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Abstract

This thesis examines the relationship between idiosyncratic risk and expected stock
returns from stocks listed on the STOXX Europe 600 index in the period of Jan-
uary 2014 until December 2021. Previous literature has shown that both negative
and positive relationships have been found between idiosyncratic risk and expected
stock returns in the cross section. Initially a negative relationship was established.
However, when applying a before and during the COVID-19 pandemic split in the
sample, to explore the effects of this pandemic on the relationship, the coefficient
for idiosyncratic risk switches from significant negative to insignificant positive dur-
ing the pandemic. Furthermore, this thesis corroborates the findings of Guo et al.
(2014) by showing that EGARCH models, with Fama French three factors as the
mean process, to estimate the out-of-sample expected idiosyncratic risk, do not have

any explanatory power for expected stock returns in the cross section.

Keywords: idiosyncratic risk, EGARCH, cross-sectional returns, STOXX 600 Eu-

rope, Fama-French three factors
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1 Introduction

According to the Capital Asset Pricing Model, CAPM (Sharpe, 1964), investors keep
the efficient mean—variance market portfolio in equilibrium. This model predicts a linear
relationship between expected returns and systematic risk, but idiosyncratic risk plays no
role. CAPM provides no prediction on the role of idiosyncratic risk in under-diversified
investor scenarios.

Diverse hypotheses, assumed by investors under diversification of their portfolios, led
to the conclusion that the idiosyncratic risk of stocks is positively correlated with the
expected returns of stocks in the cross section. Merton (1987) was among them. He
expanded the CAPM and proposed a model that implied under-diversification among
investors. He suggested that if investors are not able or unwilling to retain the market
portfolio, they would consider overall risk in their asset allocation decisions and demand
greater returns for stocks with more idiosyncratic risk to compensate for poor diver-
sification. Ultimately, Merton (1987) discovered that idiosyncratic risk was positively
correlated with expected stock returns.

Campbell et al. (2001) and Kearney & Poti (2008) demonstrated that the idiosyncratic
risk of stocks has grown in recent years, meaning that modern portfolios require more
stocks to diversify away from idiosyncratic risk. Nonetheless, according to Goetzmann
& Kumar (2008), the majority of U.S. individual investors, in their sample from 1991 to
1996, held under-diversified portfolios. Goetzmann & Kumar (2008) indicated that 25% of
investor portfolios comprised only one stock, while less than 10% of investor portfolios had
ten or more stocks. It remains an empirical problem to accurately predict idiosyncratic
risk, hence making it more difficult for modern investors to be completely diversified.

Various approaches to quantify expected idiosyncratic risk and to examine its empirical
relationship with expected returns yielded contradictory results. Ranging from negative
to positive to having no correlation. Fama & French (1993) employed cross-sectional
regressions on a monthly basis and rejected the importance of idiosyncratic risk in the
cross-section of returns. Malkiel & Xu (2002) extended the data of Fama & MacBeth
(1973) and found that idiosyncratic risk is priced positively.

Ang et al. (2006) found that the relationship between monthly stock returns and
the one-month lagged idiosyncratic volatilities is negative. These idiosyncratic volatilities
were used in their research as proxies for idiosyncratic risk of the specific stocks. Fu (2009)
on the other hand, did not agree that the one-month lagged idiosyncratic volatilities are
good proxies for the expected value as they are time-varying. He pointed out that the
relationship between idiosyncratic risk and expected returns should be contemporary. Fu
(2009) showed that idiosyncratic risk was time-varying. He stated that models using

lagged idiosyncratic risk as a proxy for its expected value are wrong. Instead, Fu (2009)



used exponential GARCH (EGARCH) models for estimating the expected idiosyncratic
volatilities and found a positive relation with the expected stock returns.

Due to the look-ahead bias it causes, Guo et al. (2014) criticized EGARCH models us-
ing in-sample estimations (particularly Fu, 2009). The maximum likelihood approach is a
typical strategy for estimating an EGARCH model. The resultant log likelihood function
will incorporate contemporaneous returns even if the model technical specification only
uses lagged idiosyncratic volatility and historical stock returns. By establishing a “truly”
out-of-sample idiosyncratic volatility, they were able to demonstrate that there is no sig-
nificant positive association between anticipated idiosyncratic risk and stock returns. But
it is crucial to stress that neither the findings of Ang et al. (2006, 2009) nor the common
asset pricing models are supported by the results. It is possible that the relationship is in
fact positive, however measuring idiosyncratic risk with EGARCH models, as undertaken
by Fu (2009), produce a bias that renders the conclusions untrustworthy.

Further in time, the research of Poudeh et al. (2022) examined the influence of the
COVID-19 pandemic on the relationship between idiosyncratic risk and expected stock
returns at the portfolio and company levels. Portfolio analysis and cross-sectional re-
gression findings revealed that throughout the pandemic era, the relationship between
idiosyncratic risk and subsequent stock returns shifted in a negative to a positive direc-
tion.

With various conclusions regarding idiosyncratic volatility and its relationship to ex-
pected stock returns, opinions on the use of EGARCH models and their explanatory
power for expected stock returns, and findings pertaining to the COVID-19 pandemic,

this thesis tries to answer the following research questions:

1. How does idiosyncratic risk relate to expected stock returns in the European stock

market?

2. How does idiosyncratic risk relate to expected stock returns in the European stock
market before and during the COVID-19 pandemic?

3. Does EGARCH with out-of-sample estimated idiosyncratic risk has explanatory

power for expected stock returns in the European stock market?

4. Does a zero-investment portfolio alternating between short and long positions with
low and high estimated EGARCH idiosyncratic risk provide a positive or negative

return?

When taking into account that many individual investors still have under-diversified
portfolios which therefore contain idiosyncratic risk, the primary focus of this thesis is
to ascertain whether investors are rewarded when they bear idiosyncratic risk in their

portfolios. The results discovered in this thesis thereby can be relevant for multiple



reasons. First, the results support earlier studies on idiosyncratic risk that have been
conducted using a variety of samples from developed and emerging markets throughout the
world. Also it supports literature that criticises the use of EGARCH in-sample estimations
and proposes out-of-sample estimations. Second, empirical research on the empirical
relationship between conditional idiosyncratic volatility and predicted stock returns using
a European market sample is scarce to nonexistent, making this theory a research frontier
for this specific topic in Europe. Being the research frontier, these findings thereby can
also be used to stimulate further research on the potential relationship with a larger
European stock sample. Finally, the results give evidence that investors on European
stock markets are not rewarded for bearing idiosyncratic risk, in contrast to investors on

other stock markets.

This thesis proceeds as follows: In Section 2, a literature review addresses research
of idiosyncratic volatility, the effects of COVID-19 pandemic on the relationship and
the use of EGARCH models followed by the development of my hypothesis. Section 3
describes data and methodology. All empirical results are presented in Section 4. Section

5 addresses robustness checks. Section 6 provides a conclusion.

2 Literature Review

2.1 Idiosyncratic risk and expected returns

Modern portfolio theory suggests that investors should maintain a portfolio of stocks
in order to diversify their exposure to idiosyncratic risk. Based on this portfolio theory,
the capital asset pricing model, CAPM (Sharpe, 1964) predicted that all investors will
maintain a balanced market portfolio. Based on CAPM’s premise of perfect indivisibility
of an investment and the lack of transaction costs in the stock markets, Levy (1978)
derived a theoretical conclusion stating that each investor possesses all market-available
securities in his portfolio. He discovered that this notion was inconsistent with reality.

Another now well-known theory was discovered by Merton (1987). His fundamental
assumption was that acquiring information about stocks was costly, making it neither
desirable nor realistic for investors to monitor every security on the market. Consequently,
investors maintain under-diversified portfolios and seek compensation for the peculiar
idiosyncratic risk of their securities. In the cross section, Merton (1987) predicted a
positive relationship between idiosyncratic risk and expected stock returns.

Malkiel & Xu (2002) discovered that idiosyncratic risk is more influential than beta or
other size metrics in explaining the cross section of returns. In addition, they discovered a
positive relationship between idiosyncratic risk and expected returns in the cross section.

Levy (1978), Merton (1987) and Malkiel & Xu (2002) showed that under-diversified



investors demanded compensation for the idiosyncratic risk of the securities in their port-
folios. At that time, all of their studies indicated that the idiosyncratic risk was positively
correlated with the predicted returns of securities in the cross section. However Ang et
al. (2006) made an end to this assumption. Their results proved the complete opposite
of earlier studies described above. In their sample of US stocks from 1963 to 2006, they
observed that stocks with high idiosyncratic volatility predicted the following month’s
relatively low returns on average. Although there was a high association between idiosyn-
cratic risk and predicted returns in the cross section, it nevertheless showed a negative
relationship. Exposure to aggregate volatility risk was insufficient to explain this pattern.
Also, the influences of size, book-to-market, momentum, and liquidity were insufficient to
explain this event. Ang et al. (2006) called this phenomenon considering the results on
idiosyncratic risk “a substantive puzzle”.

Ang et al. (2009) investigated whether or not this substantive problem from their 2006
study could be applied to an international sample. They analyzed information from 23
developed nations for the period 1980 and 2003. In contrast to their techniques in Ang et
al. (2006), they conducted Fama-MacBeth regressions as opposed to building portfolios
and discovered a negative relationship.

Not long after the studies of Ang et al. (2006, 2009), Fu (2009) was the one who
showed the implications that led to the opposite results of their research. By conducting
Dikecy-Fuller tests, Fu (2009) showed that idiosyncratic volatility, that was used in the
research of Ang et al. (2006), was not following a random walk process. The results of the
Dickey-Fuller tests indicated that the negative relationship between one-month lagged id-
iosyncratic volatility and average returns from Ang et al. (2006) did not imply a negative
relationship between idiosyncratic risk and expected stock returns. Fu (2009) assumed
that one-month lagged idiosyncratic volatility was not the most accurate representation
of expected idiosyncratic risk. Consequently, he utilised exponential generalised autore-
gressive conditional heteroskedasticity (EGARCH) models to estimate the predicted id-
iosyncratic volatility, thereby capturing the time-varying aspect of idiosyncratic risk that
Ang et al. (2006) neglected. Fu (2009) performed Fama-MacBeth regressions on monthly
stock returns based on EGARCH estimations and other company characteristics which,
proven by Fama & French (1992), are known to have descriptive power for cross-sectional
returns. With this method, Fu (2009) found a significant positive relationship between
the EGARCH estimated conditional idiosyncratic volatilities and expected returns for the
same time period as Ang et al. (2006). Due to its potentially large contribution to the
study of idiosyncratic risk, the EGARCH model technique has been frequently embraced

in empirical studies! linked to this topic.

IFor example: Spiegel & Wang (2005), Eiling (2006), Brockman et al. (2007),0Okpara & Nwezeaku
(2009), Huang et al. (2010), Bley & Saad (2012a), De Mendonga et al. (2012) and Perera & Ediriwickrama
(2020)



However, according to Guo et al. (2014), when using the EGARCH idiosyncratic
volatility approach, a look-ahead bias is introduced by incorporating the month ¢ in
the estimation of EGARCH model parameters. These parameters are used to construct
the expected month ¢ idiosyncratic volatility. In relatively small samples, Guo et al.
(2014) indicated that this in-sample EGARCH idiosyncratic volatility can have a high
dependency on the contemporaneous stock return. When the month ¢ return is included
in the estimation of EGARCH model parameters, the EGARCH idiosyncratic volatility
of month ¢ has an upward bias when the magnitude of month ¢ is large. Given that the
cross section of stock returns is positively skewed (Duffee, 1995), the positive correlation
between the bias in in-sample EGARCH idiosyncratic volatility and predicted returns
predominates in historical stock returns, resulting in a possible spurious predictability
of cross-sectional stock returns generated by the look-ahead bias. Guo et al. (2014)
replicated the results of Fu (2009) and showed that indeed the expected idiosyncratic risk
is positively related to returns. However, when they substituted the in-sample EGARCH
idiosyncratic risk with their own out-of-sample forecast of EGARCH idiosyncratic risk,
the relationship became negative and lost its predictive potential for the cross section of

stock returns.

2.2 International evidence on idiosyncratic risk and expected

returns

While the majority of research on the cross-sectional relationship between idiosyncratic
risk and expected stock returns has been conducted in the United States, the relationship
has also been examined in other developed as well as emerging markets. For example,
Okpara & Nwezeaku (2009) examined whether or not idiosyncratic risk may be priced on
the Nigerian stock exchange market. They followed the research methods of Fu (2009),
except that they used CAPM model with market beta to predict the variance of residuals.
Their results showed that the stock’s expected return is a positive and significant function
of beta risk, implying that only the systematic risk is priced in the listed companies in
Nigeria. Furthermore, Okpara & Nwezeaku (2009) found a negative and significant co-
efficient of idiosyncratic risk, estimated by EGARCH models.De Mendonga et al. (2012)
also used the same research methodology as Fu (2009) and found a significant positive re-
lationship between idiosyncratic risk, estimated by EGARCH models, and expected stock
returns in the Brazilian market. Bley & Saad (2012a) investigated the pricing of idiosyn-
cratic risk of seven frontier markets in six Gulf Cooperation Council (GCC) countries.
Bley & Saad (2012a) provided evidence that stocks in the GCC with high idiosyncratic
risk experienced a contemporaneous positive relationship with expected returns. They

found a significant negative relationship between expected returns and one-month lagged



idiosyncratic risk for only a few of these frontier markets. But when Bley & Saad (2012a)
estimated idiosyncratic risk with EGARCH and AR models, the relationship turned pos-
itive.

Al Rahahleh et al. (2016) discovered a significant correlation between idiosyncratic risk
and expected stock returns for Singaporean morally deficient vetted stocks. They observed
that over their sample period the portfolio of stocks with the highest idiosyncratic risk
generated higher average returns than the portfolio of stocks with the lowest idiosyncratic
risk.

Kinnunen & Martikainen (2017) evaluated the price of idiosyncratic risk using MIDAS
regression and a cross section of Russian industrial stock portfolios. In their initial sample
period (before to the 2008-2009 financial crisis), they discovered that idiosyncratic risk was
inversely correlated with anticipated returns. It attracted a negative annual risk premium.
However, in their second sample period (after the financial crisis), they discovered a strong

positive correlation.

2.3 European Stock Markets

Although there has not been a significant amount of research on the relationship
between idiosyncratic risk and expected returns for the largest European stock markets,
there are a few papers which explored a number of intriguing subjects relevant to this
thesis. Similar to Campbell et al. (2001), Kearney & Poti (2008) observed an increase in
the idiosyncratic volatility of European stocks. The findings of Kearney & Poti (2008)
show that over time, European stock investors will require a greater number of stocks to
diversify away idiosyncratic risk.

Furthermore, Angelidis & Tessaromatis (2008) aimed to determine whether or not id-
iosyncratic risk can predict stock returns for ten European stock markets. They discovered
no evidence that idiosyncratic risk, whether equally or value weighted, may predict future
market performance. Angelidis & Tessaromatis (2008) evaluated the relationship between
idiosyncratic risk and subsequent stock returns in the 10 European markets by regressing
value-weighted excess monthly market stock returns on a series of lagged volatility met-
rics. With equally-weighted idiosyncratic risk, they discovered a negligible relationship
between market returns in practically every European market. Similar outcomes were
observed with value-weighted idiosyncratic risk.

Annaert et al. (2022) contributed to the growing international evidence on the negative
relationship between idiosyncratic risk and expected returns. They estimated idiosyn-
cratic risk with the four factor model (Carhart, 1997) and found a statistically significant
negative coefficient for the idiosyncratic risk premium among stocks in the European

region.



2.4 The COVID-19 Pandemic

Recently a worldwide market decline occured during the start of 2020 as a result of
the COVID-19 outbreak that developed into a pandemic. Poudeh et al. (2022) studied
the effect of the COVID-19 pandemic on the relationship between idiosyncratic risk and
expected stock returns in the US market. Using portfolio analysis and cross-sectional
regressions, they discovered that the relationship between idiosyncratic risk and contem-
poraneous stock returns became positive (from negative) after the pandemic (during the
pandemic). In addition, they discovered that the link is resilient to both the skewness of
both periods. While there has not been any research on this phenomena for the European
region, the results of Poudeh et al. (2022) might indicate that in Europe this could be the

case as well.

2.5 Asset Pricing Models

Explaining cross-sectional stock returns is characterized by difficulty throughout the
years and there is still a lot of debate on which factors should be included and which
should not. The CAPM proposed that stock returns are positively correlated with the
market return minus the risk-free rate. Fama & French (1993) expanded the CAPM
model by adding size risk and value risk factors. These modifications enabled the model
to account for the vast majority of the cross-sectional variance in average stock returns.
Throughout the years, the Fama-French three factor asset pricing model has been utilised
extensively in scientific research and for evaluating management performance.

Due to its simplicity and proven explanatory power, the three-factor model serves as
the baseline model for estimating expected stock returns in this thesis. By utilising the
three factor model, this thesis was consistent with the methods used by Ang et al. (2006,
2009) and Fu (2009) for estimating stock returns and generating a proxy for the monthly

idiosyncratic risk.

2.6 Hypothesis Development

In this thesis, the main objective is to find out if investors in European stock markets
are compensated for bearing idiosyncratic risk in their portfolios in the period from 2014
to the end 2021 and if the use of EGARCH models for estimating next month’s has
explanatory power for expected returns. I used the same methodology as Fu (2009)
except that I used a different estimation approach with EGARCH models. To conduct
this thesis I formulated my hypotheses, developed from my research questions and the

literature reviewed. The hypotheses are as follows:



e Hypothesis 1: Idiosyncratic risk and expected stock returns in the cross-section

will be negatively related over total time period.

e Hypothesis 2: Idiosyncratic risk and expected stock returns in the cross-section
will be negatively related before the COVID-19 pandemic.

e Hypothesis 3: Idiosyncratic risk and expected stock returns in the cross-section

will be positively related during the COVID-19 pandemic.

e Hypothesis 4: Expected idiosyncratic risk, derived from out-of-sample
EGARCH model estimations, and expected stock returns will have no significant

relation.

e Hypothesis 5: A strategy of going short on a portfolio of low next month’s expected
tdiosyncratic volatility and going long on a portfolio of high next month’s expected

1diosyncratic volatility, will yield no significant positive monthly return.

My first hypothesis is developed based on the findings of Annaert et al. (2022). The
second and third are developed on the findings of Poudeh et al. (2022) as one has to take
into account that my sample period contains the period where the worldwide COVID-19
pandemic took place.

Notwithstanding the literature referenced above, the question remains what the real re-
lationship between idiosyncratic volatility and expected returns should be. With EGARCH
models, many studies attempted to forecast the idiosyncratic risk but made a common es-
timation mistake which accidentally introduced a look-ahead bias. My fourth hypothesis
is therefore based on the evidence from Guo et al. (2014) who discovered that the findings
of Fu (2009) were not reliable and should have been based on out-of-sample estimations.
They criticized studies based on EGARCH in-sample estimations as these result in a look
ahead bias. When accounting for out-of-sample estimation, Guo et al. (2014) found a
negative coefficient for expected idiosyncratic risk with no predictive power for the same
data sample as Fu (2009).

My fifth hypothesis is dependent on the fourth hypothesis. This means that if my
fourth hypothesis is true, then so will be my fifth. However, I have formulated these hy-
potheses separately because I think it is important to analyse, not only from the company

level, but also from the portfolio level.

3 Data and Methodology

3.1 Data

The data used to conduct this research is obtained via Refinitiv Eikon which contains

databases from Datastream. The data comprises daily and monthly adjusted closing
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prices, monthly market capitalization and monthly price-to-book ratios of the companies
listed on STOXX Europe 600 index during the period of January 2009 to December 2021.
Adjusted closing prices are the closing prices after adjusting for corporate actions such
as dividend payouts. The STOXX Europe 600 Index is derived from the STOXX Europe
Total Market Index and is a subset of the STOXX Global 1800 Index (TMI). The Index
includes major, medium, and small capitalisation companies from seventeen countries?
located in the European region. Although, the Index has a fixed number of 600 companies
with a yearly rebalancing, I include all stocks that were listed on STOXX Europe 600
Index during the period of January 2014 to December 2021, resulting in 829 stocks in
total. From these 829, I selected stocks that are based on multiple criteria. First of all,
I selected stocks of companies which traded actively for the entire period under review
and not stike out. By doing this I was left with stocks that give daily adjusted closing
prices for the whole period and do not contain missing values for certain months. Second,
I removed stocks where market capitalisation occurred to be negative during the sample
period. Third, I excluded all companies in the financial sector, taken into account the
arguments from Fama & French (1992). They stated that financial companies typically
experience high leverage which is normal for these kind of companies but is not normal for
other non-financial companies. High leverage in non-financial companies usually indicates
distress and therefore results may be distorted if financial companies are included in the
sample. The application of the foregoing criteria resulted in 366 stocks that are used for
this research. Furthermore, I used the Fama-French three factors that Kenneth R. French

made available on his Web site®.

3.2 Methodology

My research seeks to determine if under-diversified investors are rewarded for taking
on idiosyncratic risk. Idiosyncratic risk indicates the volatile character of firm-specific in-
formation. From a theoretical standpoint, the risk and return trade-off should be contem-
porary. Investors gain returns during periods in which they take risk. As a natural proxy
for idiosyncratic risk, if idiosyncratic volatility is priced in, it is anticipated that a posi-
tive empirical relationship between expected return and predicted idiosyncratic volatility
would be found. However, neither of these can be observed. In cross-sectional regressions,
it is common to utilise the realised return as the dependent variable in accordance with
Fu (2009). On the right-hand side of the regressions, (expected) idiosyncratic volatility

and control variables are placed.The equations for the regressions are given below.

2 Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Luxembourg, the Netherlands,
Norway, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom
3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Riy = Bo+ B1E:1[IVOL; 4] 4 Boln(MV ), + + BsIn(B/M);+ + € (1)

Rit =7+ MIVOL;; + In(MV); s + v3In(B/M); ;s + €4 (2)

1 i,t
| :
R’L,t n (H7t1) (3)

The dependent variable in equations (1) and (2), is the realized return for a stock i in

period t. Returns are calculated with the natural logarithm difference as in equation
(3) because natural logarithm returns have a smaller skewness than simple returns. P,
and P,_; are the monthly adjusted closing prices of a stock. The difference between the
two equations is that in the first equation the expected idiosyncratic volatility is used
while in the second equation the actual idiosyncratic volatility is used. In equation (1),
E;_1[.] stands for the function of expectation conditional on all information until ¢-1.
E: 1[IVOL;,] thus stands for the expected idiosyncratic volatility for stock i at time
¢t conditional on all information until ¢-1. In equation (2), IVOL;; thus stands for the
actual idiosyncratic volatility for stock ¢ at time £. For the control variables, I have chosen
company size (market capitalization), In(MV'), and book-to-market ratio, In(BM ), based
on the paper of Fama and French (1992).

3.2.1 Estimation of idiosyncratic volatility

By definition, idiosyncratic risk is unrelated to market fluctuations. Following the
methodology of Ang et al. (2006, 2009), I estimated the specific stock’s idiosyncratic
risk as follows. Daily excess returns of the individual stock were regressed on the daily

Fama-French three factors in every month of every year:
1. (R - ry), the excess return on a broad market portfolio.

2. SMB (small minus big), the difference between returns of portfolios existing of small

and portfolios existing of big stocks

3. HML (high minus low), the difference between returns of portfolios existing of high
book-to-market ratio stocks and portfolios existing of low book-to-market ratio

stocks.

Rir —rpr=ao+bit(Rms —15r) +8i0SMBr + hy (HM L, + € - (4)

)
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The subscript for the day is 7, while the subscript for the month is ¢, where 7 € t. The
factor sensitivities per stock are b;, s; and h;. The idiosyncratic volatility of an individual
stock is estimated as the standard deviation of the regression residuals. This standard
deviation of daily return residuals is transformed into a monthly standard deviation by
multiplying the daily standard deviation by the square root of the number of trading days

in month ¢, formulated as n;.

IVOL;, = \/ Var (Z egT) -/ (5)

In Table 1, descriptive statistics are shown of idiosyncratic volatility (I/VOL). In the pooled
sample of 35,121 stock-month observations (96 for each stock), the mean of the monthly
idiosyncratic volatility is 5,57% and the standard deviation is 2.92%.

Table 1: Time-series properties of idiosyncratic volatility

Variable N Mean Std dev. Autocorrelation at lags
1 2 3 4 5
IVOL 35,121 5.57 2.92 0.344 0.29 0.25 0.17 0.14

Note: This table summarises the time-series property of individual stock idiosyncratic volatilities. The
autocorrelations are the mean statistics across all 366 stocks.

3.2.2 Idiosyncratic volatility process

In their study, Ang et al. (2006) assumed that the idiosyncratic volatility process of
a stock may be represented by a random walk process. This means that the first order
autocorrelation should be one and then followed by zeros for all other lags. Based on the
average autocorrelation at lags one to five, shown in Table 1, evidence is provided that
this random walk hypothesis for the average stock’s idiosyncratic volatility process is not
suitable.

Furthermore, I conducted Dickey-Fuller tests on the estimated monthly idiosyncratic
volatilities. According to the average results of these tests, shown in Table 2, I reject
the null hypothesis of a random walk in 89% of the stocks. These results also show that
the idiosyncratic volatility process of a common stock cannot be represented as a random
walk. Consequently, the one-month lagged idiosyncratic volatility of a stock might result
in significant measurement errors when used to estimate the volatility for the following

month.
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Table 2: Idiosyncratic volatilities Augmented Dickey-Fuller tests

Variable N t-stat p-value Crititcal Values Rejected

1% 5% 10%

I1VOL 35,121 -5.68 0.02 -3.47 -2.88 -2.58 89.07%

Note: This table presents average statistics of the cross-sectional t-statistics, p-values and critical values
of the Augmented Dickey-Fuller tests conducted on all 366 companies individually. The last column
presents the percentage of companies for which the null hypothesis is rejected.

3.2.3 Estimation of expected idiosyncratic volatility

The results in Table 1 and 2, suggest that in order to represent the time-varying feature
of idiosyncratic volatility, a better model is required. Following Fu (2009), I made use
of EGARCH models and tried to achieve this objective, except that I used out-of-sample
estimations instead of in-sample, taken into account the arguments from Guo et al. (2014).

Engle (1982), presented the autoregressive conditional heteroskedasticity (ARCH)
model to depict a series of which the volatility is changing. He demonstrated that this
approach was useful for modelling the time-series behaviour of financial variables, namely
financial market data. The ARCH model was so appealing due to its simultaneous esti-
mation of the mean and variance processes. If this model is applied to stock returns, it
assumes that investors adjust their estimations of the mean and variance of returns every
period to account for return shocks from the previous period.

The ARCH model was extended to the generalised autoregressive conditional het-
eroskedasticity (GARCH) model by Bollerslev (1986). The GARCH model added an
autoregressive component to the ARCH procedure by permitting the conditional variance
to rely on both earlier innovations and their delays. Nonetheless, the GARCH model
requires symmetry in its estimations, which is not the case for stock returns due to the
well-known leverage effect. This effect, which was initially described by Black (1976),
implies that he distribution of stock returns is often negatively biased. It refers to the ob-
served correlation between a stock’s volatility and its returns being negative. As a result,
researchers devised asymmetric GARCH models as a solution to this issue, which made
it feasible to capture the asymmetric feature of stock returns. The exponential GARCH
(EGARCH) model was proposed by Nelson (1991), the GJR-GARCH model by Glosten
et al. (1993), and the TGARCH model by Zakoian (1994). The EGARCH model utilises a
logarithmic equation and adds a new component that enables the model to respond more
or less to negative shocks than to positive shocks. Both the GJR-GARCH and TGARCH
models employ an indicator function that enables them to respond to negative shocks to

varying degrees. These three models have been frequently utilised for predicting volatil-

12



ity, and several studies have demonstrated that they yield accurate projections of stock
returns.

For this thesis, I have chosen for the use of EGARCH models to model idiosyncratic
volatilities. This model has been favored the most for the estimation of expected idiosyn-
cratic volatility in many studies®. T used 9 different EGARCH(p, ¢) models, in which
1 <p<3and 1< q<3. The forms of the constructed the EGARCH(p, ¢) models are

shown below:

Ri,t —Trt = Qo + Bi,t(Rm,t — Tf,t) + S,‘SMBt + hZHMLt + €i,ts
€it ™ N(O7 Uiz,t)a

€it—k

05 t—k Oit—k

1 Oélt‘l—szltln ’Lt 1 _I_chk‘t{ <Ezt k)+,y

The Fama-French three-factor model characterises the monthly return process, shown in
equation (6). It is assumed that the idiosyncratic return ¢;; at time ¢ has a serially inde-
pendent normal distribution with a mean of zero and the variance of ;7. The conditional
variance o;7 follows an EGARCH process, shown in equation (7). It is dependent on pre-
vious periods of residual variance (p) and return shocks (¢). Permutation of orders p and
q yields nine different EGARCH models: EGARCH(1, 1), EGARCH(1, 2), EGARCH(1,
3), EGARCH(2, 1), EGARCH(2, 2), EGARCH(2, 3), EGARCH(3, 1), EGARCH(3, 2)
and EGARCH(3, 3). Each model is separately applied to every stock in the sample. In
other words, nine estimates for conditional idiosyncratic volatility in month ¢+1 will be
produced if the idiosyncratic volatility process of a stock for month ¢ converges under all
nine models. Consequently, the estimate with the lowest Akaike Information Criterion
(AIC) will be selected. I also employed the Bayesian Information Criterion (BIC) in ad-
dition to the AIC, although the final findings were insensitive to the alternative selection
criteria.

The goal was to estimate the conditional variance O'it 41 With an out-of-sample esti-
mation using parameters constructed from all data up to month ¢, shown in equation (8).
The expected idiosyncratic volatility for month ¢+1 has been derived as in equation (9).

)

€it+1—k

€; k
In ( zt+1 azt"_zbzltln Oit41-1 +Zczkt{ < 41— )+’y

Oit+1—k

|
|

Oit+1—k

4For example: Spiegel & Wang (2005), Brockman et al. (2007) and Fu (2009)
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Fu (2009) used the full period data to estimate parameters of the EGARCH models
(expanding window) with the requirement of at least 30 monthly return observations to
estimate EGARCH models. However, I followed Spiegel & Wang (2005) with respect to
the requirement of at least 60 monthly return observations. Their motivation takes into
account Lundblad (2007), who stressed the need of a large number of data for obtaining
more exact parameter estimates in GARCH-type nonlinear models. This implies that the
EGARCH parameters, used for the forecasting of conditional idiosyncratic volatility at
month ¢, are estimated from all data up through month ¢-1.

The mean of the expected idiosyncratic volatility (E(/VOL)) is 5,63% and has a stan-
dard deviation of 3,67%. I excluded 15 observations that had an expected idiosyncratic
volatility greater than 100%. The number of excluded observations only account for 0.04%
of the whole sample. The correlation between the realized idiosyncratic volatility (/VOL)
based on my method and the expected idiosyncratic volatility is 0.24 and is statistically
significant at the 1% level. This correlation is substantially lower than the correlation of
0,46 that Fu (2009) found in his paper. Further empirical evidence of my model selection
questions the conclusions drawn by Fu (2009) regarding the necessity to include more lags
for the estimations of E(IVOL).

For all stocks in every month starting from January 2014 (instead of 2009 given that
60 months are needed for the first estimation of company betas) to December 2021,
monthly chosen model statistics were not in line with the findings of Fu (2009) for the
largest part. Of all estimates, 44,95% were yielded by the EGARCH(1, ¢) models while
Fu (2009) only had 26.67%. Only 24.04% were yielded by the EGARCH(3, ¢) models
while Fu had 40.00%. Where Fu had the EGARCH(3, 1) model as the best fitting model
for the most number of observations (16.58%), I consider the EGARCH(3, 2) model to
be my best fitting model for the fewest number of observations (6.93%). And where
Fu had the EGARCH(1, 1) model as the best fitting model for the fewest number of
observations (7.41%), I consider this model as the best fitting model for the most number
of observations (22.17%).

3.3 Descriptive statistics

Table 3 shows descriptive statistics of all variables. The mean monthly stock returns
(RET) in my sample period is 0.74% with a standard deviation 7.87%. The large standard
deviation is due to returns varying across time and companies. The measurement of

systematic risk, BETA, is conducted with the same methodology as in Fama and French
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Table 3: Descriptive statistics of the pooled sample

Variables Mean Std dev. Median Q1 Q3 Skew N

RET 0.74 7.98 0.96 -3.46 5.29 -0.73 35,121
IVOL 5.57 2.92 4.90 3.70 6.61 2.71 35,121
E(IVOL) 5.63 3.67 4.91 3.56 6.73 4.72 35,121
BETA 1.13 0.34 1.15 0.91 1.37 -0.01 35,121
Ln(MV) 9.07 1.16 8.98 8.30 9.82 0.17 35,121
Ln(B/M) -0.91 0.83 -0.83 -1.42 -0.31 -0.68 35,121

Note: This table presents the pooled descriptive statistics of the stocks listed on STOXX 600 in the period
of January 2014 to December 2021. All variables are continuous variables. RET, IVOL, E(IVOL) are
measured in percentages. BETA has no measurement. Ln(MV) and Ln(B/M) are the natural logarithms
of market capitalization MV and book-to-market ratio B/M.

(1992).

For the estimation of company betas (3;), with the same methodology as Fu (2009)
using the market model, I utilised the 60 prior months results each month. I allocated
equities to 10 x 10 portfolios according to market capitalization (size) and S. Month
by month, this practice was repeated. I then calculated the equal weighted returns for
each of the 100 portfolios. I did a full-period time series regression of each portfolio’s
portfolio return on the current and prior month’s value-weighted market returns. The
BETA of the portfolios was determined by adding these two market return coefficients.
This was done to account for non-synchronous trade consequences. I assigned the BETA
of a portfolio to each stock that belonged to that portfolio in month ¢, resulting in the
BETAs. The mean BETA is 1.13 and the median is 1.15. Furthermore, because they were
highly skewed, market capitalization and book-to-market ratios were converted to their
natural logarithm. The book-to-market ratio is obtained by reversing the denominator
and numerator of price-to-book ratio from Refinitiv Eikon. Average monthly natural
logarithm of market capitalization (Ln(MV)) is 9.07 with a standard deviation of 1.16.
While the Euro STOXX 600 represents large, mid and small capitalization companies in
Europe, the results imply that the across companies, that are not in the financial sector of
Euro STOXX 600, there is not much variation of market capitalization. Average monthly
natural logarithm of book-to-market ratio (Ln(B/M)) is -0.91 with a standard deviation
of 0.83. The negative value implies that the companies in my sample were generally

overvaluated and are referred as growth stocks.
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3.4 Cross-sectional correlations

Table 4 shows all cross-sectional correlations. The correlations can be regarded as
univariate tests. The coefficients that are statistically significant at the 1% level are
followed by *. The association between monthly stock returns and current idiosyncratic
volatility is -0.133, which is statistically significant at the 1% level but contrasting to
the results of Fu (2009). The one-month lagged idiosyncratic volatility however has a
statistically significant correlation with monthly stock returns of 0.071 (not reported in
table). These results show that the one-month lagged IVOL may remain to be a suitable
proxy for the expected value in the next month. The statistically significant correlation
between monthly stock returns and conditional idiosyncratic volatility (E(/VOL)) is 0.029.
The low correlation coefficient does seem to confirm the finding of Guo et al. (2014) that

there is no significant relationship between conditional idiosyncratic and expected stock

returns.
Table 4: Cross-sectional correlations
Variables IVOL E(IVOL) BETA Ln(MV) Ln(B/M)
RET -0.133* 0.029* -0.003 -0.001 -0.091%*
IVOL 0.236* 0.171* -0.248* 0.020*
E(IVOL) 0.159* -0.173* -0.015%*
BETA -0.290* 0.264*
Ln(MV) -0.024*

Note: This table presents the cross-sectional correlations. Variables are defined in Table 3. *p< 0.01.

Consistent with past research, the monthly stock returns are negatively correlated
with the natural logarithm of market capitalization (Ln(MYV)). However this correlation
is not statistically significant and therefore I am not able to confirm this relationship
based on the univariate test itself. Not consistent is the negative correlation between
the natural logarithm book-to-market ratio (Ln(B/M)) and returns as previous literature
found a positive correlation. The correlation between stock returns (RET) and BETA
is flat which confirms the findings of Fama & French (1992). Conditional idiosyncratic
volatility (Ln(B/M)) is negatively correlated with natural logarithms of size and book-to-
market ratio, and positively correlated with BETA. All these results are in line with the
findings of Fu (2009). Small companies typically exhibit greater idiosyncratic volatility
on average than large companies (based on size) and idiosyncratic volatilities of growth

companies on average are higher than those of value companies.
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4 Results

In this section, I discuss the results of the cross-sectional regressions for idiosyncratic
volatility and expected idiosyncratic volatility as well as the results from the portfolios
formed on E(IVOL). The statistical regression methods that I used for testing the ef-
fects are Fama-MacBeth, Fixed Effects and Random Effects. With the Fama-MacBeth
regression method, I refer to the two stage Fama & MacBeth (1973) methodology. For
the model specification of the first stage, I used the cross-sectional regressions formulated
in equations (1) and (2). The first stage produces coefficient estimates for every month.
In the second stage, I collected the first-stage monthly coefficient estimates to test the
significance of the resulting time series using Newey & West (1987) corrected standard
errors. This was done to control for any serial correlations. I computed the number of lags
for the Newey and West standard errors using a technique utilised by many academics.
The number of delays was followed by the integer resulting from the expression TV%. As
the time-series has a duration of 96 months, this resulted in three lags in total for the
Newey-West standard errors used in the Fama-MacBeth regressions. With the Fixed Ef-
fects regression method, I refer to the statistical regression model in which the constant
of the regression model is allowed to vary freely across individual companies. I applied
this model in order to control for any company-specific attributes that do not vary across
time. With the Random Effects regression method, I refer to the statistical regression
model to estimate the effect of company-specific characteristics that are unmeasurable.
The hypotheses could only be confirmed by the Fama-MacBeth regressions as I am dealing
with a time-series where time effects are much larger in contrast to company effects. To
make a comparison between the various regressions, Fixed Effects and Random Effects
needed to be adjusted also for the time effect. This is covered in more detail in Section 5

below.

4.1 Regressions full time period

Table 5 presents the regression results for the total time period. The first model
from the Fama-MacBeth regressions reproduces the Fama and French results. Indeed,
the relationship between market beta and average stock return is flat, and the average
slope of BETA is not statistically distinct from zero. This is in line with the results of
Fama & French (1992). The cross-sectional relationship between size and average stock
returns is negative. Small companies generate higher returns on average than their larger
counterparts. However the relationship between book-to-market ratio and average stock
returns is negative instead of positive in the cross section. This means that in my sample,

growth companies on average have had higher returns than value companies.
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Table 5: Idiosyncratic Volatility Regressions for full period

Fama-MacBeth

Fixed Effects

Random Effects

Variables 1 2 3 4 5 6 7 8 9 10
0.352
BETA (0.391)

Ln(MV) 20.067  -0.081 -0.182FF% 0075 1072 1.065%FF  1.026%F 0.010  -0.261%%*  0.107*
" (0.062)  (0.062)  (0.058)  (0.061) (0.243)  (0.199)  (0.261) (0.040)  (0.041)  (0.043)
Ln(B/M) -0.730%FF _0.696FFF -0, 710K -0,720%KF 2 31THRK ] THEORKK 9 G0SFKK  _0.8TOXFK _0.85TFF*F -0.896%F*
" (0.154)  (0.179)  (0.176)  (0.175) (0.355)  (0.320)  (0.370) (0.088)  (0.095)  (0.088)

0.031 0.083%%* 0.060%+*
ik (0.023) (0.017) (0.013)
-0.100%* 0.451%%* -0.383%%*
e (0.051) (0.027) (0.026)
0.033 0.269%++ 020674
IVOLy (0.036) (0.022) (0.018)
ot 0277  0.663  2.334%¥ 0571 -1L5TIFH 8026%FF -12453%F L0479  A4B3FHE 2 ]84%k*
onstan (0.660)  (0.800)  (0.670)  (0.749)  (2.048)  (1.668)  (2.224)  (0.404) (0.427)  (0.452)
Observations 35121 35121 35121 34,757 35121 35121 34,757 35121 35121 34,757
Adj. R-Squared 0063 0049 0069 0053 0.018 0.038 0.025 0009 0027  0.014
Number of periods 96 96 96 96
Number of companies 366 366 366 366 366 366

Note: This table presents the time-series averages of the slopes in cross-sectional regression for the full
time period using the standard Fama and MacBeth (1973) methodology as well as panel regression with
Fixed Effects and Random Effects. Standard Errors used in the Fama-MacBeth regressions are Newey-
West with three lags. Standard Errors for Fixed Effects and Random Effects are company clustered.
Standard Errors are in parentheses. *p< 0.10, **p< 0.05, ***p< 0.01.

Models 2, 5 and 8 are regressions formulated as in equation (1) and show positive
coefficients for expected idiosyncratic volatility. In model 2, the Fama-MacBeth regression
slope for E(IVOL) is not statistically significant and therefore I am not able to confirm that
the relationship is different from zero. Besides the insignificant coefficient, the Adjusted
R-Squared decreases after we include E(/VOL) in the regression from model 1 without
company BETAs. Models 5 and 8, adjusting for the company effect, show a highly
statistical significant positive relationship between expected idiosyncratic volatility and
average stock returns. But the slopes in all three models for E(/VOL) are close to zero.
This raises questions about the ability of typical investors to generate positive abnormal
returns. From the insignificance of the coefficient of model 2, it is not possible to confirm
the fourth hypothesis, which states that there is no significant relation.

Models 3, 6 and 9 are regressions formulated as in equation (2) and show a negative
relationship between contemporaneous idiosyncratic volatility and average stock returns.
The slope of IVOL is negative in all three models and highly significant in all three models.
These results thus confirm my first hypothesis. The negative slopes from the models
indicates that in my sample of stocks listed on Euro STOXX 600, an individual stock
with high idiosyncratic volatility in month ¢ experienced a negative return on average
more often than a positive return in the same month ¢. Furthermore, we see that the

Adjusted R-Squared increases from model 1 to model 3. From a theoretical standpoint,
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however, it is not possible to draw any conclusions about expected stock returns based
on these results. This is based on the possible correlation between the unexpected return
shock (R; - E(R;)) and idiosyncratic volatility shock (IVOL; - E(IVOL,)), which Fu
(2009) explains more deeply in his research.

Models 4, 7 and 10 examine the association between the one-month lagged IVOL and
stock returns. The regression results of all three models confirm the complete opposite of
the findings of Ang et al. (2006). The monthly stock returns are positively related with
the one-month lagged IVOL, based on the results of model 7 and 10. Although the reason
for this is unclear, a possible cause may be linked to the statistics of my EGARCH model
selections. As mentioned earlier, I have used the EGARCH(1, 3) model as my best fitting
model for the most number of observations in the data sample. This model contains only

one lag of residual variance for the forecast of expected idiosyncratic volatility.

4.2 Before the COVID-19 pandemic

Table 6: Idiosyncratic Volatility Regressions for period before COVID-19

Fama-MacBeth Fixed Effects Random Effects

Variables 1 2 3 4 5 6 7 8 9
Ln(MV) 0.158%  -0.203FFF  _0151%  1.324%FF 1 221FFX 1 9R4FKK 0 120%¥F 0.300%FF  -0.94%
" (0.065)  (0.051)  (0.061) (0.321)  (0.290)  (0.327) (0.036)  (0.036)  (0.037)
Ln(B/M) -0.630%H% _0.653FFF 0. 5EQFRK 2 120FKK ] BETHKE  _D268¥FF D 68¥HK () TAARRK () TH4RRE
" (0.158)  (0.154)  (0.152) (0.484)  (0.455)  (0.485) (0.485)  (0.099)  (0.095)
0.033 0.042% 0.026
BV (0.020) (0.018) (0.015)
-0.160%+* -0.332%%* -0.275%%x
e (0.053) (0.035) (0.029)
0.036 0.107%%* 0.059%*
[VOLi (0.031) (0.028) (0.021)
A 1424 2334%%F  1395%  _]3.330%FF _10.203%FF -13.432%FF  1020%F 4219%FF 0625
onstant (0.724)  (0.670)  (0.644) (2.672)  (2.380)  (2.756) (0.371)  (0.389)  (0.398)
Observations 26338 26338 25974 26,338 26338 25974 26338 26338 25974
Adj. R-Squared 0041 0064  0.045 0.017 0.027 0.017 0008  0.017  0.008
Number of periods 72 72 72
Number of companies 366 366 366 366 366 366

Note: This table presents the time-series averages of the slopes in cross-sectional regression for the time
period before the COVID-19 pandemic using the standard Fama and MacBeth (1973) methodology as
well as panel regression with Fixed Effects and Random Effects. Standard Errors used in the Fama-
MacBeth regressions are Newey-West with three lags. Standard Errors for Fixed Effects and Random
Effects are company clustered. Standard Errors are in parentheses. *p< 0.10, **p< 0.05, ***p< 0.01.

In Table 6, the regression models 2-10 from Table 5 have been re-used but only for the
period from January 2014 until December 2019. Again the slope for E(/VOL) is positive
but this time only for the Fixed Effects regression method, shown in model 4. Models 2,
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5 and 8 all together confirm my third hypothesis. From all three models, negative slopes
for IVOL are highly statistically significant. Also in this shorter sample are the slopes for
IV OL,;_4 positive but only statistically significant for Fixed Effects and Random Effects
regression methods. The results for IVOL;_; in model 6 and 9 are once more not in line
with the findings of Ang et al. (2006).

4.3 During the COVID-19 pandemic

In Table 7, the regression models 2-10 from Table 5 have been re-used but now only for
the period from January 2020 until December 2021 (generally accepted to be the duration
of the COVID-19 pandemic). The slopes of E(IVOL) are all positive but only for the Fixed
Effects model significant at the 10% significance level, shown in model 4. IVOL is only
statistically significant with the Fixed Effects and Random Effects models (5 and 8) and
both have a negative coefficient. Furthermore, the slope of IVOL in the Fama-MacBeth

regression (model 2) is positive but insignificant which makes it impossible to confirm my

Table 7: Idiosyncratic Volatility Regressions for period during COVID-19

Fama-MacBeth Fixed Effects Random Effects

Variables 1 2 3 4 5 6 7 8 9

-0.152*%  0.153***  -(.148* 8120%F  4.667FF  11.528%F*  _0.566*** -0.135%** -0.806*

ey (0138)  (0.105) (0.43)  (L092)  (1.227)  (LO31)  (0.100) (0.080)  (0.108)
Ln(B/M) -0.895%FF _(,882%F** _(.872*FF 4 799*FK 5 166F*F  _3.992%FF  _1.128%*F _1.002%FF -1.200%**
" (0.547)  (0.544)  (0.541)  (1.347)  (1.403)  (1.231) (0.104)  (0.111)  (0.114)
0.023 0.454%* 0.205
By (0.071) (0.065) (0.036)
0.080 0Bl -0.576F**
e (0.094) (0.057) (0.047)
0.026 0.814%** 0.472%*
IVOLi- (0.111) (0.048) (0.036)
Constant -1.621  -1.747 -1.658 -81.853 -44.022 -115.134 -6.877 -10.949
o (2.403) (1.543) (2.294) (9.457) (10.606) (9.229) (1.030) (0.976) (1.121)
Observations 8,783 8,783 8,783 8,783 8,783 8,783 8,783 8,783 8,783
Adj. R-Squared 0.074 0.081 0.773 0.079 0.088 0.127 0.017 0.051 0.039
Number of periods 24 24 24
Number of companies 366 366 366 366 366 366

Note: This table presents the time-series averages of the slopes in cross-sectional regression for the time
period during the COVID-19 pandemic using the standard Fama and MacBeth (1973) methodology as
well as panel regression with Fixed Effects and Random Effects. Standard Errors used in the Fama-
MacBeth regressions are Newey-West with three lags. Standard Errors for Fixed Effects and Random
Effects are company clustered. Standard Errors are in parentheses. *p< 0.10, **p< 0.05, ***p< 0.01.

third hypothesis. However it is interesting to observe a change in coefficient from negative
in model 2 from Table 6 to positive in model 2 from Table 7. While Poudeh et al. (2022)

found the same results, their coefficients are both statistically significant where my second

20



coefficient in model 2 from Table 7 is not. IVOL,;_; has similar results as in Table 6 and
show that for both periods (before and during the COVID-19 pandemic) the findings of
Ang et al. (2006) are not reflected in my sample.

4.4 Portfolio Analysis formed on E(IVOL)

On the basis of the cross-sectional regression coefficients, suggesting that E(IVOL)
has a potential positive relationship with average stock returns on the company level, I
wanted to further investigate this potential relationship by also looking at the portfolio
level. T analysed the returns of portfolios constructed by sorting E(I/VOL). The positive
significant slopes from the Fixed Effect and Random Effect suggests that stocks with high
E(IVOL) on average experienced better returns than stocks with low E(/VOL). Therefore,
a zero-investment portfolio which is long in high E(/VOL) and short in low E(/VOL), may
be yielding a positive return. In Table 8, the results of this portfolio analysis are shown.

I approached the portfolios with the same methodology of Fu (2009). The methodology
is as described below. Each month, I sorted E(IVOL) to create ten portfolios. But
because there are only 366 companies in my sample I could not divide them perfectly
into 10 portfolios. Therefore, all of my portfolios had 37 stocks each month, with the
exception of portfolios 5 and 6, which contained 35 stocks each month. The first portfolio
had the 37 stocks with the lowest predicted monthly idiosyncratic volatility. The final
portfolio contained the 37 stocks with the highest projected idiosyncratic volatility over
the following month. The descriptive data for all ten portfolios are presented in Table 8.

The average E(IVOL) grows monotonically from 2.01% for the first portfolio to 13.48%
for the final portfolio. The last portfolio containing the stocks with the highest E(/VOL)
has higher returns than the portfolio containing the stocks with the lowest E(/VOL).
The value-weighted portfolio returns continue to fluctuate around the same return height
from the first portfolio to the ninth and with the highest portfolio it increases significantly.
However the first portfolio has a value-weighted return of 0.53% and the last 1.03% and
thus increases from low to high expected idiosyncratic volatility. The average monthly
return for the portfolio with no investments is merely 0.50%. The equal-weighted portfolio
returns show more promising results. While the returns continue to fluctuate around the
same return height for the first seven portfolios, portfolios eight to ten have an increasing
rise in returns. The return spread for the equal-weighted portfolio returns is even larger
with 1.15%. These results show that there is a potential positive relationship between
E(IVOL) and individual stock returns.

Subsequently, I conducted the time-series regression of the value-weighted excess re-
turns on the three Fama-French factors for all 10 portfolios individually. The regression

intercepts are presented in the last row of Table 8. As we can see in Table 8, the al-
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Table 8: Portfolios formed on out-of-sample EGARCH Idiosyncratic Volatility

Portfolios formed on E(IVOL)

Variables Low 2 3 4 5 6 7 8 9 High High-Low

Port. RETVW 053 0.64 0.66 040 0.63 082 066 055 066 1.03 0.50
Port. RETEW 0.51 0.64 0.62 0.57 056 065 056 072 081 1.66 1.15

E(IVOL) 2.01 298 3,57 410 4.63 5.17 582 6.71 810 13.48
IVOL 471 470 492 504 526 553 579 6.06 6.58 7.11
BETA 1.02 1.04 1.07 1.08 112 114 117 118 120 1.24
MV (€mld) 27,06 24,73 22,26 20,70 18,11 16,36 14,73 12,75 11,78 10,80
B/M 0.55 052 050 050 053 055 056 058 0.59 0.56
FF Alphas 026 034 029 009 025 050 032 017 022 0.64 0.38

Note: This table presents summary statistics for portfolios formed on out-of-sample EGARCH idiosyn-
cratic volatilities. The first two rows display the time-series means of the value- and equal-weighted
monthly portfolio returns, respectively. Other rows display the pooled means of variables for the specific
portfolio. The last row displays the alphas derived from time-series regressions of the value-weighted
portfolio excess returns on the three Fama-French factors.

pha for the first portfolio is 0.26% and for the last portfolio 0.64%. A hedging portfolio
longing the portfolio that holds the 10% highest E(/VOL) and shorting the portfolio that
holds the 10% lowest E(IVOL) will then yield a monthly return of 0.38%. However, this
monthly return is not statistically significant as the GRS test statistic from Gibbons,
Ross, & Shanken (1989) has a value of only 0.83. Because of this I can not reject the
null hypothesis of the GRS test, stating that all alphas are jointly equal to zero. Based
on this test statistic it is possible to confirm my fifth hypothesis. This however, does
not automatically indicates that the alternative of my fifth hypothesis, stating that such
hedging portfolio yields a positive or negative return, would not apply. The results are
promising but the statistical significance is needed to draw any more definite conclusions
concerning the relationship between expected idiosyncratic volatility and expected stock
returns.

To elaborate further on this potential relationship, Figure 1 and 2 visualize the cu-
mulative returns of all portfolios in order to get a better view of the progression of the
portfolios over time. Figure 1 shows a potential positive relationship between E(IVOL)
and individual stock returns based on equal-weighted portfolios. This is supported by

Figure 2, which shows the cumulative returns of the value-weighted portfolios.
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Figure 1: Cumulative returns of equal-weighted portfolios

Cumulative Returns

T T T T T
1/1/2014 1/1/2016 1/1/2018 1/1/2020 1/1/2022
Date

Note: This figure presents the cumulative returns of equal-weighted portfolios
formed on E(IVOL)in the period of January 2014 to December 2021. Portfolios
were monthly rebalanced.

Figure 2: Cumulative returns of value-weighted portfolios
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Note: This figure presents the cumulative returns of value-weighted portfolios
formed on E(IVOL)in the period of January 2014 to December 2021. Portfolios
were monthly rebalanced.
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5 Robustness Check

In this section, I explore in more detail if there is any relationship between expected
idiosyncratic volatility and expected returns as this is the variable of main interest. I
applied an additional regression method and a different mean process for the EGARCH
models. In addition, I analyzed at the differences when analyzing only the 10% small-
est companies in size from my sample using the same regression methods described in

methodology section and applied in the results section.

5.1 Comparing Fixed Effects and Random Effects models

While Fixed Effects and Random Effects models eventually adjust for the same com-
pany effect and having the same conclusion. Nonetheless, it is useful to know which model
is more robust and with which model I can work further, letting it adjust for time effect.
Using the Hausman-Wu test with a y? distribution indicates the most efficient model is.
Under the null hypothesis the Random Effects model is preferred and under the alterna-
tive hypothesis the fixed effects model. Utilising the Fixed Effects and Random Effects
model, following equation (1), the y?-statistic (94.70) is very high and a p-value (0.000)
near zero. Thus, I reject the null hypothesis and conclude that the Fixed Effects model

1s more robust.

Table 9: Out-of-sample EGARCH Idiosyncratic Volatility Regressions includ-
ing Fixed Effects adjusted for Time Effect

Variables Fama-MacBeth Fixed Effects Fixed Effects
-0.081 -2.317*** -1.542%**
Lin(2AY) (0.062) (0.355) (0.299)
-0.696*** 1.072%** 1.127***
o2/ ) (0.179) (0.243) (0.220)
0.031 0.083*** 0.057***
Vo) (0.023) (0.017) (0.015)
C tant 0.662 -11.571%** -12.190%**
onstan (0.800) (2.048) (1.867)
Observations 35,121 35,121 31,151
Adj. R-Squared 0.049 0.018 0.279
Number of periods 96
Number of companies 366 366
Company Effect Yes Yes
Time Effect No Yes

Note: This table presents the time-series averages of the slopes in cross-sectional regression for the time
period during COVID-19 using the standard Fama and MacBeth (1973) methodology as well as panel
regression with Fixed Effects and Fixed Effects adjusted for time effect. Standard Errors used in the
Fama-MacBeth regressions are Newey-West with three lags. Standard Errors for both Fixed Effects
models are company clustered. Standard Errors are in parentheses. *p< 0.10, **p< 0.05, ***p< 0.01.
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Although there are no explicit tests to compare Fixed Effects models with Fama-
MacBeth models, 1 adjusted the Fixed Effects model for time effect to get close to a
legitimate comparison. As mentioned before, the time effect has a larger variation in
stock returns time-series. So, to make a comparison I rewrote the equation for the fixed

effects model as follows:

96
Riy = b0+ 61 B 1[IVOLy] + 6oln(MV);; + 6sln(B/M)iy + Y pp; MONTH; + €;, (10)

Jj=2

In equation (10) dummy variables for each month (the first month omitted to avoid
omitted variable bias) are included in the model similar to equation (1).

Table 9 presents the results for the Fixed Effects regression method adjusted for time
effect. Compared with the standard Fixed Effects model, the slope of E(IVOL) is lower
but has the same significance level. The decrease of the slope in the adjusted model,
shows that the expected idiosyncratic volatility does have time-varying characteristics.
Nevertheless, the Adjusted R-Squared increases dramatically with the new Fixed Effects
model. However, the coefficient stays small which may indicate that EGARCH models are
possibly not the best estimation models for the forecasting of next month’s idiosyncratic

volatility.

5.2 EGARCH with CAPM mean process

Okpara & Nwezeaku (2009), as previously discussed, examined the Nigerian stock
market using EGARCH models with a different mean process than Fu (2009) applied.
Instead of the Fama-French three factors, they used the CAPM factor for describing the
mean process. Therefore, I wanted to see if there are differences when this different mean
process is applied to my sample. The explicit functional forms of the EGARCH models

with CAPM as mean process are as follows:

Riy—rpe =00+ Bit(Rmt — Tr1) + €t

(11)
€it ™ N(O7 Ui2,t)7

e

Equation (11) describes the CAPM mean process. Equation (12) is similar to equation

P q
€it—
ln(UiQ = Qugy + E bi,l,t ln(o’it_l) + Z Cikt {9 ( )t k) +
=1 k=1

O t—k

‘ €it—k

Oit—k

(7) as the volatility process stays the same. The expected idiosyncratic volatilities derived

with the different mean process were estimated using the same method as described in the
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Methodology section. Then the estimates are regressed following equation (1) with Fama-
MacBeth and Fixed Effects (adjusted for time effect) regression methods. The results are
presented in Table 10.

Table 10: Out-of-sample EGARCH (CAPM mean process) Idiosyncratic
Volatility Regressions

Fama-MacBeth Fixed Effects

Variables FF-3 CAPM FF-3 CAPM
-0.081 -0.095 -1.542%** 1.083***
L (W) (0.062) (0.067) (0.299) (0.214)
-0.696*** -0.693*** 1.127*** -1.540%**
Ln(B/M) (0.179) (0.180) (0.220) (0.298)
0.031 0.017 0.057%** 0.009
BIVOL) (0.023) (0.016) (0.015) (0.005)
C tant 0.662 0.945 -12.190%** -11.502%**
onstamn (0.800) (0.896) (1.867) (1.791)
Observations 35,121 35,121 35,121 35,121
Adj. R-squared 0.049 0.044 0.279 0.278
Number of periods 96 96
Number of companies 366 366
Company Effect Yes Yes
Time Effect Yes Yes

Note: This table presents the time-series averages of the slopes in cross-sectional regression for the full
time period using the standard Fama and MacBeth (1973) methodology as well as panel regression with
Fixed Effects adjusted for time effect. Standard Errors used in the Fama-MacBeth regressions are Newey-
West with three lags. Standard Errors for Fixed Effects are company clustered. Standard Errors are in
parentheses. *p< 0.10, **p< 0.05, ***p< 0.01.

Looking at Table 10, the slope of E(IVOL) stays positive for both methods with
the Fama-MacBeth regressions but decreases for the CAPM method. The CAPM also
provides no statistical significant coefficient and because of this, it is not possible to make
any statements as to which mean process works best for estimating expected idiosyncratic
volatility. Therefore the CAPM mean process method also confirms my fourth hypothesis.
From the Fixed Effects models the only difference is that the significance decreases to none
at CAPM method. As a result, this might indicate that stock returns in the European
region are not following the CAPM model.

Furthermore, I replicated the same portfolio methodology on the CAPM method es-
timates as in the Results section. Again I sorted E(/VOL) in 10 portfolios. The results
of the portfolios are presented in Table 11. Looking at the value-weighted and equal-
weighted returns there are no monotonic increases but the spread between highest and
lowest, portfolio is positive for both returns. From the alphas there is also no clear mono-
tonic increase from lowest to highest portfolio, however a zero investment portfolio could
yield high abnormal monthly returns of 0.20%. For this mean process with CAPM, the
GRS test statistic is very low (1.83), meaning that the null hypothesis, stating that all
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Table 11: Portfolios formed on out-of-sample EGARCH (CAPM mean pro-
cess) Idiosyncratic Volatility

Portfolios formed on E(IVOL)capm

Variables Low 2 3 4 5 6 7 8 9  High High-Low

Port. RETVW 046 0.56 0.33 0.60 037 062 109 082 071 0.66 0.20
Port. RETEW 0.65 042 053 058 056 072 085 092 072 0.89 0.24
E(IVOL)capny 036 0.60 0.76 090 1.04 1.22 150 198 297 9.12

IVOL 5.86 5.50 545 539 535 539 544 552 568 6.10
BETA 1.13 114 114 114 112 112 111 112 112 1.14
MV (€mld) 17.40 19.19 18.82 18.52 18.00 19.62 18.40 17.30 17.30 14.89
B/M 0.61 059 059 056 053 051 050 051 051 0.52
FF Alphas 021 020 001 031 006 022 068 050 034 041 0.20

Note: This table presents summary statistics for portfolios formed on out-of-sample CAPM EGARCH
idiosyncratic volatilities. The first two rows display the time-series means of the value- and equal-weighted
monthly portfolio returns, respectively. Other rows display the pooled means of variables for the specific
portfolio. The last row displays the alphas derived from time-series regressions of the value-weighted
portfolio excess returns on the three Fama-French factors.

alphas jointly equal to zero, can not be rejected. This leads me to the same conclusion as
that of E(/VOL) with a Fama-French three factor mean process.

Figure 3: Cumulative returns of equal-weighted portfolios
with CAPM mean process
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Note: This figure presents the cumulative returns of equal-weighted portfolios
formed on E(IVOL), with CAPM mean process, in the period of January 2014 to
December 2021. Portfolios were monthly rebalanced.
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Figure 4: Cumulative returns of value-weighted portfolios
with CAPM mean process
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Note: This figure presents the cumulative returns of value-weighted portfolios
formed on E(IVOL), with CAPM mean process, in the period of January 2014 to
December 2021. Portfolios were monthly rebalanced.

Figures 3 and Figure 4 visualize the cumulative returns for both equal-weighted (3)
and value-weighted portfolios (4). In comparison with the E(/VOL) derived from the
EGARCH models with the Fama-French three factors for the mean process, it can be
seen that the highest portfolio of a CAPM mean process did not achieve the highest
returns. Therefore it is clear to say that a CAPM mean process is even less effective for

the forecast of expected idiosyncratic volatility and for investing.

5.3 Analysis for 10% smallest (size) companies

In this last subsection, I want to zoom in on the possible relationship between expected
idiosyncratic risk and small size companies. As shown in Table 3, the average natural
log of market capitalization is significantly high (9.07) compared to the average of the
sample (4.29) of Fu (2009). Therefore, I took a look at the coefficients that will be formed
using Fama-MacBeth and Fixed Effects (adjusted for time effect) regressions for the 10%
smallest companies. I chose the 10% lowest companies at the first month of my time
period, January 2014. The mean natural log of market value of these companies is (7.49)
which is still a lot higher than the average of the sample of Fu (2009) sample. However,

I was still curious to see if there are any differences for this sub-sample of companies
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compared to my full sample.

Table 12: Out-of-sample

10% smallest size

EGARCH Idiosyncratic Volatility Regressions for

Fama-MacBeth

Fixed Effects

Variables 1 2
0.435 2.090%**
LS4 (0.303) (0.526)
-0.762%** 0.208
Lo {12}/ 04 (0.275) (0.9544)
0.017 -0.028
ByoL) (0.042) (0.024)
C tant -2.023 -11.504**
onstan (2.283) (3.530)
Observations 3,552 3,552
Adj. R-squared 0.054 0.186
Number of periods 96
Number of companies 37
Company Effect Yes
Time Effect Yes

Note: This table presents the time-series averages of the slopes in cross-sectional regression for the full
time period using the standard Fama and MacBeth (1973) methodology as well as panel regression with
Fixed Effects adjusted for time effect. Standard Errors used in the Fama-MacBeth regressions are Newey-
West with three lags. Standard Errors for Fixed Effects are company clustered. Standard Errors are in
parentheses. *p< 0.10, **p< 0.05, ***p< 0.01.

Table 12 shows the results of the regressions methods applied to the sub-sample.
E(IVOL) has a positive slope in the Fama-MacBeth regression (model 1) and a negative
slope in the Fixed Effects regression that is adjusted for time effect (model 2). Both slopes
are statistically insignificant. The main reason for the insignificance in both models is due
to the low number of observations. Taking into account he magnitude of both coefficients
as well, it does cast doubt on whether accounting for small size companies is needed as

the slopes are close to zero.

6 Conclusion

In this thesis, from a sample of stocks from STOXX 600 Europe, I found empirical ev-
idence for a negative and significant relationship between contemporaneous idiosyncratic
risk and expected returns in the period from January 2014 to December 2021. From
this evidence it can be concluded that in the analyzed sample period, investors in Euro-
pean stock markets, on average, were not rewarded for bearing idiosyncratic risk in their
portfolios. In addition, I split the data into two sub-samples, one before the COVID-

19 pandemic, the other during the pandemic. The coefficient of idiosyncratic volatility
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changed from significant negative in the sub-sample before the pandemic to a positive
but insignificant coefficient in the sub-sample during the pandemic. These results are
interesting and call for more extensive research in the coming years.

Ang et al. (2006) furthermore found a negative relationship between the one-month
lagged idiosyncratic volatility and monthly stock returns. In my sample, I found contra-
dictory results with the one-month lagged idiosyncratic risk. In line with the research
of Fu (2009), I demonstrated that idiosyncratic volatilities vary with time and that the
one-month lagged value is not a reliable explanatory factor for the expected value. Simi-
lar to Fu (2009) as criticized Guo et al. (2014), I employed EGARCH models in order to
determine the expected idiosyncratic risk with an out-of-sample estimation instead of an
in-sample (Fu, 2009). As the main purpose of this thesis was to find out if next month’s
expected idiosyncratic risk has explanatory power for expected stock returns, I found no
relationship between expected idiosyncratic risk and expected stock returns. This thesis
therefore demonstrates that there is no indication that investors anticipate a better or
lower return from stocks with a higher forecast idiosyncratic risk. To confirm the non-
descriptive power of the expected idiosyncratic risk, I also conducted a portfolio analysis
on portfolios sorted on expected idiosyncratic risk. While the monthly positive return of
a zero investment portfolio prior to transaction fees looks promising, it was not possible
to confirm its statistically significance based on GRS test statistic.

In this thesis, an alternative mean process with CAPM for the EGARCH models was
also examined. Although this is a much simpler mean process than the Fama-French
three factors (baseline), the portfolio analysis and regression results did not improve but
remained more or less the same. The CAPM mean process EGARCH models had a slightly
larger GRS test statistic in comparison with the baseline model but not statistically
significant as well, and thus indicated that CAPM mean process was no more effective in
identifying the systematic risks that underlie stock performance.

Last, I looked at the smallest size companies in my sample to observe if there were
any differences with EGARCH model estimations for this smaller sample. Because only
few observations were left once I adjusted the sample of stocks for small size companies

only, there was no visible relationship and coefficients were practically equal to zero.

6.1 Limitations and future research recommendations

The main objective of this thesis was to observe if EGARCH forecast idiosyncratic
risk can predict expected stock returns in the European region. The reason for choosing
the European region is because of the limited literature that has been written about it so
far. However, this research has had to take into account, and has been limited by, several

limitations. The first limitation regards the sample of stocks that was used in this thesis.
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Despite having a significant share of the free-float market capitalization of the European
stock market, STOXX 600 Europe comprises mostly of large- and mid-cap companies.
The number of small-cap companies is limited. Second, my sample period included the
COVID-19 pandemic which may also have a major impact on the results and reliability.
Third, the number of EGARCH models to forecast expected idiosyncratic volatility and
the combinations with different mean processes is low. It would be ideal to apply more
model combinations, but owing to its complexity, this will demand more computational
power, which was not available to me. Fourth, as a proxy for expected returns, I applied
realized returns. Despite being a fair estimate of expected returns, the quality of the
estimate is subject to improvement. Hence, I would make the following recommendations

for future research to enhance the conclusions of this thesis:

1. More small-cap companies. To get an overall picture, more consideration should
also be given to small-cap companies in the European stock market. This in order

to avoid any biases in favor of size characteristics.

2. Longer time interval. This thesis only used a sample period from January 2014
to December 2021 (7 years in total), which is on the low side compared to previous
literature. In further research, longer time intervals should be used. A longer
time interval can also contribute to the optimisation of the EGARCH models. As
discussed in Section 2, the higher the number of observations the more precise

parameter estimates will be.

3. Daily observations instead of monthly. Daily observations may provide further
optimisation of model parameters. But it must be taken into account that this
requires more computational power since observations then increase by a factor of

22 (average number of trading days in a month).

4. Testing additional non-linear ARCH model combinations. As mentioned
in Section 2, there are numerous other models available from the ARCH family.
GARCH, GJR-GARCH and T-GARCH can also be used in future research to in-
vestigate any differences in the models and significance of the estimated expected
idiosyncratic volatilities with expected stock returns. It is beyond the scope of this
thesis to address additional ARCH model combinations.

5. More factors in asset pricing models. Having used the Fama-French three
factor model as my baseline, the model is dated and newer models have mostly

been applied in recent research.

6. Better indicators of expected stock return. As discussed by Fu (2009), the use
of implied cost of capital (ICC) as an alternative indicator of expected stock returns

should be considered. This should certainly not be omitted in future research.
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Appendix

In this section, I present all python codes and the stata do file which are used for this
thesis. The first python script is used to estimate IVOL in and E(/VOL). The second
python script is used for calculating BETAs. The third python script is used for Portfolio
construction for both E(IVOL) estimates (FF3 and CAPM). Furthermore, I present my
full STATA script from the do file in the fourth subsection of the Appendix.

estimate IVOL and E(IVOL)

import math

import numpy as np

from arch.univariate import LS, EGARCH

from arch.__future__ import reindexing

from statsmodels.tsa.stattools import adfuller
import statsmodels.api as sm

from itertools import repeat

from arch import arch_model

import time

# Daily Panel Data

dfDailyPrices = pd.read_excel(r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\Thesis)\
Data\Daily\ Daily Adjusted Closing Prices without financials.xlsx’, sheet_name=0)

dfFF3factorsDaily = pd.read_excel(r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken)\
Thesis\Data\Daily\ ff 3 daily.xlsx )

# 1 ____Prep___._
prices = dfDailyPrices.values.tolist ()

# Array for all unique companies

companies = dfDailyPrices [ ’ISIN ’']. unique ()

MKT = dfFF3factorsDaily [’Mkt—RF’]. values. tolist () [1:]
MKT = MKT # len (companies)

MKT = np.array (MKT)

# MKT = MKT/100

SMB = dfFF3factorsDaily [’SMB’]. values. tolist () [1:]
SMB = SMB * len (companies)

SMB = np.array (SMB)

# SMB = SMB/100

HML = dfFF3factorsDaily [’HML’]. values. tolist () [1:]
HML = HML * len (companies)

HML = np.array (HML)

# HML = HML/100

RF = dfFF3factorsDaily ['RF’]. values. tolist () [1:]
RF = RF * len (companies)

RF = np.array (RF)

# RF = RF/100

# List for all prices for all companies
for i in range(len(companies)):

prices [i].remove(companies[i])

36



# List for all dates
dates = dfDailyPrices.columns. values. tolist ()
dates = dates [2:]

# 2 ____Making suitable columns for dataframe____

# Deriving returns

Returns = []

for row in prices:
for i in range(len(row)):

try:
Returns. extend ([math.log (row[i+1]/row[i])])

except ZeroDivisionError:
Returns. extend ([0])

except IndexError:
break

Returns = np.array (Returns) = 100

Excess_Returns = Returns — RF
# Dates
Alldates = dates x len(companies)

# Companies

Allcompanies = []

for company in companies:
I =]
1 .append (company )
Allcompanies.extend (1 * len(dates))

Allcompanies = np.array (Allcompanies)

# 3 ____Making dataframe____

# Constructing dataframe
dfDaily = pd.DataFrame({
’Date’: Alldates ,

PISIN ’: Allcompanies ,

’Excess_Return ’: Excess_Returns,
'MKT” : MKT,
’SMB’ : SMB,
"HML’ : HML

1)

# 4 ____Deriving monthly standard deviations____

companies = dfDaily [’ISIN ’]. unique ()
std_devs = {}

count = 0

for company in companies:

std_devs [company] = []

dfC = dfDaily[dfDaily [’ISIN ’| = company |

dfC|[’year’] = pd.DatetimeIndex (dfC[’Date’]) . year

dfC [ ’month’] = pd.DatetimeIndex (dfC[’Date’]) .month
df_years = [dfC[dfC[’year’] = y] for y in dfC[’year’].
count += 1
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print (count)

for df_year in df_years:

df_months = [df_year[df_.year [’month’] = m] for m in df_year [ month’]

for

df_month in df_months:
X = df_month [[ 'MKT" ,’SMB’ ,’HML’]]
y = df_month [’ Excess_Return ’]

Is = LS(y, X)

res = ls. fit ()

resids = np.std(res.resid)

std_-dev = resids * math.sqrt(len(res.resid))

std_-devs [company |.append (std_-dev)

# IVOL for monthly

IVOL = []

for company

in companies:

IVOL. extend (std_-devs [company])

IVOL = np.array (IVOL)

#

Monthly Panel Data

.unique () ]

dfMonthlyPrices = pd.read_excel (r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\

Thesis\Data\Monthly\Monthly Data without financials.xlsx’,

sheet_name=0)

dfFF3factorsMonthly = pd.read_excel (r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\
Thesis\Data\Monthly\ ff 3 monthly.xlsx ’)

# 1 ____Prep____

prices = dfMonthlyPrices.values. tolist ()

for i in range(len(companies)):

prices [i].remove(companies[i])

MKT = dfFF3factorsMonthly [ "Mkt—RF’]. values. tolist () [1:]

MKT = MKT x*

len (companies)

MKT = np.array (MKT)

SMB
SMB = SMB

dfFF3factorsMonthly [’SMB’]. values. tolist () [1:]

len (companies)

SMB = np.array (SMB)
HML = dfFF3factorsMonthly ['"HML’]. values. tolist () [1:]

HML = HML x*

len (companies)

HML = np.array (HML)

RF = dfFF3factorsMonthly ['RF’]. values. tolist () [1:]
RF = RF x* len (companies)

RF = np.array (RF)

# List for all dates
dates = dfMonthlyPrices.columns. values. tolist ()
dates = dates [2:]

# Companies

Allcompanies

= ]

for company in companies:

1=

1 .append (company )

Allcompanies.extend (1 * len(dates))

Allcompanies

= np.array (Allcompanies)
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# 2 ____Making suitable columns for dataframe____

# Deriving returns
Returns = []

for row in prices:
for i in range(len (row)):

try:
Returns. extend ([math.log (row[i+1]/row[i])])

except ZeroDivisionError:
Returns.extend ([0])

except IndexError:
break

Returns = np.array (Returns) % 100

Excess_Returns = Returns — RF

# Dates column for in dataframe

Alldates = dates * len(companies)

# Dickey Fuller test for rejecting random walk ivol and Auto Coorrelation

Auto_Correlation = {}

dickey_fuller_info = {}

for key in std_devs:
dickey_fuller_info [key] = []
Auto_Correlation [key] = []

data = std_devs [key]

dickey_fuller_info [key] = adfuller (data)
Auto_Correlation [key] = sm.tsa.acf(data, nlags = 5, fft=False) [1:]

Total _DF _info = {}
for key in dickey_fuller_info:
Total_DF_info [key] = {}

Total _DF _info [key ][ *t—stat '] []
Total_DF_info [key|[’t—stat '] = dickey_fuller_info [key][0]

Total _DF_info [key ][ p—value '] = []
Total_DF_info [key ][ ’p—value’] = dickey_fuller_info [key][1]

Total _DF_info [key][’1%’] = []
Total_DF_info [key][’1%’] = dickey_fuller_info [key][4].get(’1%’)

Total_DF_info [key]['5% ’] []
Total _DF_info [key][’5%’] = dickey_fuller_info [key][4].get('5%’)

Total_DF_info [key][’10%’] []
Total _DF_info [key][’10%’] = dickey_fuller_info [key][4].get(’10%")

Average_DF_info = []
num = 5

Average_ DF_info = [[] for x in repeat(None, num) ]

for key in Total_-DF_info:
Average_DF_info [0]. append ( Total_DF _info [key ]. get ("t—stat ’))
Average_ DF_info[1].append(Total_DF _info [key]. get ('p—value’))
Average_DF_info [2]. append(Total_DF _info [key]. get ('1%’))
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Average_DF_info [3].append(Total_DF _info [key]. get (’5%’))
Average_DF_info [4].append(Total_DF _info [key].get (’10%"))

# Output for average Dickey—Fuller test results
DF_output = {}

DF _output[’t—stat ’] = sum(Average_ DF _info [0]) /len (Average_ DF _info [0])
DF _output [’p—value ’] = sum(Average_DF_info[1]) /len(Average_ DF_info[1])
DF _output[’1%’] = sum(Average_ DF_info[2]) /len (Average_ DF _info [2])

DF _output['5%’] = sum(Average_ DF_info[3]) /len (Average_ DF _info [3])
DF_output[’10%°’] = sum(Average_DF_info[4]) /len(Average_DF _info [4])
count = 0

for i in Average_DF_info[1]:
if i <= 0.05:
count += 1

DF _output [’ Percentage Rejected ’| = round(count/len(Average DF_info[1]), 4)

# Output for average of first five autocorrelation lags

Average_AC_.info = [[] for x in repeat(None, num) |

for key in Auto_-Correlation:
Average_AC_info [0]. append (Auto_Correlation [key][0])
Average_AC_info [1]. append (Auto_Correlation [key|[1])
Average_AC_info [2]. append (Auto_Correlation [key][2])
Average_AC_info [3]. append (Auto_Correlation [key][3])
Average_AC_info [4]. append (Auto_Correlation [key][4])

AC_output = {}
AC_output[’1st lag’
AC_output[’2nd lag’

] = sum(Average_AC_info [0]) /len (Average_ AC_info [0])

J
AC_output[’3rd lag ’]

J

J

( (
sum(Average_AC_info[1]) /len (Average_AC_info [1])
sum( Average_AC_info [2]) /len (Average_AC_info [2])
( (
( (

AC_output[’4th lag’
AC_output[’5th lag’

sum(Average_AC_info [3]) /len (Average_ AC_info [3])
= sum(Average_AC_info [4]) /len (Average_AC_info [4])

# 3 ____EGARCH with different lags____

dfIVOL = pd.DataFrame ({
’Date’: Alldates ,
’ISIN ’: Allcompanies ,
’Excess_Return ’: Excess_Returns,

"MKT” : MKT,

’SMB’ : SMB,

"HML’ : HML

1)

# Function for forecasting IVOL with multiple models
def idiosyncratic_forecast (y,x):
aic_scores = []
model_params = []
model_resid = []
model_cond_var = []
convergence = |[]
for i in range(1l, 4):
for j in range(1l, 4):
model = arch_model(y, x, mean='LS’, vol="EGARCH', p=i, o=i, q=j)
res = model. fit (disp="off’, options={"iter >: 1000})

convergence.append (res.convergence_flag)
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aic_scores .append(res.aic)

model_params.append(res._params.T)
model_resid.append(res.resid[—3:])

model_cond_var.append (np.power(res.conditional_volatility [—3:],2))

aic_scores_correct = []
for i in range (0, len(convergence)):
if convergence[i] = O0:

aic_scores_correct .append(aic_scores[i])

best_model = 0
count = 0

for i in range (0, len(aic_scores)):

if aic_scores[i] = min(aic_scores_correct):
best_model = count
break
else:
count +=1
best_model_aic = min(aic_scores_correct)
if aic_scores[0] = best_model_aic: # 1,1,1 — p=1, g=1
cond_var = (model_params[0][4]

+ model_params [0][5] * (abs(model_resid [0][2]/math.sqrt(model_cond_var[0][2])) —
math.sqrt (2/math. pi))

+ model_params [0][6] * (model_resid [0][2]/math.sqrt(model_cond_var [0][2]))

+ model_params [0][7] * math.log(model_cond_var [0][2]))

elif aic_scores[1] = best_-model_aic: #1,1,2 — p=2, g=1
cond_var = (model_params [1][4]
+ model_params [1][5] * (abs(model_resid [1][2]/math.sqrt(model_cond_var[1][2])) —
math.sqrt (2/math. pi))
+ model_params [1][6] * (model_resid [1][2]/math.sqrt(model_cond_var[1][2]))
+ model_params [1][7] * math.log(model_cond_var [1][2])
+ model_params [1][8] * math.log(model_cond_var[1][1]))

elif aic_scores[2] = best_model_aic: #1,1,3 — p=3, q=1
cond_var = (model_params [2][4]
+ model_params [2][5] * (abs(model_-resid [2][2]/math.sqrt(model_cond_var[2][2])) —
math.sqrt (2/math. pi))

+ model_params [2][6] * (model_resid [2][2]/math.sqrt(model_cond_var[2][2]))
+ model_params [2][7] * math.log(model_cond_var [2][2])
+ model_params [2][8] * math.log(model_cond_var [2][1])
+ model_params [2][9] % math.log(model_cond_var [2][0]))
elif aic_scores[3] = best_-model_aic: #2,2,1 — p=1, q=2
cond_var = (model_params[3][4]

+ model_params [3][5] * (abs(model_resid[3][2]/math.sqrt(model_cond_var[3][2])) —
math.sqrt (2/math. pi))

+ model_params [3][6] * (abs(model_resid[3][1]/math.sqrt(model_cond_var[3][1])) —
math.sqrt (2/math. pi))

+ model_params [3][7] * (model_-resid [3][2]/math.sqrt(model_-cond_var [3][2]))

+ model_params [3][8] * (model_resid [3][2]/math.sqrt(model_cond_var [3][1]))

+ model_params [3][9] * math.log(model_cond_var [3][2]))

elif aic_scores[4] = best_-model_aic: # 2,2,2 — p=2, q=2
cond_var = (model_params [4][4]
+ model_params [4][5] * (abs(model_resid [4][2]/math.sqrt(model_cond_var[4][2])) —
math.sqrt (2/math. pi))

41



+ model_params [4][6] * (abs(model_resid [4][1]/math.sqrt(model_cond_var[4][1])) —
math.sqrt (2/math. pi))
+ model_params [4][7] * (model_resid [4][2]/math.sqrt(model_cond_var [4][2]))
+ model_params [4][8] * (model_resid [4][1]/math.sqrt(model_cond_var[4][1]))
+ model_params [4][9] * math.log(model_cond_var [4][2])
+ model_params [4][10] * math.log(model_cond_var [4][1]))
elif aic_scores[5] = best_-model_aic: # 2,2,3 — p=3, q=2
cond_var = (model_params [5][4]
+ model_params [5][5] * (abs(model_resid[5][2]/math.sqrt(model_cond_var[5][2])) —
math.sqrt (2/math. pi))
+ model_params [5][6] * (abs(model_resid [5][1]/math.sqrt(model_cond_var[5][1])) —
math.sqrt (2/math. pi))
+ model_params [5][7] * (model_resid [5][2]/math.sqrt(model_cond_var[5][2]))
+ model_params [5][8] * (model-resid [5][1]/math.sqrt(model_-cond_var [5][1]))
+ model_params [5][9] * math.log(model_cond_var [5][2])
+ model_params [5][10] * math.log(model_cond_var [5][1])
+ model_params [5][11] % math.log(model_cond_var [5][0]))
elif aic_scores[6] = best_model_aic: #3,3,1 — p=1, q=3
cond_var = (model_params [6][4]
+ model_params [6][5] * (abs(model_resid [6][2]/math.sqrt(model_cond_var[6][2])) —
math.sqrt (2/math. pi))
+ model_params [6][6] * (abs(model_resid [6][1]/math.sqrt(model_cond_var[6][1])) —
math.sqrt (2/math. pi))
+ model_params [6][7] * (abs(model_resid[6][0]/math.sqrt(model_cond_var[6][0])) —
math.sqrt (2/math. pi))
+ model_params [6][8] * (model_resid [6][2]/math.sqrt(model_cond_var[6][2]))
+ model_params [6][9] * (model_resid [6][1]/math.sqrt(model_cond_var [6][2]))
+ model_params [6][10] * (model_resid [6][0]/math.sqrt(model_cond_var[6][0]))
+ model_params [6][11] * math.log(model_cond_var [6][2]))
elif aic_scores[7] = best_model_aic: #3,3,2 — p=2, q=3
cond_var = (model_params [7][4]
+ model_params [7][5] * (abs(model_resid [7][2]/math.sqrt(model_cond_var[7][2])) —
math.sqrt (2/math. pi))
+ model_params [7][6] * (abs(model_resid[7][1]/math.sqrt(model_cond_var[7][1])) —
math.sqrt (2/math.pi))
+ model_params [7][7] * (abs(model_resid [7][0]/math.sqrt(model_cond_var [7][0])) —
math.sqrt (2/math. pi))
+ model_params [7][8] * (model_resid [7][2]/math.sqrt(model_cond_var [7][2]))
+ model_params [7][9] * (model_-resid [7][1]/math.sqrt(model_-cond_var [7][1]))
+ model_params [7][10] * (model_resid [7][0]/math.sqrt(model_cond_var [7][0]))
+ model_params [7][11] * math.log(model_cond_var [7][2])
+ model_params [7][12] * math.log(model_cond_var [7][1]))
else: #3,3,3 — p=3, q=3
cond_var = (model_params [8][4]
+ model_params [8][5] * (abs(model_resid [8][2]/math.sqrt(model_cond_var[8][2])) —
math.sqrt (2/math. pi))
+ model_params [8][6] * (abs(model_resid [8][1]/math.sqrt(model_cond_var[8][1])) —
math.sqrt (2/math. pi))
+ model_params [8][7] * (abs(model_resid [8][0]/math.sqrt(model_cond_var[8][0])) —
math.sqrt (2/math. pi))
+ model_params [8][8] * (model_resid [8][2]/math.sqrt(model_cond_var[8][2]))
+ model_params [8][9] * (model-resid [8][1]/math.sqrt(model_-cond_var [8][1]))
+ model_params [8][10] * (model_resid [8][0]/math.sqrt(model_cond_var [8][0]))
+ model_params [8][11] % math.log(model_cond_var [8][2])
+ model_params [8][12] * math.log(model_cond_var [8][1])
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+ model_params [8][13] * math.log(model_cond_var [8][0]))

return math.exp(cond_var), best_model

# Loop for forecasting IVOL with 9 different models
test_size = 60 # minimimum of 60 months required
exp-ivol = {}
model_used = {}
for company in companies:
exp-ivol [company]| = []
model_used [company]| = []
dfC = dfIVOL[dfIVOL[’ISIN ’] = company|
for i in range (0, len(dfC[’Excess_Return’]) — test_size):
X = dfC[[’MKT", ’'SMB’ ,’HML’]]. values [:( test_size + i)]
# X = dfC['MKT’]. values [: ( test_size + 1i)] for CAPM mean process
y = dfC[’Excess_Return ’]. values [: ( test_size + 1i)]
ivol , model = idiosyncratic_forecast (y,X)
exp-ivol [company].append(ivol)

model_used [company | . append (model)

# Count how many times each model has been used
model_used_total = []
for company in companies:

model_used_total.extend (model_used [company])

model_7 = model_used_total.count (7

model_0 = model_used_total.count (0)
model-1 = model_used_total.count (1)
model_2 = model_used_total.count (2)
model_3 = model_used_total.count(3)
model_-4 = model_used_total.count (4)
model_5 = model_used_total.count(5)
model_6 = model_used_total.count (6)

)

)

model_8 = model_used_-total.count (8

model_total = len(model_used_total)

iv = []
eiv = []
for company in companies:
iv.extend (std_devs [company]|[60:])
eiv.extend (np.sqrt(exp_ivol [company]))
iv = np.array (iv)

eiv = np.array (eiv)

# 4 ____Making the dataframe____

# Dates
dates = dates[60:]

Alldates = dates * len(companies)

# Companies

Allcompanies = []

for company in companies:
=1

1 . append (company )
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Allcompanies.extend (1 * len(dates))

Allcompanies = np.array (Allcompanies)

# Import Market Capitalization and Market—to—Book ratio’s

dfMonthlyMV = pd.read_excel (r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\Thesis)\
Data\Monthly\Monthly Data without financials.xlsx’, sheet_-name=2)

dfMonthlyMtoB = pd.read_excel(r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\Thesis\
Data\Monthly\Monthly Data without financials.xlsx’, sheet_-name=3)

prices = dfMonthlyPrices.values. tolist ()
MV = dfMonthlyMV . values. tolist ()
MtoB = dfMonthlyMtoB. values. tolist ()

for i in range(len (companies)):
prices [i].remove(companies[i])
MV[i].remove(companies[i])

MtoB[i].remove(companies|[i])

MV _correct = []

MtoB_correct = []

for i in range(len(companies)):
MV _correct . extend MV[i][60:])

MtoB_correct . extend (MtoB[i][60:])

# Turning MV to Iln (MV)
In_MV_total = []
for val in MV_correct:
In_MV _total.extend ([math.log(val)])

# Turning M/B to In (B/M)

In_BtoM_total = []

for val in MtoB_correct:
In_BtoM_total.extend ([math.log(1/val)])

# Deriving returns

Returns = []

for row in prices:
for i in range(len (row[60:])):
try:
Returns.extend ([math.log (row[60+i+1]/row[60+1i])])
except ZeroDivisionError:
Returns. extend ([0])
except IndexError:
break

Returns = np.array (Returns) = 100

# Constructing dataframe
dfMonthly = pd.DataFrame ({
’Date’: Alldates ,

’ISIN ’: Allcompanies ,
’Return ’:
’IVOL’: iv,
"ExpIVOL’: eiv,
’Ln.MV’: In_MV _total ,
’InBM’: In_BtoM_total,

1)

Returns,
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# 5 ____Export to .dta file____
dfMonthly . to_stata (r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\Thesis\Data\
Monthly\Monthly Data Test Final without fincials.dta’)

Calculating BETAs

import pandas as pd

import numpy as np

from itertools import repeat
from arch.univariate import LS
import math

from scipy.ndimage.interpolation import shift

dfFF3factorsMonthly = pd.read_excel(r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\
Thesis\Data\Monthly\ ff 3 monthly.xlsx ’)

dfMonthlyPrices = pd.read_excel (r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\
Thesis\Data\Monthly\Monthly Data without financials.xlsx’, sheet_name=0)

dfMonthlyMV = pd.read_excel(r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\Thesis\
Data\Monthly\Monthly Data without financials.xlsx’, sheet_-name=2)

companies = dfMonthlyPrices[’ISIN CODE’]. unique ()

MKT = dfFF3factorsMonthly ["Mkt-RF’]. values. tolist () [1:]
MKT = MKT # len (companies)

MKT = np.array (MKT)

MKT = MKT/100

prices = dfMonthlyPrices.values. tolist ()
MV = dfMonthlyMV . values. tolist ()

for i in range(len(companies)):
prices [i].remove(companies[i])

MV[i].remove(companies[i])

MV _correct = []
for i in range(len(companies)):
MV _correct . extend MV[i][60:])

# Deriving returns

Returns = []

for row in prices:
for i in range(len (row)):

try:
Returns. extend ([math.log (row[i+1]/row[i])])

except ZeroDivisionError:
Returns. extend ([0])

except IndexError:
break

Returns = np.array (Returns)
dates = dfMonthlyPrices.columns. values. tolist ()

dates = dates[2:]

Alldates = dates * len(companies)
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Allcompanies = []

for company in companies:
=[]
1 . append (company )
Allcompanies.extend (1 * len(dates))

Allcompanies = np.array (Allcompanies)

# Deriving returns
Returns = []

for row in prices:
for i in range(len(row)):

try:
Returns. extend ([math.log (row[i+1]/row[i])])

except ZeroDivisionError:
Returns. extend ([0])

except IndexError:
break

Returns = np.array (Returns)

dfBETA = pd.DataFrame ({
’Date’: Alldates ,
’ISIN ’: Allcompanies ,
’Return ’:

"MKT” : MKT,

)

Returns,

betas = {}
prior = 60
for company in companies:
betas [company]| = []
dfC = dfBETA [dfBETA[ ISIN ’] = company]
for i in range(0, len(dfC[’Return’]) — prior):
x = np.array (dfC[’MKI’]. values [i:( prior 4+ i)]) =100
y = np.array (dfC[’Return’]. values [i:( prior 4+ i)]) =100
ls = LS(y, x)
res = ls.fit ()
betas [company | . append(res._params[1])

#H#
## Portfolio constructing , monthly rebalancing
i

MKT = dfFF3factorsMonthly [ 'Mkt—RF’]. values. tolist () [61:]
MKT = MKT # len (companies)

MKT = np.array (MKT)

MKT = MKT/100

prices = dfMonthlyPrices.values. tolist ()

for i in range(len(companies)):

prices [i].remove(companies[i])
dates = dfMonthlyPrices.columns. values. tolist ()
dates = dates[62:]

Alldates = dates * len(companies)

Allcompanies = []
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for company in companies:
=]
1 .append (company )
Allcompanies.extend (1 * len(dates))

Allcompanies = np.array (Allcompanies)

# Deriving returns

Returns = []

for row in prices:
for i in range(len(row[60:])):
try:
Returns. extend ([math.log (row[604+i+1]/row[60+i]) ])
except ZeroDivisionError:
Returns.extend ([0])
except IndexError:
break

Returns = np.array (Returns)

# begint met de laatste in companies
betasFF = []
for company in companies:

betasFF . extend (betas [company])

all_data = pd.DataFrame ({
PISIN ’: Allcompanies ,

’Return ’:

Returns,
"BETAFF’: betasFF |
'MV’: MV _correct

}, index = Alldates)

def vw_weighted_ret(portfolio, factor):
weight = portfolio[factor]/np.sum(portfolio[factor])
vw_ret = weight x portfolio [ ’Return’]

return np.sum(vw_ret)

monthly_portfolios_.comp = {}
monthly_portfolios_ret = {}
Market_Ret = []
for date in dates:

first = all_data.loc[date]

sort_size = first.sort_values (’'MV’)
monthly_portfolios_comp [date] = [[] for x in repeat(None, 100)]
monthly_portfolios_ret [date] = [[] for x in repeat(None, 100)]
# 10 MV

sort_-low = sort_size.iloc [:37]

sort-2 = sort_size.iloc [37:74]

sort_3 = sort_size.iloc [74:111]
sort_4 = sort_size.iloc[111:148
sort_-5 = sort_size.iloc[148:183
sort_.6 = sort_size.iloc[183:218
sort_7 = sort_size.iloc[218:255
sort_8 = sort_size.iloc[255:292
sort-9 = sort_size.iloc[292:329
sort_high = sort_size.iloc [329:]

# MV low, betas low —> high
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sort_low_beta = sort_low.sort_values (’BETAFF’) # 61

sort_low_low = sort_low_beta.iloc [:math.ceil (len(sort_low_beta)/10)]
monthly_portfolios_.comp [date][0]. append(sort_-low_low [’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][0]. append(sort_-low_low [’ Return’]. values. tolist ())

sort_low_2 = sort_low_beta.iloc[math. ceil (len(sort_low_beta)/10):round(len (
sort_low_beta)/10)*2 + 1]

monthly_portfolios_comp [date][1]. append(sort_low_2 [’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][1]. append(sort_-low_2[ Return’]. values. tolist ())

sort_-low_-3 = sort_-low_beta.iloc [round(len(sort_-low_beta)/10)*2 + 1l:round(len (
sort_-low_beta)/10)*3 + 1]

monthly_portfolios_comp [date][2]. append(sort_-low_3 [’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][2]. append(sort_-low_3[’Return’]. values. tolist ())

sort_low_4 = sort_low_beta.iloc[round(len(sort_-low_beta)/10)*3 + 1l:round(len (
sort_low_beta)/10)x4 + 1]

monthly_portfolios_comp [date][3]. append(sort_low_4 [’ISIN’]. values. tolist ())

monthly_portfolios_ret [date][3]. append(sort_-low_4 [ Return’]. values. tolist ())

sort_-low_5 = sort_-low_beta.iloc [round(len(sort_-low_beta)/10)*4 + 1l:round(len (
sort_low_beta)/10)%5 + 1]

monthly_portfolios_comp [date][4]. append(sort_low_5[ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][4]. append(sort_-low_5[’Return’]. values. tolist ())

sort_low_6 = sort_low_beta.iloc[round(len(sort_-low_beta)/10)*5 + 1l:round(len (
sort_-low_beta)/10)%6 + 1]

monthly_portfolios_comp [date][5]. append(sort_low_6 [ ISIN’]. values. tolist ())

monthly_portfolios_ret [date][5]. append(sort_-low_6 [ Return’]. values. tolist ())

sort_low_7 = sort_-low_beta.iloc [round(len(sort_-low_beta)/10)*6 + 1l:round(len (
sort_low_beta)/10)*7 + 1]

monthly_portfolios_comp [date][6]. append(sort_low_7 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][6]. append(sort_-low_7[’Return’]. values. tolist ())

sort_low_8 = sort_low_beta.iloc[round(len(sort_-low_beta)/10)*7 + 1l:round(len (
sort_-low_beta)/10)%8 + 1]

monthly_portfolios_.comp [date][7].append(sort_-low_8 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][7]. append(sort_-low_8 [ Return’]. values. tolist ())

sort_low_-9 = sort_-low_beta.iloc[round(len(sort_-low_beta)/10)*8 + 1l:round(len (
sort_low_beta)/10)%9 + 1]

monthly_portfolios_comp [date][8]. append(sort_-low_9 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][8]. append(sort-low_9 [ Return’]. values. tolist ())

sort_-low_high = sort_low_beta.iloc[—round(len(sort_low_beta)/10) :]
monthly_portfolios_comp [date][9]. append(sort_low_high [’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][9]. append(sort_low_high[’Return’]. values. tolist ())

# MV 2, betas low —> high
sort_-2_beta = sort_-2.sort_values (’BETAFF’) # 61

sort_2_low = sort_2_beta.iloc [:math.ceil (len(sort_-2_beta)/10)]
monthly_portfolios_comp [date][10].append(sort_-2_low ["ISIN ’]. values. tolist ())
)

monthly_portfolios_ret [date][10].append(sort_-2_low [’ Return’]. values. tolist ())

sort_2_.2 = sort_-2_beta.iloc [math. ceil (len(sort_-2_beta)/10):round(len(sort-2_beta)/10)
*2 4+ 1]
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monthly_portfolios_.comp [date][11].append(sort_-2_2[’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][11].append(sort_-2_2 [ ’Return’]. values.tolist ())

sort_2_.3 = sort_-2_beta.iloc [round(len(sort_-2_beta)/10)*2 + l:round(len(sort-2_beta)
/10)%3 + 1]

monthly_portfolios_comp [date][12].append(sort_2_3 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][12].append(sort_-2_3 [ Return’]. values. tolist ())

sort_2_4 = sort_2_beta.iloc [round(len(sort_2_beta)/10)*3 + l:round(len(sort_2_beta)
/10) %4 + 1]

monthly_portfolios_comp [date][13].append(sort-2_4 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][13].append(sort_-2_4[’Return’]. values.tolist ())

sort_2_5 = sort_-2_beta.iloc [round(len(sort_-2_beta)/10)*4 + l:round(len(sort_-2_beta)
/10) %5 + 1]

monthly_portfolios_comp [date][14].append(sort_2_5[ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][14].append(sort_2_5[ Return’]. values. tolist ())

sort_2_6 = sort_2_beta.iloc [round(len(sort_-2_beta)/10)*5 + l:round(len(sort_-2_beta)
/10)%6 + 1]

monthly_portfolios_comp [date][15].append(sort_-2_6 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][15].append(sort-2_6 [’ Return’]. values.tolist ())

sort_2_7 = sort_-2_beta.iloc [round(len(sort_-2_beta)/10)%6 + l:round(len(sort_-2_beta)
/10)%7 + 1]

monthly_portfolios_comp [date][16].append(sort_2_7 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][16].append(sort_2_7 [ Return’]. values. tolist ())

sort_2_8 = sort_2_beta.iloc [round(len(sort_-2_beta)/10)*7 + l:round(len(sort_-2_beta)
/10)%8 + 1]

monthly_portfolios_comp [date][17].append(sort_-2_8 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][17].append(sort-2_8 [ Return’]. values.tolist ())

sort_2_.9 = sort_2_beta.iloc [round(len(sort_2_beta)/10)*8 + l:round(len(sort_-2_beta)
/10)%9 + 1]

monthly_portfolios_comp [date][18]. append(sort_-2_9 [’ISIN’]. values. tolist ())

monthly_portfolios_ret [date][18].append(sort_2_9 [ Return’]. values. tolist ())

sort-2_high = sort_2_beta.iloc[—round(len(sort_-2_beta)/10) :]
monthly_portfolios_comp [date][19]. append(sort_2_high [’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][19].append(sort_-2_high [’ Return’]. values. tolist ())

# MV 3, betas low —> high
sort_3_beta = sort-3.sort_values (’BETAFEF’)

sort_3_.low = sort_3_beta.iloc [:round(len(sort_-3_beta)/10)]
monthly_portfolios_comp [date][20]. append(sort_3_low [’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][20]. append(sort_-3_low [’ Return’]. values. tolist ())

sort_3.2 = sort_3_beta.iloc [round(len(sort_3_beta)/10):round(len(sort_3_beta)/10)x2]
monthly_portfolios_comp [date][21].append(sort_-3_2 [ ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][21].append(sort-3_2 [ Return’]. values.tolist ())

sort_3_.3 = sort_3_beta.iloc [round(len(sort_3_beta)/10)*2:round(len(sort_-3_beta)/10)
*x3]

monthly_portfolios_.comp [date][22]. append(sort_-3_3 [’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][22]. append(sort_3_3 [ Return’]. values. tolist ())
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sort_3_.4 = sort_3_beta.iloc [round(len(sort_3_beta)/10)*3:round(len(sort_3_beta)/10)
x4

monthly_portfolios_comp [date][23]. append(sort_3_4 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][23]. append(sort_-3_4 [ Return’]. values. tolist ())

sort_3_.5 = sort_3_beta.iloc [round(len(sort_3_beta)/10)*4:round(len(sort_-3_beta)/10)
*5]

monthly_portfolios_.comp [date][24].append(sort_-3_5[’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][24]. append(sort_3_5[ Return’]. values. tolist ())

sort_3.6 = sort_3_beta.iloc[round(len(sort_-3_beta)/10)*5:round(len(sort-3_beta)/10)
*6]

monthly_portfolios_comp [date][25]. append(sort_3_6 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][25]. append(sort_-3_6 [ Return’]. values. tolist ())

sort_3_7 = sort_3_beta.iloc [round(len(sort_3_beta)/10)*6:round(len(sort_3_beta)/10)
*7]

monthly_portfolios_.comp [date][26].append(sort_-3_7[’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][26].append(sort_-3_7 [ ’Return’]. values.tolist ())

sort_3_.8 = sort_-3_beta.iloc [round(len(sort_-3_beta)/10)*7:round(len(sort-3_beta)/10)
* 8]

monthly_portfolios_comp [date][27].append(sort_3_8 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][27].append(sort_3_8 [ Return’]. values. tolist ())

sort_3_.9 = sort_3_beta.iloc [round(len(sort_3_beta)/10)*8:round(len(sort_3_beta)/10)
*9]

monthly_portfolios_comp [date][28].append(sort_-3_9 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][28]. append(sort_-3_9 [’ Return’]. values.tolist ())

sort_3_high = sort_3_beta.iloc[—round(len(sort_-3_beta)/10) :]
monthly_portfolios_.comp [date][29]. append(sort_-3_high [’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][29]. append(sort_3_high[’Return’]. values. tolist ())

# MV 4, betas low —> high
sort-4_beta = sort_-4.sort_values (’BETAFF’)

sort_4_low = sort_-4_beta.iloc [:round(len(sort_-4_beta)/10)]
monthly_portfolios_.comp [date][30].append(sort_4_low ["ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][30].append(sort_4_low [ Return’]. values. tolist ())

sort_-4_.2 = sort_4_beta.iloc[round(len(sort_-4_beta)/10):round(len(sort_4_beta)/10) 2]
monthly_portfolios_comp [date][31].append(sort_4_2 [’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][31].append(sort_4_2[ Return’]. values. tolist ())

sort-4_.3 = sort_4_beta.iloc[round(len(sort_-4_beta)/10)*2:round(len(sort-4_beta)/10)
%3]

monthly_portfolios_comp [date][32].append(sort_4_3 [’ISIN ’']. values. tolist ())

monthly_portfolios_ret [date][32].append(sort-4_3 [ Return’]. values.tolist ())

sort_4_.4 = sort_4_beta.iloc [round(len(sort_4_beta)/10)*3:round(len(sort-4_beta)/10)
*4]

monthly_portfolios_comp [date][33]. append(sort_4_4 [ ISIN’]. values. tolist ())

monthly_portfolios_ret [date][33].append(sort_4_4 [ Return’]. values. tolist ())

sort-4_5 = sort_4_beta.iloc[round(len(sort_-4_beta)/10)*4:round(len(sort-4_beta)/10)
*5]

monthly_portfolios_comp [date][34].append(sort_4_5[ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][34].append(sort_-4_5[ Return’]. values.tolist ())
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sort-4_.6 = sort_4_beta.iloc[round(len(sort_-4_beta)/10)*5:round(len(sort-4_beta)/10)
*6]

monthly_portfolios_comp [date][35]. append(sort_-4_6 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][35].append(sort_-4_6 [ Return’]. values.tolist ())

sort_4_7 = sort_4_beta.iloc [round(len(sort_-4_beta)/10)*6:round(len(sort-4_beta)/10)
*7]

monthly_portfolios_comp [date][36].append(sort_4_7 [’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][36].append(sort_4_7 [’ Return’]. values. tolist ())

sort-4_.8 = sort_4_beta.iloc[round(len(sort_-4_beta)/10)*7:round(len(sort-4_beta)/10)
* 8]

monthly_portfolios_comp [date][37].append(sort_4_8 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][37].append(sort-4_8 [ Return’]. values.tolist ())

sort_4_.9 = sort_4_beta.iloc [round(len(sort_4_beta)/10)*8:round(len(sort-4_beta)/10)
*9]

monthly_portfolios_comp [date][38]. append(sort_4_9 [’ISIN’]. values. tolist ())

monthly_portfolios_ret [date][38].append(sort_4_9 [ ’Return’]. values. tolist ())

sort-4_high = sort_4_beta.iloc[—round(len(sort_-4_beta)/10) :]
monthly_portfolios_comp [date][39].append(sort_4_high [’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][39].append(sort_4_high [’ Return’]. values. tolist ())

# MV 5, betas low —> high
sort_5_beta = sort.5.sort_values (’'BETAFF’)

sort_5_low = sort_5_beta.iloc [:round(len(sort_-5_beta)/10)]
monthly_portfolios_comp [date][40]. append(sort_5_low ["ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][40]. append(sort_-5_low [’ Return’]. values. tolist ())

sort_5.2 = sort_5_beta.iloc [round(len(sort_5_beta)/10):round(len(sort_5_beta)/10)x2]
monthly_portfolios_comp [date][41].append(sort_5_2 [ ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][41].append(sort_-5_2 [ Return’]. values.tolist ())

sort_5_.3 = sort_5_beta.iloc [round(len(sort_5_beta)/10)*2:round(len(sort_-5_beta)/10)
*3]

monthly_portfolios_.comp [date][42].append(sort_-5_-3 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][42]. append(sort_5_3 [ Return’]. values. tolist ())

sort_5_.4 = sort_5_beta.iloc [round(len(sort_5_beta)/10)*3:round(len(sort_5_beta)/10)
x4]

monthly_portfolios_comp [date][43]. append(sort_5_4 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][43]. append(sort_5_4 [ Return’]. values. tolist ())

sort_5_.5 = sort_5_beta.iloc [round(len (sort_5_beta)/10)*4:round(len(sort_5_beta)/10)
*5]

monthly_portfolios_.comp [date][44].append(sort_5_5["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][44]. append(sort_5_5[ Return’]. values. tolist ())

sort_5_6 = sort_5_beta.iloc [round(len(sort_5_beta)/10)*5:round(len(sort_5_beta)/10)
*6]

monthly_portfolios_comp [date][45]. append(sort_5_.6 [ "ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][45]. append(sort_5_6 [ Return’]. values. tolist ())

sort_5_.7 = sort_5_beta.iloc [round(len (sort_5_beta)/10)*6:round(len(sort_5_beta)/10)

*7]
monthly_portfolios_.comp [date][46].append(sort_5_7["ISIN ’]. values. tolist ())
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monthly_portfolios_ret [date][46].append(sort_5_7 [ Return’]. values.tolist ())

sort_5_.8 = sort_5_beta.iloc [round(len(sort_5_beta)/10)*7:round(len(sort_5_beta)/10)
*8]

monthly_portfolios_.comp [date][47].append(sort_5_8 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][47]. append(sort_5_8 [ Return’]. values. tolist ())

sort_5_.9 = sort_5_beta.iloc [round(len(sort_5_beta)/10)*8:round(len(sort_5_beta)/10)
*x9]

monthly_portfolios_comp [date][48].append(sort_5_9 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][48]. append(sort_-5_9 [ Return’]. values. tolist ())

sort_5_high = sort_5_beta.iloc[—round(len(sort_5_beta)/10) :]
monthly_portfolios_.comp [date][49].append(sort_5_high [’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][49].append(sort_5_high[’Return’]. values. tolist ())

# MV 6, betas low —> high
sort_6_beta = sort_6.sort_values (’BETAFF’)

sort_6_low = sort_6_beta.iloc [:round(len(sort_6_beta)/10)]
monthly_portfolios_comp [date][50]. append(sort_-6_low [ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][50].append(sort_-6_low [’ Return’]. values. tolist ())

sort_6_2 = sort_6_beta.iloc [round(len(sort_6_beta)/10):round(len(sort_6_beta)/10)x2]
monthly_portfolios_.comp [date][51].append(sort_6_2 [ ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][51]. append(sort_6_2[ Return’]. values. tolist ())

sort_6_.3 = sort_6_beta.iloc[round(len(sort_6_beta)/10)=2:round(len(sort_6_beta)/10)
*3]

monthly_portfolios_comp [date][52]. append(sort_6_3 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][52]. append(sort_6_3 [ Return’]. values. tolist ())

sort_6_.4 = sort_6_beta.iloc [round(len(sort_6_beta)/10)*3:round(len(sort_6_beta)/10)
x4 ]

monthly_portfolios_.comp [date][53].append(sort_6_4 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][53]. append(sort_6_4 [ Return’]. values. tolist ())

sort_6_.5 = sort_6_beta.iloc [round(len(sort_6_beta)/10)*4:round(len(sort-6_beta)/10)
*5]

monthly_portfolios_comp [date][54]. append(sort_6_5[ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][54]. append(sort_6_5[ Return’]. values. tolist ())

sort_6_.6 = sort_6_beta.iloc [round(len(sort_6_beta)/10)*5:round(len(sort_6_beta)/10)
*6]

monthly_portfolios_comp [date][55]. append(sort_6_6 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][55]. append(sort_6_6 [’ Return’]. values.tolist ())

sort_6_7 = sort_6_beta.iloc [round(len(sort_6_beta)/10)*6:round(len(sort-6_beta)/10)
* 7]

monthly_portfolios_comp [date][56].append(sort_6_7 [’ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][56].append(sort_6_7 [ Return’]. values. tolist ())

sort_6_8 = sort_6_beta.iloc [round(len(sort_6_beta)/10)*7:round(len(sort_-6_beta)/10)
* 8]

monthly_portfolios_comp [date][57].append(sort_6_8 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][57].append(sort-6_-8 [ Return’]. values.tolist ())

sort_6_.9 = sort_6_beta.iloc[round(len(sort_6_beta)/10)*8:round(len(sort-6_beta)/10)
*9]
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monthly_portfolios_.comp [date][58].append(sort_6_9 ["ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][58]. append(sort_-6_9 [’ Return’]. values.tolist ())

sort_6_high = sort_6_beta.iloc[—round(len(sort_6_beta)/10) :]
monthly_portfolios_.comp [date][59]. append(sort_-6_high [’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][59]. append(sort_6_high[’Return’]. values. tolist ())

# MV 7, betas low —> high
sort_7_beta = sort_7.sort_values (’BETAFF’)

sort_-7_-low = sort_7_beta.iloc [:round(len(sort_-7_beta)/10)]
monthly_portfolios_comp [date][60]. append(sort_7_low [ ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][60]. append(sort_7_low [’ Return’]. values. tolist ())

sort_-7-2 = sort_7_beta.iloc[round(len(sort_-7_beta)/10):round(len(sort_7_beta)/10) 2]
monthly_portfolios_comp [date][61].append(sort_7_2 [ ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][61].append(sort_7_2[ Return’]. values. tolist ())

sort_7_3 = sort_7_beta.iloc [round(len(sort_-7_beta)/10)*2:round(len(sort_-7_beta)/10)
*3]

monthly_portfolios_comp [date][62].append(sort_7_3 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][62].append(sort-7_3 [ Return’]. values.tolist ())

sort_7-4 = sort_7_beta.iloc [round(len(sort_7_beta)/10)*3:round(len(sort_-7_beta)/10)
x4]

monthly_portfolios_comp [date][63].append(sort_7_4 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][63].append(sort_7_4 [ Return’]. values. tolist ())

sort_-7_-5 = sort_7_beta.iloc[round(len(sort_-7_beta)/10)*4:round(len(sort-7_beta)/10)
*5]

monthly_portfolios_comp [date][64].append(sort_7_5[ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][64].append(sort-7_5[ Return’]. values.tolist ())

sort_7_.6 = sort_7_beta.iloc [round(len(sort_7_beta)/10)*5:round(len(sort_-7_beta)/10)
*6]

monthly_portfolios_comp [date][65]. append(sort_7_6 [’ISIN’]. values. tolist ())

monthly_portfolios_ret [date][65]. append(sort_7_6 [ Return’]. values. tolist ())

sort_7_.7 = sort_7_beta.iloc[round(len(sort_-7_beta)/10)*6:round(len(sort-7_beta)/10)
*7]

monthly_portfolios_comp [date][66].append(sort_7_7 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][66].append(sort_-7_low [’ Return’]. values. tolist ())

sort_7_8 = sort_7_beta.iloc [round(len(sort_7_beta)/10)=*7:round(len(sort_7_beta)/10)
*8]

monthly_portfolios_comp [date][67]. append(sort_7_8 [ ISIN’]. values. tolist ())

monthly_portfolios_ret [date][67].append(sort_7_8 [ Return’]. values. tolist ())

sort_7_9 = sort_7_beta.iloc [round(len(sort_7_beta)/10)*8:round(len(sort_7_beta)/10)
*9]

monthly_portfolios_comp [date][68].append(sort_7_9 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][68].append(sort-7_9 [ Return’]. values.tolist ())

sort_7_high = sort_7_beta.iloc[—round(len(sort_7_beta)/10) :]
monthly_portfolios_comp [date][69].append(sort_7_high [ ISIN ’]. values. tolist ()

)
monthly_portfolios_ret [date][69].append(sort_7_high[’Return’]. values. tolist ())

# MV 8, betas low —> high
sort_-8_beta = sort_8.sort_values (’BETAFF’)
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sort_8_low = sort_8_beta.iloc [:round(len(sort_-8_beta)/10)]
monthly_portfolios_comp [date][70]. append(sort_8_low ["ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][70].append(sort_-8_low [’ Return’]. values. tolist ())

sort_8_2 = sort_8_beta.iloc [round(len(sort_8_beta)/10):round(len(sort_8_beta)/10)x2]
monthly_portfolios_comp [date][71].append(sort_-8_2 [ ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][71].append(sort-8_2[ Return’]. values.tolist ())

sort_8_3 = sort_8_beta.iloc [round(len(sort_8_beta)/10)*2:round(len(sort_-8_beta)/10)
x3]

monthly_portfolios_comp [date][72]. append(sort_8_3 [ ISIN’]. values. tolist ())

monthly_portfolios_ret [date][72].append(sort_8_3 [ Return’]. values. tolist ())

sort_8_4 = sort_8_beta.iloc [round(len(sort_8_beta)/10)*3:round(len(sort_8_beta)/10)
x4]

monthly_portfolios_comp [date][73].append(sort_8_4 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][73].append(sort_-8_4 [ Return’]. values.tolist ())

sort_8_5 = sort_8_beta.iloc [round(len(sort_8_beta)/10)*4:round(len(sort_-8_beta)/10)
*5]

monthly_portfolios_.comp [date][74].append(sort_-8_5 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][74]. append(sort_8_5[ Return’]. values. tolist ())

sort_8_6 = sort_8_beta.iloc[round(len(sort_8_beta)/10)*5:round(len(sort_8_beta)/10)
*6]

monthly_portfolios_comp [date][75]. append(sort_8_6 [ 'ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][75]. append(sort_-8_6 [ Return’]. values. tolist ())

sort_8_7 = sort_8_beta.iloc [round(len(sort_8_beta)/10)*6:round(len(sort_8_beta)/10)
*7]

monthly_portfolios_.comp [date][76].append(sort_8_7[’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][76].append(sort_8_7 [ Return’]. values. tolist ())

sort_8_8 = sort_8_beta.iloc [round(len(sort_8_beta)/10)*7:round(len(sort_8_beta)/10)
*8]

monthly_portfolios_comp [date][77].append(sort_8_8 [’ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date]|[77].append(sort_8_8 [ Return’]. values. tolist ())

sort_8_9 = sort_8_beta.iloc [round(len(sort_8_beta)/10)*8:round(len(sort_8_beta)/10)
*9]

monthly_portfolios_.comp [date][78]. append(sort_-8_9 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][78].append(sort_8_9 [’ Return’]. values. tolist ())

sort_8_high = sort_8_beta.iloc[—round(len(sort_-8_beta)/10) :]
monthly_portfolios_comp [date][79]. append(sort_8_high [ ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][79]. append(sort_8_high[’Return’]. values. tolist ())

# MV 9, betas low —> high
sort_9_beta = sort_9.sort_values (’BETAFF’) # 61

sort_9_low = sort_-9_beta.iloc [:math.ceil (len(sort-9_beta)/10)]
monthly_portfolios_comp [date][80]. append(sort_-9_low [ ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][80]. append(sort_-9_low [’ Return’]. values. tolist ())

sort-9.2 = sort_-9_beta.iloc [math.ceil (len(sort_-9_beta)/10):round(len(sort_-9_beta)/10)
*2 + 1]

monthly_portfolios_.comp [date][81].append(sort_-9_2 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][81].append(sort-9_2 [ Return’]. values.tolist ())
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sort_9.3 = sort_9_beta.iloc [round(len(sort_-9_beta)/10)*2 + l:round(len(sort_-9_beta)
/10)%3 + 1]

monthly_portfolios_comp [date][82].append(sort_-9_3 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][82].append(sort-9_3 [ Return’]. values.tolist ())

sort_9.4 = sort_9_beta.iloc [round(len(sort_-9_beta)/10)*3 + l:round(len(sort_-9_beta)
/10) %4 + 1]

monthly_portfolios_comp [date][83].append(sort_9_4 ["ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][83].append(sort_9_4 [ Return’]. values. tolist ())

sort_9.5 = sort_9_beta.iloc [round(len(sort_-9_beta)/10)*4 + l:round(len(sort_9_beta)
/10)%5 + 1]

monthly_portfolios_comp [date][84].append(sort_9_5[ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][84].append(sort-9_5[ Return’]. values.tolist ())

sort_9.6 = sort_9_beta.iloc [round(len(sort_9_beta)/10)*5 + l:round(len(sort_9_beta)
/10)%6 + 1]

monthly_portfolios_comp [date][85]. append(sort_9_6 [’ISIN’]. values. tolist ())

monthly_portfolios_ret [date][85]. append(sort_9_6 [ Return’]. values. tolist ())

sort_9_7 = sort_9_beta.iloc [round(len(sort_9_beta)/10)*6 + l:round(len(sort_9_beta)
/10)*7 + 1]

monthly_portfolios_comp [date][86].append(sort_9_7 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][86].append(sort-9_7 [ Return’]. values.tolist ())

sort_9.8 = sort_9_beta.iloc [round(len(sort_9_beta)/10)*7 + l:round(len(sort_9_beta)
/10)+8 + 1]

monthly_portfolios_comp [date][87]. append(sort_9_8 [ ISIN’]. values. tolist ())

monthly_portfolios_ret [date][87].append(sort_9_8 [ Return’]. values. tolist ())

sort_9_.9 = sort_9_beta.iloc [round(len(sort_9_beta)/10)*8 + l:round(len(sort_9_beta)
/10) %9 + 1]

monthly_portfolios_comp [date][88].append(sort_-9_9 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][88].append(sort-9_9 [ Return’]. values. tolist ())

sort_9_high = sort_9_beta.iloc[—round(len(sort_-9_beta)/10) :]
monthly_portfolios_.comp [date][89].append(sort_-9_high [ ’ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][89].append(sort_-9_high[’Return’]. values. tolist ())

# MV high, betas low —> high
sort_high_beta = sort_high.sort_values (’BETAFF’) # 61

sort_high_low = sort_high_beta.iloc [:math.ceil (len(sort_high_beta)/10)]
monthly_portfolios_comp [date][90]. append(sort_high_low ["ISIN ’']. values. tolist ())
monthly_portfolios_ret [date][90].append(sort_high_low [’Return’]. values. tolist ())

sort_high_ 2 = sort_high_beta.iloc[math.ceil (len(sort_-high_beta)/10):round(len (
sort_high_beta)/10)*2 + 1]

monthly_portfolios_comp [date][91].append(sort_high_2 [’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][91].append(sort_high_2[’Return’]. values. tolist ())

sort-high_3 = sort_high_beta.iloc[round(len(sort_high_beta)/10)*2 + 1:round(len (
sort_high_beta)/10)%3 + 1]

monthly_portfolios_comp [date][92]. append(sort_high_3 [ ’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][92].append(sort_high_3 [’ Return’]. values. tolist ())

sort_high_4 = sort_high_beta.iloc[round(len(sort_high_beta)/10)*3 4+ 1:round(len (
sort_high_beta)/10)%4 + 1]
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monthly_portfolios_.comp [date][93].append(sort_high_4 [’ISIN’]. values. tolist ())
monthly_portfolios_ret [date][93]. append(sort_-high_4 [ Return’]. values. tolist ())

sort_high_5 = sort_high_beta.iloc [round(len(sort_high_beta)/10)%*4 + 1l:round(len (
sort_high_beta)/10)*5 + 1]

monthly_portfolios_comp [date][94]. append(sort_high_ 5[ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][94]. append(sort_high_5[ Return’]. values. tolist ())

sort_high_6 = sort_high_beta.iloc[round(len(sort_high_beta)/10)*5 + 1l:round(len (
sort_high_beta)/10)%6 + 1]

monthly_portfolios_.comp [date][95]. append(sort_high_6 [ ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][95]. append(sort_-high_6 [ Return’]. values. tolist ())

sort_high_7 = sort_high_beta.iloc[round(len(sort_high_beta)/10)*6 + 1:round(len (
sort_high_beta)/10)*7 + 1]

monthly_portfolios_.comp [date][96].append(sort_high_7[’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][96].append(sort_high_7 [ Return’]. values. tolist ())

sort_-high_8 = sort_high_beta.iloc[round(len(sort_high_beta)/10)*7 + 1:round(len (
sort_high_beta)/10)%8 + 1]

monthly_portfolios_.comp [date][97].append(sort_high_8[’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][97].append(sort_high_8 [ Return’]. values. tolist ())

sort_high_ 9 = sort_high_beta.iloc[round(len(sort_high_beta)/10)*8 4+ 1:round(len (
sort_high_beta)/10)%9 + 1]

monthly_portfolios_.comp [date][98].append(sort_high_9[’ISIN ’]. values. tolist ())

monthly_portfolios_ret [date][98]. append(sort_high_9 [ Return’]. values. tolist ())

sort_high_high = sort_high_beta.iloc[—round(len(sort_high_beta)/10):]
monthly_portfolios_comp [date][99]. append(sort_high_high ['ISIN ’]. values. tolist ())
monthly_portfolios_ret [date][99]. append(sort_high_high[’Return’]. values. tolist ())

market_ret = vw_weighted_ret (first ,’MV’)
Market_Ret.append (market_ret)

portfolio_returns = [[] for x in repeat(None, 100)]
for i in range (0, 100):
for date in dates:
portfolio_returns[i].append(np.average(monthly_portfolios_ret [date][i]))

Market_Ret = np.array (Market_Ret)
Market_Ret_lag = shift (Market_Ret, 1, cval=0)

portfolio_betas = []
for i in range(0, len(portfolio_returns)):
y = np.array(portfolio_returns[i]) =* 100
x = np.stack ((Market_Ret, Market_Ret_lag), axis=—1) % 100
s = LS(y,x)
res = ls. fit ()
beta = res._params[1l] + res._params [2]
portfolio_betas .append(beta)

## assigning betas to firms on monthly basis
portfolio_index = {}
for company in companies:

portfolio_index [company] = []

for date in dates:

count = 0
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for 1 in range(0, len(monthly_portfolios_.comp [date])):

try:
monthly_portfolios_comp [date][1][0]. index (company)
portfolio_index [company]. append (count)
break
except ValueError:
count 4= 1

company_betas = {}

for company in companies:
company-betas [company] = []
for i in range(0, len(dates)):

company_betas [company | . append ( portfolio_betas|[portfolio_index [company][i]])

## Making dataframe to stata
betasFF = []
for company in companies:

betasFF .extend (company_betas [company|)

Allcompanies = []

for company in companies:
=]
1 . append (company)
Allcompanies.extend (1 * len(dates))

Allcompanies = np.array (Allcompanies)
Alldates = dates x len(companies)

dfBETA = pd.DataFrame ({
"Date’: Alldates ,
’ISIN ’: Allcompanies ,
"BETA_FF’: betasFF |

1))

dfBETA . to_stata (r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\Thesis\Data\Monthly\
Monthly BETA FF without financials.dta’)

Portfolio construction for both E(IVOL) estimates (FF3 and CAPM)

import pandas as pd

import numpy as np

from itertools import repeat
from arch.univariate import LS

import matplotlib.pyplot as plt

#
# FF-3 Factors
#

dfFF3factorsMonthly = pd.read_excel (r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\
Thesis\Data\Monthly\ ff 3 monthly.xlsx ”)
dfFrame = pd.read_stata (r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\Thesis\Data)\
Monthly\ Final 1.dta’)
dfFrame = dfFrame.drop ([’ index’,
Lo MV’
Ln_BM’ |
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’company_id ’,
’_merge’,
’IVOLlagl’], axis=1)

companies = dfFrame[’ISIN ’]. unique ()

dates = dfFrame[’Date’]. unique ()

RF = dfFF3factorsMonthly ['RF’]. values. tolist () [61:] = 366
RF = np.array (RF)

MKT = dfFF3factorsMonthly [ "Mkt—RF’]. values. tolist () [61:]
MKT = np.array (MKT)

SMB = dfFF3factorsMonthly [’SMB’]. values. tolist () [61:]

SMB = np.array (SMB)

HML = dfFF3factorsMonthly ['"HML’]. values. tolist () [61:]

HML = np.array (HML)

dfFrame [’ Excess_Return ’] = dfFrame[’Return’] — RF
def cum_returns(months, excess_returnx):

cum_ret = [[] for x in repeat(None, months)]
cum_ret [0] =1
for i in range(0, (len(excess_returnx)—1)):

cum_ret [i+1] = cum_ret [i]*(1 4+ excess_returnx[i]/100)
return cum_ret
def vw_weighted_ret(portfolio, factor):
weight = portfolio[factor]/np.sum(portfolio[factor])
vw_ret = weight * portfolio[’Return’]

return np.sum(vw_ret)

def portfolio(x1l, x2):

MV = ]

BM =[]
BETA = []
IVOL = []
Exp IVOL = []

excess_return_ew = []

excess_return_vw = []

for date in dates:
dfMonth = dfFrame|[dfFrame[’Date’] = date]
dfPortfolio = dfMonth.sort_values (’Exp.IVOL’, ascending=False)
dfPortfolio = dfPortfolio.iloc [x1:x2]
MV_total = np.sum(dfPortfolio [’MV’]. to_numpy())

returns = dfPortfolio [’ Excess_Return ’]. to_numpy ()

# equal—weighted

excess_return_ew .append (np. average (dfPortfolio [’ Excess_Return ’]. to_numpy () ))

#statistics

MV. append (np. average (dfPortfolio [ 'MV’]. to_numpy () ))

BM. append (np. average (dfPortfolio [’'BM’]. to_numpy ()))

BETA. append (np. average (dfPortfolio [ 'BETAFF’]. to.numpy () ))
IVOL. append (np. average (dfPortfolio [’ IVOL’]. to-numpy () ))
Exp_IVOL. append (np. average (dfPortfolio [ ’Exp.IVOL’]. to_numpy () ))

vw_return = []
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for i in range(0, len(dfPortfolio)):
weight = dfPortfolio[’MV’]. iloc[i]/MV_total
vw_return.append (weight * returns[i])

# value—weighted

excess_return_vw .append (np.sum(vw_return))

y = np.array(excess_return_vw)
x = np.array ([MKT, SMB, HML]) .T
Is = LS(y, x)

res = ls.fit (disp="off ")

coeff = round(res._params|[0],3)

pvalue = round(res.pvalues.Const,3)

return coeff, pvalue, excess_return_ew , excess_.return_.vw , cum_returns(len(dates),
excess_return_ew ), cum-_returns(len(dates), excess_return_-vw), np.average(MV), np.
average (BM), np.average (BETA), np.average(IVOL), np.average (Exp.IVOL)

coeffl , pvaluel, excess_returnl , vw_excess_returnl , cum.retl, vw_cum_retl, av_.MV_1,
av.BM_1, av_beta_-1, av_ivol_-1, av_eivol_-1 = portfolio (0, 37)

coeff2 , pvalue2, excess_return2, vw_excess_return2, cum.ret2, vw_cum._ret2, av_.MV_2,
av.BM_2, av_beta_2, av_ivol_-2, av_eivol_-2 = portfolio (37, 74)

coeff3 , pvalue3, excess_return3, vw_excess_return3d, cum-.ret3, vw_cum-_ret3, av_.MV_3,
av.BM_3, av_beta_3, av_ivol_3, av_eivol_3 = portfolio (74, 111)

coeffd , pvalued, excess_returnd , vw_excess_returnd , cum._retd, vw_cum._retd, av_.MV_4,
av.BM_4, av_beta_4, av_ivol_-4, av_eivol_-4 = portfolio (111, 148)

coeffs , pvalueb, excess_returnb, vw_excess_returnb, cum_reth, vw_cum_retb, av.MV_5,
av.BM_5, av_beta_5, av_ivol_5, av_eivol_.5 = portfolio (148, 183)

coeff6 , pvalue6, excess_return6 , vw_excess_return6, cum._ret6, vw_cum._ret6, av_.MV_6,
av.BM_6, av_beta_6, av_ivol_6, av_eivol_-6 = portfolio (183, 218)

coeff7 , pvalue7, excess_return7, vw_excess_return7, cum._ret7, vw_cum_ret7, av_MV_7,
av.BM_7, av_beta_7, av_ivol_.7, av_eivol_7 = portfolio (218, 255)

coeff8 , pvalue8, excess_return8 , vw_excess_return8 , cum.ret8, vw_cum._ret8, av_.MV_8,
av.BM_8, av_beta_8, av_ivol_8, av_eivol_8 = portfolio (255, 292)

coeff9 , pvalue9, excess_return9 , vw_excess_return9, cum._ret9, vw_cum_ret9, av_.MV_9,
av.BM_9, av_beta_9, av_ivol-9, av_eivol_-9 = portfolio (292, 329)

coeffl0, pvaluel0, excess_returnl0, vw_excess_returnlO, cum-_retl0, vw_cum-_retl0, av-MV_10
, av.BM_10, av_beta_10, av_ivol_-10, av_eivol_-10 = portfolio (329, 366)

av_excess._returnl = np.average(excess_returnl)
av_excess_return2 = np.average(excess_return2)
av_excess_return3 = np.average(excess_return3)
av_excess._returnd = np.average(excess_return4)
av_excess_returnb = np.average (excess_return5)
av_excess_return6 = np.average(excess_return6)
av_excess._return7 = np.average(excess_return7)
av_excess_return8 = np.average(excess_returng)
av_excess_return9 = np.average(excess_return9)

av_excess_returnl0 = np.average(excess_returnlQ)

av_excess_returnl_vw = np.average(vw_excess_returnl)
av_excess_return2_vw = np.average(vw_excess_return2)

av_excess_return3_vw = np.average(vw_excess_return3)

(
(
(
av_excess_.returnd_vw = np.average(vw_excess_return4)
av_excess_return5_vw = np.average(vw_excess_return5)
av_excess_return6_vw = np.average(vw_excess_return6)
av_excess_return7_vw = np.average(vw_excess_return7)
av_excess_return8_vw = np.average(vw_excess_return8)
av_excess_return9_vw = np.average(vw_excess_return9)

av_excess_returnlO_vw = np.average(vw_excess_returnl0)
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# Plot cumulative returns

plt.plot (dates, cum._retl, label = ”High”)
plt.plot (dates, cum_.ret2, label = 79”)
plt.plot (dates, cum-.ret3, label = 78”)
plt.plot(dates, cum_.ret4, label = 77”)
plt.plot (dates, cum.ret5, label = 76”)
plt.plot (dates, cum.ret6, label = 75”)
plt.plot (dates, cum_ret7, label = 74”)
plt.plot (dates, cum_ret8, label = 73”)
plt.plot (dates, cum_.ret9, label = 727)
plt.plot (dates, cum-retl0, label = ”"Low”)
plt.legend ()

plt .show ()

# Plot value weighted cumulative returns

plt.plot (dates, vw_cum_retl, label = ”High”)
plt.plot (dates, vw_cum_ret2, label = 797)
plt.plot (dates, vw_cum_ret3, label = 78”)
plt.plot(dates, vw_cum._ret4d, label = 77")
plt.plot (dates, vw_cum_rets, label = 76”)
plt.plot (dates, vw_cum_ret6, label = 757)
plt.plot (dates, vw_cum_ret7, label = 747)
plt.plot (dates, vw_cum_ret8, label = 737)
plt.plot (dates, vw_cum_ret9, label = 727)
plt.plot (dates, vw_cum_retl0, label = "Low”)
plt.legend ()

plt .show ()

# UMD portfolio based on long High and short Low
excess_returnumd = np.array (excess_returnl) — np.array(excess_returnl0)
cum_retumd = cum-returns(len(dates), excess_returnumd)
plt.plot (dates, cum_retumd, label = "UMDew”)
plt.legend ()

plt .show ()

# value weighted UMD portfolio based on long High and short Low
vw_excess_returnumd = np.array (vw_excess_returnl) — np.array(vw_excess_returnl0)
vw_cum.retumd = cum-_returns(len (dates), vw_excess_returnumd)

plt.plot (dates, vw_cum_retumd, label = "UMDvw”)
plt.legend ()

plt .show ()

# Export spread returns to stata for GRS test
dfGRS = pd.DataFrame ({

UMD’ : vw_excess_returnumd ,
’high ’: vw_excess_returnl ,
’9’: vwe_excess_return2 ,
’87: vw_excess_return3 ,
’7’: vw_excess_returnd ,
’6’: vw_excess_returnb ,
’57: vw_excess_return6 ,
’4’: vw_excess_return? ,
’37: vw_excess_return8 ,
’27: vw_excess_return9 ,
’low’: vw_excess_returnlO ,
'MKT’ : MKT,

"HML : HML,

’SMB’: SMB,
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1)

dfFF3 = pd.DataFrame ({

’dates ’: dates ,

"high_ew ’: cum-_retl ,
’9_ew’: cum_ret2,
’8_ew’: cum_ret3,
’T_ew’: cum-.ret4d,
’6_ew’: cum_reth,

’5_ew ’: cum_ret6 ,
’4_ew’: cum_ret7,
’3_ew’: cum-_ret8,
’2_ew’: cum_ret9,
’low_ew ’: cum_ret10 ,
’high_.vw ’: vw_cum_retl ,
9 vw’: vw_cum_ret2 ,

8 vw ' vw_cum_ret3 ,
T_vw’: vw_cum-.retd ,
6_vw ’: vw_cum-reth ,

’5_ vw’: vw_cum_ret6 ,

4 vw’': vw_cum_ret7 ,
’3.vw’: vw.cum-.ret8 ,

2 vw’: vw_cum_ret9 ,
’low_vw’: vw_cum_ret10,

1)

dfFF3.to_stata (r’C:\ Users\Lodew\Documents\ Bachelor Economie Vakken\Thesis\Data\Figuren\
FF3.dta’)

dfGRS. to_stata (r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\Thesis\Data\Monthly\
GRS.dta’)

# #
# # CAPM

##

dfFF3factorsMonthly = pd.read_excel(r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken)\
Thesis\Data\Monthly\ ff 3 monthly.xlsx ”)

dfFrame = pd.read_stata (r’C:\ Users\Lodew\Documents\Bachelor Economie Vakken\Thesis\Data)\
Monthly\ Final 1 CAPM. dta )

)

dfFrame = dfFrame.drop ([’ index’,

"’Ln. MV’ |

"’Ln BM” |

’company_id ’,

‘_merge’], axis=l1l)
dfFrame [’ Excess_Return ’] = dfFrame[’Return’] — RF

coeffl , pvaluel, excess_returnl , vw_excess_returnl , cum.retl, vw_cum-_retl, av_.MV_1,
av.BM_1, av_beta_1, av_ivol_1, av_eivol_1 = portfolio (0, 37)

coeff2 , pvalue2, excess_return2, vw_excess_return2, cum.ret2, vw_cum._ret2, av_.MV_2,
av.BM_2, av_beta_2, av_ivol_-2, av_eivol_-2 = portfolio (37, 74)

coeff3 , pvalue3, excess_return3, vw_excess_return3, cum-_ret3, vw_cum-_ret3, av_MV_3,
av.BM_3, av_beta_3, av_ivol_3, av_eivol_.3 = portfolio (74, 111)

coeffd , pvalued, excess_returnd , vw_excess_returnd , cum._retd, vw_cum._retd, av-MV_4,
av.BM_4, av_beta_4, av_ivol_-4, av_eivol_-4 = portfolio (111, 148)

coeff5 , pvalueb5, excess_returnb, vw_excess_returnb5, cum._retb, vw_cum_ret5, av_.MV_5,
av.BM_5, av_beta_5, av_ivol_.5, av_eivol_5 = portfolio (148, 183)
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coeff6 , pvalue6, excess_return6 , vw_excess_return6, cum.ret6, vw_cum._ret6, av_.MV_6,
av.BM_6, av_beta_6, av_ivol_-6, av_eivol_-6 = portfolio (183, 218)

coeff7 , pvalue7, excess_return7, vw_excess_return7, cum._ret7, vw_cum._ret7, av_MV_7,
av.BM_7, av_beta_7, av_ivol_.7, av_eivol_.7 = portfolio (218, 255)

coeff8 , pvalue8, excess_return8 , vw_excess_return8 , cum.ret8, vw_cum-_ret8, av_.MV_8,
av.BM_8, av_beta_8, av_ivol_8, av_eivol_8 = portfolio (255, 292)

coeff9 , pvalue9, excess_return9 , vw_excess_return9, cum._ret9, vw_cum._ret9, av_.MV_9,
av.BM_9, av_beta_9, av_ivol-9, av_eivol_-9 = portfolio (292, 329)

coeffl0, pvaluel0, excess_returnl0, vw_excess_returnlO, cum_retl0, vw_cum_retl0, av_.MV_10
, av_.BM_10, av_beta_10, av_ivol .10, av_eivol_.10 = portfolio (329, 366)

av_excess._returnl = np.average(excess_returnl)
av_excess_return2 = np.average(excess_return2)
av_excess_return3 = np.average(excess_return3)
av_excess._return4d = np.average(excess_return4)
av_excess_return5 = np.average(excess_returnb)
av_excess_return6 = np.average(excess_return6)
av_excess._return7 = np.average(excess_return7)
av_excess_return8 = np.average(excess_return8)
av_excess_return9 = np.average(excess_return9)

av_excess_returnl0 = np.average(excess_returnlQ)

av_excess_returnl_vw = np.average(vw_excess_returnl)
av_excess_return2_vw = np.average(vw_excess_return2)

av_excess_return3_vw = np.average(vw_excess_return3)

(
(
(
av_excess_return4d_vw = np.average(vw_excess_return4)
av_excess_return5_vw = np.average(vw_excess_return5b)
av_excess_return6_vw = np.average(vw_excess_return6)
av_excess_return7_.vw = np.average(vw_excess_return?)
av_excess_return8_vw = np.average(vw_excess_return8)
av_excess_return9_vw = np.average(vw_excess_return9)

av_excess_returnlO_vw = np.average(vw_excess_returnl0)

# Plot cumulative returns

plt.plot (dates, cum.retl, label = "High”)
plt.plot (dates, cum-.ret2, label = 79”)
plt.plot(dates, cum_ret3, label = 78”)
plt.plot (dates, cum_ret4, label = 777)
plt.plot (dates, cum.ret5, label = 76”)
plt.plot (dates, cum_ret6, label = 75”)
plt.plot (dates, cum_ret7, label = 74”)
plt.plot (dates, cum.ret8, label = 73”)
plt.plot (dates, cum_ret9, label = 727)
plt.plot (dates, cum_retl0, label = ”"Low”)
plt.legend ()

plt .show ()

# Plot value weighted cumulative returns

plt.plot (dates, vw_cum_retl, label = ”High”)
plt.plot (dates, vw_cum_ret2, label = 797)
plt.plot (dates, vw_cum_ret3, label = 78”)
plt.plot (dates, vw_cum_ret4, label = 777)
plt.plot (dates, vw_cum_rets, label = 767)
plt.plot(dates, vw_cum._ret6, label = 75")
plt.plot (dates, vw_cum_ret7, label = 747)
plt.plot (dates, vw_cum_ret8, label = 737)
plt.plot (dates, vw_cum_ret9, label = 727)

plt.plot(dates, vw_cum_retl0, label = ”Low”)
plt.legend ()
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plt .show ()

# UMD portfolio based on long High and short Low

excess_returnumd = np.array(excess_returnl) — np.array(excess_returnl0)
cum_retumd = cum-returns(len(dates), excess_returnumd)

plt.plot (dates, cum_retumd, label = "UMDew”)

plt.legend ()

plt .show ()

# value weighted UMD portfolio based on long High and short Low
vw_excess_returnumd = np.array (vw_excess_returnl) — np.array(vw_excess_returnl0)
vw_cum.retumd = cum-_returns(len (dates), vw_excess_returnumd)

plt.plot(dates, vw_cum_retumd, label = ”"UMDvww”)

plt.legend ()

plt .show ()

# Export spread returns to stata for GRS test
dfGRSCAPM = pd.DataFrame ({

'UMD’: vw_excess_returnumd ,

’high ’: vw_excess_returnl ,
’9’: vwe_excess_return2 ,
’87: vw_excess_return3 ,
’7’: vw_excess_returnd ,
’6’: vw_excess_returnb ,
’57: vw_excess_return6 ,
’4’: vw_excess_return? ,
’37: vw_excess_return8 ,
’27: vw_excess_return9 ,
’low’: vw_excess_returnlO ,
'MKT’ : MKT,

"HML’ : HML,

’SMB’: SMB,

1)

dfCAPM = pd.DataFrame ({

’dates ’: dates,
’high_ew ’: cum_retl ,
’9_ew’: cum_ret2,
’8_ew’: cum-.ret3,
'7_ew’: cum_retd ,
’6_ew ’: cum_reth
’5_ew’: cum-.ret6 ,
’4_ew’: cum_ret7,
’3_ew’: cum_ret8,
’2_ew’: cum_ret9 ,
"low_ew ’: cum-retl0 ,
“high_vw ’: vw_cum_retl,
9_vw’: vw_cum_ret2,
8 vw’: vw.cum-.ret3 ,
7T vw’: vw_cum_retd ,
6_vw ’: vw_cum_reth ,
’5_vw’: vw.cum-.ret6 ,
4 vw’: vw_cum-ret7 ,
’3_vw’: vw_cum_ret8 ,
2 vw’: vw_cum_.ret9 ,
’low_vw ’: vw_cum-ret10 ,

1)
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dfCAPM. to_stata (r ’C:\ Users\Lodew\Documents\ Bachelor Economie Vakken\Thesis\Data\Figuren)
CAPM. dta )

dfGRSCAPM. to_stata (r’C:\ Users\Lodew\Documents\ Bachelor Economie Vakken\Thesis\Data)\
Monthly \GRS CAPM. dta ’)

STATA do file

* Descriptive Statistics and Results

cd 7C:\ Users\Lodew\Documents\Bachelor Economie Vakken\Thesis\Data\Monthly”
*+ —Import Dataset—

use ”Monthly Data Test Final without financials.dta”, clear

gen date_only = dofc(Date)
drop Date

recast int date_only

format %tdnn/dd/CCYY date_only
rename date_only Date

egen company._id = group (ISIN)

merge 1:1 company_id Date using ”Monthly BETA FF without financials.dta” // Merge for
Betas

drop if BETAFF — .
xtset company._id Date

sort company-id
by company_id: gen IVOLlagl = IVOL[_.n—1] // Create lagged IVOL

drop if Exp.IVOL > 100 // Remove extreme expected IVOL values, in total 15 will be

removed

gen Year = year(Date) // Create year variable for splitting sample regressions

* — Descriptive statistics —

* 4.3

tabstat Return IVOL Exp.IVOL BETAFF LnMV LnBM , c(stat) stat(mean sd p50 p25 p75 skew
n)

* 4.4

pwcorr Return IVOL BETAFF ExpIVOL LnMV LnBM IVOLlagl, sig star (.01)
*+ — Regression for total time period —

* Fama and French

// Fama—MacBeth

asreg Return BETAFF LnMV LnBM, fmb newey (3)

estimates store FF_factors_1
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* IVOL

// Fama—MacBeth

asreg Return IVOL Ln.MV Ln.BM, fmb newey(3)
estimates store FMB.IVOL_1

// Fixed Effects
xtreg Return IVOL Ln.MV LnBM, fe vce(cluster company.id)
estimates store FE_IVOL_1

// Random Effects
xtreg Return IVOL Ln.MV LnBM, re vce(cluster company_id)
estimates store RE_IVOL_1

« E[IVOL]

// Fama—MacBeth

asreg Return Exp IVOL LnMV Ln.BM, fmb newey (3)
estimates store FMB_EIVOL_1

// Fixed Effects
xtreg Return Exp IVOL LnMV LnBM, fe vce(cluster company._id)
estimates store FE_EIVOL_1

// Random Effects
xtreg Return Exp IVOL LnMV LnBM, re vce(cluster company-id)
estimates store RE_EIVOL_1

*+ Lagged IVOL

// Fama—MacBeth

asreg Return IVOLlagl Ln-MV Ln.BM, fmb newey (3)
estimates store FMB_IVOL1_1

// Fixed Effects
xtreg Return IVOLlagl LnMV LnBM, fe vce(cluster company._id)
estimates store FE_IVOLI_1

// Random Effects
xtreg Return IVOLlagl Ln.MV LnBM, re vce(cluster company._id)
estimates store RE_IVOLI1.1

*+ — Regression for before COVID—19 time period —

* IVOL

// Fama—MacBeth

asreg Return IVOL Ln.MV LnBM if Year < 2020, fmb newey(3)

estimates store FMB_IVOL.2

// Fixed Effects

xtreg Return IVOL Ln.MV LnBM if Year < 2020, fe vce(cluster company_id)
estimates store FE_IVOL_2

// Random Effects

xtreg Return IVOL Ln.MV LnBM if Year < 2020, re vce(cluster company._id)
estimates store RE_IVOL_2

* E[IVOL]

// Fama—MacBeth

asreg Return Exp IVOL LnMV LnBM if Year < 2020, fmb newey (3)

estimates store FMB_EIVOL_2

// Fixed Effects

xtreg Return Exp IVOL LnMV LnBM if Year < 2020, fe vce(cluster company_id)
estimates store FE_EIVOL_2
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// Random Effects
xtreg Return Exp.IVOL LnMV LnBM if Year < 2020, re vce(cluster company-id)
estimates store RE_EIVOL_2

+ Lagged IVOL

// Fama—MacBeth

asreg Return IVOLlagl Ln.MV LnBM if Year < 2020, fmb newey(3)

estimates store FMB_IVOL1.2

// Fixed Effects

xtreg Return IVOLlagl Ln.MV LnBM if Year < 2020, fe vce(cluster company.id)
estimates store FE_.IVOL1_.2

// Random Effects

xtreg Return IVOLlagl Ln.MV LnBM if Year < 2020, re vce(cluster company.id)
estimates store RE_.IVOL1.2

*+ — Regression for during COVID—19 time period —

* IVOL

// Fama—MacBeth

asreg Return IVOL LnMV LnBM if Year >= 2020, fmb newey(3)

estimates store FMB_IVOL.3

// Fixed Effects

xtreg Return IVOL Ln.MV LnBM if Year >= 2020, fe vce(cluster company._id)
estimates store FEIVOL.3

// Random Effects

xtreg Return IVOL Ln.MV LnBM if Year >= 2020, re vce(cluster company._id)
estimates store RE_IVOL.3

* E[IVOL]

// Fama—MacBeth

asreg Return Exp IVOL LnMV LnBM if Year >= 2020, fmb newey (3)

estimates store FMB_EIVOL.3

// Fixed Effects

xtreg Return Exp IVOL LnMV LnBM if Year >= 2020, fe vce(cluster company_id)
estimates store FE_EIVOL_.3

// Random Effects

xtreg Return Exp IVOL LnMV LnBM if Year >= 2020, re vce(cluster company_id)
estimates store RE_EIVOL.3

*+ Lagged IVOL

// Fama—MacBeth

asreg Return IVOLlagl LnMV LnBM if Year >= 2020, fmb newey(3)

estimates store FMB_IVOL1.3

// Fixed Effects

xtreg Return IVOLlagl LnMV LnBM if Year >= 2020, fe vce(cluster company._id)
estimates store FE_IVOL1.3

// Random Effects

xtreg Return IVOLlagl LnMV LnBM if Year >=2020, re vce(cluster company._id)
estimates store RE_IVOL1.3

* — Display all regressions —

// Coeff, SE per time period

estimates table FF_factors_.1 FMB_EIVOL.1 FMB.IVOL_.1 FMB_IVOL1.1 FE_EIVOL_.1 FE_IVOL_1
FE_.IVOL1.1 RE_EIVOL.1 RE.IVOL.1 RE.IVOL1.1, b(%5.3f) se(%5.3f)

estimates table FMB_EIVOL_2 FMB.IVOL_2 FMB.IVOL1.2 FE_EIVOL_2 FE_.IVOL_2 FE_IVOL1_.2
RE_EIVOL_2 RE_.IVOL_2 RE_.IVOL1.2, b(%5.3f) se(%5.3f)

estimates table FMB_EIVOL.3 FMB_.IVOL.3 FMB_IVOL1.3 FE_EIVOL_.3 FE_IVOL_.3 FE_IVOL1_.3
RE_EIVOL.3 RE_.IVOL_.3 RE_.IVOL1.3, b(%5.3f) se(%5.3f)
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// Significance per time period
estimates table FF_factors_-1 FMB_EIVOL.1 FMB_.IVOL_.1 FMB_.IVOL1.1 FE_EIVOL_.1 FE_IVOL_1
FE.IVOL1.1 RE_EIVOL.1 RE.IVOL_.1 RE.IVOL1.1, star (.05 .01 .001)

estimates table FMB_EIVOL_2 FMB_.IVOL_2 FMB_.IVOL12 FE_EIVOL_2 FE_IVOL_2 FE_IVOL1_2
RE_EIVOL_2 REIVOL_2 RE_.IVOL1.2, star (.05 .01 .001)

estimates table FMB_EIVOL.3 FMB_IVOL_.3 FMB_IVOL1.3 FE_EIVOL_.3 FE_.IVOL_.3 FE_IVOL1.3
RE_EIVOL.3 RE_.IVOL_.3 RE_.IVOL1.3, star (.05 .01 .001)

// Adj. R—Squared per time period

estimates table FF_factors_.1 FMB_EIVOL.1 FMB_.IVOL_.1 FMB_IVOL1.1 FE_EIVOL_1 FE_IVOL_1
FE.IVOL1.1 RE_EIVOL.1 RE_.IVOL.1 RE.IVOL1.1, stats(N r2_a)

estimates table FMB_EIVOL_2 FMB_.IVOL_2 FMB_IVOL12 FE_EIVOL_2 FE_IVOL_2 FE_IVOL1_2
RE_EIVOL_2 RE_.IVOL_2 RE_.IVOL1.2, stats(N r2_a)

estimates table FMB_EIVOL.3 FMB_IVOL_.3 FMB_IVOL1.3 FE_EIVOL_.3 FE_.IVOL_.3 FE_IVOL1.3
RE_EIVOL.3 RE_.IVOL_.3 RE_.IVOL1.3, stats(N r2_a)

* GRS for portfolio

* —Import Dataset—
use "GRS.dta”, clear

grstest2 _low -2 -3 _4 .5 _6 _7 _8 _9 high , flist (MKT SMB HML) alphas

* Robustness Check

// Hausmann tests for random or fixed effect

xtreg Return Exp.IVOL Ln.MV LnBM, fe // without clustered standard errors
estimates store FE_EIVOL_1l_nc

xtreg Return Exp IVOL LnMV LnBM, re // without clustered standard errors
estimates store RE_EIVOL_1_nc

hausman FE_EIVOL_1.nc RE_EIVOL_1.nc // null hypothesis is rejected
// Continuing with fixed effects model to adjust for time—effect
egen month_id = group (Date)

tabulate month_id, generate (month.dum) //dummy variable for every month

xtreg Return Exp.IVOL Ln.MV Ln.BM month_-dum2-month-dum96, fe vce(cluster company-id)
estimates store FE_EIVOL.TE

estimates table FMB_EIVOL.1 FE_EIVOL.1 FEEIVOL.TE, b(%5.3f) se(%5.3f) keep(ExpIVOL
Ln-MV Ln.BM _cons)
estimates table FMB_EIVOL.1 FE_EIVOL_.1 FEEIVOL.TE, star keep(Exp.IVOL LnMV LnBM _cons)

estimates table FMB_EIVOL.1 FE_EIVOL_.1 FE_EIVOL.TE, stats(N r2_a) keep(Exp-IVOL Ln.MV
ILnBM _cons)

* 5.2

// Import Dataset
use ”Monthly Data Test Final without financials CAPM.dta”, clear

gen date_only = dofc(Date)

drop Date

recast int date_only
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format %tdnn/dd/CCYY date_only

rename date_only Date

egen company-id = group (ISIN)

merge 1:1 company_id Date using ”Monthly BETA FF without financials.dta” // Merge for

Betas
drop if BETAFF — .
xtset company._id Date
sort company._id

// drop same observations as

drop if index == 3648
drop if index == 30197
drop if index =— 26092
drop if index == 7988
drop if index == 28611
drop if index = 26027
drop if index =— 29509
drop if index == 33954
drop if index == 2990
drop if index =— 2794
drop if index == 7995
drop if index == 26016
drop if index == 21987
drop if index == 27846
drop if index == 17774

// Fama—MacBeth

in ff3 dataframe

asreg Return Exp IVOL LnMV Ln.BM, fmb newey (3)
estimates store FMB.IVOL_.1.CAPM

// Fixed Effects adjusted with time effect

egen month_id = group (Date)

tabulate month_id, generate(month.dum) //dummy variable for every month
xtreg Return Exp.IVOL Ln.MV Ln.BM month_-dum2-month-dum96, fe vce(cluster company-id)
estimates store FE_EIVOL.TE_.CAPM

estimates table FMB_EIVOL.1 FMB.IVOL_.1.CAPM FE_EIVOL_.TE FE_EIVOL.TE_.CAPM, b(%5.3f) se
(%5.3f) keep (Exp.IVOL LnMV LnBM _cons)

estimates table FMB_EIVOL_.1 FMB_IVOL.1.CAPM FE_EIVOL.TE FE_EIVOL.TE.CAPM, star keep(
Exp-IVOL Ln.MV LnBM _cons)

estimates table FMB_EIVOL.1 FMB.IVOL.1.CAPM FE_EIVOL.TE FE_EIVOL.TE_.CAPM, stats(N r2_a)
keep (Exp IVOL LnMV LnBM _cons)

* —Import Dataset—
use "GRS CAPM.dta”, clear

grstest2 _low -2 _3 _4 _5 _6

* 5.3

* —Import Dataset—
use ”Monthly Data Test Final

7 -8 _9 high , flist (MKT SMB HML) alphas

without financials.dta”, clear
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gen date_only = dofc(Date)
drop Date

recast int date_only

format %tdnn/dd/CCYY date_only
rename date_only Date

egen company_id = group (ISIN)

merge 1:1 company_id Date using ”Monthly BETA FF without financials.dta” // Merge for
Betas

drop if BETAFF — .
xtset company._id Date
sort company._id

// sorted on LnMV and then picked the company ID’s of the 37 lowest values for size

keep if (company_id = 358 | company_id = 207 | company_id = 276 | company_id = 364 |

company.id = 116 | company_id = 313 | company_id = 23 | company_id = 326 |
company-id = 107 | company.-id = 237 | company.id = 37 | company.id = 14 |
company-id = 292 | company_id = 64 | company_-id = 361 | company_-id = 246 |
company_id = 222 | company_id = 106 | company.id = 19 | company_id = 211 |
company_id = 359 | company_id = 109 | company.id = 203| company_id = 290 |
company-id = 75 | company_id = 30 | company-id == 257 | company-id = 196 |
company._id = 267 | company_id = 139 | company.id = 198 | company_id = 354 |
company.id = 322 | company_id = 103 | company_id = 323 | company_id = 142]
company_id = 144)

egen month_id = group (Date)
tabulate month.id, generate(month.dum) //dummy variable for every month

« E[IVOL]

// Fama—MacBeth

asreg Return Exp IVOL Ln.MV LnBM, fmb newey(3)
estimates store FMB_EIVOL_1_10p

// Fixed Effects
xtreg Return Exp IVOL LnMV LnBM month_.dum2-month_.dum96, fe vce(cluster company_id)
estimates store FE_EIVOL_1_10p

estimates table FMB_EIVOL_.1.10p FE_EIVOL_1_10p , b(%5.3f) se(%5.3f) keep(ExpIVOL Ln.MV
InBM _cons)
estimates table FMB_EIVOL_1_.10p FE_EIVOL_1.10p, star keep(Exp IVOL Ln.MV LnBM _cons)

estimates table FMB_EIVOL_.1.10p FE_EIVOL_1_10p, stats(N r2_a) keep(Exp.IVOL Ln.MV Ln BM

_cons)
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