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1 Introduction

According to the Intergovernmental Panel on Climate Change (IPCC), earth’s climate is seriously

changing (IPCC, 2014). It was only two decades ago that the article of Weart (2003) alerted about

rapid climate change. At first sight changes in weather were seen as temporary incidents. However,

literature shows that rising concentrations of greenhouse gasses in the atmosphere result in more

frequent heatwaves, more rainfall, and more intense natural disasters (Houghton, 2005). This will

result in a severe loss of different species in flora and fauna (Levinsky et al., 2007; Thuiller et al.,

2005). Moreover, climate change does not only effect the biodiversity, but also worldwide economies

in the coming century. Tol (2009) reviews that welfare loss can become a few percent per income,

but an even larger loss is estimated for less developed economies. Summarizing, the consequences

of climate change are very serious. This paper aims to establish significant evidence of structural

changes in the climate and exactly pinpoint when these changes happened. In doing so we verify

the findings of more extreme weather as mentioned by Houghton (2005). This way we contribute

to raising awareness for the possible changes in climate. Furthermore, we propose a method to find

structural changes climatic variables and encourage further research in this field. In this research

we define weather according to Moore et al. (2010): “the state of the atmosphere at a specific place

on a specific time”. There are different atmospheric variables that describe that state.

In our research we introduce the commonly used atmospheric variables temperature, wind speed,

precipitation and humidity to capture the weather (Hollinger & Angel, 2009; Kusriyanto & Putra,

2018; Fogno Fotso et al., 2022). By assessing a possible change in the mean of these variables over

a long period, we may find evidence for a changing climate. Climate is namely referred to as a

statistical representation of the weather averaged over a long period (Moore et al., 2010). Thus, if

we estimate change points in weather using a representative number of observations, we establish

evidence for climate change. Therefore we pose the central question is this research as:

“When did structural changes occur in the weather over the past century?”.

To formulate an answer to this question we will use weather data of the atmospheric variables

mentioned above. We use data from different sources for this purpose. Data from the temper-

ature, precipitation and humidity is measured in the United Kingdom (UK) over a period from

1772 to 2021. Changes in wind speed are examined using observations of the maximum wind speed

of tropical cyclones between 1981 and 2006. We use the recently proposed non-parametric Self-

Normalization Change Point (SNCP) algorithm to estimate change points in mean and variance
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(Zhao et al., 2021). When applicable, we will model the atmospheric variables using an autore-

gressive (AR) model. This allows us to verify the SNCP change points using the well-esthablished

Quandt-Andrews test (Andrews, 1993). Using both the non-parametric Self-Normalization proce-

dure and the parametric Quandt-Andrews test, we find change points in each atmospheric vari-

able. Most of these happened in the period 1985-2000. Moreover, we found an 1.13°C increase

in England temperature after 1989, an increase in wind speed, and change of total precipitation

variability in 1993. By empirical application of the Self-Normalization procedure and support of

the Quandt-Andrews test we show that these methods are capable of estimating changes in climatic

data. Moreover, our findings support future simulations of climate change by precise estimation of

change points in weather. By estimating changes in the weather this study expresses that the UK

climate is changing and contributes to raising awareness for this topic.

This study proceeds in the following manner: in Section 2 we discuss the theoretical background

and introduces the sub-questions. Section 3 and 4 concern data and describe the methods we apply

respectively. In Section 5 we show our model decisions and findings. Lastly, Section 6 and 7

conclude the study.

2 Literature

In 1896 the Swedisch Svante Arrhenius first showed that changes in atmospheric carbon-dioxide

levels could result in higher surface temperatures1. Recent evidence of climate change includes

retracting glaciers and the degradation of polar ice (Thompson, 2010). Other literature shows

changes in temperature or extreme weather (IPCC, 2014). Studies also reasoned that some effects

may be attributed to natural climatic variability (Francis & Hengeveld, 1998). It is common in this

literature that a time span over which change in weather took place, like “past decade” or “past

century”. We try to find more precise dates of changes in long term averages of the weather. An

earlier study showed that climate change is often perceived as something distant. Knowledge of the

exact points in time may change the perceived proximity of climate change for the public (Brügger

et al., 2015).

It is of interest for researchers to discover new procedures for estimating change points in climatic

data. Pinpointing when these changes in the weather exactly occurred supports climatologist in

their research to determine the effects and causes of changes in atmospheric variables. Reliable

1https://climate.nasa.gov/evidence/, accessed June 22 2022.
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procedures for change point estimation support accurate simulations of climate change scenarios.

Cubasch et al. (1995) show that the starting time of simulations can be crucial for its outcomes, as

a “cold start” in simulations can underestimate global warming.

2.1 Offline change point estimation

Offline change point estimation, also known as time series segmentation, is a procedure used to split

potential ordered non-homogeneous time series into homogeneous segments. That is, separating

an ordered time series such a way that within a segment the data shows similar patterns (Zhao et

al., 2021). In this study change point estimation is a powerful tool that allows us to track down

potential changes in the weather.

Estimation of change points of the weather is previously done by Fealy & Sweeney (2005). The

authors detected change in atmospheric variability in the North Atlantic during 1988-1990. They

state: “The present analysis has identified 1988 – 1990 as a period that warrants further investiga-

tion because of its potential climatic significance.”. Jaiswal et al. (2015) indicated change points in

annual series of temperature, wind speed and sunshine hours in India over the period 1990-2000.

There are also various studies concerned with trend analysis on climatic variables. Often, the non-

parametric Mann-Kendall test is used to test for a significant positive or negative trend. Gocic

& Trajkovic (2013) use this method to investigate meteorological variables in Serbia from 1980 -

2010; we will elaborate on their results next Section. Alyousifi et al. (2021) show that a significant

trend is present in Malaysia’s air pollution index. The downside of the Mann-Kendall test is that

it is only able to accept or reject the null-hypothesis of a trend present in the data. In this fashion

it is not possible to detect change in a specific parameter of interest, for example mean or variance.

Zhao et al. (2021) also perform a climate studies regarding change points. They use their newly

proposed Self-Normalization Change Point (SNCP) procedure on climate data to exemplify the

effect of climate change. Specifically, they analyse mean annual temperature of central England

and maximum wind speeds of tropical cyclones. Using SNCP they discovered mean shifts of the

annual temperature in England namely, 1919 and 1988. Moreover, they find one change point in

maximum windspeed of cyclones estimated in 1988. An advantage of the SNCP procedure is that

it is capable of estimating multiple change points in a variety of parameters of interest, consider

mean, variance, (auto-)correlation, and quantiles. Furthermore, it is also able to identify changes

in multivariate time series.
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2.2 Changes in weather

Zhao et al. (2021) already showed a brief application of the SNCP technique to climate data, but this

study tries to extend the analysis to multiple atmospheric variables and parameters of interest. As

mentioned in Section 1 we will use SNCP on temperature, wind speed, precipitation and humidity

series. By investigating multiple series we further show the applicability of this method. We also

estimate change points in the variables across multiple parameters of interest. This motivates the

four guiding sub-questions for the central question in this research.

First, we are interested in differences in the level data of the atmospheric variables. We pose

the following sub-question: 1. “Are there changes in mean of atmospheric variables in the past

century?”. To be able to flag changes we will use the Self-Normalization technique of Zhao et al.

(2021). This method seems appropriate since it has previously been used by Zhao et al. (2021) on

climatic data, and shows good theoretical properties. We will answer this question by performing

SNCP on the separate time series of the variables. We hypothesize that a change point is found in

the temperature, wind speed, and humidity series. This hypothesis is based on the similar research

of Jaiswal et al. (2015) who show change points in these variables in India. Based on the work

of Gocic & Trajkovic (2013), who found no significant trends in Serbia precipitation series, we

hypothesize that the precipitation series will not show any change points.

Secondly, we want to use the Self-Normalization technique to explore the possibilities of change

in uncertainty of these weather related variables, as measured by the variance. We formulate the

second sub-question as: 2. “Are there changes in variance of atmospheric variables in the past

century?”. For this question we will again use SNCP, but now use the variance as parameter

of interest. Earlier work of Stott (2016) reasoned that the weather will become more extreme.

Periods of drought and extreme rainfall are mentioned. We hypothesize that there are changes in

variance present in all atmospheric variables, and follow the literature that the weather has become

increasingly more uncertain. Furthermore, we want to check whether simultaneous changes in

mean and variance are present in the atmospheric variables. We pose the third sub-question as:

3. “Are there simultaneous changes in mean and variance of atmospheric variables in the past

century?”. We reason from the previous hypotheses that there are simultaneous change points

are present in the variables. Lastly, we want to verify the results of the SNCP procedure. We

will do so in a parametric fashion by using the Quandt-Andrews test (Andrews, 1993). This test

is introduced for the estimation of single unknown break points in parameter estimates. When
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applicable, we will model the time series using an autoregressive (AR) model, and find changes in

parameter estimates. Changing parameters in an AR model indicates that the relational structure

between previous observations changed. This thus confirms a change in relation and therefore

explains a structural change. We can then check whether there are matching change points with

the SNCP procedure to verify the break dates. We form the fourth question as: 4. “Are the flagged

change points of SNCP coinciding with the Quandt-Andrews change points?”. Due to the promising

simulation results of SNCP and the wide-applicability of the Quandt-Andrews test, we hypothesize

that when an autoregressive model is in place the change points will coincide.

3 Data

This section discusses the data we use for the analysis of changes in the weather. The state of

the atmosphere, weather, is measured by different variables, we will refer to them as atmospheric

variables. We first specify the atmospheric variables we use and thereafter provide characteristics

of the data.

3.1 Atmospheric variables

Commonly used variables that describe the weather are: temperature, wind speed, precipitation

and humidity (Hollinger & Angel, 2009; Kusriyanto & Putra, 2018; Fogno Fotso et al., 2022). In this

study we will mainly use observations of the variables in the UK. This is because of the availability

of early weather measurements in the UK. We also use data of tropical cyclones to capture wind

speed, in this fashion we capture changes in extreme weather. We use different time spans for each

variable due to the availability of some measurements. All observations fall within the interval

from 1772 to 2021. Next, we will discuss all variables in detail and how we prepared the data for

analysis.

Temperature As measure for the temperature we use the Hadley Centre Central England Tem-

perature (HadCET) dataset2, described by Parker et al. (1992). The dataset is globally the longest

instrumental record of temperature. It contains the mean, maximum, and minimum value of the

temperature in degree Celsius. The temperature measures a roughly triangualar surface of the

UK spanned by London, Lancashire, and Bristol, on a daily basis. The dataset is available on a

2https://www.metoffice.gov.uk/hadobs/hadcet/
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daily, monthly, or seasonal frequency. Since we partially redo the study of Zhao et al. (2021), we

use the daily mean temperature measures starting in 1772. This includes the daily mean temper-

ature from 1772 to date, but we only use the data until 2019. The available data is corrected for

urban warming: since 1974 all mean observations are corrected by -0.2°C. We prepared the data

by adding 0.2°C for all observations after 1974, because we want to include the effect of urban

warming. Thereafter we aggregated the data to obtain yearly mean values.

Wind speed The wind speed data3 is obtained from Scheitlin et al. (2010). It contains the

maximum lifetime wind speed (WmaxST in dataset) of 2098 tropical cyclones. The data is satellite

derived and contains observations from cyclones between 1981 and 2006. To analyse the wind speed

we use the observations of the maximum wind speed in kilometer per hour.

Precipitation The data4 on precipitation is obtained from the Met Office National Climate

Information Centre. It contains montlhy, seasonal and annual total precipitation for the UK in

millimeters. We make use of the year ordered statistics on rainfall in the UK. The yearly total

precipitation ranges from 1836 to 2021.

Humidity As measure for the humidity we use the average annual vapour pressure in the UK in

hectopascal (hPa). The yearly observations of the data5 range from 1901 till 2019. For a detailed

derivation of the data we refer to Harris et al. (2020). In the present analysis we only use the

annual observations of vapour pressure.

3.2 Characteristics of atmospheric variables

In Table 1 the descriptive statistics of the atmospheric variables are shown. The mean, variance,

and autocorrelation columns are based on the total number of observations noted in the last col-

umn. Temperature and humidity means are based on monthly averages over a year, whereas the

precipitation mean is based on the yearly total rainfall amount. The average wind speed is 77.20

km/h, measured over 2098 tropical cyclones. Note that the standard deviation relative to the mean

is highest for the variables wind speed and precipitation. We also denote the first-order autocorre-

lation in Table 1. This is because we want to model the atmospheric variables using an AR model.

This model specification is justifiable when autocorrelation is present in the data. The bold values

3https://myweb.fsu.edu/jelsner/temp/Data.html
4https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-and-regional-series
5https://data.ceda.ac.uk/badc/cru/data/cru˙cy/cru˙cy˙4.04/data
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in the autocorrelation column denote a significant presence of autocorrelation at a 95% level. Only

the variables temperature and humidity show significant autocorrelation. This is a first sign that

an AR model is appropriate for these variables. However, wind speed and precipitation show no

significant autocorrelation. The fact that wind speed does not show autocorrelation is probably due

to the fact that the observations are independent cyclones. Since the first-order autocorrelation is

not significant, an AR specification is not appropriate here. We will assess this further in Section

5.

Table 1: Descriptive statistics of atmospheric variables: mean, standard deviation, first-order auto-
correlation, and number of observations. Significant first-order autocorrelations are noted in bold.

Mean St.dev. Autocorr. Obs.

Temperature (°C) 9.41 0.69 0.38 247
Wind speed (km/h) 77.20 24.14 -0.03 2098
Precipitation (mm) 1072.11 119.35 0.11 186

Humidity (hPa) 9.92 0.29 0.38 119

4 Methodology

This Section covers the technical specification of the methods and procedures in this study. We will

introduce Self-Normalization, the autoregressive model, and the Quandt-Andrews test. First, we

discuss the general problem of estimating change points in time series. Let {Yt}nt=1 be a piece-wise

stationary time series with n observations and dimension d. Time series segmentation is concerned

with the segmentation of this series into stationary segments. Following the notation of Zhao et al.

(2021), we assume m0 ≥ 0 unknown change points 0 < k1 < ... < km0 < n. In this fashion we split

the time series into m0 + 1 segments. The aim is to estimate the unknown m0 change points and

their location.

4.1 Self-Normalization

Self-Normalization was first proposed by Shao (2010). The method is thereafter used to test time

series for change points but not for estimation of change points. The difference is that the latter

does not depend on an educated guess of the location of a change point. Zhao et al. (2021) explore

the use of Self-Normalization for change point estimation. They propose the SNCP procedure,

which is able to detect multiple change points in multivariate time series, d > 1, across different
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parameters of interest θ. A convenient advantage of this method is that it is fully non-parametric

and thus does not require any distributional assumptions on the time series {Yt}nt=1. Therefore

this method is suitable to estimate change points for different atmospheric variables. We will

only use SNCP on univariate time series, d = 1, since the number of observations differs across the

variables. As parameter of interest we consider mean, variance, and common mean-variance (multi-

parameter). When using the multi-parameter version of this method the parameter of interest, θ,

becomes a vector containing the individual parameters of interest. In this section we only describe

the Self-Normalization procedure for univariate series, multiple change points and single-parameter

estimation. The vectorized procedure for multi-parameter change points is described by Zhao et

al. (2021) in Section 3.3.

First we define change point k0 = 0 and km0+1 = n. For the time series {Yt}nt=1, we introduce

segments i = 1, ...,m0 + 1, where segment i contains observations {Yt}kit=ki−1+1. We further define

Y
(i)
t when observation Yt is in segment i. In the data generation process observation Y

(i)
t follows

cumulative distribution function (CDF) F (i). Then the method is able to flag changes in any

parameter θi which is a function of F (i), θi = θ(F (i)). One could consider functionals as mean,

variance, quantile or autocorrelation. Next, it is trivial that observations in segment i share the

same parameter θi, for i = 1, ...,m0 + 1. Note that a change point is identified by θi ̸= θi+1, that

is, when segment i and segment i+1 do not share the same parameter value. The SN test statistic

Tn(t1, k, t2) on subsample {Yt}t2t=t1
is calculated as follows

Tn(t1, k, t2) =
Dn(t1, k, t2)

2

Vn(t1, k, t2)
, for 1 ≤ t1 < k < t2 ≤ n, (1)

where t1 and t2 are respectively the begin and end of a window of observations, k is tested

as significant change point, Dn(t1, k, t2) = (k−t1+1)(t2−k)
(t2−t1+1)1.5

(θ̂t1,k − θ̂k+1,t2) measures the change of

θ̂t1,k and θ̂k+1,t2 , the non-parametric estimators of θ on {Yt}kt=t1 and {Yt}t2t=k+1 respectively, and

Vn(t1, k, t2) = Ln(t1, k, t2) +Rn(t1, k, t2) is the self-normalizer, where
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Ln(t1, k, t2) =
k∑

i=t1

(i− t1 + 1)2(k − i)2

(t2 − t1 + 1)2(k − t1 + 1)2
(θ̂t1,i − θ̂i+1,k)

2,

Rn(t1, k, t2) =

t2∑
i=k+1

(t2 − 1 + 1)2(k − i)2

(t2 − t1 + 1)2(t2 − k)2
(θ̂i,t2 − θ̂k+1,i−1)

2.

If we set t1 = 1 and t2 = n the test statistic Tn(t1, k, t2) becomes the global SN test statis-

tic for single change point estimation. Under the multiple change points alternative this global

test statistic experiences power loss due to inflation of the self-normalizer Vn(t1, k, t2). When the

subsample {Yt}t2t=t1
contains observations of different segments, the parameter of interest is not

properly estimated. This results in larger values of Vn(t1, k, t2) and thus lower values of the test

statistic Tn(t1, k, t2).

To overcome this problem Zhao et al. (2021) propose a nested local-window segmentation algo-

rithm. By doing so for each k a maximal SN test is obtained on different nested windows covering

k. First, specify an ϵ ∈ (0, 1/2) and define window size h = ⌊nϵ⌋. Then for each k = h, .., n− h, a

nested local window set H1:n(k) is defined as

H1:N (k) =
{
(t1, t2)

∣∣∣t1 = k − j1h+ 1, j1 = 1, ...⌊k/h⌋; t2 = k + j2h, j2 = 1, ...⌊n− k/h⌋
}
.

Then for each k = 1, ..., n, based on its nested window, a maximal SN the test statistic T1,n(k)

is defined as

T1,n(k) = max
(t1,t2)∈H1:n(k)

Tn(t1, k, t2), (2)

which is equal to 0 when H1:n(k) is the empty set. This procedure is designed to overcome the

inflation of Vn under multiple change points.

4.1.1 SNCP procedure

The SNCP procedure is then as follows: first specify a threshold Kn that controls the Type-I

error, α, of the test. We do so by setting Kn equal to the (1 − α) quantile of G∗
ϵ,d, the simulated

distribution of maxk=1,...,nTn(k) under the assumption of no change point with known ϵ and d.
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Secondly T1,n(k) is calculated based on the full sample. If maxk=1,...,nTn(k) ≤ Kn, no change

point is declared. Otherwise if maxk=1,...,nTn(k) > Kn, SNCP declares a change point and set

k̂ = arg maxk=1,...,nT1,n(k). SNCP is then recursively applied on subsamples {Yt}k̂t=1 and {Yt}nt=k̂

until no change point is found. In this study we set ϵ = 0.05 and Kn according to the 90% quantile

of G∗
ϵ,d, to control for a Type-I error of α = 0.1. We choose these values as they coincide with

the values used in the climate studies of Zhao et al. (2021). For details on the simulation of the

quantiles we refer to Zhao et al. (2021).

4.1.2 Assumptions

Assume that segmentation i occurs at proportion of the sample ki/n → τi ∈ (0, 1) for i = 1, ...m0

as n → ∞. Then if we define τ0 and τm0+1, and assume min1≤i≤m0+1(τi − τi−1) = ϵ0 > ϵ, where

ϵ is the SNCP window size. We observe that that ϵ imposes an upper bound to the number of

segments m0 in a sense that m0 ≤ 1/ϵ. In other words ϵ defines the minimum spacing between two

change points. Zhao et al. (2021) claim that SNCP is robust for choices of Kn and ϵ as long as

ϵ0 > ϵ. In practice ϵ is set rather small to overcome this problem but depends on the application.

Other assumptions are present for this procedure, among which assumptions to ensure consistency

and convergence, but are out of scope for this study. All assumptions are discussed in Zhao et al.

(2021).

4.2 Autoregressive model

A common univariate time series model is the autoregressive (AR) model, see for example Franses

et al. (2014). It is suitable when the observations of a univariate time series, assume again Yt

for t = 1, ..., n, depends on its p most recent lags. By reasoning we can write the conditional

distribution of Yt as f(Yt|Yt−1, ..., Yt−p). If we assume that the dependence on its own lagged values

is linear, we can describe Yt as

Yt = ϕ1Yt−1 + ϕ2Yt−2 + ...+ ϕpYt−p + εt, t = p+ 1, p+ 2, ..., n, (3)

where ϕ1, ..., ϕp are unknown parameters, p is the number of lags included in the model, and εt

is a white noise series. The white noise series is unobserved and has to be estimated from the data.

A series is considered white noise when

I) E(εt) = 0 for all t = 1, ..., n,
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II) E(ε2t ) = σ2 for all t = 1, ..., n,

III) E(εsεt) = 0 for all s, t = 1, ..., n and s ̸= t,

where σ2 denotes the unconditional variance of Yt. We can summarize the white noise assump-

tions as: I) zero mean, II) homoskedastic, and III) no serial correlation. I) only holds for model 3 if

the data is centered around 0. From the descriptive characteristics of the data in Table 1, we observe

that the mean of the variables is not equal to zero. To accompany for this in our model we include

an intercept α in the model. The AR model then becomes Yt = α+ϕ1Yt−1+ϕ2Yt−2+...+ϕpYt−p+εt.

The relation between the unconditional mean µ of Yt and α becomes

µ =
α

1− ϕ1 − ...− ϕp
. (4)

To identify an AR model Franses et al. (2014) suggest to use the autocorrelation function

(ACF) and partial autocorrelation function (PACF). For an AR model of order p one expects a

slowly declining ACF and p significantly different from zero PACF values. In this study we follow

this reasoning to model the atmospheric variables using an AR model. We will discuss the ACF

and PACF of the atmospheric variables in Section 5 and present final models there. Estimation of

an AR model can easily be done by ordinairy least squares (OLS) (Franses et al., 2014). We also

use this method for estimating the AR parameters.

For the AR model to be valid we need the white noise properties I-III to hold, and we add an

additional assumption of normality for the Quandt-Andrews test to hold. These assumptions are

verified in Section 5.

4.3 Quandt-Andrews test

In the Quandt-Andrews (QA) test for unknown break points in parameter estimates is based on

the Chow break test (Andrews, 1993; Chow, 1960). This method is used in our research to verify

the change points flagged by the SNCP procedure. Use of the Chow and QA test in AR models is

described by Enders (2014). Muthuramu et al. (2019) further reviews the use of QA test in time

series regression models, which includes the AR model. An advantage of this method is that we are

able to plot the individual Chow statistics. This will provide us with a better insight on changing

parameters in the model on different intervals.

The Quandt-Andrews test uses the maximum F -statistic of individual Chow break tests on

trimmed data. First we explain the notation and use of the Chow break test and thereafter
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explain the Quandt-Andrews test. We build upon the same notation of previous Section about AR

modelling.

4.3.1 Chow break test

As mentioned before the Chow break test is used to test for user specified change points in parameter

estimates in linear regression. In the AR setting in Equation 3 this regards parameters ϕ1, ..., ϕp.

To perform this test the sample with n observation is split into two sub-samples; one sample of

observations before the a priori specified change point consisting of n1 observations, and one sample

after the specified change point consisting of n2 = n − n1 observations. OLS is then applied to

obtain two estimates ϕ̂1, ϕ̂2, which denote the vector of length p of estimated coefficients of ϕ1, ..., ϕp

based on samples of length n1 and n2 respectively. The null-hypothesis is then H0 : ϕ1 = ϕ2 tested

against alternative ϕ1 ̸= ϕ2. To test this we use the following F-statistic,

F =
(S0 − S1 − S2)/w

(S1 + S2)/(n1 + n2 − 2w)
∼ F (w, n1 + n2 − 2w), (5)

where S0, S1, S2 are the sum of squared residuals of the samples based on n, n1, n2 observations

respectively, and w is the number of explanatory variables estimated using OLS. Using the F-

distribution we can calculate the p-value and draw a conclusion based on this test. The theoretical

assumptions of this test are described by Heij et al. (2004). We use white noise assumptions I-III

in Section 4.2. Moreover, we make use of the normality assumption of the residuals, such that

quantiles of the F -distribution are correct. We will verify normality of the residuals by means of

the Jarque-Bera test for normality, see Bera & Jarque (1982).

4.3.2 Maximum F -statistic

The QA test is a natural extension of the Chow test. For this test a series of k Chow tests

are performed between observations γ1 and γ2. The Chow test is then performed between every

two observations between (γ1, γ2) obtaining k Chow F -statistics. Trimming is done such that the

theoretical properties of the Chow test remain valid. We specify a trimming parameter π0 = γ1/n =

γ2/n. For our application we set this equal to the minimum segment size used in SNCP, namely

ϵ = π0 = 0.05. The Chow statistics are summarized into one statistic, the QLR statistic

QLR = max
γ1≤γ≤γ2

(F (γ)), (6)

12



where γ is one of every two observations a Chow test is performed in between observations γ1

and γ2, and F (γ) denotes the individual chow statistic at γ. This QLR statistic is then used to

test H0 : no breakpoints between γ1 and γ2, against the alternative that there are breakpoints in

between γ1 and γ2. The distribution of this test-statistic is not trivial, we will use the approximate

asymptotic p-values of Hansen (1997).

5 Results

This section discusses the change points flagged by the SNCP for mean, variance and multi-

parameter as well as the AR models and the QA test. The SNCP results are obtained using

the software environment R, computation of the AR models and QA test are done in Eviews. For

all SNCP procedures we set window size ϵ = 0.05 and Kn such that the confidence level is equal

to 90%. At the end of this Section we compare the change points as well as show a graphical

illustration. Note that the first two paragraphs of Section 5.1 replicate the climate studies of Zhao

et al. (2021).

5.1 Self-Normalization change in mean

To obtain the results for SNCP with parameter of interest mean, we run the procedure separately

for each atmospheric variable. We use the number of observations reported in Table 1.

The SNCP procedure for mean flagged one change point in the mean annual temperature series

of central England, namely in 1989. This suggests that the mean temperature on sample 1772-

1989 is equal to 9.28°C, and on sample 1990-2018 is equal to 10.41°C. An increase of 1.13°C in

mean annual temperature. Surprisingly, this change point does not coincide with the change points

found by Zhao et al. (2021) using the same data and method. They found two change points in

temperature: 1919 and 1988. We suggest that this difference is due to data adjustments. This step

was not accurately covered in their studies. Note however that the change point 1989 we find in

this study is close to the 1988 change point in the study of Zhao et al. (2021). Also interesting

is that the temperature data is corrected for global warming from 1974 on wards by 0.2°C. After

removing this correction we find a different change point, and find a larger change in temperature.

One change point was detected in the mean of maximum wind of tropical cyclones. This change

was pinpointed in 1988, meaning that the average maximum wind speed from 1981-1988 equals

74.47 km/h, whereas from 1989-2006 this mean increases to 78.33 km/h. The mean maximum
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wind speed thus increased about 4 km/h. This change point does coincide with the results on wind

speed of Zhao et al. (2021). We believe this is due to the fact that the same number of cyclones is

used in both studies and no cleaning was necessary for this data.

As measure for humidity we use the mean annual vapour pressure from 1901-2019. The SNCP

procedure detects one change point in mean, namely in 1996. The average vapour pressure form

1901-1996 is then 9.84 hPa, on the latter subsample the mean is equal to 10.22. This means that

the water vapour pressure in the air increased in the last century in the UK and thus has become

more humid. We also note that when temperature increases vapour pressure also increases.

To answer the first sub-question regarding the change in level data of the atmospheric variables,

we note that there are mean shifts in the variables temperature, wind speed and humidity in the

past century. There was no significant change in mean present in the precipitation series. This is in

line with the findings of Gocic & Trajkovic (2013), who do not find a trend in Serbia’s precipitation

series. Therefore, the posed hypothesis of change points in all variables except precipitation was

right.

5.2 Self-Normalization change in variance

For SNCP change in variance we use the same number of observations and run the procedure

separately for each variable.

Using SNCP, we find one change point in variance of total yearly precipitation in the UK. This

change point is 1993. We calculate the variance on both subsamples 1836-1993 and 1994-2021,

being 12171.86 and 16445.32 respectively. In terms of standard deviation 110.33 and 128.24. In

other words the spread of observations of precipitation has increased in the past century.

We also note one change point in variance of vapour pressure in 2008. On the regime before

2008 the variance is equal to 0.077 and after 2008 equal to 0.070. This thus indicates less spread

in observations of humidity.

Revisiting our second sub-question, we find change in variance of two atmospheric variables:

precipitation and humidity. We hypothesized wrongly that we would find change points in variance

across all variables. We found no change point in variance of the mean annual temperature series

of central England. Moreover, SNCP also detects no change point in variance of the wind speed of

tropical cyclones.
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5.3 Self-Normalization change in multi-parameter: mean and variance

Lastly, we use the SNCP procedure to esitmate simultaneous change points in both mean and

variance. We thus use multi-parameter SNCP.

We estimated one change point for mean annual central England temperature, being 1988.

Interestingly, this deviates one year from the single parameter mean SNCP. Also, there seems to be

a common change point for mean and variance but not for variance separately. If we estimate the

mean, µtemp and variance, σ2
temp for the sample before 1988 we obtain (µtemp, σ

2
temp) = (9.27, 0.34)

and after 1988 (µtemp, σ
2
temp) = (10.42, 0.26). The change in mean around 1988 was also flagged by

SNCP for mean.

Concerning humidity, as measured by the vapour pressure, two common change points in

mean and variance were found: 1995 and 2009. The time series is thus split into three regimes

1901-1995, 1996-2009, and 2010-2019 with mean and variance, (µhumid, σ
2
humid) = (9.85, 0.064),

(µhumid, σ
2
humid) = (10.2, 0.065), and (µhumid, σ

2
humid) = (10.17, 0.076) respectively. Note that the

last two regimes approximately share the same mean. This is also captured by SNCP for mean

which indicated a change point in 1996 which is close to 1995 indicated by multi-parameter. Fur-

thermore, we note that the variance is similar for the first and second regime and changed in the

third regime starting in 2009. This point is similar to the one found by SNCP for variance in 2008.

For answering our third sub-question we investigate simultaneous changes in mean and variance

of the weather in the past century. We hypothesized that we would find simultaneous change in all

variables, which is not true. We only find synchronous change in temperature and humidity. For

the atmospheric variables regarding the maximum wind speed of tropical cyclones and the yearly

total precipitation in the UK no significant change points for common mean and variance were

estimated.

5.4 Autoregressive modelling and Quandt-Andrews test

We will now introduce the AR models and perform the QA test to verify the change points estimated

by SNCP.

We only find two 95% significant PACF values for the variables temperature and humidity.

Therefore, we make use of an AR(2) model for the variables temperature and humidity. An AR

model is not appropriate to model the variables wind speed and precipitation, due to no significant

values of the PACF. Detailed analysis of the ACF and PACF is given in Appendix A.
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5.4.1 Models

We found evidence that an AR(2) model seems appropriate for the variables temperature and

humidity. We denote the variables at time t as tempt and humidt respectively, and denote the

length of the series ntemp and nhumid respectively. Since both variables do not have zero mean we

include intercepts, α and β in the models. The models then become

tempt = α+ ϕ1tempt−1 + ϕ2tempt−2 + εt for t = 3, ..., ntemp, (7)

humidt = β + λ1humidt−1 + λ2humidt−2 + υt for t = 3, ..., nhumid, (8)

where ϕi and λi denote the autoregressive parameters for i = 1, 2 in Equation 7 and 8 respec-

tively.

The estimated parameters of model 7 are shown in Equation 9, where ε̂t denotes the estimated

remainder term at time t with mean < 0.001, and standard errors are shown in parentheses. Note

that all coefficients are significantly different from zero at a 95% level. We discuss the white noise

assumptions I-III and the normality assumption in Appendix B.

tempt = 3.83
(0.65)

+ 0.27
(0.06)

tempt−1 + 0.33
(0.06)

tempt−2 + ε̂t for t = 3, ..., ntemp (9)

We now perform the QA test with trimming parameter π0 = 0.05. The values of the individual

Chow F -statistics are shown in Figure 1. We observe that the individual Chow statistics gradually

increases, then drops down and then attains its maximum value. This indicates that the further

in the sample the test is performed, the more evidence of changing parameters is present. The F -

statistic spikes in 1988 with a p-value of < 0.001. We thus reject the null-hypothesis of no change

points between 1787 and 2006. This provides evidence for the fact that there are change points

within the sample.

For the atmospheric variable humidity we found the following estimated parameters

humidt = 4.83
(1.00)

+ 0.28
(0.09)

humidt−1 + 0.23
(0.09)

humidt−2 + υ̂t for t = 3, ..., nhumid, (10)

where υ̂t is the estimated remainder term at time t with zero mean and standard errors are in

parentheses. Again note that all parameters are significant at a 95% confidence level. The validity
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Figure 1: Individual F -statistics between every two observation of Quandt-Andrews test for (a)
Temperature and (b) Humidity.

of this model is discussed in Appendix C.

Next, we perform the QA test on the humidity data. Figure 1 shows two clear spikes in the

F -statistics, with a low period in between. The null-hypothesis of no change points in the data

between 1909 and 2013 is again rejected. The maximum F -statistic is attained in 1997 with a

p-value of 0.01.

5.4.2 Verification of Self-Normalization change points using Quandt-Andrews

Lastly, we compare the change points found using Self-Normalization and the Quandt-Andrews test.

Since we are only able to perform the QA test when a valid AR model is in place, comparison is only

possible for the variables temperature and humidity. The QA test only tests the null-hypothesis

of no change point within the trimmed data. This hypothesis is rejected for both temperature

and humidity. The conclusions of SNCP and QA thus coincide, namely that change points are

present in variables temperature and humidity. An advantage of the QA test is that we are able

to pinpoint when in the sample the most significant change in parameters occurred based on the

maximum F -statistic. Interestingly, this maximum statistic for temperature occurs at 1988, which

closely coincides with the mean change point flagged by SNCP in 1989, and exactly coincides with

the variance change point obtained from SNCP. Moreover, the maximum F -statistic of humdity

appears in 1997, this date closely matches with the mean change point of 1996 estimated by SNCP.

Our hypothesis regarding the fourth sub-question whether the change points flagged by SNCP

17



coincide with those of the QA test is thus true. When a valid model is in place, the date at which

the maximum F -statistic occurred closely matches the SNCP change points in mean.

5.5 Change points in atmospheric variables

A graphical representation of all change points found in the atmospheric variables is shown in

Figure 2. Interestingly, we observe that all change points happened between 1988 and 2009, which

is in the latter stage of the previous century. Furthermore, we note that change points closely

coincide when both SNCP and the QA test is performed on the variable.
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Figure 2: Change points estimated using Self-Normalization (SN) and Quandt-Andrews (QA) test
for atmospheric variables: (a) Temperature, (b) Wind speed, (c) Precipitation, and (d) Humidity.
Purple dashed horizontal lines show segment averages estimated by SN-mean.

18



6 Conclusion

In this study we aim to find significant evidence of changes in the weather. The central question

in this research is:

“When did structural changes occur in the weather over the past century?”.

To answer this question we introduce variables that describe the state of the atmosphere at a

given place at a given time. We use measurements over the period 1772 until 2021 of temperature,

precipitation, and humidity in the UK and maximum wind speeds of tropical cyclones to describe

that state. To establish evidence of change in the weather we examine the mean and variance

separate and simultaneous using the SNCP procedure, a newly proposed time series segmentation

algorithm proposed by Zhao et al. (2021). To verify the SNCP change points that we utilize the

well-established Quandt-Andrews test.

At a 90% confidence level, we found changes in all weather related variables across various

parameters. The estimated change points mainly occurred at the end of past century. Moreover,

all change points were estimated between 1988 and 2009. We found an interesting change in mean

UK temperature increasing from 9.28°C before 1989 to 10.41°C thereafter. We also found an increase

in the mean wind speed of tropical cyclones and increase in variance of total UK precipitation in

1993. An autoregressive model was used to model temperature and humidity, and then perform

the Quandt-Andrews test. The change points found using this method closely coincide with the

change points flagged by SNCP in these variables.

From the obtained results we conclude that significant change in weather has happened in the

past century. We are able to attribute this change to specific change points in time across different

variables and parameters. We also found a good agreement between the SNCP procedure and the

Quandt-Andrews test. Indeed, a long-term average of the weather, climate, is changing as recorded

by IPCC (2014).

Current findings suggest that the climate in the UK is changing over the studied period. We

mention the proximity of climatic change in the previous century and contribute to raising awareness

on this topic. Moreover, we propose how to pinpoint exact change dates of atmospheric variables.

This will support scientist in future climate simulations by helping accurately model changes in

weather. We also show the use of Self-Normalization and autoregressive modelling in climate

science. This can be used in future research to investigate change in different atmospheric variables

or weather changes in different countries.
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Discussion and further research During the research on changes in weather we found some

improvements we want to share. Firstly, due to the parametric nature of the Quandt-Andrews test,

we were not able to use this method on the variables wind speed and precipitation. For further

research on the verification of SNCP we consider different non-parametric methods to estimate

change points. In this way, no distributional assumptions are required in the estimation. One

could consider the binary segmentation algortihm proposed by Bai & Perron (2003). Another

advantage of this method over the Quandt-Andrews test is that it is able to find multiple change

points.

Secondly, the optimal number of lags for the autoregressive model was chosen based on the

number of significant lags observed in the partial autocorrelation function. Liew (2004) shows that

the Akaike information criterion (AIC), a measure for model fit, performs well to select the optimal

lag length in an AR model. It would be of interest to determine the optimal lag length using the

AIC.

Lastly, the models were verified using visual inspection on the residuals. In the future we

could also make use of for example the Breusch Pagan test, or the Breusch-Godfrey test, to test

for heteroskedasticity and serial correlation respectively (Breusch & Pagan, 1979; Godfrey, 1978).

This would enable us to significantly test the model assumptions.

7 Limitations

One limitation of this study is that it only covers the variables temperature, precipitation, and

humidity in the UK. To establish evidence of global climate change, we would need to investigate

changes in the weather in different countries, and possibly gather data of more atmospheric variables

over a longer time span. Wind speed is included in the data to cover the replication of the climate

studies in Zhao et al. (2021). We can therefore draw no conclusions about the wind speed in the

UK. Secondly, we want to mention the quality of the data. It was hard to find the overall accuracy

and quality of the data. We believe that this is due to some historic data, of which is it hard to

track the initial source and the lack of accurate measuring instruments in the past.
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A Results: (Partial) Autocorrelation function

In addition to Section 5, we show the ACF and PACF of the atmospheric variables. We first plot

the ACF and PACF for each atmospheric variable to investigate whether an AR model is justified

for these variables.

From Figure 3, we immediately observe no significant autocorrelation for the variables wind

speed and precipitation, as the significance is denoted by dashed lines. However, we do observe

a significant slowly declining autocorrelation for the variables temperature and humidity. For

further investigation we plot the PACF in Figure 4. We observe that the partial autocorrelation

is significant for the first two lags of the variables temperature and humidity. Observing two

significant lags for these variables indicates the use of an AR(2) model for these variables. We do

not observe significance for the first lags for the other variables.
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Figure 3: Autocorrelation function (ACF) for atmospheric variables: (a) Temperature, (b) Wind
speed, (c) Precipitation, and (d) Humidity. Black dashed horizontal lines show 0.95 confidence
level significance.
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Figure 4: Partial autocorrelation function (PACF) for atmospheric variables: (a) Temperature,
(b) Wind speed, (c) Precipitation, and (d) Humidity. Black dashed horizontal lines show 0.95
confidence level significance.

B Results: Regression outcomes temperature and model justifi-

cation

This Section covers model 7. It is concerned with the estimates of the parameters and justification

of the model. We will discuss the white noise properties and the normality assumption.

The OLS estimates of the coefficients are shown in Table 2. Note that all variables included in

the regression are significant. To be certain of a valid model we test the residuals for the desired



white noise properties I-III in Section 4, and normality. The mean of the residuals is equal to

0.00, which is as desired. We verify the assumptions of homoskedasticity and serial correlation by

graphical inspection. The residuals are shown in Figure 5, we observe that the residuals are nicely

centered around 0. We also note that the spread of the residuals is larger at the beginning of the

sample and becomes less near the end of the sample indicating heteroskadasticity, not equal variance

within the residual series. Moreover, near the end of the sample we observe that a slight upwards

trend in the residuals, indicating serial correlation. These findings are evidence that the model

parameters fail to describe the end of the sample. Despite these findings we continue the analysis.

For normality, we use the Jarque-Bera test with null-hypothsis that the residuals are normally

distributed. We obtain a p-value of 0.77 and conclude that the data is normally distributed.

Table 2: Regression results Equation 7

Dependent variable: temp
Observations: 245

Coefficient Value Std. error

α 3.83 0.65
ϕ1 0.27 0.06
ϕ2 0.33 0.06

R-squared 0.24
Durbin-Watson 2.05

C Results: Regression outcomes humidity and model justification

This Section covers model 8. It is concerned with the estimates of the parameters and justification

of the model. We will discuss the white noise properties and the normality assumption.

Table 3 shows the OLS estimates of Equation 8. We note that all independent variables are

significant and check for the white noise properties of the residuals. The mean of the residuals is

equal to 0.00. Again we perform a graphical inspection to verify homoskedasticity and no serial

correlation. Figure 5 shows the residuals of Equation 8. From the graph we observe that the

residuals again show signs of higher and lower variance, and higher and lower values clustered

together. This shows that the white noise properties do not exactly hold. We suggest that this is

due to the presence of structural breaks in the data. We will again proceed our analysis. Lastly, we

perform the Jarque-Bera test for normality. With a p-value of 0.61, we conclude that the residuals

are normally distributed.
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Figure 5: Residuals in AR models for (a) Temperature and (b) Humidity

Table 3: Regression results Equation 8

Dependent variable: humid
Observations: 116

Coefficient Value Std. error

β 4.83 1.00
λ1 0.28 0.09
λ2 0.23 0.09

R-squared 0.19
Durbin-Watson 2.06
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