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Abstract
This paper studies the extremal random forest (ERF) of Gnecco et al. (2022) and investigates

whether the ERF improves the estimation of the extreme conditional Value-at-Risk (VaR) in

emerging stock markets. We assess the performance of the ERF relative to the generalized

random forest (GRF) by Athey et al. (2019), the gradient boosting for extremes algorithm

(GBEX) by Velthoen et al. (2021), and the unconditional generalized Pareto distribution (GPD).

Here, we apply the different methods both on the MSCI Emerging Market Index and on the

individual countries it includes. We find that the behavior of the stock returns over time has

a significant effect on the performance of the ERF, where the performance decreases when the

year the model is trained on is less volatile compared to the year it is subsequently tested

on. The ERF is also less accurate for smaller sample sizes. However, we find that the ERF

outperforms the other methods for negative stock returns with fat tails. This suggests that the

ERF is the better method among those assessed to predict extreme conditional VaR for emerging

markets where negative returns occur more frequently. Lastly, the expected worldwide market

volatility and sovereign credit risk have the biggest impact on the extreme conditional VaR for

the emerging equity market. With a probability of 0.0005, we estimate a maximum potential

daily loss of around 2.5% for low market volatility and 12.5% for high volatility.
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1 Introduction

Recently, the world experienced several rare events, such as a shut down of the New York Stock

Exchange due to a significant decrease in stock prices (Frazier, 2021), and negative US crude

oil prices as oil demand was cut down substantially worldwide (Brower et al., 2020). Extreme

events such as the latter create more awareness among investors about the risks they face when

investing (Demos & Mackenzie, 2012). By using risk measures, such as the Value-at-Risk, banks

and other financial institutions try to quantify these risks. Value-at-Risk, VaR(α), gives the

expected maximum loss of an investment or portfolio during a set time horizon with a given

confidence level 100× (1− α)% (Dimitrakopoulos et al., 2010).

The wide adoption of the VaR combined with the occurrence of extreme events, potentially

harmful to banks and other financial institutions, requires the tail distribution of stock returns

to be studied well. More specifically, extreme Value-at-Risk should be modeled appropriately

to incorporate these rare events (McNeil, 1999). Financial institutions have significant amounts

of money invested in emerging equity markets, and, as emerging markets are relatively volatile

compared to developed markets, risk management is crucial (Gencay & Selçuk, 2004). Consid-

ering the impact financial institutions can have on our everyday lives, it is socially relevant to

research the extreme Value-at-Risk in emerging markets. For this reason, we study the estima-

tion of the extreme Value-at-Risk for stock returns in emerging equity markets conditional on

external covariates.

McNeil (1999) points out that the tail risk is underestimated if a normal distribution for

the returns is assumed, as financial time series experience fat tails. However, the estimation of

these extreme quantiles poses a challenge, because there exists only a few to no data points for

them. Extreme value theory proposes the use of tail approximation (e.g., De Haan and Ferreira,

2006). Here, an intermediate quantile is first estimated with classical regression methods, and,

thereafter, the estimate is extrapolated to the extreme quantile level. This extrapolation can

be done with a generalized Pareto distribution (GPD) (Gencay and Selçuk, 2004; Gnecco et al.,

2022; Embrechts et al., 1998).

Additionally, there are several studies using machine learning models for the formerly men-

tioned extrapolation (Gnecco et al., 2022; Velthoen et al., 2021; Shrivastava et al., 2014).

Velthoen et al. (2021) propose a gradient boosting model to estimate the generalized Pareto

distribution. They conclude that their gradient boosting model outperforms classical methods

from quantile regression and extreme value theory. However, Gnecco et al. (2022) claim that

forest-based approaches are more favorable than gradient boosting methods and neural net-

works, as forest-based approaches require less tuning and have more understandable statistical

properties. The researchers consider an extremal random forest, and, consequently, create a

bridge between the literature on extreme value theory and the literature on random forests.

In this paper, we study the extremal random forest of Gnecco et al. (2022) for the estimation

of the extreme Value-at-Risk in emerging stock markets conditional on external covariates.

Therefore, the research question is as follows:
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Does the extremal random forest algorithm help to improve estimating the extreme

conditional Value-at-Risk in emerging stock markets?

To model the extreme conditional VaR, we require appropriate covariates that describe

the variation in the emerging equity market. Koepke (2019) explains five main drivers for

the inflow and outflow of capital in emerging markets. These main drivers are global risk

aversion, the global interest rate, global and domestic economic output growth, and country

risk. Accordingly, Hooker (2004) agrees that changes in the gross domestic product (GDP)

growth and country risk (more specifically, sovereign credit risk) affect the emerging equity

market, and adds the impact of changes in the local exchange rate. Furthermore, Ahmed and

Zlate (2014) include domestic interest rates as they find that interest rate differentials between

emerging and developed markets are significant drivers of capital flow into emerging markets.

To answer the research question, we estimate the extreme Value-at-Risk for emerging stock

markets conditional on the aforementioned covariates. For the estimation, we use the extremal

random forest (ERF) algorithm of Gnecco et al. (2022). We assess the performance of the

ERF relative to other machine learning models, such as the generalized random forest of Athey

et al. (2019) and the gradient boosting for extremes algorithm of Velthoen et al. (2021). We

perform an explanatory data analysis and an out-of-sample analysis both on an index of the

emerging market as a whole and on the emerging countries, separately. Here, we conclude that

the extreme conditional VaR positively correlates with the Volatility Index, suggesting that the

potential loss increases when investors expect more market volatility. The negative returns of

Malaysia, the United Arab Emirates and Saudi Arabia have fat tails, and, for these countries,

the ERF outperforms the other methods. Therefore, we conclude that the ERF is the best

method to predict the extreme conditional VaR for emerging markets where negative returns

occur more frequently.

This paper is structured in the following way. First, we give an overview of the relevant

literature, see Section 2. In Section 3, we discuss the data and its key characteristics. Then,

we discuss the analysis in more detail in Section 4, and, thereafter, the results in Section 5.

Finally, in Section 6, we draw conclusions and try answer the research question.

2 Literature Review

Following Gnecco et al. (2022), our paper creates a bridge between the literature on extreme

value theory and the literature on random forests. This makes the relevance of the research

twofold, and, therefore, the literature review is split into two sections. We start by discussing

the relevant literature on extreme value theory in Section 2.1. Thereafter, Section 2.2 discusses

the machine learning models researched thus far to predict extreme conditional Value-at-Risk

(VaR).

2.1 Extreme Value Theory

By estimating the extreme conditional quantiles, we study the tail behavior of the conditional

distribution. This poses challenges as there are only a few to no observations for these quantiles
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potentially leading to large biases in the empirical estimators that are based on quantile losses

(Gnecco et al., 2022). For this reason, extreme value theory researches the asymptotic results of

the extrapolation to the extreme quantiles (Velthoen et al., 2021). In the upcoming paragraphs,

we elaborate on extreme value theory and its role in predicting extreme conditional quantiles.

In extreme value theory, two main approaches exist, namely modeling of (1) the distribution

of maximum realizations, and (2) the exceedances of a particular threshold (Gencay & Selçuk,

2004). The first approach covers the block maxima models which use the Fisher-Tippett theorem

to deal with the convergence of maxima. McNeil (1998) uses a block maxima model as it has

an easy interpretation in terms of time horizons. The researcher applies the model to daily

stock returns to estimate the tail index and to calculate quantiles. Moreover, the block maxima

models are often used to estimate the probability of extreme weather events (McNeil, 1998;

Gilleland and Katz, 2006). Gumbel (1958) introduced the block maxima approach, and, as it

dates back to 1958, it is the older approach.

However, for estimating extreme conditional quantiles, we are interested in more than solely

the behavior of the maxima. We are interested in the distribution of observations exceeding a

certain threshold, and, therefore, we discuss the second approach in more depth. The second ap-

proach covers the peaks-over-threshold (POT) models. The POT models study the distribution

of the observations exceeding a predefined threshold u, hence, the exceedances Yt > u (Gencay

& Selçuk, 2004). There are two different types of POT models, namely semi-parametric models

and fully parametric models. The semi-parametric models rely on the Hill estimator that makes

an inference about the tail behavior (Hill, 1975). The fully parametric models are built on the

generalized Pareto distribution (GPD) from Pickands (1975).

As mentioned earlier, there are only a few or no observations suitable for estimating extreme

conditional quantiles. Therefore, extreme value theory proposes the use of tail approximation

(e.g., De Haan and Ferreira, 2006), and, in this paper, we follow Gnecco et al. (2022) by

applying the GPD for tail approximation. Here, an intermediate quantile level is first estimated

with classical regression methods, and, thereafter, the estimate is extrapolated to the extreme

quantile level with the GPD (Gencay and Selçuk, 2004; Gnecco et al., 2022; Embrechts et al.,

1998). Section 4 elaborates more on the use of the GPD and extreme value theory in this paper.

2.2 Extreme Conditional Value-at-Risk Estimation

In this section, we discuss the use of models to predict extreme conditional Value-at-Risk (VaR).

First, we elaborate on methods that do not necessarily rely on the generalized Pareto distribution

(GPD) parameters. Thereafter, we discuss different models that do use these GPD parameters

for extrapolation, as discussed in Section 2.1. There have been several studies using machine

learning models for this extrapolation such as neural networks (Shrivastava et al., 2014; Taylor,

2000; Diagne, 2002), a quantile regression forest (Meinshausen & Ridgeway, 2006), a generalized

random forest (Athey et al., 2019), a gradient boosting method (Velthoen et al., 2021), and an

extremal random forest (Gnecco et al., 2022). In the upcoming paragraphs, we elaborate on

these different machine learning models.

Artificial neural networks combined with extreme value theory have been used by several
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researchers, such as Taylor (2000) and Diagne (2002). Taylor (2000) explains the importance of

the estimation of the tail distribution for risk management, more specifically for Value-at-Risk

models. Therefore, the researcher uses a neural network to estimate non-linear quantile models

for multiperiod returns. Also, Diagne (2002) emphasizes the importance of accurate estima-

tion of the tail distribution for risk management. The researcher claims that neural networks

combined with extreme value theory can provide fundamental insights for VaR estimation.

As an alternative to neural networks, there are several types of random forests proposed to

estimate extreme conditional quantiles. The random forest was initially introduced by Breiman

(2001), and Meinshausen and Ridgeway (2006) generalize this random forest by proposing a

quantile regression forest (QRF). As the QRF looks beyond the conditional mean, it is able

to capture more of the aspects of the conditional distribution of the response variables. Mein-

shausen and Ridgeway (2006) conclude that the QRF outperforms linear and tree-based meth-

ods, and, therefore, is a competitive algorithm for estimating conditional distributions. Note

that the QRF does not rely on the GPD parameters for extrapolation to the extreme conditional

quantiles (Gnecco et al., 2022).

Also, Athey et al. (2019) base their approach on the random forest of Breiman (2001)

and propose a generalized random forest (GRF). They consider an estimator for the extreme

conditional quantile with forest-based weights wn(·, ·). These forest-based weights are derived

from the trees in which an observation appears. The regression forest proposed by Breiman

(2001) takes the average prediction across the different trees to predict an observation. In

contrast, the GRF uses adaptive nearest neighbor estimation to allow for statistical extensions.

Velthoen et al. (2021) and Gnecco et al. (2022) extend the work of Athey et al. (2019) by

applying the GRF for extreme conditional quantiles, and by incorporating it into their 2-step

approach. Note that, similar to the QRF, the GRF does not depend on the GPD parameters

for the extrapolation.

Additionally, Velthoen et al. (2021) propose a gradient boosting model for their approach,

named gradient boosting for extremes algorithm (GBEX). Here, they first use the generalized

random forest of Athey et al. (2019) to estimate the intermediate conditional quantiles at τ0.

Thereafter, they estimate the GPD parameters with a gradient boosting algorithm where the

optimal GPD parameters minimize a negative log-likelihood. In their simulations, they conclude

that the gradient boosting model outperforms classical methods from quantile regression and

extreme value theory.

However, Gnecco et al. (2022) claim that forest-based approaches are more favorable than

gradient boosting methods and neural networks as forest-based approaches require less tuning

and have more understandable statistical properties. Therefore, they propose an extremal

random forest (ERF) for predicting the extreme conditional quantiles. First, they estimate

the set of weights wn(·, ·) with the GRF. Next, they predict the extreme conditional quantiles

by estimating the GPD parameters, and, similar to Velthoen et al. (2021), the optimal GPD

parameters minimize a weighted negative log-likelihood. Gnecco et al. (2022) show that the

ERF and the GBEX outperform the GRF for both the simulation study and a US wage data

set. As the ERF either outperforms or performs equally well to the GBEX, we study the
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performance of the ERF on a new data set. More specifically, we apply the ERF to emerging

stock market data where the Value-at-Risk is predicted.

3 Data

We consider two different data sets. In Section 3.1, we discuss the data set for the replication

of Gnecco et al. (2022). Thereafter, we discuss the data set used for answering our research

question, see Section 3.2.

3.1 US Wage Data

The first data set consists of 65,023 observations and Table 1 shows the descriptive statistics.

The data set contains information on US-born men, namely their weekly wage, the years of

education they have received, their age and their race. The variable race is 1 if the person is

black and 0 if white. Furthermore, the variable age ranges between 40 and 49 years with a mean

of approximately 44 years and 4 months. The variable education ranges from 5 to 20 years with

a mean of 12.888 years. Gnecco et al. (2022) use the weekly wage as the response variable Y ,

and age, education and race as the covariates for the extremal random forest. The weekly wage

has a mean of around 719.494 US Dollar and a standard deviation of approximately 623.074.

Moreover, the weekly wage is positively skewed with a skewness of 43.383 and has fat tails with

a kurtosis of 4549.361.

Table 1. Descriptive Statistics Of the Weekly Wages, Age, Years Of Education and Race For

65,023 US-Born Men.

Descriptive Statistics

Variable Mean Minimum Maximum Std. Dev. Skewness Kurtosis

Weekly wage 719.494 0.157 80155 623.074 43.383 4549.361
Age 44.351 40 49 2.901 0.076 1.767
Education 12.888 5 20 3.098 0.260 3.028
Race 0.076 0 1 0.266 3.188 11.161

Note. The numbers are rounded to three decimal places. Race is 0 for white and 1 for black
individuals. Std. Dev. stands for standard deviation.

3.2 Emerging Markets and Covariates

We use the second data set to study the extreme conditional Value-at-Risk (VaR) for emerging

equity markets. Here, we consider a response variable and several relevant covariates. For the

response variable, we use the Morgan Stanley Capital International (MSCI) Emerging Market

Index. To model the extreme conditional VaR, we require appropriate covariates that describe

the variation in the emerging equity markets. The relevant covariates are the Volatility Index,

the US 3-month Treasury-Bill rate, the world GDP growth, the emerging market GDP growth,

the JP Morgan Emerging Market Bond Index, and the Emerging Market Economies US Dollar

Index. To deepen the research, we consider the countries in which the MSCI Emerging Market

5



Index is invested, separately (BlackRock, 2022b). Here, we take the corresponding MSCI Index

for China, Taiwan, India, South Korea, Brazil, Saudi Arabia, South Africa, Mexico, Thailand,

Indonesia, Malaysia, the United Arab Emirates and Qatar as response variables, for more details

on these variables see Table A1 Appendix A. In the upcoming paragraphs, we first justify the

use of these variables. Thereafter, we discuss the time period and frequency considered, and,

lastly, we explain how we cleaned the data to arrive at the total number of observations.

To start, we elaborate on the response variable used, namely the Morgan Stanley Capital

International (MSCI) Emerging Market Index. This index is a proxy for the emerging equity

markets. More specifically, we take the negative returns of the MSCI Emerging Market Index as

the response variable, so that the Value-at-Risk is positive. We collect data from an Exchange

Traded Fund (ETF) offered by BlackRock tracking the MSCI Emerging Market Index. This

ETF is named the iShares MSCI Emerging Markets ETF. We use the ETF to ensure we have

enough data points as the data on the index itself is released monthly while the data on the

ETF is released daily. The same approach applies to the MSCI Indices of the separate countries,

for which we also collect data from the corresponding iShares ETF offered by BlackRock.

Next, we discuss six relevant covariates. Koepke (2019) and Hooker (2004) identify a number

of drivers for the emerging market capital flow, and, here, we follow their choice of relevant

covariates and the appropriate proxies thereof. The first covariate is the Volatility Index (VIX)

retrieved from the Chicago Board Options Exchange (CBOE) website. The VIX is used as a

proxy for global risk aversion. Second, we use the US 3-month Treasury-Bill (TB) rates from

the US Federal Reserve website. The US TB rates are used as a proxy for the global interest

rates. The third covariate is the Emerging Market US Dollar Index (EMUSDI) retrieved from

the Board of Governors of the Federal Reserve System website. The EMUSDI is a proxy for the

emerging markets’ currency relative to the US Dollar. The US Dollar Index describes the value

of the US Dollar against currencies used in international trade, in this case, currencies from

emerging markets (Logue & Rasure, 2022). Next, we consider the JP Morgan Emerging Market

Bond Index (EMBI) which measures the performance of government and corporate bonds in

emerging markets (Hayes & Scott, 2020). Therefore, we use the EMBI as a proxy for both

sovereign credit risk and emerging market interest rates. Here, we approach the data gathering

in a similar way as for the response variable, namely we collect data from a BlackRock ETF

tracking the EMBI. The ETF is named the iShares J.P. Morgan USD Emerging Markets Bond

ETF. Lastly, the fifth and sixth covariates are the emerging market GDP growth and the world

GDP growth which are both retrieved from the International Monetary Fund (IMF) website.

For all the time series, we consider the period from December 13, 2007, until April 29, 2022.

Furthermore, we use daily data so that there are enough data points for the algorithm. The

emerging market GDP growth rate and the world GDP growth rate are released annually, and,

therefore, we transform them. This transformation results in a data set with daily world GDP

growth rates and another data set with daily emerging market GDP growth rates. Here, we

assume that the percentage growth is equally distributed over the trading days in a year. We

transform the yearly GDP growth rates as follows: daily growth rate = n
√
yearly growth rate

where n = 253 is the average number of trading days in a year (NYSE, 2022).

6



Lastly, we clean the data by correcting for missing observations; if an observation is missing,

then the average of the four neighbour observations is taken to smooth out the data. As the

data is from financial markets, observations on weekend days and banking holidays are missing,

however, we disregard this and assume the data to be continuous after cleaning it. All prices

are in US Dollar and the data bases are accessed on 06/05/2022. Table 2 shows the descriptive

statistics of the MSCI Emerging Markets ETF and the relevant covariates. As we use daily

data, we have 3620 observations for each time series.

The MSCI Emerging Markets ETF has a mean of 41.498 and a standard deviation of 6.237.

Furthermore, the Emerging Market ETF is negatively skewed with a skew of -0.551. To estimate

the extreme conditional VaR, we consider the negative returns of the MSCI Emerging Markets

ETF. The negative returns range between approximately -13.7% and 10.8% with a mean of

-0.004%, suggesting a positive daily return on average. Furthermore, the negative Emerging

Markets ETF returns are negatively skewed at -0.114, and the returns have fat tails with a

kurtosis of 15.592. The VIX and the emerging market GDP growth are also fat tailed with

kurtoses of 10.737 and 12.379, respectively. Moreover, the TB rate has a negative minimum of

-0.05% meaning that the return on a Treasury-Bill was negative at least one day in the period

of the time series. Also, the GDP growth rates have negative minimum values of aprroximately

-98.6% and -98.5% for the world and the emerging markets, respectively. These values arose

during the COVID19 crisis as the lockdowns had massive effects on the GDP of countries around

the world. Lastly, the Emerging Market US Dollar Index has a high standard deviation of 12.658

and a mean of 108.765 which is approximately equal to the mean of the Emerging Market Bond

Index at 108.017.

Table 2. Descriptive Statistics Of MSCI Emerging Markets (EM) ETF, Its Negative Returns

and the Relevant Covariates For the Period December, 2007, Until April, 2022.

Descriptive Statistics

Variable Mean Minimum Maximum St.Dev. Skewness Kurtosis

MSCI EM ETF 41.498 19.118 58.141 6.237 -0.551 4.213
Negative returns -0.004 -13.682 10.793 1.360 -0.114 15.592

VIX 20.246 9.14 82.69 9.610 2.363 10.737
EM Bond Index 108.017 68.233 122.414 8.059 -1.517 6.221
TB rate 0.546 -0.050 3.290 0.763 1.409 3.604
EM USD Index 108.765 89.152 137.310 12.658 0.162 1.527
World GDP growth 71.267 -98.636 98.901 68.163 -2.081 5.329
EM GDP growth 85.023 -98.466 99.026 50.312 -3.373 12.379

Note. The numbers are rounded to three decimal places. Std. Dev. stands for standard
deviation. Negative returns, TB rate, world and EM GDP growth are in percentages. The
data is from BlackRock (2022a), Federal Reserve Bank of St. Louis (2022), Organization for
Economic Cooperation and Development (2022), International Monetary Fund (2022).

Furthermore, Figure 1 plots the negative returns of the MSCI Emerging Markets ETF

against time, and Figure A15 in Appendix A plots the covariates against time. In Figure 1,

we observe time-varying volatility as some periods show more up-and-down movement in the
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negative returns compared to other periods. For example, around the Great Financial Crisis

in 2008, the negative returns range approximately between 10% and -15%. Additionally, we

observe more volatile negative returns around 2020 with the start of the COVID19 pandemic.

Figure 1. Negative Returns Of the MSCI Emerging Market ETF For the Period December,

2007, Until April, 2022.

4 Methodology

In this paper, we follow the extremal random forest algorithm and the corresponding notation

as proposed by Gnecco et al. (2022). To start, we will define and explain the notation used in

this paper, see Section 4.1. In Section 4.2, we explain the functioning of the extremal random

forest (ERF) algorithm. Thereafter, we conduct a simulation study to assess the performance of

the ERF and other algorithms, see Section 4.3. Lastly, in Section 4.4, we assess the performance

of the ERF and other algorithms on US wage data and emerging market data.

4.1 Extreme Conditional Quantiles

Following the notation used by Gnecco et al. (2022), we consider response variable Y ∈ R
and predictor X from a potential range of predictors χ ⊂ Rp, where p is large to ensure large

dimensions. For the first data set, the response variable is the weekly wage; the set of predictors

contains the variables education, age and race. For the second data set, the response variable is

the MSCI Emerging Market Index, and the set of predictors contains all the relevant covariates

discussed in Section 3.2. Additionally, let (X1, Y1), ..., (Xn, Yn) be n independent copies of the

random vector (X,Y ). We define Qx(τ) as the quantile at level τ ∈ (0, 1) of the conditional

distribution of Y |X = x, in short: Qx(τ) = F−1
Y |X=x(τ). We are interested in the conditional

quantile Qx(τ) for τ ≈ 1 as this is the extreme quantile.

Furthermore, Gnecco et al. (2022) find two challenges for estimating the conditional quantile

Qx(τ). First of all, there are only a few to no observations for these extreme conditional

quantiles, resulting in a large bias in the empirical estimators that are based on quantile losses.

To address this first challenge, they propose the use of tail approximation as is motivated
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by extreme value theory (e.g., De Haan and Ferreira, 2006). Here, they first estimate the

quantile Qx(τ0) for an intermediate quantile level τ0 < τ , and, thereafter, they extrapolate it

to the extreme quantile Qx(τ), going beyond the range of the data, more details in Section

4.2. We define the observations in the data that exceed the quantile Qx(τ0), in other words,

the exceedances, as Zi = max(0, Yi − Qx(τ0)). To extrapolate, Gnecco et al. (2022) use the

approximation by the generalized Pareto distribution (GPD) of the exceedances. Following

Pickands (1975), the generalized Pareto distribution is:

G(z; θ) = 1−max

(
0,

(
1 +

ξ

σ
z

)− 1
ξ

)
, z > 0, (1)

where θ = (σ, ξ) ∈ (0,∞) × R is the parameter vector consisting of scale parameter σ : χ →
(0,∞) and shape parameter ξ : χ → R. Consequently, we extrapolate as follows:

Qx(τ) ≈ Qx(τ0) +
σ(x)

ξ(x)

[(
1− τ

1− τ0

)−ξ(x)

− 1

]
, (2)

which approximates the conditional quantile of Y |X = x at τ ≈ 1. The extrapolation to

the extreme conditional quantile holds under mild assumptions (Balkema and De Haan, 1974;

Pickands, 1975). Here, the response variable Y is heavy-tailed when ξ > 0 (e.g., Student’s t),

light-tailed when ξ = 0 (e.g., Gaussian), and Y has a finite upper endpoint when ξ < 0 (e.g.,

uniform) (Velthoen et al., 2021).

The second challenge is regarding the dimensional of the predictor space Rp which might

get relatively large. For this reason, several solutions and alternative models that can cope

with these high-dimensional spaces have been proposed in the literature, see Taylor (2000) and

Friedman (2002). Gnecco et al. (2022) focus on forest-based approaches which are methods

based on the original random forest developed by Breiman (2001). These methods require little

tuning and their statistical properties are understandable compared to, for example, gradient

boosting and neural networks (Athey et al., 2019). Therefore, our paper models and estimates

the extreme conditional quantile Qx(τ) of Y |X = x with a random forest, as is done by Gnecco

et al. (2022).

4.2 The Extremal Random Forest Algorithm

In this section, we discuss the extremal random forest algorithm of Gnecco et al. (2022) and

elaborate on the necessary steps. The independent copies (X1, Y1), ..., (Xn, Yn) are the training

data. First, we specify both an intermediate quantile level τ0 and an extreme quantile level

τ . The intermediate quantile level τ0 ∈ (0, 1) is chosen so that the classical quantile regression

techniques can be used to obtain estimator Q̂x(τ0). We follow Gnecco et al. (2022) by using a

generalized random forest (GRF) with quantile loss to estimate Q̂x(τ0) for τ0 = 0.8.

After estimating the intermediate conditional quantile, we will extrapolate to the extreme

conditional quantile. Gnecco et al. (2022) assume that Y −Qx(τ0) | Y > Qx(τ0) approximately

follows a generalized Pareto distribution (GPD) so that G(z; θ(x)) from Equation (1) is the
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cumulative distribution function. Therefore, we extrapolate by fitting a GPD. To do so, we

estimate the parameter vector θ(x) = (σ(x), ξ(x)) with maximum-likelihood. The log-likelihood

function is as follows:

ℓθ(Zi) =

log σ +
(
1 + ξ

σZi

)
if Zi > 0,

0 otherwise.
(3)

Note that the log-likelihood only gives positive values for the exceedances, Yi > Q̂x(τ0).

Next, Gnecco et al. (2022) estimate localizing weight functions wn(x,Xi) with a GRF (which

may be different from the GRF used to estimate Q̂x(τ0)). They formalize the weighted log-

likelihood function, that is:

Ln(θ;x) =
n∑

i=1

wn(x,Xi) ℓθ(Zi) 1{Zi > 0}, (4)

where wn(x,Xi) are the weight functions. To get the parameter vector estimator θ̂(x), we

minimize the weighted log-likelihood function:

θ̂(x) = argmin
θ∈Θ

Ln(θ;x). (5)

Next, we use the estimated intermediate quantile Q̂x(τ0) and parameter vector θ̂(x) =

(σ̂(x), ξ̂(x)) to calculate the estimated extreme conditional quantile Q̂x(τ) with Equation (2).

The estimators are consistent under certain assumptions, see Gnecco et al. (2022).

Furthermore, the GRF has several parameters that need to be tuned, thus, we discuss a

cross-validation scheme following Gnecco et al. (2022). The researchers find that the minimum

node size κ ∈ N is the most critical parameter for ERF. Therefore, for κ, we consider a sequence

α1, .., αJ of possible values. To tune this parameter, we perform a 5-fold cross-validation three

times and grow forests of 50 trees at each fold. Let N1, ...,NM be a random partitioning of

1, ..., n into M equally sized folds of the training data, in this case, M = 5. We fit the ERF on

the training set (Xi, Yi), i /∈ Nm for each fold m and each αj , j ∈ 1, ..., J . Next, we estimate the

GPD parameter vector θ̂(Xi;αj) on (Xi, Yi), i ∈ Nm. The cross-validation error is as follows:

CV (αj) =

M∑
m=1

∑
i∈Nm

ℓθ̂(Xi;αj)
(Zi)1{Zi > 0}, (6)

and is minimized for tuning parameter α∗. We repeat this procedure 50 times. Over these 50

simulations, we measure the performance as the square root of the mean integrated squared

error (
√
MISE), see Section 4.3 for more details on the MISE.

Additionally, the maximization of the likelihood could experience convergence problems in

small samples (Coles & Dixon, 1999). Therefore, Gnecco et al. (2022) propose the penalized

log-likelihood:

θ̂(x) = argmin
(σ,ξ)=θ∈Θ

1

1− τ0
Ln(θ;x) + λ(ξ − ξ0)

2, (7)

where λ ≥ 0 is a tuning parameter and ξ0 is a constant shape parameter. For λ, we take the
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same steps to cross-validate this parameter and to assess the MISE as described in the previous

paragraph for κ. Lastly, we follow Gnecco et al. (2022) and set the constant shape parameter

ξ0 equal to the unconditional fit ξ̂ which is obtained by minimizing the GPD with constant

weights wn(x, y) = 1 for all x, y ∈ χ.

4.3 Simulation Study

To assess the performance of the extremal random forest, we conduct a Monte Carlo simula-

tion and compare different approaches, following Gnecco et al. (2022). First, we simulate the

training data by generating (X1, Y1), ..., (Xn, Yn) independent copies of a random vector (X,Y ).

The response variable Y |X = x follows a distribution with fat tails such as a Student’s t distri-

bution. We perform two types of simulations as done by Gnecco et al. (2022), for more details,

we refer to Experiments 1 and 2 in Sections 4.3 and 4.4 of Gnecco et al. (2022). We assess

the performance of the algorithm by computing the integrated squared error (ISE) as follows:

ISE = 1
n

∑n
i=1

(
Q̂xi(τ)−Qxi(τ)

)2
. We simulate m = 50 times, and, thereof, we obtain a mean

integrated squared error (MISE) which is the average of the ISEs.

We compare the extremal random forest (ERF) of Gnecco et al. (2022) with the general-

ized random forest (GRF) by Athey et al. (2019), the gradient boosting for extremes algorithm

(GBEX) by Velthoen et al. (2021), and the unconditional GPD. For the ERF, we follow Gnecco

et al. (2022) and repeat three times 5-fold cross-validation where κ ∈ {10, 40, 100} is the mini-

mum node size and λ ∈ {0, 0.01, 0.001} is the penalty for the shape parameter. The other tuning

parameters are set at their default values. For GRF, we follow Gnecco et al. (2022) by setting

the tuning parameters of the GRF to the default values and fitting Q̂GRF
x (τ) to the training

data. For GBEX, we follow Velthoen et al. (2021) and use 5-fold cross-validation to determine

the optimal number of trees with a maximum per fold of 500. Furthermore, we set the depth

of each gradient tree to D = 2 and the learning rate for the scale parameter to λσ = 0.1. We

again set the other tuning parameters to their default values.

4.4 US Wage Quantiles and Emerging Markets Value-at-Risk

We compare the performance of the ERF, GRF, GBEX and the unconditional GPD on the US

wage data and on the emerging markets data, see Section 3 for information on the data sets.

For the GRF and GBEX, we use the grf package offered by Tibshirani et al. (2022) and the gbex

package offered by Velthoen (2022) in Rstudio, respectively. Furthermore, we use the functions

of the erf package offered by Gnecco (2022) for the ERF. As we would like to assess the methods

for higher dimensional data sets, we add ten and seven random predictors drawn independently

from a uniform distribution on [−1, 1] to the US wage data set and the emerging markets data

set, respectively, resulting in p = 13. First, we split the data sets into two subsets of equal size.

For the US wage data, we split the data set in the middle. For the emerging market data, we

make a random split to avoid biases, as stock prices experience time-varying volatility. Following

Gnecco et al. (2022), we thereafter use the first subset to perform an exploratory data analysis

and the second subset to evaluate the different methods. Throughout the whole analysis, we
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take τ0 = 0.8, λ = 0.01 and perform a three time 5-fold cross-validation with minimum node

size κ ∈ {5, 40, 100} for the ERF. Furthermore, we consider the same tuning parameters as

discussed in Section 4.3 for the other methods. In the upcoming paragraphs, we elaborate on

this approach in more detail.

We start with the exploratory data analysis on the first subset, called data set A from here

onward. From data set A, we start by taking a random subset of 10% for the US wage data

(3,251 observations) and 20% for the emerging market data (362 observations). The emerging

market data set contains fewer observations, and, therefore, to ensure enough data points for the

algorithm, we take a bigger subsample. We predict the GPD parameters θ̂(x) = (σ̂(x), ξ̂(x)) on

the remaining data from data set A, hence, we do an out-of-sample prediction. Here, we assess

the shape of the GPD parameters. Thereafter, we assess the shape of the extreme conditional

quantiles for the different methods by predicting the extreme conditional quantiles with the

ERF, GRF, GBEX and the unconditional GPD.

Afterwards, we assess the performance of the ERF compared to the GRF, GBEX and the

unconditional GPD on the second subset, called data set B from here onward. As the actual

extreme conditional quantiles are unknown, we need a different performance measure than for

the simulation study in Section 4.3. We use the performance measure proposed by Wang and

Li (2013):

Rn(Q̂.(τ)) =

∑n
i=1 1{Yi < Q̂Xi(τ)} − nτ√

nτ(1− τ)
, (8)

where n is the number of test observations and Q̂.(τ) is the τ -th conditional quantiles estimated

on the training data set. According to the central limit theorem, the performance measure

Rn(Q̂.(τ)) is asymptotically standard normal. Following Gnecco et al. (2022), we partition

data set B into ten random folds. We fit the different methods on each fold, the training data,

and predict the extreme quantiles for the left-out observations, the test data. We assess the

performance with Equation (8). To deepen the insides in the emerging equity market, we repeat

this analysis two more times in different settings after performing the analysis on data set B.

First, we partition the MSCI Emerging Market Index over time so that the methods are trained

on year t and are estimating the extreme conditional VaR for year t+ 1. Second, we assess the

performance of the countries in which the MSCI Emerging Market Index is invested, separately.

Note that we do not add the random predictors for the different countries so that we can better

investigate the influence of the economic variables on the extreme conditional VaR. Finally, we

give an economic interpretation of these extreme conditional quantiles and the variables driving

them.

5 Results

In this section, we start by discussing the results of the parameter tuning, see Section 5.1.

Thereafter, we compare the performance of the extremal random forest (ERF) to other methods.

Here, we apply the ERF and the other methods to simulated data in Section 5.2, US wage data

in Section 5.3, and emerging stock markets data in Section 5.4.
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5.1 Parameter Tuning

The generalized random forest (GRF) has several parameters that need to be tuned which we

assess over 50 simulations. Here, we discuss the results of tuning the minimum node size κ and

the penalty parameter λ. Figure 2 shows the results for the minimum node size for quantile

levels τ = 0.99, 0.995, 0.9995. We observe that the
√
MISE is minimized for minimum node

sizes between 100 and 200, where the minimum node size increases to 200 for a more extreme

quantile level τ = 0.9995. Furthermore, the cross-validated ERF is in all cases relatively close to

the minimum
√
MISE, and, for τ = 0.9995, the cross-validated ERF gives the exact minimum

√
MISE. Therefore, we conclude that the cross-validated ERF performs relatively well, which

is in line with the conclusions of Gnecco et al. (2022).

Figure 2. The Square Root Of the MISE For ERF With Different Minimum Node Sizes κ and

For the Cross-Validated ERF Over 50 Simulations.

Note. The solid and dashed lines show
√
MISE for the ERF with different minimum node sizes

κ and with cross-validation, respectively. The data is generated following Gnecco et al. (2022).

The results for the penalty parameter λ are shown in Figure 3. Here, we set the minimum

size nodes κ equal to the minimum of the previous analysis, namely 200, and perform the

cross-validation purely on the penalty parameter λ. For τ = 0.99 and τ = 0.995, the
√
MISE

increases with the penalty parameter λ, suggesting that a heavier penalty results in worse

predictions of the extreme conditional quantiles. For τ = 0.9995, the plot has a different shape,

where the
√
MISE first decreases as λ increases, after which it increases again. Furthermore,

the performance measure is minimized for λ between 0.00001 and 0.0001. Lastly, we observe

that the cross-validated ERF is relatively often above the minimum
√
MISE.

5.2 Simulation Study

Next, we assess the performance of the ERF compared to the generalized random forest (GRF),

the gradient boosting for extremes algorithm (GBEX) and the unconditional generalized Pareto

distribution (GPD). We simulate the data 50 times following Experiments 1 and 2 of Gnecco

et al. (2022).
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Figure 3. The Square Root Of the MISE For ERF With Different Penalties λ and For the

Cross-Validated ERF Over 50 Simulations.

Note. The solid and dashed lines show
√
MISE for the ERF with different penalties λ and

with cross-validation, respectively. The data is generated following Gnecco et al. (2022).

For Experiment 1 of Gnecco et al. (2022), we investigate the performance of the methods

for (a) varying quantile levels with a fixed dimension, and (b) varying dimensions with a fixed

quantile level. Figure 4a shows the
√
MISE for the different methods with p = 10 and varying

quantile levels τ . We observe that the performance measure increases almost exponentially

for extremer quantile levels, τ → 1, suggesting that all methods have difficulty appropriately

predicting extreme conditional quantiles. Over the range of τ , ERF outperforms the other

methods by having the lowest
√
MISE. Furthermore, Figure 4b shows the

√
MISE for the

different methods with τ = 0.9995 and varying dimensions p. Again, the ERF outperforms all

methods in predicting the extreme conditional quantiles. The GRF shows a relatively volatile

pattern for the
√
MISE compared to the other methods. Lastly, we observe that the

√
MISE of

both the ERF and the GBEX slightly decreases for higher dimensions (higher p).

Figure 4. The Square Root Of the MISE For ERF, GRF, GBEX and the Unconditional GPD

For Varying Quantile Levels τ and For Varying Model Dimensions p Over 50 Simulations.

(a) Varying Quantile Levels τ (b) Varying Model Dimensions p

Note. The data is generated following Experiment 1 of Gnecco et al. (2022).
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In Experiment 2 of Gnecco et al. (2022), we assess the same performance for varying shape

parameters ξ. For the different methods and different shape parameters, Figure 5 shows the

square roots of the ISEs from each of the 50 simulations. The ERF gives the lowest average
√
ISE, especially for the Gaussian distribution (ξ = 0). Furthermore, the GBEX is the second

best method for the scaled Student t-distribution where ξ = 0.25 or 0.33. For the Gaussian

distribution, the GRF performs better than both the GBEX and the unconditional GPD, when

looking at the average
√
ISE. However, the GRF has relatively more spread results as can be

seen by the outliers for all values of ξ.

Figure 5. The Square Root Of the ISEs For ERF, GRF, GBEX and the Unconditional GPD

Over 50 Simulations For Quantile Level τ = 0.9995 and Dimension p = 40.

Note. The triangles are the average values. The data is generated following Experiment 2 of
Gnecco et al. (2022).

5.3 US Wage Extreme Conditional Quantiles

Furthermore, we compare the performance of the ERF, GBEX, GRF and the unconditional

GPD on the US wage data. Following Gnecco et al. (2022), the data set is split into two equal

parts. The first part of the data set is used for the exploratory data analysis and the second

part is used to fit the different methods and assess their performance.

First, we discuss the exploratory data analysis. We start by fitting the ERF and estimating

the GPD parameters. Figure 6 shows the estimated GPD parameters σ̂(x) and ξ̂(x) plotted

against the years of education and the race. We observe that for both GPD parameters the

spread of black and white men is relatively equal over the years of education. Furthermore, the

scale parameter σ̂(x) increases with the years of education and shows a jump around 15 years of

education. The shape parameter ξ̂(x) depends negatively on the years of education and shows

a dip around 15 years of education.

After fitting the ERF and estimating the GPD parameters, we estimate the extreme condi-

tional quantiles using the different methods. Figure 7 shows the extreme conditional quantiles

estimated by the ERF, GRF, GBEX and the unconditional GPD for τ = 0.9, 0.995. For τ = 0.9,

all methods predict that the extreme conditional quantiles Q̂x(τ) increase with the years of ed-

ucation. This implies that higher educated American males earn more in the extremes than
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Figure 6. GPD Parameters σ̂(x) and ξ̂(x) Plotted Against the Years Of Educations and Race.

lower educated American males. As the quantile level increases to τ = 0.995, both the GRF and

GBEX show a very scattered prediction of the extreme conditional quantiles suggesting that

these methods are unable to capture a clear pattern due to reduced flexibility. Furthermore,

the unconditional GPD flattens, and, hereby, also loses it flexibility to capture the previous

mentioned pattern. Here, the ERF is able to model the variability of the extreme conditional

quantiles. Note that we need a formal performance measure to conclude on the best performing

model, thus, the behavior of the methods in Figure 7 does not lead to conclusions on their

performances.

Figure 7. Extreme Conditinal Quantiles Predicted By ERF, GRF, GBEX and the Unconditional

GPD At Quantile Levels τ = 0.9, 0.995 For US Wage Data.

For the second part of the data set, we fit the different methods and assess their performance

based on the loss function in Equation (8). Figure 8 shows the absolute values of this loss
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function for the ERF, GRF, GBEX and the unconditional GPD. The grey area is used as a

reference as it represents the 95% interval of the absolute value of a standard normal distribution.

Again, the GRF and unconditional GPD perform poorly for increasing extreme quantile levels,

where the absolute loss of the GRF makes a jump between τ = 0.9 and τ = 0.99. Gnecco et al.

(2022) claim that the unconditional GPD is less flexible compare to the ERF and GBEX as the

unconditional GPD cannot produce different scale parameters. Accordingly, we observe that

the ERF and GBEX perform very well, and even seem to perform better for more extreme

quantile levels.

Figure 8. Absolute Value Of the Loss Function For ERF, GRF, GBEX and the Unconditional

GPD On the US Wage Data For τ = 0.9, 0.99, 0.9995.

Note. The grey area is the 95% interval of the absolute value of a standard normal
distribution.

5.4 Emerging Stock Markets Extreme Conditional Value-At-Risk

In this section, we evaluate the performance of the ERF, GRF, GBEX and unconditional GPD

in predicting the extreme conditional Value-at-Risk (VaR) for emerging equity markets. For

Sections 5.4.1 and 5.4.2, the data set is split in two, where the first part of the data set is used for

an exploratory data analysis, and the second part is used to fit the different methods and assess

their performance. Thereafter, we study the performance of the out-of-sample predictions over

time on the full data set in Section 5.4.3. Lastly, in Section 5.4.4, we assess the performance of

the different methods for the countries in which the MSCI Emerging Market Index is invested.

5.4.1 Explanatory Data Analysis

We start by fitting the ERF on the first part of the data set, and, thereafter, we estimate the

GPD parameters. Figure 9 shows the estimated GPD parameters, σ̂(x) and ξ̂(x), as a function

of the Volatility Index (VIX), the Emerging Market Bond Index ETF (EMBI ETF) and the

Emerging Market US Dollar (EM USD) Index. The different Treasury-Bill (TB) rate ranges

are also shown in the plot, where the TB-rate mostly moves in the ’1− 2%’ range followed by

the ’2 − 3%’ range and ’> 3%’ range. Furthermore, Figure 9, with the EM USD Index on the

horizontal axis, appears to be scattered, meaning that the GPD parameters as a function of the

EM USD Index do not show a clear pattern.

In contrast, we observe that the scale parameter, σ̂(x), increases with the VIX and decreases

with the EMBI ETF price. Here, the shape parameter, ξ̂(x), has almost the same pattern as
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it slightly increases with the VIX. Thus, as the VIX represents the expected volatility over the

next 30 days (Chicago Board Options Exchange, 2022), both the scale and shape parameters

increase in more volatile markets, however, the increase is different in behavior. Moreover, we

observe that both the scale and shape parameters decrease with the EMBI ETF, where the

pattern of the scale parameter is more visible. The EMBI ETF measures the performance of

government and corporate bonds in the emerging markets (Hayes & Scott, 2020), and, thus,

the GPD parameters decrease when bonds in the emerging market perform better. Lastly, the

scale parameter ranges from 0.371 to 1.866, with an average of 0.748. The shape parameter

ranges between 0.202 and 0.271, with an average of 0.233, implying heavy-tails throughout the

predictor space.

Figure 9. Estimated GPD Parameters σ̂(x) and ξ̂(x) Plotted Against the Volatility Index (VIX),

the Emerging Market Bond Index ETF (EMBI ETF), the Emerging Market US Dollar Index

(EM USD Index), and the Treasury-Bill (TB) Rate.

Table 3 shows the importance of each variable in estimating the GPD parameters, with the

GBEX making a distinction between the scale and shape parameter. The ERF and GRF have

equal values, as these methods are based on the same estimated GRF. For the ERF and GRF,

the VIX and the Emerging Market Bond Index have the highest variable importance score, while
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the Treasury-Bill rate has the lowest. This suggests that expected worldwide market volatility

and sovereign credit risk have the biggest impact on the extreme conditional VaR. However, the

variables containing information on developed countries, with the US as a proxy, have a less

significant effect on the extrapolation with the GPD parameters. Furthermore, the GBEX gives

the VIX relatively high importance scores at 0.493 and 0.965 for the scale and shape parameters,

respectively, suggesting that the VIX has the largest effect on the GPD parameters. Therefore,

we plot the extreme conditional VaR against the VIX in Figure 10.

Table 3. Variable Importance For the GPD Parameters σ(x) and ξ(x) Per Method.

Variable Importance Per Method

Variable ERF GRF GBEX, σ(x) GBEX, ξ(x)

VIX 0.195 0.195 0.493 0.965
EM Bond Index 0.122 0.122 0.000 0.000
TB rate 0.027 0.027 0.061 0.011
EM USD Index 0.054 0.054 0.060 0.000
World GDP growth 0.092 0.092 0.058 0.000
EM GDP growth 0.080 0.080 0.025 0.000

Note. The numbers are rounded to three decimal places. The values of the ERF and GRF
represent the combined variable importance of the scale and shape parameters. The values of
the GBEX are scaled to sum up to one. The random predictors are excluded from the table.

Next, we predict the extreme conditional VaR. In Figure 10, we observe that the different

methods maintain the shape of the scale parameter for quantile level τ = 0.9, in other words,

the extreme conditional VaR increases with the VIX. This increase slows down for higher values

of the VIX where the extreme conditional VaR also seems more scattered. This could imply that

the VaR only maintains a correlation with the VIX in markets that are not extremely volatile.

Furthermore, the VaR with τ = 0.9 ranges between 0.7 and 2.6, meaning that the maximum

potential loss is between 0.7% and 2.6% with a probability of 0.1. In the middle quantile level

τ = 0.95, we observe slight a transition of the plot shape, for example, the GRF does not show

an equally spread data plot anymore. However, for the ERF, the plot shape for τ = 0.95 barely

changes compared to τ = 0.9. The VaR with τ = 0.95 ranges between 1.2 and 4.5.

For the extremer quantile level τ = 0.995 in Figure 10, we observe more discrepancies be-

tween the plots of the different methods. The GRF is unable to capture the shape of the extreme

conditional VaR as it only shows horizontal lines instead of an evenly spread plot. Furthermore,

the unconditional GPD plot becomes flatter as τ → 1 suggesting that the unconditional GPD

converges to a value, and, thus, loses its flexibility. Here, both the ERF and GBEX still capture

the upward trend of the extreme conditional VaR plotted against the VIX. Around a VIX of

25, the GBEX jumps in the estimated extreme conditional VaRs from approximately 5.0 to

7.5 suggesting that this is the tipping point of volatility for which more extreme losses will be

incurred. Lastly, the extreme conditional VaRs estimated by the ERF range between 2.5 and

12.5, suggesting that the maximum potential loss is between 2.5% and 12.5% with a probability

of 0.005. This potential loss increases when the investor expects a more volatile market in the

upcoming 30 days.
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Figure 10. Extreme Conditional Quantiles Predicted By ERF, GRF, GBEX and the Uncondi-

tional GPD At Quantile Levels τ = 0.9, 0.95, 0.995 For Emerging Markets Stock Data.

5.4.2 Performance For Out-Of-sample Predictions

In this section, we investigate the performance for out-of-sample predictions of the ERF, GRF,

GBEX and the unconditional GPD on the second part of the data set. Here, we use the absolute

value of the loss function in Equation (8). Figure 11 shows the absolute losses for the different

methods, where the grey area is the 95% interval of the absolute value of a standard normal

distribution. Based on the median absolute loss, shown as a fatter line, the ERF outperforms

the other methods for τ = 0.99 and the GBEX outperforms the other methods for τ = 0.995.

Furthermore, the different methods have a relatively similar spread in absolute loss, and the

spread in the absolute loss decreases with the quantile level τ for all methods except the GRF.

The GRF does not rely on the extrapolation from extreme value theory, and, thus, is less flexible

for extremer quantile levels resulting in a larger spread of absolute losses.

However, from Figure 11, we are unable to draw a clear conclusion on the relative perfor-

mance of the different methods. Therefore, we continue to investigate their performance while

altering the circumstances. For example, the estimated shape parameter ξ̂(x) in Figure 9 does

not show a clear pattern, especially when plotted against the EM USD Index. This scattered

behavior of the shape parameter could lead to less accurate estimates resulting in more spread

in the absolute losses of Figure 11. Thus, we set the shape parameter ξ to a fixed value. More

specifically, we fix it to the mean value of the estimated shape parameters in Figure 9, resulting

in ξ̂fixed = 0.233. By taking the shape parameters of the first part of the data set, we ensure

that the methods do not have any initial information on the second part of the data set for the

out-of-sample predictions.
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Figure 11. Absolute Value Of the Loss Function For ERF, GRF, GBEX and the Unconditional

GPD On the Emerging Markets Stock Data For τ = 0.9, 0.99, 0.9995.

Note. The grey area is the 95% interval of the absolute value of a standard normal
distribution.

Figure 12 shows the absolute losses of the different methods with the fixed shape parameter.

Here, the GRF outperforms the other methods as the GRF has the lowest median absolute

loss and the absolute loss values fall partly in the 95% interval. The GRF does not rely on

the extrapolation, thus, its performance is not affected by a change in the GPD parameters.

In contrast, the performance of the ERF, GBEX and the unconditional GPD worsens with

ξ̂fixed as these methods rely on the GPD parameters for the extrapolation. For quantile levels

τ = 0.99, 0.995, the absolute losses of the ERF, GBEX and the unconditional GPD show few to

no spread suggesting that the spread in the performance measure for these methods correlates

with the movement of the shape parameter. This movement could have a stronger effect for

more extreme quantile levels. Furthermore, the ERF, GBEX and the unconditional GPD with

ξ̂fixed perform worse compared to methods with a flexible shape parameter because the median

absolute losses increase and no absolute loss falls in the 95% interval anymore. We conclude

that the flexible shape parameter is necessary for the ERF, GBEX and unconditional GPD to

perform well, and, thus, in the upcoming analyses, we use the flexible shape parameter as in

Figure 11.

Figure 12. Absolute Loss Of the ERF, GRF, GBEX and the Unconditional GPD On the

Emerging Markets Stock Data With Fixed Shape Parameter For τ = 0.9, 0.99, 0.9995.

Note. The grey area is the 95% interval of the absolute value of a standard normal
distribution.
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5.4.3 Out-Of-Sample Predictions Over Time

To study the performance over time, we train the methods on year t and predict the extreme

conditional Value-at-Risk (VaR) for year t+1. This results in training and testing subsets with

between 250 and 253 observations. Furthermore, the year 2007 is excluded from the analysis as

the data set only contains 11 observations in this year.

Figure 13 shows the absolute loss values plotted against the years, here, the years on the

x-axis correspond with the year for which the prediction is made (year t+ 1). For all methods,

we observe two to three spikes in the absolute losses where the spike in 2018 is larger than in

2015 and 2020. In Figure 1, the negative returns show more volatile behavior around the years

2015, 2018 and 2020 with standard deviations of 1.025, 1.003 and 1.544, respectively, while

the negative returns show less volatile behavior around the years 2014, 2017 and 2019 with

standard deviations of 0.712, 0.598 and 0.748, respectively. In Figure A15 in Appendix A, the

VIX also increases in the predicting years compared to the training years suggesting an increase

in overall market volatility. Thus, we conclude that the performance worsens when the models

are trained on a less volatile year and the prediction of the extreme conditional VaR is done on

a more volatile year. This decline of performance is more severe for extremer quantile levels τ ,

and is the most severe for the GBEX where the absolute loss in 2017 is 20.542 and 27.221 for

τ = 0.99, 0.995, respectively.

Figure 13. Absolute Value Of the Loss Function For ERF, GRF, GBEX and the Unconditional

GPD On the Emerging Markets Stock Data For τ = 0.9, 0.99, 0.9995 Plotted Against the Years.

Furthermore, in Figure 13, the GRF seems to perform better for extreme quantile levels than

the ERF, GBEX and the unconditional GPD. Table 4 shows the mean absolute loss of each

method, here, the GRF also has the lowest mean absolute loss for quantile levels τ = 0.99, 0.995.

Here, the same reasoning as for the fixed shape parameter could apply, in other words, the better

performance of the GRF could be due to it not being affected by the movement of the GPD

parameters. Moreover, Table 4 shows that the ERF performs best for the more moderate

quantile level τ = 0.9. Figure B16 in Appendix B shows the absolute losses per quantile level

τ . In contrast with Figure 11, the majority of median absolute losses fall in the 95% interval

and the spread in absolute losses is reduced for all methods in Figure B16 in Appendix B. This

leads us to believe that the behavior of the negative emerging market stock returns over time

has a significant effect on the performance of all methods.
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Table 4. Mean Of the Absolute Losses Trained and Tested Each Year.

Quantile level

Method τ = 0.9 τ = 0.99 τ = 0.995

ERF 1.952 2.418 3.100
GRF 2.111 2.241 2.802
GBEX 2.020 3.233 3.695
Unconditional GPD 2.012 2.412 2.925

Note. The numbers are rounded to three decimal places.

5.4.4 Extreme Conditional Value-At-Risk Per Country

To further analyse the performance, we take the countries in which the MSCI Emerging Mar-

kets Index is invested, namely China, Taiwan, India, South Korea, Brazil, Saudi Arabia, South

Africa, Mexico, Thailand, Indonesia, Malaysia, the United Arab Emirates and Qatar (Black-

Rock, 2022b). Some country-level data sets contain fewer observations than the MSCI Emerging

Markets ETF data set, and, therefore, we partition the data sets with less than 1,500 observa-

tions into five random folds instead of the ten random folds, as done in Section 5.4.2.

First, we fit the different methods and estimate the GPD parameters. Table 5 shows the

descriptive statistics of the different countries along with their ranking. The fatness of the tails

is ranked in descending order, based on the shape parameter ξ̂(x). Malaysia has the fattest

tails, followed by the United Arab Emirates and Saudi Arabia. Additionally, in Table A1 in

Appendix A, Malaysia has the highest maximum negative return at 27.706%, and a relatively

high positive skewness of 4.681 suggesting that extreme negative returns occur more frequently

for Malaysia. A similar conclusion can be drawn for Saudi Arabia. In contrast, China and South

Africa have a negative mean shape parameter. Furthermore, the negative returns of China are

negatively skewed at -0.632, suggesting that positive returns occur more frequently.

Table 5. Descriptive Statistics Of the Shape Parameter ξ̂(x) Per Country.

Descriptive Statistics

Country Mean Minimum Maximum Standard Deviation Rank

China -0.094 -0.180 0.031 0.051 13
Taiwan 0.072 0.072 0.072 0 9
India 0.113 0.031 0.217 0.038 8
South Korea 0.144 0.138 0.150 0.003 5
Brazil 0.049 0.036 0.067 0.007 11
Saudi Arabia 0.212 0.163 0.269 0.021 3
South Africa -0.044 -0.048 -0.036 0.002 12
Mexico 0.118 0.092 0.150 0.010 7
Thailand 0.134 0.118 0.150 0.007 6
Indonesia 0.175 0.145 0.218 0.012 4
Malaysia 0.292 0.284 0.305 0.003 1
United Arab Emirates 0.243 0.230 0.261 0.006 2
Qatar 0.049 0.028 0.064 0.008 10

Note. The numbers are rounded to three decimal places. Rank orders the fatness of the tails.
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Next, we assess the importance of each variable for the fitted ERF to find the variables

driving the extreme conditional VaR per country. Table 6 shows the combined variable impor-

tance score for the estimated GPD parameters. We observe that the world GDP growth and

the GDP growth of each country have a low variable importance score. Moreover, the variable

importance score of Taiwan is zero for each variable, and, in Table 5, the shape parameter of

Taiwan has a standard deviation of 0. The Taiwan data set contains the fewest observations

(212 observations) suggesting that the ERF does not perform well for samples of this size.

Furthermore, in contrast to Table 3, the Treasury-Bill (TB) rate and the Emerging Mar-

ket US Dollar Index (EMUSDI) are relevant drivers of the GPD parameters. That way, the

VIX, EMBI, TB rate and EMUSDI combined explain between 86.1% and 92.1% of the GPD

parameters for all countries. Here, the Middle Eastern countries show two things: on one hand,

that the VIX, EMBI and EMUSDI are the most important variables, and, on the other hand,

that the TB rate has a slightly lower importance score. Therefore, we conclude that the Middle

Eastern countries do not only depend on the expected market volatility and the sovereign credit

risk, but also on the US 3-month TB rate and on the value of the emerging market currencies

relative to the US Dollar.

Comparatively, in the other geographical areas, there is no clear pattern for the TB rate

and EMUSDI. For example, South Korea, Malaysia and Mexico give a relatively low importance

score to these variables. Here, the VIX alone explains 60.3% and 57.1% of the GPD parameters

for Mexico and South Korea, respectively. Therefore, we conclude that the VIX and the EMBI

remain the most important variables overall.

Table 6. Variable Importance For the GPD Parameters Estimated By the ERF Per Country.

ERF Variable Importance Per Country

Variable China Taiwan India
South
Korea

Brazil
Saudi
Arabia

South
Africa

Mexico Thailand Indonesia Malaysia
United Arab
Emirates

Qatar

VIX 0.250 0.000 0.227 0.571 0.439 0.201 0.346 0.603 0.269 0.338 0.397 0.211 0.204
EMBI 0.268 0.000 0.283 0.195 0.228 0.262 0.192 0.132 0.233 0.248 0.241 0.266 0.281
TB rate 0.155 0.000 0.150 0.051 0.114 0.179 0.168 0.056 0.214 0.109 0.075 0.200 0.162
EMUSI 0.214 0.000 0.261 0.081 0.144 0.220 0.210 0.125 0.145 0.187 0.161 0.217 0.216
World GDP 0.066 0.000 0.034 0.055 0.037 0.085 0.044 0.046 0.038 0.048 0.066 0.049 0.057
Country GDP 0.046 0.000 0.045 0.046 0.038 0.053 0.040 0.037 0.100 0.070 0.060 0.057 0.080

Note. The numbers are rounded to three decimal places. The values represent the variable
importance for the scale and shape parameters combined. World GDP and Country GDP
represent the corresponding GDP growth.

Lastly, we refit the different methods and use Equation (8) to assess the prediction perfor-

mance. Here, we discuss the performance of the methods for the three lowest and the three

highest ranked countries, see Figure 14. Figure B17 in Appendix B shows the absolute losses

for all 13 countries. Figure 14a shows, for China, that the ERF outperforms the other methods

for τ = 0.9 and 0.99 based on the median and the spread of the absolute losses. Moreover, both

the ERF and GRF perform well for τ = 0.995. The South Africa plot in Figure 14d shows a

slightly different pattern where the ERF and GBEX perform well for more extreme quantile

levels τ = 0.99 and 0.995. In contrast, for Brazil in Figure 14b, the GRF is the best performing

method for all the different quantile levels. Furthermore, Table A1 in Appendix A shows that

the negative returns of the MSCI Brazil Index have the highest standard deviation (2.364),
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suggesting that the GRF performs well for more volatile time series.

Malaysia, the United Arab Emirates and Saudi Arabia are the highest ranked countries

based on their high estimated shape parameters ξ̂, which are above 0.2. For both Malaysia and

the United Arab Emirates in Figures 14e and 14f, the GRF outperforms the other methods for

τ = 0.9, and the ERF outperforms for the more extreme quantile levels τ = 0.99 and 0.995. The

Saudi Arabia plot in Figure 14c shows a slightly different pattern, where the GRF outperforms

the other methods for τ = 0.9 and 0.99 and the ERF and GBEX perform well for τ = 0.995.

Considering, on one hand, that these countries have the largest average shape parameter, and,

on the other hand, that the ERF outperforms the other methods for the extreme quantile levels,

we conclude that the ERF performs best for high average shape parameters. In other words,

the ERF is the best method to predict the extreme conditional Value-at-Risks for emerging

markets with fat-tailed negative returns.

Figure 14. Absolute Value Of the Loss Function For ERF, GRF, GBEX and the Unconditional

GPD With τ = 0.9, 0.99, 0.9995 For the Lowest and Highest Ranked Countries.

(a) China

(b) Brazil

(c) Saudi Arabia

(d) South Africa
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(e) Malaysia

(f) United Arab Emirates

Note. The grey area is the 95% interval of the absolute value of a standard normal
distribution.

6 Conclusion and Economic Discussion

In this paper, we studied the extremal random forest (ERF) algorithm of Gnecco et al. (2022),

and investigated whether the ERF improves the estimation of the extreme conditional Value-

at-Risk (VaR) in emerging stock markets. To answer the research question, we assessed the

performance of the ERF in comparison with (1) the generalized random forest (GRF) by Athey

et al. (2019), (2) the gradient boosting for extremes algorithm (GBEX) by Velthoen et al. (2021),

and (3) the unconditional generalized Pareto distribution (GPD). We trained and tested all

methods on both the MSCI Emerging Market Index, and the countries the index is composed

of. In the following paragraphs, we start by answering the research question, and follow with a

discussion of the economic inferences that can be drawn from our results.

We assessed the performance of the methods in different settings and concluded that, overall,

the ERF outperforms the other methods for stock data with a high average shape parameter.

In other words, the ERF offers a better method to predict the extreme conditional VaR for

emerging markets with fat-tailed negative returns. Furthermore, we found that the behavior

of the negative stock returns over time has a significant effect on the ERF. Here, training and

testing the ERF on consecutive years increased the performance significantly in terms of absolute

loss, compared to taking random observations from the data set. However, the performance

worsened when the ERF was trained on a comparatively less volatile year while the prediction

of the extreme conditional VaR was done on a comparatively more volatile year. Additionally,

for the ERF to perform well and keep its flexibility, each observation requires an individual

value of the shape parameter. Lastly, the ERF did not perform as well for smaller sample sizes,

as it disregarded all the given covariates and assigned them an importance score of zero.

Furthermore, our results offer several economic insights for both the emerging stock market

as a whole and for the stock markets of the individual countries. First, we found that the

expected worldwide market volatility and sovereign credit risk have the biggest impact on the
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extreme conditional VaR for the emerging equity market. Second, we found an upward pattern

between the Volatility Index (VIX) and the conditional VaR, which deteriorates with increasing

VIX-values. For the emerging market as a whole, we estimated a maximum potential daily loss

of approximately 2.5% for low values of the VIX, and 12.5% for high values of the VIX, both

with a probability of 0.005. Hence, extreme losses seem more likely to occur when investor

sentiment worsens, possibly resulting in a bear market. Another factor for such potential losses

can be found in unstable financial institutions and/or governments, ultimately affecting the

credit risk of their countries.

Based on these findings, it seems particularly relevant for financial institutions to look at

the worldwide market volatility, measured with the Volatility Index (VIX), along with the

attractiveness of government and corporate bonds, measured through the Emerging Market

Bond Index (EMBI). For instance, if the VIX increases and the EMBI decreases, it seems

reasonable to assume that the likelihood of an extreme price movement increases. Under these

conditions, the potential magnitude of an extreme conditional VaR increases. This would in turn

decrease the attractiveness for market players to invest in emerging markets, as the majority of

them can be expected to be rather risk-averse. Following this logic, the emerging countries would

receive less capital inflow and their equity market would presumably become less liquid, further

reducing their attractiveness from an investor perspective. Ultimately, the scenario described

above would create a vicious circle. A lower market liquidity also could further increase the

likelihood of an extreme price movement. An example of such price behavior in recent history

can be found in the oil market, where a one-sided market led to negative prices, and the supply

drastically exceeded the demand (Brower et al., 2020). Therefore, the observation of this type

of pattern in the VIX and EMBI could be used as a warning signal for financial institutions

that are invested in the emerging market, but also for the governments of these very markets.

Finally, we looked at the emerging countries on an individual basis, and ranked them based

on the fatness of the tails of their negative returns. We concluded that Saudi Arabia, the

United Arab Emirates and Qatar (i.e., the Middle Eastern countries) did not only depend on

the expected market volatility and the sovereign credit risk, but were also significantly affected

by both the US 3-month Treasury-Bill rate, and the value of the emerging market currencies

relative to the US Dollar. To measure the latter variable, we used the Emerging Market US

Dollar Index (EMUSDI) as a proxy. However, it should be noted that the currencies of all these

Middle Eastern countries being pegged to the US Dollar (Zucchi et al., 2021), the EMUSDI

could also indirectly indicate the tendency of the US to trade with these countries. This in

turn affects the negative returns of all Middle Eastern countries in our sample. If the US trades

less with these emerging countries, then their capital inflow would likely decrease, resulting

in larger credit constraints. Consequently, these countries would have less capital available to

invest in, for example, infrastructure, education and healthcare. Accordingly, the equity in

these emerging markets would become less attractive, as companies that are active there would

have to grow and perform in a less favorable environment. As a conclusion, the EMUSDI seems

to be an important indicator for financial institutions invested in the Middle Eastern countries,

as it can be used as a signal or proxy for the future economic growth in these markets.
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Appendix

A Additional Information on the Data Sets

This section provides additional information on the covariates and the response variables per

country. Figure A15 plots the Volatility Index (VIX), 3-month US Treasury-Bill (TB) rate, the

Emerging Market Bond Index (EMBI) and the Emerging Market US Dollar Index (EMUSI)

from December, 2007 until April, 2022. The VIX shows the biggest spikes in volatility around

2008 and 2020, corresponding to the Great Financial Crisis and the COVID19 crisis. We observe

a similar pattern in the TB rate and the EMBI, where TB rate drops to zero and the EMBI ETF

drops relatively significant in price, in 2008 and 2020. In contrast, the EMUSI ETF experiences

a relatively significant price increase in those years.

Figure A15. The Volatility Index (VIX), Treasury-Bill (TB) Rate, Emerging Market Bond

Index (EMBI) ETF and Emerging Market US Dollar (EM USD) Index From December, 2007

Until April, 2022.

(a) VIX (b) TB rate (c) EMBI and EM USD Index

Furthermore, Table A1 shows the MSCI Index and the corresponding GPD growth for

the 13 countries in which the MSCI Emerging Market Index is invested (BlackRock, 2022b).

The negative returns of Malaysia have the highest kurtosis and skewness at 117.074 and 4.681,

respectively. The negative returns of Taiwan have the lowest kurtosis at 4.232, and, additionally,

the data set for Taiwan is the smallest data set with 212 observations. Lastly, the negative

returns of Brazil are the most volatile with at standard deviation of 2.364.
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Table A1. Descriptive Statistics Of the MSCI ETF Of Each the Country and Their Correspond-

ing Gross Domestic Product (GDP) Growth.

Descriptive Statistics

Variable Mean Median Min. Max. St.Dev. Skewness Kurtosis Numb. Obs.

China
Negative returns 0.000 -0.037 -14.536 7.660 1.673 -0.632 12.150 721
GDP growth 98.919 98.970 98.622 99.175 0.234 -0.254 1.421 721

Taiwan
Negative returns 0.040 0.0156 -3.958 3.783 1.108 0.049 4.232 212
GDP growth 98.369 98.922 98.354 98.379 0.012 -0.465 1.216 212

India
Negative returns -0.049 -0.091 -9.587 14.350 1.431 1.323 19.130 988
GDP growth 48.33 98.994 -98.565 99.069 86.228 -1.118 2.249 988

South Korea
Negative returns -0.016 -0.005 -28.237 18.519 1.806 -0.441 27.505 3619
GDP growth 98.73 98.822 97.887 99.083 0.283 -1.867 6.066 3619

Brazil
Negative returns -0.003 -0.033 -23.370 17.690 2.364 0.029 13.205 3619
GDP growth 98.967 98.999 98.220 99.292 0.272 -1.187 4.424 3619

Saudi Arabia
Negative returns -0.048 0.0001 -6.818 15.632 1.105 2.067 32.260 1667
GDP growth 38.902 98.396 -98.746 98.987 90.424 -0.861 1.741 1667

South Africa
Negative returns -0.027 -0.089 -8.706 11.565 1.788 0.312 6.308 3089
GDP growth 82.815 98.951 -98.353 99.179 54.120 -3.049 10.299 3089

Mexico
Negative returns -0.010 -0.037 -16.980 17.995 1.690 0.339 14.735 3619
GDP growth 71.403 98.977 -98.780 99.173 68.460 -2.080 5.329 3619

Thailand
Negative returns -0.022 -0.005 -9.538 13.037 1.429 0.637 12.534 2016
GDP growth 70.553 98.581 -98.901 98.982 68.847 -2.048 5.196 2016

Indonesia
Negative returns -0.014 0.0001 -15.755 10.466 1.520 0.025 12.104 3018
GDP growth 82.616 99.133 -98.317 99.364 54.740 -3.003 10.020 3018

Malaysia
Negative returns 0.014 0.001 -7.390 27.706 1.104 4.681 117.074 3619
GDP growth 71.275 98.810 -98.870 98.977 68.425 -2.081 5.329 3619

United Arab Emirates
Negative returns 0.006 -0.009 -10.259 13.768 1.261 0.832 21.095 2016
GDP growth 73.815 98.622 -98.903 98.828 65.446 -2.261 6.112 2016

Qatar
Negative returns -0.005 0.001 -10.239 12.920 1.076 0.805 22.016 2016
GDP growth 49.233 98.354 -98.690 98.848 85.328 -1.155 2.333 2016

Note. The numbers are rounded to three decimal places. Min., Max., Std. Dev. and Numb.
Obs. stand for minimum, maximum, standard deviation and number of observations,
respectively. Negative returns and GDP growth are in percentages. The data is from
BlackRock (2022a), International Monetary Fund (2022), Organization for Economic
Cooperation and Development (2022), and Statista (2022).
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B Additional Absolute Loss Figures In Different Settings

In this section, we provide additional figures regarding the performance of the ERF relative to

the GRF, GBEX and unconditional GPD. Figure B16 shows the absolute loss of the different

methods when trained and tested on consecutive years, more specifically, trained on year t and

estimated on year t + 1. For τ = 0.9, the performance of the different methods is relatively

similar. When the quantile levels become more extreme, we observe that the GRF performs

best in terms of median absolute loss and spread of the absolute losses.

Figure B16. Absolute Value Of the Loss Function For ERF, GRF, GBEX and the Unconditional

GPD On the Emerging Markets Stock Data For τ = 0.9, 0.99, 0.9995 Over the Years.

Note. The extreme absolute loss values of the GBEX are left out for visualization purposes.

Figure B17 shows the absolute loss for the 13 countries in which the MSCI Emerging Market

Index is invested (BlackRock, 2022b). The relative performance of the methods differs per

country. For example, the GBEX performs bad for the China data set, while it outperforms

the other methods for the India data set. Lastly, we observe that the ERF performs best for

the Malaysia and United Arab Emirates data sets, as discussed in Section 5.

Figure B17. Absolute Value Of the Loss Function For ERF, GRF, GBEX and the Unconditional

GPD With τ = 0.9, 0.99, 0.9995 For the Countries Of the MSCI Emerging Market Index.

(a) China

(b) Taiwan
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(c) India

(d) South Korea

(e) Brazil

(f) Saudi Arabia

(g) South Africa

(h) Mexico
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(i) Thailand

(j) Indonesia

(k) Malaysia

(l) United Arab Emirates

(m) Qatar

Note. The grey area is the 95% interval of the absolute value of a standard normal
distribution.
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