each parameter. The savings are averaged over each combination of the possible values of the
other parameters.

Table 6 shows that a higher value of α leads to higher savings. The explanation is that for
a higher value of α, the MTTF increases. Consequently, one can coordinate the maintenance
with the seasons more easily, as the chance of failure before the optimal maintenance moment is
smaller. Similarly, a higher value of the shape parameter β results in higher savings. This is due
to the distribution becoming more peaked, which leads to less failures before the PM happens.
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An increase in the gamma shape parameter b results in a significant decrease in savings, due to
both the lower MTTF and the higher coefficient of variation. For b = 5, the savings of a p-CRP
policy are close to 0, for all values of ∆. This indicates that when the rate of deterioration in stage
2 is high, it is not profitable to coordinate CBM with the season. The effect of the parameter a
is similar, albeit smaller.

When comparing the savings of the three different maintenance policies, it becomes clear that
the p-ARP policy results in the largest savings compared to its constant cost alternative. This
illustrates that TBM is less urgent than CBM. When maintenance is based on the age of a
component, one can postpone maintenance to a more favorable season with a relatively low risk
of failure. In contrast, the delay of CBM has a higher risk of leading to failure of the component.
After all, when observing early signs of failure, the component is likely to fail in the near future.
This becomes even clearer when b increases, as this reduces the expected time spent in stage 2
(E(T2)). For b = 3 or b = 5, a p-CRP approach reaches almost no savings over the constant cost
case. Whereas a p-CRP policy only benefits from incorporating time-varying costs for high levels
of ∆ and a small b, the p-CACRP approach also obtains savings for lower variations in costs.

Table A3 in appendix A.5 displays the long run yearly average costs for each parameter. The
results are averaged over all possible combinations of the other parameters. These results show
that the p-CACRP policy results in substantial savings over the p-ARP and p-CRP policies in
most scenarios. Especially for larger values of b and for β = 1, p-CACRP outperforms p-ARP.
This is caused by more variation in the deterioration process, which reduces the performance of
the p-ARP strategy.

Table 6 Average percentage savings of the p-ARP, p-CRP and p-CACRP maintenance
policies, compared to the constant cost (∆ = 0) model.
∆ Method α = 0.5 α = 1 α = 3 β = 1 β = 2 a = 1 a = 2 b = 1 b = 3 b = 5 Average

10%
p-ARP 1.31% 3.01% 3.11% 2.01% 2.94% 2.74% 2.21% 5.17% 1.22% 1.05% 2.48%
p-CRP 0.22% 0.34% 0.10% 0.18% 0.26% 0.33% 0.11% 0.65% 0.01% <0.01% 0.24%

p-CACRP 0.97% 2.28% 2.46% 1.22% 2.59% 2.10% 1.70% 2.28% 1.91% 1.52% 1.90%

20%
p-ARP 3.32% 7.93% 7.36% 5.14% 7.27% 6.89% 5.52% 11.28% 3.95% 3.38% 6.20%
p-CRP 0.68% 0.80% 0.73% 0.61% 0.86% 1.07% 0.40% 2.18% 0.03% <0.01% 0.82%

p-CACRP 3.63% 6.23% 6.58% 3.89% 7.07% 6.07% 4.90% 7.42% 5.07% 3.95% 5.48%

30%
p-ARP 6.67% 13.59% 13.00% 9.39% 12.78% 12.07% 10.10% 17.69% 8.39% 7.18% 11.09%
p-CRP 1.60% 1.52% 1.71% 1.34% 1.88% 2.09% 1.13% 4.60% 0.23% <0.01% 1.79%

p-CACRP 6.89% 11.09% 11.19% 7.26% 12.19% 10.71% 8.74% 13.60% 8.73% 6.85% 9.73%

40%
p-ARP 11.33% 19.87% 20.05% 14.52% 19.65% 18.52% 15.65% 24.51% 14.67% 12.07% 17.08%
p-CRP 2.7% 2.44% 3.05% 2.30% 3.17% 3.44% 2.04% 7.28% 0.87% 0.05% 2.73%

p-CACRP 10.68% 16.85% 16.08% 11.21% 17.86% 15.92% 13.16% 20.54% 12.82% 10.24% 14.54%

50%
p-ARP 17.40% 26.37% 28.07% 20.45% 27.43% 25.84% 22.04% 31.76% 21.75% 18.31% 23.94%
p-CRP 4.34% 3.46% 4.63% 3.49% 4.80% 5.09% 3.87% 9.99% 2.00% 0.44% 4.21%

p-CACRP 15.31% 23.20% 21.46% 15.68% 24.30% 21.75% 18.23% 27.91% 17.61% 14.46% 19.99%

Note. The average savings are given for each deterioration process parameter, averaged over the other param-
eters. For all models, pobserved = 0.6, c̄p = 10 and c̄f = 50.
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Time-varying maintenance policies

Let us now analyse how the optimal maintenance policy changes for different levels of ∆. Figures
5 and 6 show how the critical age and critical condition for a p-CACRP approach vary over the
periods in two different settings. Figure 5 corresponds to a setting in which b = 1, which means
that the MTTF is 2.4 years. One can then see that if there are time-varying costs (∆ > 0), the
critical maintenance age in winter is M , which indicates that there will never be TBM in winter.
For higher levels of ∆, the critical maintenance age in summer decreases. In fact, for ∆ ≥ 20%,
TBM will only be performed in summer. This aligns with the results of Schouten et al. (2022).
In the same setting, Figure 5b illustrates that when costs vary over time there will also be no
CBM in winter. However, the CBM will not be purely centered in summer. Also in spring and
fall, there will be CBM, although the critical maintenance condition is lowest in summer and
fall. This again shows that CBM cannot be postponed easily, as the chance of failure in the near
future is relatively high when observing early signs of failure.

Figure 6 illustrates how the results change when considering a setting with b = 5, which leads to
a MTTF of 1.2 years. One can now see that coordination with the seasons becomes harder, due
to the faster deterioration process. In Figure 6a it is shown that for lower values of ∆, the main
policy change is a higher critical maintenance age in spring. Intuitively, one waits more often
for maintenance until summer, as costs are then lowest. For higher levels of ∆, maintenance is
mainly done in summer and fall. Whereas in the setting with b = 1 maintenance was only done
in summer, we now also have maintenance in fall with the aim of preventing failure in winter.
Figure 6b shows that with a faster deterioration process, the critical maintenance condition only
changes for relatively high cost variations over the seasons. In fact, even with ∆ ∈ {40%, 50%},
CBM may still be optimal in every period. As seen before, the critical condition is higher in
winter and spring. These results illustrate that the effect of time-varying costs is dependent on
the deterioration process. When a component deteriorates slowly, coordinating maintenance with
the seasons is easier and will lead to higher benefits.

(a) Critical maintenance age (b) Critical maintenance condition

Fig. 5: Critical maintenance age and condition for p-CACRP with a = 1, b = 1, α = 1 year,
β = 2, c̄p = 10, c̄f = 50 and pobserved = 0.6
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(a) Critical maintenance age (b) Critical maintenance condition

Fig. 6: Critical maintenance age and condition for p-CACRP with a = 1, b = 5, α = 1 year,
β = 2, c̄p = 10, c̄f = 50 and pobserved = 0.6

6 Marginal cost analysis

One disadvantage of using a MDP to optimize the p-ARP, p-CRP and p-CACRP models is the
lack of interpretability. In practical applications, it is a major advantage if there are clear and
intuitive criteria on which the maintenance decision is based. Therefore, we will now discuss
maintenance policies that are based on a MCA.

6.1 Formulation of the Marginal Cost Approach

For this analysis, we will consider the model with m = 1, as this eases the computation of failure
rates. As the MCA takes a short-term perspective, we introduce the observed condition i∗2. The
new state space is thus i = (i1, i

∗
2, i3). We define i∗2 as:

i∗2 =


1, if no early signs of failure have been observed,
2, if early signs of failure have been observed,
3, if there is a functional failure.

(22)

Note that when no faults are observed, there may still be unobserved faults. In each scenario,
we consider two choices:

1. Replace the component preventively,

2. Replace the component upon failure or maintain preventively in the next period.

We now consider the marginal costs of choosing option 2 over option 1. The first option results in
the costs cp(i1), as we do PM. Opting for the second choice means that we wait one more period
before we perform PM. This results in the costs (1−r(i∗2, i3))cp(i1+1)+cf (i1+1)r(i∗2, i3), where
r(i∗2, i3) is the failure rate in condition i∗2 with age i3. If there is no failure, we only have the PM
costs in period i1 + 1, whereas we incur the CM costs cf (i1 + 1) if there is a failure. We now see
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that the marginal costs (MC) of waiting one more period before doing maintenance is

MC = cp(i1 + 1)− cp(i1) + (cf (i1 + 1)− cp(i1 + 1))r(i∗2, i3) (23)

We can now form a decision criteria based on a well-known economic principle. When minimizing
the average total costs, at the optimal point the marginal costs should equal the average costs.
After all, when the marginal costs are lower than the average costs, one can benefit from waiting
longer as this will decrease the overall average costs. On the other hand, when the marginal costs
are higher than the average costs, maintenance takes place too late as the total average costs are
now increasing. This leads to the following replacement criterium (RC):

RC = cp(i1 + 1)− cp(i1) + (cf (i1 + 1)− cp(i1 + 1))r(i∗2, i3)− g∗ (24)

Specifically, we will replace the component if RC ≥ 0, as in this case the marginal costs are higher
or equal than the average total costs. The total average costs will be estimated by considering
the average costs from a CACRP strategy.

6.2 Computation of the failure rates

For the computation of the failure rates, the discrete analog of the failure rate as described by
Dekker and Roelvink (1995) is used. The failure rate can be computed via

r(i∗2, i3) =
P(T = t)

P(T ≥ t)

= P(T = t | T ≥ t).

(25)

Nest, two different scenarios should be considered. In the first case, there have been no observed
signs of failure. The rate of failure now depends on both stages. There is only a chance of failure
if there has already been an unobserved transition to stage 2. Additionally, there should be a
transition from stage 2 into a state of functional failure over the next period. This gives:

r(1, i3) = (1− pobserved)P(T1 ≤ i3 − 1)p3,4. (26)

Note that P(T1 ≤ i3 − 1) can be calculated with the cdf of the Weibull distribution. In the
second scenario, one has observed signs of failure. This means that one can be certain that the
true condition is i2 = 2. Therefore, the failure rate is

r(2, i3) = p2,4. (27)

6.3 Constant cost setting

In this section, the results of the MCA under constant costs will be described. First, the marginal
costs of postponing maintenance will be analysed. Afterwards, the long-run average costs of the
MCA strategy will be compared to the costs of an ARP, CRP and CACRP approach.
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Marginal costs without observation of faults

Let us first consider the marginal cost function, after which the long-run average costs of a
MCA strategy are analysed. Figure 7 shows the marginal costs when having observed no signs
of failure for different parameter settings. The markers on the curves indicate at what age the
marginal costs equal the long run average costs based on a CACRP policy. At these points, TBM
should be performed according to the replacement criterion. One can see that the marginal cost
curves are increasing, which indicates that postponing maintenance becomes more costly when
a component is older. This is caused by a larger rate of failure, due to a higher probability of
having left stage 1 unobserved. Figure 7 shows that for larger values of b the curve becomes
steeper, as r(2, i3) is larger for any value of i3 ∈ I3. When α = 3 years, the average time spent
in stage 1 increases. Consequently, the marginal costs are lower for each age. When α = 1 year
and b = 1, the MCA indicates that TBM should never be done. The rate of failure in stage 2 is
relatively low, therefore the marginal costs of postponing maintenance when no faults have been
observed are lower than the long-run average costs.

Fig. 7: Marginal costs of postponing maintenance one period when no signs of failure have been
observed. The markers indicate the intersection with the long run average CACRP costs. Let
cp = 10, cm = 50, β = 2 and pobserved = 0.6.

Marginal cost after observation of faults

When signs of failure have been observed, one may choose for CBM. Table 7 displays the MC
and the RC for different parameter settings for stage 2. Note that in stage 2, the probability of
failure is independent of the age of a component. Table 7 shows that in every parameter setting,
the RC is positive. This indicates that CBM should be done whenever early signs of failure have
been observed. For higher values of a and b, the RC increases, which indicates that postponing
maintenance is more costly. This is caused by a faster deterioration process in stage 2, since an
increase in a or b leads to a decrease in E(T2).
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Table 7 Marginal cost (MC) and replacement
criterium when faults have been observed

a = 1 a = 3
b = 1 b = 3 b = 5 b = 1 b = 3 b = 5

MC 2.780 9.979 12.681 5.283 14.108 20.931
RC 1.487 8.267 10.775 3.742 12.156 18.823
Note. Let cp = 10, cm = 50, β = 2 and p = 0.6. The
marginal cost refers to the cost of postponing mainte-
nance one period.

Long-run average costs

Let us then compare the long-run average costs of the MCA to the ARP, CRP and CACRP
strategies. Table 8 shows the costs of each approach and the corresponding savings with respect
to a CM approach, for different parameter settings. The MCA obtains significant savings on the
CM costs, in each setting. When α = 1 and b = 1, the MCA strategy is the same as a CRP
approach, as TBM is never performed. For α = 1 and b = 3 or b = 5, the MCA approach
outperforms both the CRP and ARP strategies. For b = 3, the MCA approach is the same as
a CACRP approach, whereas it is slightly worse for b = 5. Last, the MCA approach performs
worse than the CRP approach for α = 3 and b = 3 or b = 5. This is caused by a relatively low
critical age when no signs of failure have been observed. On the other hand, it performs better
than the ARP approach for these parameter settings.

Table 8 Long run yearly average costs for a CRP, ARP, CACRP and MC approach, for
different parameter settings. Additionally, savings with respect to the CM policy are given.

α = 1 α = 3

b = 1 b = 3 b = 5 b = 1 b = 3 b = 5
CM costs 22.687 37.078 41.980 9.410 13.025 14.079

Costs Savings Costs Savings Costs Savings Costs Savings Costs Savings Costs Savings
CRP 17.747 21.78% 23.670 36.16% 25.163 40.06% 6.536 30.54% 7.948 38.98% 8.318 40.92%
ARP 16.978 25.16% 23.489 36.65% 26.622 36.58% 8.176 13.11% 10.533 19.13% 11.408 18.97%
CACRP 14.527 35.97% 18.508 50.08% 20.322 51.59% 6.394 32.05% 7.658 41.21% 8.048 42.84%
MCA 17.747 21.78% 18.508 50.08% 20.488 51.20% 6.402 31.97% 8.368 35.75% 9.763 30.66%

Note. Let cp = 10, cm = 50, α = 1 year, β = 2 and p = 0.6.

6.4 Time-varying costs

Let us now consider a MCA in a setting with time-varying costs. As with the MDP, the time
will be discretized into four seasons. We will first describe the marginal costs over the seasons,
after which the long-run average costs are presented for different degrees of cost variation.

Marginal costs

Figure 8 shows the marginal costs of postponing maintenance one period in a setting with time-
varying costs. Figure 8a gives the marginal cost when no signs of failure have been observed, for
different ages of a component. The marginal cost in is highest in fall and lowest in spring. When
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postponing maintenance from fall to winter, the costs increase, as maintenance is most expensive
in winter. On the other hand, the marginal costs are lowest when postponing maintenance in
spring, as the costs in summer are lowest. Figure ?? in Appendix A.6 provides a further analysis
of these marginal costs and shows the marginal costs of postponing maintenance when no signs
of failure have been observed with ∆ = 50%. In this setting, the differences between the marginal
costs across seasons increase. Figure 8b shows the marginal costs of delaying maintenance after
signs of failure have been observed, for several values of ∆. Again, the marginal costs are lowest
in spring and highest in fall. When ∆ is larger, the differences in marginal costs over the seasons
get larger, as there is more cost variation.

(a) No observation of signs of failure, ∆ = 20% (b) Observed signs of failure

Fig. 8: Marginal costs of postponing maintenance one period. We distinguish between a setting
where signs of failure have not been observed and a setting in which they have been observed.
Let a = 1, b = 1, α = 1 year, β = 2, c̄p = 10, c̄f = 50 and pobserved = 0.6

Long-run average cost In order to analyse the performance of the MCA strategy under time-
varying costs, we first consider the critical maintenance age and critical maintenance condition in
each season. Figure 9 displays the critical age and critical condition in each season for ∆ between
0% and 50%. Figure 9a shows that when ∆ is 20% or higher, the critical maintenance age is 0 in
fall and winter. This illustrates one of the disadvantages of a MCA approach. The RC compares
the costs of doing maintenance immediately and the costs of doing maintenance one period later.
It thus takes a short-term perspective and does not consider the option of doing maintenance
in the further future. The difference between PM costs in summer and fall is sufficiently high
for ∆ > 20%, such that it is the optimal choice to do PM in summer at age 0 when taking a
short-term point of view. Similarly, PM costs in winter are significantly higher than in fall, hence
even at age 0 the MCA indicates to do PM in fall.

Figure 9b shows that for ∆ ≤ 30%, maintenance is always done when signs of failure are observed.
For larger values of ∆, CBM is not done in spring. It is then postponed, due to the lower
maintenance cost in summer. Note that there is CBM in winter, which indicates that the CM
costs in spring are sufficiently high to warrant PM in winter.
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(a) Critical maintenance age (b) Critical maintenance condition

Fig. 9: Critical maintenance age and critical maintenance condition in each season. Let a = 1,
b = 1, α = 1 year, β = 2, c̄p = 10, c̄f = 50 and pobserved = 0.6

Table 9 shows the long-run average costs of the CACRP and MCA strategies under time-varying
costs. The results show that a MCA performs worse when incorporating time-varying costs. In
fact, generally the costs increase for ∆ ≥ 20%, compared to the constant cost setting. As described
before, this is caused by the short-term perspective of a MCA. Maintenance is performed even at
age 0, which leads to higher costs. The losses due to incorporating time-varying costs are lower
for larger values of b, since a component then deteriorates faster. When a component deteriorates
faster, it is more reasonable to do maintenance at a low age. Whereas the MCA performed well
under constant costs, one can see that the CACRP now outperforms the MCA by a large margin.
In Sect. 5.4 we saw that the CACRP gained savings by incorporating time-varying costs in a
model with m = 3. Table 9 shows that also for m = 1, the CACRP approach reaches savings for
every level of ∆.

Table 9 Yearly costs in thousands of euros and the corresponding savings with respect to the
constant cost model.

b = 1 b = 3 b = 5

CACRP MCA CACRP MCA CACRP MCA
∆ Costs Diff. Costs Diff. Costs Diff. Costs Diff. Costs Diff. Costs Diff.

0% 13.284 13.284 16.582 16.582 18.074 19.094
10% 12.893 -2.94% 13.084 -1.51% 15.992 -3.56% 16.323 -1.56% 17.450 -3.45% 17.450 -8.61%
20% 12.160 -8.46% 20.194 52.02% 15.173 -8.50% 21.303 28.48% 16.608 -8.11% 21.959 15.01%
30% 11.318 -14.80% 19.163 44.26% 14.301 -13.76% 20.182 21.71% 15.681 -13.24% 20.787 8.87%
40% 10.153 -23.57% 17.623 32.66% 13.393 -19.23% 19.290 16.33% 14.712 -18.60% 20.340 6.53%
50% 8.924 -32.82% 16.514 24.31% 12.369 -25.41% 17.966 8.35% 13.657 -24.44% 18.884 -1.10%

Note. In each model, cp = 10 and cf = 50. Let α = 1 year, β = 2, a = 1, b = 1 and m = 1.
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7 Conclusion

This paper has presented a combined TBM and CBM approach, which was analysed by using
both a discrete-time MDP and a MCA. We find that under constant costs, the CACRP policy
obtains savings over both the standard ARP and CRP approaches. When condition monitoring
is inaccurate, the CACRP policy prevents unobserved failures by scheduling TBM at a relatively
low critical age. On the other hand, if condition monitoring is accurate the CACRP strategy
only chooses for TBM at a high critical age, since most imminent failures are spotted by condi-
tion monitoring. Under time-varying costs, a p-ARP policy reaches more savings than a p-CRP
approach. In fact, when there is a high degree of variability in maintenance costs over the years,
a p-ARP policy generally results in lower costs than a p-CRP policy. Under time-varying costs,
the savings of the p-CACRP approach with respect to the p-ARP policy are smaller compared
to the constant cost setting.

A MCA provides more insight in the model and performs reasonably well in a constant cost
setting. However, in a setting with time-varying costs, a MCA is not suitable due to its short-
term view. When maintenance costs in the next period are significantly higher than the current
costs, a MCA will indicate that maintenance should be performed. However, this may not be
optimal, since maintenance costs will decrease again in future periods. For a setting with time-
varying costs, the MCA should be adapted such that it considers the cyclical cost pattern, which
is left to future studies.

Let us conclude by discussing two limitations of this study that lead to opportunities for future
research. First, this work considers one type of failure that is either observed or unobserved,
while in practice there are multiple types of failures. Each type of failure may occur at a different
frequency and may result in different maintenance costs, which is defined as a competing failure
process. Future research can focus on developing a combined TBM and CBM approach for a
competing failure process. In this setting, condition monitoring may only detect certain failures
and a combined TBM and CBM policy may reach savings by preventing functional failures due
to unobserved defects.

A second limitation of the present work lies in the modelling of condition monitoring. The results
indicate that the accuracy of condition monitoring is largely responsible for the effectiveness of
the CBM component of a policy. However, this work took a simplified approach by modelling the
accuracy of condition monitoring as the probability of observing a fault. A more sophisticated
approach is taken by Raza and Ulansky (2019), who model noise as a random process and
specifically consider false positives and false negatives. Future work can further analyse the
performance of a combined TBM and CBM approach, with a more detailed condition monitoring
model. This will result in a more thorough understanding of the effect of condition monitoring
on the optimal maintenance policy.
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A Appendix

A.1 Abbreviations

Wind turbine (WT)

Time-based maintenance (TBM)

Condition-based maintenance (CBM)

Age replacement policy (ARP)

Block replacement policy (BRP)

Condition replacement policy (CRP)

Combined age and condition replacement policy (CACRP)

Period-dependent age replacement policy (p-ARP)

Period-dependent block replacement policy (p-BRP)

Period-dependent modified block replacement policy (p-MBRP)

Period-dependent condition replacement policy (p-CRP)

Period-dependent combined age and condition replacement policy (p-CACRP)

Markov decision process (MDP)

Linear program (LP)

Marginal cost analysis (MCA)

Preventive maintenance (PM)

Corrective maintenance (CM)

Mean time to failure (MTTF)

A.2 Replication of Schouten et al. (2022)

In Table A1, the results of the replication of Table 2 on page 985 of Schouten et al. (2022) are
given. Further explanation is provided in Sect. 5.1.

Table A1 Yearly costs in thousands of euros and the savings with
respect to the constant cost case.

p-ARP p-BRP (m = 1) p-MBRP (m = 1)

∆ Costs Savings Costs Savings Months Costs Savings Months Ages

0% 40.098 41.501 40.311
10% 40.035 0.16% 41.420 0.20% 6, 11 40.263 0.12% 6, 11 4, 4
20% 39.701 0.99% 40.933 1.37% 6, 11 39.855 1.13% 6, 11 4, 4
30% 30.224 2.18% 40,316 2.75% 6, 10 39.338 2.41% 6, 10 5, 3
40% 38.461 4.08% 39.439 4.97% 6, 10 38.556 4.35% 6, 10 5, 3
50% 37.635 6.14% 38.446 7.31% 7, 10 37.773 6.30% 6, 10 5, 3
CPU <1 s <1 s 1 s

Note. Maintenance months are given for p-BRP and p-MBRP, with the
corresponding critical age for the p-MBRP model. In each setting we let
c̄p = 10, c̄f = 50, α = 1 year and β = 2.
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A.3 Time-varying cost specification

In this appendix, we will provide a more detailed view on the time-varying cost setting. When
we set the number of periods to 4 (N = 4), the costs are computed as follows:

cp(i1) = c̄p +∆c̄p cos
(
1

2
πi1 −

1

2
π

)
(A1)

cf (i1) = c̄f +∆c̄f cos
(
1

2
πi1 −

1

2
π

)
(A2)

Consequently, the highest costs are in period 1 (winter) and the lowest costs are in period 3
(summer). The costs in period 2 (spring) and period 4 (fall) are equal in this specification. To
assess the accuracy of this specification, we consider wind speeds over the seasons in IJmuiden. We
use daily data from (Royal Netherlands Meteorological Institute, 2022) to estimate the average
wind speed per season. The data contains the daily average wind speeds in IJmuiden, a city at
the coast in the Netherlands, from 1971 to 2022. Let us first consider the average wind speeds
per month. Figure A1 shows the estimated averages alongside a cosine fit.

Fig.A1: Average wind speed in IJmuiden over the months, with cosine fit. Estimated by using
daily data on wind speed between 1971 and 2022.

Let us now group the months by season, as this is applied in our analysis. We define the months
as follows:

• Winter: December, January and February
• Spring: March, April and May
• Summer: June, July and August
• Fall: September, October and November

Figure A2 displays the estimated seasonal average wind speed with a cosine fit. One can see that
compared to a monthly setting, some accuracy is lost. However, the cosine fit still seems to be a
reasonable specification.
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Fig.A2: Average wind speed in IJmuiden over the seasons, with cosine fit. Estimated by using
daily data on wind speed between 1971 and 2022.

A.4 Results in a constant cost setting

Table A2 displays the long-run yearly average costs for the ARP, CRP and CACRP maintenance
policies in a constant cost setting. Various values of b and pobserved are considered. Whereas in
Sect. 5.3 the results for α = 1 year were displayed, Table A2 gives the results for α = 3 years. A
comparison of the results for α = 1 year and α = 3 years is given in Sect. 5.3.

Table A2 Yearly costs in thousands of euros and the corresponding differences with respect to
the ARP benchmark model under constant costs.

b = 1
MTTF = 4.2 years

cT = 0.70

b = 3
MTTF = 3.4 years

cT = 0.85

b = 5
MTTF = 3.0 years

cT = 0.90
Benchmark ARP costs Benchmark ARP costs Benchmark ARP costs

7.243 10.004 11.044
CRP CACRP CRP CACRP CRP CACRP

pobserved Costs Difference Costs Difference Costs Difference Costs Difference Costs Difference Costs Difference
0* 12.018 65.93% 7.243 0% 15.647 56.41% 10.004 0% 16.589 50.21% 11.044 0%
0.2 10.830 49.52% 6.897 -4.78% 13.559 35.54% 9.316 -6.88% 14.227 28.82% 10.183 -7.80%
0.4 9.459 30.60% 6.481 -10.52% 11.334 13.29% 8.493 -15.10% 11.764 6.52% 9.169 -16.98%
0.6 7.860 8.52% 5.949 -17.87% 8.961 -10.43% 7.46 -25.43% 9.195 -16.74% 7.918 -28.30%
0.8 5.971 -17.56% 5.194 -28.29% 6.424 -35.79% 6.036 -39.66% 6.511 -41.04% 6.239 -43.51%
1 3.716 -48.70% 3.716 -48.70% 3.705 -62.96% 3.705 -62.96% 3.716 -66.35% 3.716 -66.35%

Note. In each model, c̄p = 10 and c̄f = 50. Let α = 3 years and β = 2, which gives E(T1) = 2.7 years. For stage 2
we set a = 1 and let b vary.
*A CRP model with pobserved = 0 is equivalent to a pure CM approach. The costs in this setting are thus the same
as doing no PM.

A.5 Results in a time-varying cost setting

Figure A3 gives the long-run yearly average costs for a p-ARP and p-CRP approach, for varying
values of ∆ and pobserved. In Figure 4 in Sect. 5.4 the costs are given with β = 2, whereas here

34



we consider β = 1. When β = 1, the p-ARP approach performs worse. This is caused by a higher
coefficient of variation, since the failure times are now less concentrated around one critical age.

Fig.A3: Long run yearly average costs for p-ARP and p-CRP approaches, for varying levels of
pobserved and ∆. Let β = 1, α = 1 year and a = 1.

Table A3 Yearly average costs of the p-ARP, p-CRP and p-CACRP policies.
∆ Method α = 0.5 α = 1 α = 3 β = 1 β = 2 a = 1 a = 2 b = 1 b = 3 b = 5 Average

0%
p-ARP 28.602 21.835 11.592 23.298 18.060 19.193 22.164 14.936 21.976 25.124 20.678
p-CRP 29.508 18.557 8.663 18.785 18.899 17.906 19.778 14.305 20.377 21.844 18.842
p-CACRP 24.735 16.910 8.461 18.152 15.252 15.852 17.552 13.195 17.659 19.252 16.702

10%
p-ARP 28.360 21.283 11.246 22.915 17.677 18.799 21.793 14.219 21.757 24.913 20.296
p-CRP 29.479 18.496 8.432 18.751 18.854 17.844 19.761 14.187 20.377 21.844 18.803
p-CACRP 24.497 16.541 8.221 17.915 14.924 15.550 17.289 12.887 17.361 19.011 16.420

20%
p-ARP 27.912 20.320 10.745 22.237 17.082 18.138 21.180 13.334 21.244 24.400 19.659
p-CRP 29.340 18.402 8.345 18.656 18.736 17.728 19.664 13.871 20.373 21.844 18.700
p-CACRP 23.912 15.900 7.781 17.388 14.340 14.952 16.776 12.165 16.837 18.592 15.864

30%
p-ARP 27.028 19.179 10.108 21.230 16.313 17.266 20.277 12.393 20.349 23.573 18.772
p-CRP 29.091 18.258 8.220 18.503 18.543 17.529 19.517 13.433 20.292 21.844 18.523
p-CACRP 23.186 15.125 7.322 16.741 13.681 14.278 16.143 11.326 16.227 18.079 15.211

40%
p-ARP 25.756 17.881 9.320 20.050 15.255 16.129 19.176 11.403 19.105 22.449 17.652
p-CRP 28.790 18.057 8.049 18.315 18.283 17.257 19.340 12.983 20.102 21.810 18.299
p-CACRP 22.325 14.205 6.859 15.992 12.934 13.515 15.411 10.399 15.533 17.456 14.463

50%
p-ARP 24.049 16.531 8.431 18.746 13.928 14.832 17.842 10.365 17.680 20.967 16.337
p-CRP 28.329 17.819 7.823 18.038 17.942 16.915 19.066 12.559 19.775 21.638 17.990
p-CACRP 21.244 13.190 6.389 15.181 12.034 12.645 14.570 9.462 14.706 16.655 13.608

Note. The costs for each parameter are averaged over the other parameters. Let pobserved = 0.6, c̄p = 10
and c̄f = 50.
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Table A3 shows the long-run yearly average costs of the p-ARP, p-CRP and p-CACRP approach,
under various parameter settings. For each parameter setting, the costs are averaged over each
combination of the possible values of the other parameters. The results shows that the gamma
parameter b has the highest impact on the costs. For b = 1, the lowest costs are obtained, as
this will give the slowest deterioration process. Furthermore, we see that the p-CACRP policy
generally gives significant savings over the p-ARP and p-CRP strategies.

A.6 Marginal cost analyis

Figure A4 displays the marginal costs of postponing maintenance for one period, when no signs
of failure have been observed. In Figure 8a in Sect. 6.4 these marginal costs are reflected for
∆ = 20%, whereas we now consider ∆ = 50%. One can see that the shape of the curve is similar
for ∆ = 20% and ∆ = 50%. However, for ∆ = 50% the differences between the seasons are
larger. One should note that the marginal costs in fall are higher than in summer. To explain
this, we consider the marginal cost criterion (as in (23)):

MC = cp(i1 + 1)− cp(i1) + (cf (i1 + 1)− cp(i1 + 1))r(i∗2, i3)

Both when postponing maintenance from summer to fall and from fall to winter, the PM costs
and CM costs increase. However, in winter the difference between PM costs and CM costs is
largest. Therefore, the marginal costs are largest in fall, as the term cf (i1 + 1) − cp(i1 + 1) is
largest. Intuitively, this illustrates that we want to avoid performing corrective maintenance in
winter, as this is highly costly. A similar analysis holds when comparing the marginal costs in
spring and winter.

Fig.A4: Marginal costs of postponing maintenance one period, when signs of failure have not
been observed. Let ∆ = 50%, a = 1, b = 1, α = 1 year, β = 2, c̄p = 10, c̄f = 50 and pobserved = 0.6
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