
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrics and Operational Research

Detecting change-points in the U.S. and
Chinese Stock Markets during COVID-19

Author:

Vincent de Quelerij

464628

Supervisor:

M.F.O. Welz

Second assessor:

A. Tetereva

July 3, 2022

Abstract

The COVID-19 outbreak in early 2020 has had a considerable impact on financial

markets worldwide. Historically, such global health crises tend to result in long-

term structural changes in volatility and correlation between markets. To explore

this phenomenon, this thesis investigates structural breaks for the world’s two largest

economies - the U.S. and China - during the COVID-19 pandemic. We use a newly

proposed method by Zhao et al. (2021) that allows for temporal dependence and

provides a versatile detection of structural breaks. We use daily log returns of the

S&P500 index and Shanghai Stock Exchange Composite index ranging from 2016 to

2021. Main findings include simultaneous structural changes in volatility for both

markets around April 1st 2020 and no structural changes in correlation between the

two markets. Furthermore, we estimate a structural break in volatility in the Chinese

stock market on July 30th 2020, possibly corresponding to the recovery from a second

COVID-19 outbreak in China from June to July 2020. These findings find purpose

in scenarios including risk management and modelling.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

The introduction of new technology and rapid globalization has led to a fast and ever-changing

world over the past decades, resulting in a higher interdependence of financial markets around

the globe (Banerjee and Guhathakurta 2020). The interdependence of stock markets has been

excessively researched and confirmed in literature. Many studies show that major global events

affect virtually all stock markets (e.g. Bertero and Mayer, 1990; Luchtenberg and Vu, 2015).

Correlation among stock markets may even structurally change after such occurrences (Baele,

2005). For example, higher correlations occur during bull periods (Ang and Chen, 2002) and

during financial crises (Hartmann et al., 2004). Lee and Chou (2020) find that major macroe-

conomic or financial events permanently affect correlations between stock markets that do not

revert to their initial levels after economic recovery. Such events that cause structural develop-

ments in time series include epidemics, economic crises, political changes and wars.

One event of such major economic impact is the COronaVIrus Disease-19 (COVID-19) out-

break that first appeared in 2019 in Wuhan City, China (Ruiz Estrada et al., 2020). On March

12th, 2020, the World Health Organization (WHO) declared COVID-19 as a pandemic that

has been a prevalent topic in research ever since. Şenol and Zeren (2020) show a decline in

financial markets in January 2020 that reverts fairly rapidly. The virus originates from January

and February 2020 where Asian markets (especially China) show a decline. A further decline

in all financial markets happened after the announcement by WHO in March 2020. One of

the pioneering studies after the outbreak, conducted by Zeren and Hizarci (2020), confirms the

existence of a relationship between COVID-19 cases and various stock markets. This thesis in-

vestigates the presence of structural changes in multiple aspects of the current two largest global

stock markets, the U.S. and Chinese stock markets, during the COVID-19 pandemic. Such re-

search is relevant since incorporating structural breaks in volatility estimation is always effective

and leads to a more accurate capture of downside risk and asymmetry in volatility responses

(Tsuji, 2022). Hence, capturing structural breaks is highly important in risk management. It

may inform an allocation of assets to lower investment portfolio risk. Additionally, it enables

identification of major events before and after structural breaks in time series (Lee and Chou,

2020).

Zhao et al. (2021) introduce a change-point estimation method that is applicable for time
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series segmentation, based on self-normalization, incorporating a nested local-window segmen-

tation algorithm. The self-normalization change-point (SNCP) method is fully nonparametric

and does not require temporal dependence of the time series, contrary to other proposed meth-

ods. The latter is a valuable characteristic, as most time series do include temporal dependence.

Zhao et al. (2021) show the versatility of the SNCP method as it allows for the detection of

structural breaks for a vast class of parameters, also in a unified manner. We use this convenient

property to extensively research structural breaks of different (unified) parameters for the U.S.

and Chinese stock markets. We also investigate the intercorrelation between the two markets.

Specifically, the first research question of this thesis is as follows:

RQ1: Do structural changes exist in the volatility of the U.S. and Chinese stock market

returns during the COVID-19 pandemic?

This thesis tries to answer this question using the SNCP method to examine change-points

in variance and Value-at-Risk (VaR) for both stock markets. These are two commonly used

measures for volatility in financial markets. While the variance is a symmetric measure, VaR

captures the downside risk of returns below the expected amount. It is a high quantile of

the return distribution (we use 90% and 95% quantiles). We estimate change-points for all

parameters and their multi-parameter combinations.

One might argue that there is one obvious structural break around March 2020 and hence

no change-point detection method is needed. However, it is important to confirm the presence

of such a structural break with statistical evidence. Moreover, this thesis focuses on structural

breaks during the pandemic that occur not only at the initial outbreak of COVID-19.

Secondly, we investigate the intercorrelation between the two stock markets. Therefore, we

introduce the second research question:

RQ2: Does the correlation between the U.S. and Chinese stock markets structurally change

during the COVID-19 pandemic?

We again use the SNCP method to attempt to answer this particular research question, as

its described versatility allows us to estimate change-points for correlation between two time

series.

This thesis differs from existing literature in multiple ways. First, we use a newly proposed

change-point estimation method that allows for temporal dependence and versatility in (com-
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bined) parameters as opposed to other methods. Secondly, we use recent data and perform

analysis on both large- and small-scale data sets, while all mentioned literature has a rather

small data selection only up to June 2020.

We use log returns of the commonly used S&P500 index (SP500) as this index represents

a considerable amount of roughly 80% of the total U.S. equity market with its data widely

available. Therefore, the SP500 represents the U.S. stock market in this thesis. For China, we

conduct research on log returns of the Shanghai Stock Exchange Composite Index (SSE), widely

used as an indicator for the Chinese stock market. We use data ranging from Januray 2016 to

December 2021. We also zoom in on this data by only looking at data ranging from December

2019 to December 2021 as this includes just the COVID-19 pandemic and may result into more

subtle insights and change-point estimates due to the observation period being smaller.

Additionally, we try to replicate findings from Zhao et al. (2021). Specifically, their real-world

data application on financial data (Section 5.2). We refer to our main research as the extension.

Our main findings for the extension include simultaneous structural breaks in volatility for both

markets around April 1st 2020. We estimate an additional change-point in volatility for the

SSE on July 30th 2020. The latter change-point indicates a different recovery trajectory for

the SSE after the initial COVID-19 outbreak, possibly due to a second outbreak in China from

June 2020 to July 2020 (Wu et al., 2020). Furthermore, we detect no structural changes in the

correlation between the two markets, which suggests that COVID-19 did not affect long-term

intercorrelation between the U.S. and Chinese stock markets. It appears that COVID-19 has

similar effects on both markets.

Finally, in the context of volatility, we analyse whether incorporating a structural break

improves a widely used and researched symmetric Generalized AutoRegressive Conditional

Heteroskedasticity (GARCH) model, proposed by Bollerslev (1986). Specifically, we use a

GARCH(1,1) model. This analysis is important as it might show and reinforce the importance

of detecting structural breaks. The analysis gives an indication that incorporating structural

breaks in forecasting models might improve forecast accuracy.

The remainder of this thesis is structured as follows. To start with, Section 2 gives an

overview of the data that we use and how we retrieve and clean the data sets accordingly.

Secondly, Section 3 gives the set-up of our methodology and dives into the use of the SNCP

method. Section 4 then shows replication and extension results by applying our methods. Next,

3



we thoroughly discuss the results and tackle limitations of our work in Section 5. Finally, Section

6 concludes.

2 Theory

Co-movement between markets is an excessively researched phenomenon in literature. King and

Wadhwani (1990) establish interdependence between markets even in the stock market crash

in October 1989. The crash resulted in a contemporaneous fall of all stock markets, despite

different economic circumstances. They show that an occurrence of one mistake in an initial

stock market leads to a contagion to other markets. Moreover, they find empirical evidence that

the contagion effect’s size increases with the initial market’s volatility. Market co-movement is

less apparent in Asian countries than in western countries, possibly due to vast geographical

distances and more hindrance due to cultural and language diversity (Lee and Chou, 2020).

Also, economic integration between Asian countries differs from that between western countries

(Arshanapalli et al., 1995).

For RQ1, we hypothesize any structural breaks in China to occur in late February 2020 -

late March 2020 (Zeren and Hizarci, 2020; Kusumahadi and Permana, 2021) and in the U.S. in

late February 2020 - early April 2020 (Çütcü and Kilic, 2020; Yilmazkuday, 2021; Hong et al.,

2021). Generally, we expect structural changes in the Chinese stock market to occur earlier as

opposed to the U.S. stock market due to China being the origin of the COVID-19 outbreak (e.g.

Gunay, 2020).

Correlation between the two stock markets has been excessively researched before the

COVID-19 outbreak (e.g. Lee and Chou, 2020). Again, Hartmann et al. (2004) state that

correlations are often higher during financial crises. Additionally, Just and Echaust (2020) find

evidence of a higher correlation between financial markets during the COVID-19 pandemic, in-

cluding the U.S. and Chinese market. This leads to the hypothesis of a possible structural break

during the COVID-19 pandemic as correlations tend to get higher in such periods.

Another relevant and important topic is whether structural breaks contribute to forecasting

models. Literature states that when structural breaks are unknown, some robust models show

good forecasting performance even with the existence of such a structural break (e.g. Choi et al.,

2010; Pesaran et al., 2013). For this thesis, it is more relevant whether incorporating known

structural breaks improves forecasting models. Boot and Pick (2020) show that structural
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changes of small magnitude should not be incorporated into models. Moreover, they find that

relevant structural changes for forecast accuracy happen less often than most existing tests

suggest in the context of macroeconomic time series. Incorporating structural breaks into models

situationally might or might not improve forecasting accuracy.

Finally, volatility has an unknown ground truth. Hence, choosing an adequate benchmark

for volatility is important if we want to compare models with and without structural breaks.

Andersen et al. (2006) state that the squared log returns, although naive, are a straightforward

benchmark when evaluating the forecast accuracy of GARCH models. Let rt be the daily log

returns. Then, by definition, V AR(rt) = E(E(r2t ) − E(rt)
2). When working with daily (and

not weekly or monthly) log returns, the naive assumption is that expected log returns to be

approximately zero. Hence, the equation shrinks to V AR(rt) = E(r2t ), the squared log returns.

As their paper bundles a variety of literature, it deems appropriate to use squared log returns

as a benchmark for volatility in this thesis. Some famously used prediction error metrics are

the mean squared error (MSE), root mean squared error (RMSE) and the mean absolute error

(MAE) (e.g. Molinaro et al., 2005; Hansen and Lunde, 2005), which we use in this thesis to

evaluate forecasts.

3 Data

3.1 Replication

The data consists of daily log-returns of SP500 between June 2006 and December 2010. A

total of n = 210 = 1024 observations satisfies a required power of 2 that is needed and further

explained in Section 4.2. We use data from Wall Street Journal (2022) for the (closed) SP500

for the dates May 30th 2006 to December 31th 2010 to capture all (negative) log returns. A

major issue arises as this accounts for 1158 data points, 134 too many. When taking a closer

look at the results of Zhao et al. (2021), we find observations missing. There seems to be no

systematic or randomized way in which they removed the data points, hence requiring manual

analysis of each individual data point. Appendix A thoroughly shows the manual cleaning of the

data set, shrinking it down to the 1024 used data points. It is worth mentioning that the missing

observations do not appear to be randomly selected by Zhao et al. (2021). Some meaningful

(groups of) observations are missing, which may lead to biased outcomes. Although the data
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cleaning process is obscure and very susceptible to mistakes, the cleaned data set seems to lead

to the pursued replication.

3.2 Extension

We use data between January 2016 and December 2021 of the SP500 and SSE acquired from

Wall Street Journal (2022) and Yahoo!Finance (2022) respectively. This data set covers most of

the pandemic and recovery (all though COVID-19 is still an ongoing phenomenon), while keeping

the impact on the economy from the current Russian invasion in Ukraine (Ivana Kottasová and

Regan, 2022) to a minimum, as we want to isolate the effect of COVID-19 as much as possible.

In order to obtain data sets of equal size, necessary for investigating correlations, we exclude all

closed market days during this period for both the SP500 and SSE. This results in a total of

n = 1411 observations. Furthermore, we zoom in on the data set and use only the last n∗ = 491

observations corresponding with data from December 2019 to December 2021. The (negative)

daily log returns of the total data set show in Figure 1 for both indices.

Figure 1: Daily (negative) log returns of the S&P 500 index and the Shanghai Stock Exchange
Composite index from January 2016 - December 2021 with a total of n = 1411 observations for
both indices.
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The SSE seems to contain more volatility in general than the SP500, possibly due to the

lower market volume. Moreover, both indices seem to increase in volatility rather simultaneously,

which gives a visual indication of positive correlations between both markets.

4 Methodology

4.1 SNCP

In this thesis, we follow the notation used by Zhao et al. (2021). Let {Yt}nt=1 be a piecewise

stationary (multivariate) time series with a fixed dimension, Yt ∈ Rp , p ≥ 1. Let {Yt}nt=1

contain mo ≥ 0 unknown change-points 0 < k1 < ... < kmo < n. It follows that k0 = 0,

km0+1 = n and that the time series is partitioned into segments, where segment i contains

observations {Yt}kit=ki−1+1. To complete the notation for the time series, we define

Yt = Y
(i)
t , ki−1 + 1 ≤ t ≤ ki, for i = 1, · · · ,mo + 1 (1)

as the data generating process for {Yt}nt=1, where every {Y (i)
t }t∈Z has cumulative distribution

function F (i) for which it is required that for some vector-valued functional θθθ ∈ Rd with d ≥ 1,

θθθi = θθθ(F (i)) ̸= θθθi+1, for all i = 1, · · · ,mo. For this thesis, we choose θθθ to be the 90th and 95th

quantile functionals, the variance functional and their multivariate combinations. Additionally,

we use the correlation functional for bivariate time series.

To determine the unknown number of change-points and their locations, we define for 1 ≤

t1 < k < t2 ≤ n the following notation:

T ∗
n(t1, k, t2) = D∗

n(t1, k, t2)
⊤V ∗

n (t1, k, t2)
−1D∗

n(t1, k, t2) for 1 ≤ t1 < k < t2 ≤ n, (2)

where

D∗
n(t1, k, t2) =

(k − t1 + 1)(t2 − k)

(t2 − t1 + 1)3/2
(θ̂θθt1,k − θ̂θθk+1,t2), V ∗

n (t1, k, t2) = L∗
n(t1, k, t2) +R∗

n(t1, k, t2),

L∗
n(t1, k, t2) =

k∑
i=t1

(i− t1 + 1)2(k − i)2

(t2 − t1 + 1)2(k − t1 + 1)2
(θ̂θθt1,i − θ̂θθi+1,k)(θ̂θθt1,i − θ̂θθi+1,k)

⊤,

R∗
n(t1, k, t2) =

t2∑
i=k+1

(t2 − i+ 1)2(i− 1− k)2

(t2 − t1 + 1)2(t2 − k)2
(θ̂θθi,t2 − θ̂θθk+1,i−1)(θ̂θθi,t2 − θ̂θθk+1,i−1)

⊤,

7



with θ̂θθa,b = θθθ(F̂a,b), F̂a,b being the empirical distribution of the time series containing observa-

tions a to b with logically 1 ≤ a < b ≤ n. Note that for d = 1, the test statistic shrinks down to

a one dimensional non-vectorized case.

We then choose a collection of nested windows around k. Define ϵ ∈ (0, 1/2) and window

size h = ⌊nϵ⌋. We now construct the set of nested windows for all k = h, · · · , n− h as

H1:n(k) =

{
(t1, t2)

∣∣∣∣t1 = k − j1h+ 1, j1 = 1, ..., ⌊k/h⌋; t2 = k + j2h, j2 = 1, ..., ⌊(n− k)/h⌋
}
.

For each separate k, maximize the test statistic from Equation 2 such that

T ∗
1,n(k) = max

(t1,t2)∈H1:n(k)
T ∗
n(t1, k, t2).

Lastly, denote Ws,e = {(t1, t2)|s ≤ t1 < t2 ≤ e} and Hs:e(k) = H1:n(k)
⋂

Ws,e, the

nested window set on the subsample {Yt}et=s and Kn a certain prespecified threshold. The

set Hs:e(k) allows us to determine the maximal test-statistic over a subsample, namely T ∗
s,e(k) =

max
(t1,t2)∈Hs:e(k)

T ∗
n(t1, k, t2). All relevant notation is now present to construct recursive the recur-

sive procedure. Algorithm 1 specifies the procedure formally. Intuitively, we start with the

complete time series. If Kn ≥ maxk=1,..,n T
∗
n(k), the algorithm estimates no change-point. Oth-

erwise, the algorithm continues on the subset up to and from k̂∗ corresponding to the maximized

test-statistic. The algorithm continues until it detects no (further) change-points.

Algorithm 1: multivariate SNCP pseudocode for multiple change-point estimation

Input: Time series {Yt}nt=1, threshold Kn and window size h = ⌊nϵ⌋
Output: Set containing m̂ estimated change-points k̂ =

(
k̂1, · · · , k̂m̂

)
Initialization: SNCP(1, n,Kn, h)
Procedure: SNCP(s, e,Kn, h)

1 if e− s+ 1 < 2h then
2 Stop
3 else

4 k̂∗ = argmaxk=s,...,e T
∗
s,e(k);

5 if T ∗
s,e(k) ≤ Kn then

6 Stop
7 else

8 k̂ = k̂ ∪ k̂∗;

9 SNCP(s, k̂∗,Kn, h);

10 SNCP(k̂∗ + 1, e,Kn, h);

11 end

12 end
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One important note is that the choice of Kn controls the Type I error, as Zhao et al. (2021)

show T ∗
1,n(k) to converge to some limiting distribution G∗

ϵ,d. Setting Kn as the (1− α)× 100%

quantile level of G∗
ϵ,d corresponds to Type I error control of α. Despite G∗

ϵ,d being unknown,

Zhao et al. (2021) obtained limiting distribution of various choices of ϵ and d by simulation. We

use their simulation results to select Kn. Table 1 shows critical values of G∗
0.05,d, corresponding

to window size scale ϵ = 0.05.

Table 1: Critical values for G∗
ϵ,d, the limiting null distribution for ϵ = 0.05.

1− α
d

1 2 3

90% 141.9 208.2 275.0
95% 165.5 237.5 309.1
99% 224.2 309.4 386.4

Notes: Critical values generated by means
of simulation by Zhao et al. (2021).

4.2 Replication

We try to replicate the results in Section 5.2 of Zhao et al. (2021) concerning the SP500 inves-

tigation. In particular, we investigate the volatility behaviour of the SP500 during the financial

crisis of 2008. We apply SNCP to investigate structural breaks in the variance, Value-at-Risk

(90% and 95% quantiles) and their multi-parameter combinations. We again follow the notation

used by Zhao et al. (2021) to establish seven SNCP estimators: SNV, SNQ90, SNQ95, SNQ90,95,

SNQ90V, SNQ95V and SNQ90,95V. V corresponds to the variance and 90 and 95 to the respective

quantiles. We implement various methods in addition to the SNCP for comparison reasoning.

For variance and autocorrelation changes, we compare with both Cho and Fryzlewicz (2012)

(MSML) and Korkas and PryzlewiczV (2017) (KF). We compare with Matteson and James

(2014) (ECP) for multi-parameter change. We will not go into detail on the comparison meth-

ods since the purpose is merely to replicate their findings. However, there are two important

notes. First, the ECP method requires temporal independence, which is barely the case in time

series. Secondly, MSML only handles sample sizes of n as a power of 2.

Lastly, Zhao et al. (2021) mention that they use window size scale ϵ = 0.05 for all SNCP

estimators. They additionally state that they use critical values at α = 0.1 for all SNCP

estimators which corresponds to a choice of Kn at the 90% quantile of G∗
ϵ,d.
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4.3 Extension

4.3.1 Change-point detection

To generate the results to answer the main research questions, we use previously established

SNCP estimators along with one extra parameter, SNC, which estimates change-points in the

correlation between two time series. For all performed estimations, we use ϵ = 0.05 as a window

size scale, in line with the original use for real-world applications by Zhao et al. (2021). They

state that ϵ = 0.05 might not perform the best for every window size, but it does have the best

performance for high and low signal-to-noise ratio cases. Moreover, it guards best against faulty

change-point dates that deviate from actual change-point dates. Lastly, we set the threshold

Kn at 90, 95 and 99% quantiles of G∗
ϵ,d. As previously stated, we use critical values provided by

Zhao et al. (2021) for all SNCP estimators.

4.3.2 Modelling Structural Breaks

To conclude the methodology, we conduct a very basic analysis on forecast improvement when

incorporating structural breaks. As previously stated, we use a GARCH(1,1) model as it is

widely used in volatility modelling. The GARCH(1,1) model formulates as follows.

rt = µ+ ztσt,

σ2
t+1 = ω + αz2t + βσ2

t ,
(3)

with rt being the daily log returns, σ2
t the conditional variance at time t. Furthermore, the

model assumes zt ∼ N(0, 1). ω > 0, α > 0 and β ≥ 0 to guarantee σ2
t ≥ 0 ∀t. We estimate

the GARCH(1,1) model using the first 80% of the observation period to forecast the remaining

observations. We also estimate variances using a GARCH(1,1) model using the first 80% of

the observation period, excluding data points before a certain structural break. There is no

correct universal size for out-of-sample portions in literature. Our data sets are appropriately

large for 80% of the data to be sufficient to estimate the parameters and compare models while

ensuring that the out-of-sample period consists of enough observations to predict. Let σ̂2
t be

the one-step-ahead forecasts for conditional variance at time t by the GARCH(1,1) model. The

MSE, RMSE and MAE are then formulated as follows.
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MSE =
n∑

t=1

(
σ̂2
t − r2t

)2
n

RMSE =
√
MSE

MAE =
n∑

t=1

∣∣σ̂2
t − r2t

∣∣
n

(4)

Note that we keep this analysis reasonably simple as its purpose is merely to give some

insights on the importance of change-point detection and not to discuss the GARCH model

and its assumptions excessively. We choose the observation period for this analysis after the

change-point estimation.

4.4 Code

This thesis uses RStudio 2022.02.0 for programming in R. Zhao et al. (2021) provide user-

friendly R code that we use for change-point estimation for the replication and the extension

part. Additionally, this thesis uses EViews 11 for GARCH(1,1) model estimation and forecast

evaluation. The author of this thesis can supply all data and programming codes as a .zip file

upon request. Of course, all rights for the R code go to Zhao et al. (2021).

5 Results

5.1 Replication

After requiring the appropriate size for the data set, we start the replication. Table 2 shows the

replication results, with in red the diverging outcomes from the results of Zhao et al. (2021).

MSML seemingly confirms the validity of the cleaned data set as it gives identical outcomes to

that of Zhao et al. (2021) when rounding the SP500 log returns to three decimals (which we

apply for all other methods as well). Next, R uses a random number generator to produce the KF

outcomes. A commonly used seed is 101, and it produces almost the exact results. CP4 differs

from the actual result by two trading days, suggesting that Zhao et al. (2021) uses another

seed or just use the first random result they obtain. To conclude the comparison methods,

ECP produces an exact replication of the desired outcomes when looking at a significance level

α = 0.05 (for ϵ = 0.05).
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Only the SNCP estimators remain. We find very similar results to the original outcomes. A

possible explanation for diversions (e.g. missing change-points) is that the SNCP change-point

estimates are not robust to changes in the window size. ϵ = 0.05 results in a window size of

h = ⌊nϵ⌋ = 51. Alternating between window sizes produce different (and additional) outcomes,

often also extremely close to the original results. However, not one window size produces the

exact outcomes. This may indicate that Zhao et al. (2021) use some sort of a weighted choice of

change-point estimates of multiple window size choices around 51, which would contradict their

statement on the used window size. Moreover, Zhao et al. (2021) were not clear about the data

selection. Although perfect replication for MSML suggests that our data set is equal to that of

Zhao et al. (2021), it is not guaranteed and could be an additional explanation for not replicating

all results. Finally, adjusting Kn does not change the replication results meaningfully.

Table 2: Estimated change-points by MSML, KF, ECP and various SNCP estimators for log
returns of the S&P 500 index between June 2006 and December 2010.

Method CP1 CP2 CP3 CP4 CP5 CP6

SP500

SNV 07/17/2007 09/16/2008 12/05/2008 XXX
MSML 07/28/2006 02/23/2007 07/18/2007 09/02/2008 12/01/2008 04/20/2009
KF 08/01/2006 01/23/2007 07/23/2007 08/18/2008 04/20/2009
ECP 07/20/2007 09/17/2008 04/21/2009
SNQ90 XXX 08/04/2008 05/18/2009
SNQ95 XXX 08/04/2008 05/18/2009
SNQ90,95 07/09/2007 09/17/2008 XXX
SNQ90V 07/17/2007 09/16/2008 12/05/2008 04/20/2009
SNQ95V 07/09/2007 09/16/2008 12/05/2008 04/21/2009
SNQ90,95V 07/09/2007 09/16/2008 12/05/2008 04/20/2009

Notes: Dates present in the U.S. date format MM/DD/YYYY. In red are the (missing) change-
points that are not exact replicates of the original results. XXX indicates a missing change-point in the
replication. Specifically, this Table tries to replicate Table 7 from Zhao et al. (2021).

5.2 Extension

This subsection shows the results for answering the main research questions. We present out-

comes for two different data sets and close out with a short exploration on change-point frequency

in both data sets.

5.2.1 Change-point detection

We now present outcomes of the change-point analysis on the SP500 and SSE between 2016

- 2021. Table 3 shows change-point estimation dates. Results show no structural break for
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intercorrelation during the COVID-19 pandemic. One structural break is estimated in May

2018, during the trade war during the Trump Presidency. Similar change-points show for all

other SNCP estimators, mostly during the start of 2018, the beginning of the trade war between

China and the U.S (Itakura, 2020). Structural changes in variance and high quantiles are

estimated in 2016 for the SSE, possibly due to the recovery after the 2015-2016 stock market

turbulence in China (Han et al., 2019). The last change-point estimations range from December

2019 to January 2020. This period may indicate the start of the COVID-19 outbreak. The fast

stabilization right after the COVID-19 (although its change in the total volume of the indices)

is a possible explanation for no change-points in the variation for both stock markets. Although

ϵ = 0.05 is the recommended window size scale, the SNCP method seems to lack robustness for

different window sizes. For example, Appendix B shows fairly different change-point estimates

for ϵ = 0.04.

Table 3: Estimated change-points by SNCP estimators for log returns of the S&P 500 index and
the Shanghai Stock Exchange Composite index between January 2016 and December 2021.

Method CP1 CP2 CP3

SP500 & SSE SNC 05/25/2018

SP500

SNV 01/09/2018**
SNQ90 01/10/2018*
SNQ95 01/12/2018**
SNQ90,95 01/16/2018** 12/02/2019**
SNQ90V 01/11/2018**
SNQ95V 01/11/2018**
SNQ90,95V 01/11/2018** 12/02/2019**

SSE

SNV 06/16/2016* 01/23/2018**
SNQ90 06/28/2018* 01/23/2020*
SNQ95 11/10/2016 02/05/2018* 07/05/2019
SNQ90,95 06/28/2018 01/23/2020*
SNQ90V 06/16/2016 02/05/2018** 01/23/2020
SNQ95V 06/14/2016** 02/05/2018**
SNQ90,95V 06/14/2016** 01/12/2018**

Notes: Dates present in the U.S. date format MM/DD/YYYY.
Only a date indicates a change-point at the 90% threshold.
* indicates a change-point at the 95% threshold.
** indicates a change-point at the 99% threshold.

We now perform the same analysis on a smaller data set only containing the COVID-19
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pandemic. The results of the SNCP estimators for data ranging from December 2019 - December

2021 for a total of n∗ = 491 observations show in Table 4. The SNC estimator supports our

earlier findings of no structural break in the correlation between the SSE and SP500 during the

COVID-19 pandemic. A similar impact on both markets of the COVID-19 outbreak is a possible

explanation for no structural changes in correlation between the two markets. However, we find

some additional change-points opposed to the outcomes of Table 3. Various estimators indicate

a structural break in variance for the SP500 on April 1st 2020. A related result presents itself for

the SSE as all variance-incorporated SNCP estimators estimate change-points on March 27th

2020. Such dates are in line with our hypothesis and existing literature (Zeren and Hizarci,

2020; Kusumahadi and Permana, 2021); Çütcü and Kilic, 2020; Yilmazkuday, 2021; Hong et al.,

2021). For SSE, various SNCP estimators detect change-points later in 2020, possibly due to a

decrease in volatility after the initial outbreak. One change-point for variance is measured on

July 30th 2020 by SNV and SNQ95V.

Figure 2 visualizes the results of SNV. Change-point estimations of SNV are marked with

red vertical lines. There seems to be a spike in volatility right before the second change-point

estimate of the SSE on July 30th 2020. Wu et al. (2020) show the presence of a second outbreak

of COVID-19 in June 2020 to July 2020. This along with Figure 2 indicates that the change-point

estimate at July 30th 2020 possibly corresponds to the recovery after the quick containment of

the second COVID-19 outbreak in China.
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Table 4: Change-point estimates by SNCP estimators for daily log returns of the S&P 500 index
and the Shanghai Stock Exchange Composite index from December 2019 to December 2021.

Method CP1 CP2

SP500 & SSE SNC

SP500

SNV 04/01/2020*
SNQ90

SNQ95 02/28/20* 06/10/2020**
SNQ90,95 02/28/20
SNQ90V 04/01/2020**
SNQ95V 04/01/2020**
SNQ90,95V 04/01/2020**

SSE

SNV 03/27/2020** 07/30/2020**
SNQ90 11/09/2020
SNQ95

SNQ90,95 11/10/2020
SNQ90V 03/27/2020* 12/04/2020*
SNQ95V 03/27/2020* 07/30/2020*
SNQ90,95V 03/27/2020

Notes: Dates present in the U.S. date format MM/DD/YYYY.
Only a date indicates a change-point at the 90% threshold.
* indicates a change-point at the 95% threshold.
** indicates a change-point at the 99% threshold.

Figure 2: SNV change-point estimations (in red) of daily log returns of the S&P 500 index and
the Shanghai Stock Exchange Composite index from December 2019 - December 2021.
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5.2.2 Modelling Structural Breaks

Table 4 shows one change-point on April 4th 2020 for the variance for the SP500. We use this

estimated structural break to see if it improves forecast accuracy of a simple GARCH(1,1) model.

The observation period consists of n∗ = 491 observations, for which we use the first 80% (393)

observations for model estimation. GARCHSP500F and GARCHSP500CP are the GARCH(1,1)

models that use the full in-sample data and the post change-point in-sample data respectively.

Visual representation of the out-of-sample forecasts shows in Appendix C. The main results show

in Table 5. All error measures turn out very low. Therefore, differences in model performance

are remarkably small. Hence, we cannot make bold statements. However, all evaluation metrics

show lower values for the model incorporating the structural break. We can carefully say that

incorporating the structural break in this simple case improves forecast accuracy of the variance

(and thus volatility), although barely. According to Boot and Pick (2020), this could suggest

that this structural break is of a large enough magnitude to be considered relevant in forecasting

models. The low metric values can be explained due to the daily log returns being relatively

small towards the end of 2021, which is the out-of-sample period.

Table 5: Various evaluation metrics for out-of-sample forecasts of the variance of daily log
returns of the S&P500 index using two GARCH(1,1) models. Squared daily log returns serve as
a benchmark.

MSE (∗10−9) RMSE (∗10−5) MAE (∗10−5)

GARCHSP500F 9.98 9.99 6.73
GARCHSP500CP 9.13 9.56 6.52

Notes: GARCHSP500F uses all in-sample data points.
GARCHSP500CP uses in-sample data points after the estimated change-point
on April 1st 2020.

6 Discussion

This section discusses the results and tackles some limitations of this thesis.

Although mentioned before, the replication raises some questions on the data cleaning process

of Zhao et al. (2021) for their real-world data application on financial data. They state the

observation period of June 2006 to December 2010 and their total observations, but not how
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they exclude data points to obtain that exact number of 1024 observations. Appendix A provides

in-depth visualization of the excluded points from the total observation period. The main finding

is that the excluded points seem not to be randomly removed but instead removed in clusters

(e.g. around Christmas). Sometimes, even extreme observations are excluded, which could

substantially influence change-point detection. Therefore, we question if there is a bias in their

choice of data and think that Zhao et al. (2021) should elaborate more on the choice of data in

Section 5.2 in their paper.

We now discuss our primary research, the extension part of this thesis.

First, volatility is essentially an observable variable, and the ground truth is unknown. We

examine structural changes from different angles using the SNCP method’s versatility. One

limitation persists, however, since daily data assumes consistent volatility during days and treats

gaps of multiple days the same as consecutive days. These assumptions rarely match reality.

Next, the SNCP method is proven to be very robust for different thresholds (Zhao et al.,

2021), but has varying results for different window sizes. ϵ = 0.05 is recommended but does not

lead to any structural breaks in the analysis of the SP500 from 2016 to 2021. Appendix B gives

an example of a smaller window size that leads to some change-points and hence would lead to

different conclusions. This makes it hard to make bold conclusions on the discrete estimated

change-points. As stated earlier, the choice of ϵ = 0.05 guards best for deviation of estimated

change-point dates from actual change-point dates and hence seems the appropriate choice.

Additionally, Zhao et al. (2021) state that the SNCP method is not suitable for time series

with frequent change-points. Although there seems to be no visual evidence of such scenarios,

this rests as an exciting topic for further research. One may investigate whether the observation

periods may be a frequent-change-point scenario and choose and compare with other estimations

methods that account for this (e.g. Fryzlewicz, 2020).

Since {Yt}nt=1 should be piecewise stationary, this may also be researched more thoroughly

for the data set. The visualization of the data gives no indication of the data violating the

piecewise stationarity condition.

Finally, the GARCH(1,1) models show small absolute differences in forecast performance for

predicting the variance of the log returns of the SP500. The low daily log returns can partly

explain this. Also, the choice of a naive benchmark might have influenced the results, and one

might be interested in looking at realized variances and more excessive research on forecasting
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performance. We use 20% of the data as an out-of-sample period. This somewhat arbitrary

choice can also be varied to get more in-depth results. Nonetheless, our findings give careful

indication that incorporating a structural break for variance may increase out-of-sample forecast

models of the variance and hence volatility.

7 Conclusion

This thesis investigates the presence of structural changes in and between the U.S. and Chinese

stock markets during the COVID-19 pandemic. This is done by investigating a data set of daily

log returns for the SP500 and SSE from January 2016 to December 2021. We also look only at the

data covering the pandemic itself (December 2019 to December 2021) to get additional insights.

We use a newly proposed change-point estimation method by Zhao et al. (2021), mainly because

of its versatility and allowance for temporal dependence in the data. We examine structural

changes in correlation between the two markets. We estimate change-points for variance, 90%

and 95% quantiles and their multi-parameter combinations for both individual markets.

Our main findings include a simultaneous structural break in volatility for both the U.S. and

Chinese markets around April 1st 2020. This date is in line with previous literature findings.

For the Chinese market, a second structural break is estimated for July 30th 2020, possibly due

to the second COVID-19 outbreak in China (Wu et al., 2020). Moreover, we find no evidence

of a structural break in the correlation between the markets. This result does not match our

hypotheses and literature, as the correlation between markets tends to increase during financial

crises. However, this might indicate that COVID-19 has similar long-term effects on both

markets and does not substantially differ their intercorrelation. Additionally, we show that

incorporating structural breaks in forecasting models might result in better forecast accuracy.

However, we cannot make any bold conclusions as we perform very basic analysis on this matter.

Since the COVID-19 pandemic is still ongoing, our findings need to be taken into consider-

ation with care. Further future research on structural changes should be conducted after full

world-wide recovery from the virus. Secondly, in order to get more insights on the micro-level,

one could have closer looks at smaller window sizes to spot differences between the two major

economies, that of the U.S. and China. Lastly, further research on the importance of the esti-

mated change-points could be conducted. Possibly by showing the predictive ability of multiple

models while including or excluding one or multiple change-points.
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Appendix A Cleaning Replication Data

As stated in Section 5.1, May 30th 2006 to December 31th 2010 accounts for 1158 data points,

not in line with the required 1024 points. We compare a plot as R output of the negative log

returns with figure S.4 of Zhao et al. (2021) and manually remove data points that are missing

in their figure. Figure 3 shows the manual comparisons. The most important takeaway is the

red dots, exactly 134 points that are excluded to get n = 1024 observations. After the manual

cleaning, still no pattern seems present in which data points are used and which are not. The

data selection appears to be nonrandom as there is sometimes a cluster of data points missing.

The nonrandom selection invites some possible criticism on influence on the obtained results, as

some extreme data points are left out (e.g. Figure 3 observation 600).
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Figure 3: Visualization of the data cleaning process. The red dots are the excluded data points
to obtain a total of n = 1024 observations.
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Appendix B Alternate Window Size Results

Table 6 shows estimated change-point comparable to Table 3, but with window size scale ϵ =

0.04. Note that Kn is unknown for this window size scale and hence we cannot draw any

conclusions from this Table. We set thresholds Kn as the 90% thresholds for ϵ = 0.05. Although

this seems very obscure at first sight, the SNCP method shows robustness for different threshold

values and hence Table 3 still is able to give some insights on different change-points estimates

when adjusting the window size scale.

Table 6: Estimated change-points by SNCP estimators for log returns of the S&P 500 index and
the Shanghai Stock Exchange Composite index from January 2016 to December 2021. Results
show for window size scale ϵ = 0.04

Method CP1 CP2 CP3 CP4

SP500 & SSE SNC 07/03/2018

SP500

SNV 01/17/2018 09/26/2018
SNQ90 01/10/2018 02/10/2020
SNQ95 07/22/2016 01/25/2018
SNQ90,95 01/16/2018 10/17/2019 04/08/2020
SNQ90V 01/16/2018 09/26/2018
SNQ95V 01/17/2018 09/26/2018
SNQ90,95V 01/16/2018 09/26/2018

SSE

SNV 01/16/2018
SNQ90 06/27/2018
SNQ95 10/17/2019 04/08/2020
SNQ90,95 02/14/2018 02/03/2020
SNQ90V 01/16/2018 02/04/2020
SNQ95V 06/13/2016 01/16/2018 05/20/2019
SNQ90,95V 06/16/2016 01/17/2018 05/20/2019

Notes: No specified threshold as reliable critical values of the limiting distribution are unknown.
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Appendix C Out-of-sample Forecasts

Figure 4: out-of-sample forecasts of the variance of daily log returns of the S&P 500 index from
August 3 2021 to December 31 2021. The benchmark variances are squared daily log returns.
We compare two GARCH(1,1) models estimated using the sample from December 2 2019 to
August 3 2021. GARCHSP500F uses the full in-sample data and GARCHSP500CP uses in-sample
data after April 1st 2020 where a change-point is estimated. The y-axis shows the variance
forecasts and the x-axis the observation numbers.
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Zhao, Z., Jiang, F., and Shao, X. (2021). Segmenting time series via self-normalization.

26


	Introduction
	Theory
	Data
	Replication
	Extension

	Methodology
	SNCP
	Replication
	Extension
	Change-point detection
	Modelling Structural Breaks

	Code

	Results
	Replication
	Extension
	Change-point detection
	Modelling Structural Breaks


	Discussion
	Conclusion
	Acknowledgements
	Cleaning Replication Data
	Alternate Window Size Results
	Out-of-sample Forecasts

