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Abstract

With various statistical tools, a growing literature records important findings on Bitcoin’s char-

acteristics like volatility, trading volumes and prices. In this research, we apply the Heterogeneous

AutoRegressive-Jumps (HARJ) model, the Generalized AutoRegressive Conditional Heteroskedas-

ticity (GARCH) models and the Generalized AutoRegressive Conditional Heteroskedasticity MIxed-

DAta Sampling (GARCH-MIDAS) model with CBOE Nasdaq 100 Volatility (VXN) to study Bitcoin’s

volatility. In addition, we forecast daily Bitcoin returns with a MultiLayer Perceptron (MLP). Even-

tually, we conduct a Vector AutoRegression (VAR) model to study impulse responses of returns,

number of trades and trading volume of Bitcoin and Ethereum on their own shocks. Our analysis

shows that five days earlier realized volatility and jumps roughly capture present daily volatility of

Bitcoin in the HARJ model. A MLP machine learning measure provides excessively extreme predic-

tions for daily logarithm returns of Bitcoin and this measure is non-ideal during periods with extreme

returns. The increase of weekly VXN suggests a small decrease in the Bitcoin volatility one week

later. Lastly, we also see that both the numbers of trades and trading volume of Ethereum have

positive responses to shocks of Ethereum returns and numbers of Bitcoin trades while returns of both

coins do not react to shocks in other factors.
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1 Introduction

Cryptocurrency, a highly volatile asset, is becoming popular among usual investors. Some representatives

coins like Bitcoin and Ethereum, are attention-grabbing assets in the cryptocurrency market (Smales,

2022). Nevertheless, Gandal et al. (2018) suspect that whether cryptocurrency is a trustworthy asset as

it may actually be manipulated under so-called “decentralization” and massive suspicious Bitcoin trades

are linked to increases of exchange rate.

There is a growing amount of research regarding cryptocurrencies nowadays. In this research, we

mainly focus on volatility and return prediction of Bitcoin. The first half of this research aims to

replicate partial results by Pichl and Kaizoji (2017). They find that using a modified Heterogeneous

AutoRegressive-Jumps (HARJ) model, initially introduced by Andersen et al. (2007), Bitcoin’s realized

volatility is well captured with the lagged realized volatility and lagged jumps from 1, 5 and 10 days

earlier. Andersen et al. (2007) discover that the HARJ model is effective in capturing realized volatility

on stock and foreign exchange markets. We follow the description of Pichl and Kaizoji (2017), with pos-

sibly different approaches to check whether we could obtain similar results. This forms our first research

question:

To what extent can the Heterogeneous AutoRegressive-Jumps (HARJ) model capture dynamics

of Bitcoin realized volatility?

On the other hand, as machine learning is increasingly popular among quantitative finance, we also

use a supervised learning technique to predict daily logarithm returns of Bitcoin. The main idea also

follows the work by Pichl and Kaizoji (2017). Our result provides an insight about whether this tool is

effective in Bitcoin return prediction. This raises our second research question:

How does a MultiLayer Perceptron (MLP) perform in predicting daily logarithm returns of

Bitcoin?

Conrad et al. (2018) suggest that using relevant variables in a lower frequency (rather than daily)

could provide additional information on Bitcoin’s long-term volatility. They apply the Generalized Au-

toRegressive Conditional Heteroskedasticity Mixed-DAta Sampling (GARCH-MIDAS) model with several

monthly indexes to capture long-term (monthly) component of Bitcoin volatility. The GARCH-MIDAS

model could inspect both the short-term and the long-term Bitcoin volatility. In this thesis, we select

weekly CBOE Nasdaq 100 Volatility (VXN) to see how it additionally explains changes of the weekly

Bitcoin volatility. We also analyse basic characteristics of Bitcoin volatility with the classical Generalized

AutoRegressive Conditional Heteroskedasticity (GARCH) and the Threshold Generalized AutoRegressive

Conditional Heteroskedasticity (TGARCH) model. The core question of this part is:

To what extent does weekly CBOE Nasdaq 100 Volatility (VXN) suggest weekly volatility of

Bitcoin?
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We also interest whether a coin relationship exists between Bitcoin and Ethereum. Ethereum is the

cryptocurrency with the second largest market cap (and Bitcoin is the first place) and possibly relates

to Bitcoin. A final part of this research is to inspect responses of daily returns, numbers of trades and

trading volume of Bitcoin and Ethereum to shocks from these variable. By doing so, we could deeper

understand the relationship across these two coins and this may provide superior factors for constructing

advanced forecast models in the future. In this part, we apply Vector AutoregRessive (VAR) model and

conduct an impulse response analysis. This leads to the following question:

What interactions exist among returns, numbers of trades and trading volume of Bitcoin and

Ethereum?

This research provides the following findings. The square root version of the HARJ model moderately

captures Bitcoin’s realized volatility. The lagged realized volatility and lagged jumps five days ago have

significant and opposite influence to the present realized volatility. With an input of a moving window

of past ten daily logarithm returns, employing a MLP machine learning technique provides an over

extreme prediction on the present daily logarithm return. As suggested by the GARCH (1,1) model and

the TGARCH (1,1) model, Bitcoin’s daily volatility are conditional stationary and insensitive to negative

returns. The GARCH-MIDAS model shows that one standard deviation increase in weekly VXN suggests

a 0.34% decrease of Bitcoin volatility in the next week. Lastly, trading volume of Bitcoin has a positive

reaction to the number of trades of Bitcoin. Furthermore, both the number of trades and trading volume

of Ethereum positively react to increases of Ethereum returns and Bitcoin trades. Additionally, Ethereum

volume has a positive response to Bitcoin’s trading volume. Returns of both coins show no significant

reactions to shocks of the other factors.

This thesis proceeds with the following structure: Section 2 provides a detailed literature review, data

description is in Section 3. We present our methodology in Section 4. Section 5 discusses our results and

Section 6 concludes this research.

2 Literature Review

Cryptocurrency market draws public attention with a huge increase in its market cap. As a symbol of

cryptocurrency, Bitcoin is not only the first cryptocurrency and but also the most expensive cryptocur-

rency. One reason behind is that Bitcoin provides people a decentralized anonymous payment, benefiting

people on low trackable trades (Sasson et al., 2014). Nevertheless, Gervais et al. (2014) disagree with that

and believe there are some parties have decisive influences on bitcoin prices by adjusting cryptocurrency

service, mining and resolution processes. Anyhow, according to the ISO (International Organization for

Standardization) 4217 standards, the abbreviation of Bitcoin changes from “BTC” to “XBT”. Starting

with “X” means that Bitcoin is not a currency subject to a particular country.
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Given the popularity of cryptocurrency, governments plan to pose more restrictions on the cryptocur-

rency industry. Riley (2021) points out, the countries which are legalizing cryptocurrencies payments,

devote their efforts on solving problems like tax avoidance and illegal financial financing activities. Next

to financial security, mining, the key to secure transaction credibility of cryptocurrencies, consumes mas-

sive energy and causes vast CO2 emission. Badea and Mungiu-Pupzan (2021) suggest authorities should

also legitimate ecological responsibility to reduce adverse environmental influences caused by mining.

In the view of investment, public has divergent valuations on cryptocurrencies. An earlier study

by Krǐstoufek (2015) finds that Bitcoin provides properties of both traditional financial and speculative

assets. During the Covid-19 pandemic, Bitcoin prices accelerate as many people believe that Bitcoin is

a hedging or even a safe-haven asset during high inflation periods according to Choi and Shin (2022).

Nevertheless, Chen et al. (2020) indicate that higher trading volumes of Bitcoin only results negative

returns in general and Bitcoin behaves more like other traditional financial assets than safe-haven assets

in the pandemic.

Cryptocurrency draws researchers’ attention. With development of technologies, Bitcoin leaves mas-

sive relevant data to facilitate research. Many studies apply different statistical tools, which are used on

other financial indexes, on cryptocurrencies. For instance, GARCH model, one famous model measuring

volatility of returns, is widely applied in studies of Bitcoin. For example, Ardia et al. (2019) show that

a Markov switching GARCH model has a superior performance in Value at Risk (VaR) forecast than

GARCH models with a single regime.

In addition, some researchers focus on the relationship between Bitcoin’s volatility and other financial

indexes. For example, Conrad et al. (2018) find that the monthly realized volatility of S&P 500 index has a

17% positive effect on Bitcoin’s monthly volatility. Estrada (2017) discovers a similar relationship between

CBOE Volatility index (VIX) and realized volatility of Bitcoin. Conrad et al. (2018) state, understanding

Bitcoin’s volatility not only deepen insights on cryptocurrencies but also provides more insights on global

economic activities. Pichl and Kaizoji (2017) apply the HARJ model, originally introduced by Andersen

et al. (2007), to capture daily realized volatility of Bitcoin. Andersen et al. (2007) show this HARJ model

is a well-founded tool on exchange spot markets, equity markets and US Treasure bonds. Results of Pichl

and Kaizoji (2017) show previous realized volatility and jumps are significant to forecast present realized

volatility of Bitcoin.

Price prediction is also a popular topic in quantitative finance. Some traditional econometric tools

are powerful in predicting Bitcoin prices, Azari (2019) explores that the traditional AutoRegressive In-

tegrative Moving Average (ARIMA) model is efficient in predicting Bitcoin prices, particularly in the

short-term forecast. Nowadays, machine learning is widely used to predict prices for different assets,

including cryptocurrencies. In some cases, compared to traditional time-series models, machine learn-

ing outperforms in predicting cryptocurrencies prices. For example, McNally et al. (2018) implement a

Bayesian optimised Recurrent Neural Network (RNN) and a Long Short Term Memory (LSTM) method,
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and they conclude both methods offer superior Bitcoin price prediction than the ARIMA model. Pichl

and Kaizoji (2017) implement a multilayer perceptron (MLP) and receive a relatively satisfying predic-

tion. They also propose RNN and LSTM may further improve prediction performance and this is exactly

verified by McNally et al. (2018).

In addition, some previous researches about cryptocurrencies implement the Vector AutoregRessive

(VAR) model on studying relationship between cryptocurrencies and other assets. Giudici and Abu-

Hashish (2019) use VAR correlation networks and confirm that Bitcoin prices usually are unrelated to

classic asset prices. They also find that their model is capable to predict Bitcoin prices with an error

of 11% average price. Some researchers also apply VAR model to learn relationship between coins. For

instance, Beneki et al. (2019) investigate the impulse responses by a VAR model and spot a delayed

positive response of Bitcoin volatility on a positive shock of Ethereum returns. Luu Duc Huynh (2019)

uses the VAR model and find Ethereum prices are relatively independent to other coins and Bitcoin is a

receiver of spillover effects from other coins.

The following three points are original contributions of this research. The first part of this research

aims to replicate partial results of Pichl and Kaizoji (2017) about Bitcoin’s realized volatility in the

HARJ model and prediction of Bitcoin’s returns based on a machine learning method. Their conclude

that both methods provide reasonable predictions and their conclusion is not rigorous. They simply assess

prediction accuracy via seeing the difference between predicted values and actual values on graph. Our

research uses two prediction error measurements to examine the prediction accuracy of the methods they

propose. Secondly, Conrad et al. (2018) link some stock market indexes, luxury goods indexes and metal

indexes with the GARCH-MIDAS model to study monthly Bitcoin volatility. Previous works show VIX

and realized volatility of S&P 500 are effective in capturing the long-term volatility of Bitcoin. In this

research, we apply the GARCH-MIDAS model with an alternative index as a potential Bitcoin volatility

driver: weekly CBOE Nasdaq 100 volatility (VXN). VXN is the volatility index for Nasdaq 100 and

Nasdaq 100 skews heavily toward technology companies than other major market indexes. Considering

the strong technology characteristic of Bitcoin and some cryptocurrencies related firms (for example, the

manufacturers of graph cards, which are essential to mining processes in cryptocurrencies, Nvidia and

AMD) are also listed in NASDAQ exchange, VXN may provide a fresh explanation on Bitcoin volatility

in weekly basis. Eventually, this research includes the numbers of trades of Bitcoin and Ethereum in a

VAR model. Adding this new factor may explore more dynamics of daily returns and trading volumes of

cryptocurrencies.

3 Data

This section presents an overview of used variables in this research. To answer our research questions, we

mainly use the OHLCVT (Open, High, Low, Close, Volume, Trades) data containing Bitcoin-USD and
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Ethereum-USD relationships from Kraken’s database. There are six different time frames for the data:

1, 5, 15, 60, 720 and 1440 minutes. We select Bitcoin’s close prices in 5 minutes frequency to aggregate

daily realized volatility of Bitcoin in the HARJ model. For the the remaining parts, we choose the 1440

minutes (daily) data for Bitcoin and Ethereum. In the first extension, we use another variable in weekly

frequency, the CBOE Nasdaq 100 Market Volatility (VXN). Its data is downloaded from Yahoo finance.

3.1 Data Transformation: Close Prices to Logarithm Returns

Although close prices are straightforward to tell value changes of cryptocurrencies, compared to linear

price scales, the logarithm returns are more stable under severe price changes, especially for prices of

highly volatile assets like cryptocurrencies. The logarithm form offers a symmetric representation in both

positive and negative price changes and a zero return represents constant price levels. The expression of

logarithm returns (Rt) is in Equation 1.

Rt = log

(
Ct

Ct−1

)
, (1)

where Ct is the close price of a coin (Bitcoin or Ethereum) at time t.

3.2 Data Description

Table 1 demonstrates the descriptive statistics (mean, median, maximum, minimum, standard deviation,

Skewness and Kurtosis) of all used variables in this research. There are three panels in Table 1. Panel A

includes the data used in the replication part and the first extension. Panel B and panel C correspond to

data in the first and the second extension. The sample period of both Panel A and B covers 1 May 2014

- 8 April 2017 (1064 daily observations), CBOE Nasdaq 100 Market Volatility (VXN) is weekly data and

hence with only 155 observations. Panel C concerns both Bitcoin and Ethereum. Because Kraken only

records Ethereum information from 11 August 2015, the sample period of panel C is from 11 August

2015 to 12 April 2017 (608 observations).

Table 1: Descriptive statistics of used variables.

Variable Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis

Panel A: Daily Bitcoin returns (2014M5-2017M4)

Bitcoin Close Prices 489.752 427.485 1276.999 175 241.933 1.113351 3.802262

Bitcoin Log Returns 0.000386 0.000474 0.097405 -0.12661 0.015895 -0.852423 11.56911

Panel B: Weekly Volatility Index (2014M5-2017M4)

CBOE Nasdaq Market Volatility Index (VXN) 17.1184 16.1 42.95 10.31 4.21209 1.696772 6.923727

Panel C: Daily Logarithm returns, volume and trades for Bitcoin and Ethereum (2015M8-2017M4)

Bitcoin Log Returns 0.001058 0.001298 -0.072363 0.048939 0.013489 -0.974940 8.601841

Bitcoin Volume 1278.701 858.8206 9817.799 1.572498 1454.161 2.362505 10.12454

Bitcoin Trades 1473.104 936 18790 10 1831.767 3.450545 22.61887

Ethereum Log Returns 0.002612 9.89e-06 0.165349 -0.13689 0.034896 0.238577 6.561737

Ethereum Volume 32706.49 19091.7 522545 0.74443 48676.03 4.233461 30.30843

Ethereum Trades 906.7467 479 12955 1 1388.251 3.94222 25.51363
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In panel A, we see the standard deviation suggests the Bitcoin market is quite volatile in this period.

The Skewness and Kurtosis show Bitcoin prices are not normally distributed like most financial assets.

After taking logarithm, we find Bitcoin provides a positive return over this period. Additionally, the

logarithm returns switch to negative skewed compared to positive skewed close prices. To study the

weekly volatility of Bitcoin, we select weekly VXN as a predictor and its descriptive statistics is in

Panel B. We also interest cointegration between coins in terms of logarithm returns, trading volume and

numbers of trades. Panel C shows different characteristics in volume and trades. Ethereum has a larger

trading volume while Bitcoin has higher numbers of trades. This may suggest between 2015M8-2017M4,

especially that is an emerging period for cryptocurrencies, Bitcoin attracts more individual investors than

Ethereum. Both coins exhibit strong volatility according to their means and standard deviations.

Figure 1 presents close prices of Bitcoin and Ethereum. With a decrease from 600 USD to 200 USD at

the end of 2014, Bitcoin prices fluctuate at the level of 300 USD until November 2015. Since then, Bitcoin

prices climbed at most times and spiked to 1200 USD in March 2017. At this point, the price of Bitcoin

is fourfold than that 16 months ago. For Ethereum, its value has much smaller scales than Bitcoin, only

with a highest price 50 USD in this period. However, Ethereum experiences a first boost from February to

June in 2016, and its price rises from a penny coin to more than 10 USD. Since February 2017, Ethereum

becomes five-fold in one month. Ethereum prices show a rapid increase speed than Bitcoin.

Figure 1: Close prices of Bitcoin and Ethereum in USD over May 2014 / August 2015 - April 2017.

4 Methodology

4.1 Bitcoin’s Daily Realized Volatility

Pichl and Kaizoji (2017) define a HARJ model, modifying from the specification of Andersen et al. (2007),

to investigate the relationship among Bitcoin’s realized volatility, its historical values and historical jumps
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from 1, 5 and 10 days ago. The sample period concerns May 2014 - 8 April 2017 (1064 valid trading

days). The programming language for regression replication is R and the package highfrequency by Boudt

et al. (2017) is used for implementation.

To begin with, the definition of realized volatility (RV) is as follows:

RVt+1(△) =

1/△∑
j=1

r2t+j·△ , (2)

where r2 is the squared logarithm return, t represents time (days) and △ is five minutes. On the left side,

the realized volatility corresponds to a relatively lower frequency index (daily in this case). On the right

side, squared logarithm return corresponds to relatively higher frequency index (five minutes in this case).

Eventually, this expression aims to make one day realized volatility equalling to the sum of all squared

logarithm returns every five minutes. Theoretically, as Bitcoin market is open 24/7, there should be 1
△

= 288 five minutes intervals per day. Nevertheless, Kraken data suggests not every trading day contains

exactly 288 records. This is likely due to technical issues and inactive trading periods. Therefore, the

sum calculation of realized volatility in one day is based on the actual number of records in one day,

rather than 288.

To obtain a HARJ model specified by Pichl and Kaizoji (2017),we also define jumps (J) by providing

its necessary component bi-power variation (BV) first.

BVt+1(△) = µ−2
1

1/△∑
j=2

|rt+j·△||rt+(j−1)·△| , (3)

where µ1 ≡
√

2
π = E(|Z|), the mean of absolute value of Z and Z is a standard normally distributed

variable.

Jt+1(△) = max[RVt+1(△)−BVt+1(△), 0] . (4)

After obtaining BV, jumps are calculated as Equation (4) and this ensures jumps have non-negative

values. The detailed derivations and motivations can be found in the work by Andersen et al. (2007).

Equation (5) provides the HARJ model defined by Pichl and Kaizoji (2017), and for simplicity, we omit

△.

√
RVt+1 = β0 + β1

√
RVt + β2

√
RVt−5 + β3

√
RVt−10 + β4

√
Jt + β5

√
Jt−5 + β6

√
Jt−10 . (5)

Equation (5) considers square roots of realized volatility and square roots of jumps from 1, 5 and

10 days earlier. We should notice that their HARJ formula concerns the values from 1, 6 and 11 days

ago. Even so, we carry on the setting of (1, 5, 10) days as the alternative setting is meaningless in their

economic evaluation. The command code of the given HARJ model is as follows.

HARmodel(x, periods = c(1,5,10),transform=“sqrt”,periodsJ = c(1,5,10), type = “HARJ”),
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where x is a data frame containing date, RV and J. periods and periodsJ correspond to the lagged values

for RV and J 1, 5 and 10 days earlier. transform=“sqrt” takes square root for RV and J. type=“HARJ”

is the default setting for HARJ models in the package.

To evaluate the prediction accuracy of the HARJ model, we inspect the Mean Absolute Prediction

Error (MAPE) of fitted realized volatility. MAPE is a measurement of the average errors in this forecast

and less unambiguous than other measurements (Chai & Draxler, 2014). We compare this MAPE with

the mean of the actual (square root of) realized volatility to see the range of prediction errors of this

model. In addition, we calculate the Root Mean Squared Prediction Error (RMSPE). Because the

RMSPE weighs higher for large errors, we could tell whether obvious mangnitudes of variation occur in

errors. The formulas for the MAPE and RMSPE are in Equation (6) and Equation (7).

MAPE =
1

N

N∑
t=1

|
√
RVt,actual −

√
RVt,fitted| , (6)

RMSPE =
1

N

N∑
t=1

(
√
RVt,actual −

√
RVt,fitted)

2 , (7)

where RVt,actual is the actual realized volatility at day t, RVt,fitted is the fitted realized volatility in the

HARJ model. N is the total number of trading days.

4.2 Predictions of Bitcoin’s Daily Returns Based on Machine Learning

Machine learning is popular among financial predictions. In the paper by Pichl and Kaizoji (2017), they

apply a MultiLayer perceptron (MLP) to forecast daily logarithm returns of Bitcoin. This research follows

a similar neural network setting to predict daily logarithm returns of Bitcoin. Additionally, this thesis

provides some missing details in their paper, which are essential to implement this neural network. The

programming language for this implementation is R, using the package neuralnet by Gnther and Fritsch

(2016).

The studied period for this MLP measure is also 1 May 2014 - 8 April 2017 (1064 valid trading days).

For each trading day, with an input of daily logarithm returns of past ten days, a fully-connected network

with two hidden layers provides a prediction output of daily return that day. The two hidden layers uses

a (10, 5) configuration and the gradient vanish threshold is 0.005. Since this neural network needs ten

earlier inputs for each trading day, we remove the data of first ten days. Before implementing the neural

network, the daily logarithm returns are scaled as shown in Equation (8).

Rt = 0.08

(
Rt − µ

σ

)
, (8)

where Rt is the logarithm return on day t, the mean of logarithm returns over the sample period is

µ = 0.000386, and the standard deviation of logarithm returns over the sample period is σ = 0.015895.
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Multiplying a coefficient of 0.08 ensures the modified logarithm returns have zero mean and a standard

deviation of 0.08 as Pichl and Kaizoji (2017) describe.

To see the prediction performance of this neural network, Pichl and Kaizoji (2017) select the first two

thirds data as the training set and the remaining one thirds part as the test set. However, they actually

split the data from 2 May 2016 based on Figure 4(b) and Figure 5(a) in their paper. Therefore, we also

separate the entire sample period into two subperiods from 2 May 2016. The first subperiod serves as

the training set and the second subperiod serves as the test set.

Similar to the last subsection, we examine this neural network’s prediction accuracy by inspecting the

Mean Absolute Prediction Error (MAPE) and the Root Mean Absolute Prediction Error (RMSPE)

between (scaled) actual logarithm returns and (scaled) predicted logarithm returns. Formulas of the two

prediction error measures have the same specification in Equation (6) and Equation (7), but with actual

and predicted (fitted) logarithm returns as variables this time.

4.3 Long-Term (Weekly) and Short-Term (Daily) Bitcoin Volatility

Some previous studies apply several variants of the GARCH model to study volatility of different financial

assets/indexes. For example, Dyhrberg (2016) finds that the asymmetric GARCH model is useful in risk

management for a cryptocurrency investment portfolio. Some scholars additionally introduce external

regressors to strengthen the power of GARCH models. For instance, Conrad et al. (2018) combine MIxed

DAta Sampling (MIDAS) and GARCH models to study Bitcoin volatility. Their model discovers the

effects on the long term Bitcoin volatility from external monthly financial indexes like realized volatility

of S&P 500, Nikkei 225, Gold and Copper indexes.

In this research, we first use the GARCH (1,1) model and the TGARCH (1,1) model to learn basic

properties of Bitcoin volatility over 1 May 2014 - 8 April 2017. After that, we apply a GARCH-MIDAS

model with weekly CBOE Nasdaq 100 Volatility (VXN) to study weekly Bitcoin volatility. The following

GARCH-MIDAS setting are mainly based on the description in Conrad and Kleen (2020).

4.3.1 The GARCH (1,1) Model and the TGARCH (1,1) Model

Equation (9), Equation (10) and Equation (11) form the GARCH (1,1) model by Bollerslev (1986).

rt = µ+ ϵt , (9)

σ2
t = ω + αϵ2t−1 + βσ2

t−1 , (10)

ϵt = ztσt (11)
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where rt is the Bitcoin logarithm returns at time t, µ is the mean, ϵt is the return difference between the

actual return at time t and the mean return. σ2 is the conditional volatility at time t, zt ∼ N(0, 1). The

following parameter restrictions guarantee only positive volatility is obtained: ω > 0, α ≥ 0 and β ≥ 0

for all t.

σ2
t = ω + αϵ2t−1 + ηϵ2t−1I[ϵt−1 < 0] + βσ2

t−1 . (12)

The TGARCH (1,1) model, introduced by Zakoian (1994), has identical specifications as the GARCH

(1,1) model, except its conditional volatility additionally considers leverage effects η of negative returns.

Equation (12) provides the conditional volatility form of TGARCH model while the other two formulas

are the same as the GARCH (1,1) model. The indicator function I[A] = 1 if A happens, and 0 otherwise.

The programming language is R with the package rugarch by Ghalanos (2020).

4.3.2 The GARCH-MIDAS Model

In this part, we analyse both the short-term and the long-term Bitcoin volatility via the GARCH-MIDAS

model. With this model, we are able to explore potential drivers of the long-term Bitcoin volatility with

varaiables in different frequency. The following equations show the construction of the GARCH-MIDAS

model, and they are based on Conrad et al. (2018). In this research, we choose weekly CBOE Nasdaq

100 Market Volatility Index (VXN) as a potential explanatory variable of the long-term (weekly) Bitcoin

volatility. Previous GARCH-MIDAS investigations (Kleen, 2018) usually apply other volatility indexes

like realized volatility of S&P 500 and VIX, and these indexes are more focus on the volatility of general

stock markets. Due to strong technology characteristic of Bitcoin, Nasdaq 100 volatility index may provide

more accurate information on Bitcoin volatility as Nasdaq has a higher weight of technological stocks

(Jeon & Jang, 2004). The estimation measure is quasi-maximum likelihood and the implementation is

done via the package mfGARCH in R by Kleen (2018).

Equation (13) and Equation (14) provide the specification of Bitcoin returns in the GARCH-MIDAS

model. Unlike the GARCH (1,1) model, this model considers both hi,t and τt, which are the short-term

and the long-term components of conditional Bitcoin volatility. t represents week t and i represents day

i within week t.

ri,t = µ+ ϵi,t , (13)

ϵi,t =
√
hi,tτtzi,t . (14)

The short-term component hi,t of Bitcoin volatility is in daily frequency and follows GARCH (1,1)

process with restrictions: α ≥ 0, β ≥ 0 and ω > 0.

hi,t = (1− α− β) + α
ϵ2i−1,t

τt
+ βhi−1,t . (15)
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The long-term component of Bitcoin volatility τt is in weekly frequency. m is the mean, X is the

explanatory variable (weekly VXN), π is the coefficient. k is the lag and we choose K=52 to all weeks

within one year. The coefficient π is the multiplication of θ and ϕk(ω1, ω2), where θ decides the sign

effect of Xt and ϕk(ω1, ω2) is a weight scheme.

τt = m+

K∑
k=1

πkXt−k , (16)

πk = θϕk(ω1, ω2) . (17)

The weight scheme is restricted to non-negative and sum to one. In addition, the used package restrict

ω1 = 1 to ensure weights are monotonically declining. Equation (18) shows the Beta weight scheme for

ϕk(ω1, ω2).

ϕk(ω1, ω2) =
(k/(K + 1))ω1−1 · (1− k/(K + 1))ω2−1∑K
j=1(j/(K + 1))ω1−1 · (1− j/(K + 1))ω2−1

. (18)

4.4 Interactions among Returns, Trading Volume and Numbers of Trades in

Bitcoin and Ethereum

To answer the second extension question, we need the response of individual variables to an shock in

another variable. Kraken’s OHLCVT (Open, High, Low, Close, Volume, Trades) data set provides

the daily trading volume (Volume) and the daily numbers of individual trades (Trades). In this part,

we apply the following Vector AutoRegressive (VAR) model by Sims (1980), and conduct an impulse

response analysis to study the mutual effects of logarithm returns, volumes and trades of Bitcoin (XBT)

and Ethereum (ETH). Unlike Bitcoin information, the records for Ethereum information is only available

from 11 August 2015. Hence, we select the sample period from 11 August 2015 - 13 April 2017 (608

Observations).

Yt = µ+

p∑
i=1

BiYt−i + εt for 1 ≤ t ≤ T, (19)

where

Yt = [XBT Log Returns,XBT Volume,XBT Trades,ETH Log Returns,ETH Volume,ETH Trades]′

(20)

In Equation (19), Yt denotes a [6 × 1] vector with the above variables at time t. µ is a constant vector,

Bi represents the coefficient matrix with lag i, εt is the vector of shocks and E[εtε′t] = Σ. t represents

day t, from 1 to T (T=608). p is a selected lag number.

Firstly, we select a suitable lag order for this VAR model. Relevant selection criteria are Akaike Infor-

mation Criterion (AIC), Schwarz Information Criterion (SC), and Hannan-Quinn Information Criterion
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(HQ). The corresponding part in the result explains the our motivation of choices. Additionally, it is

important to check stability of this VAR model. If this VAR model is unstable, shock impacts explode

and this leads to an invalid model for interpretation. We use the Augmented Dickey-Fuller (ADF) test

to check the stationarity of each variable. To examine stability of this VAR model, we will check whether

all eigenvalues of the coefficient matrix are within the unit cycle. If all eigenvalues are less than one,

this VAR system is stable and we can draw useful conclusion from the impulse response analysis. The

implementation is done via EViews.

5 Results and Discussions

5.1 Bitcoin’s Daily Realized Volatility in the HARJ Model

In this part, Table 2 presents the regression results of the HARJ model and Figures 2 compares the actual

realized volatility and forecasted realized volatility by the HARJ model.

As can be seen in Table 2, we obtain several significant estimates. With a significant constant of

0.006, the square root of realized volatility 5 days earlier has significant positive influences on the present

(square root of) realized volatility. If releasing the significance level to 10%, then the square root of

realized volatility a day earlier also shows a similar but slightly smaller effect. In terms of jumps, only

the square root of jumps 5 days ago shows a significantly negative relationship with current realized

volatility. For values from 10 days ago, both the square root of realized volatility and the square root of

jumps display no significant influences on the current realized volatility.

For this regression, we have a R2 of 0.3757, which may suggest this HARJ model cannot provide

precise prediction on the daily realized volatility of Bitcoin. The MAPE of this model is 0.00887. The

square root of realized volatility has a mean of 0.021597. On average, this shows the prediction error

range is between 0.012727 and 0.030647. The forecast’s distance from the true value is about 41%, which

means the prediction by this model is indeed not very precise. The RMSPE is 0.01508 and there are

some magnitude variations in prediction errors. In Figure 2, we see this model does not perform well in

the time of extreme volatility. The time on the top right of Figure 2 suggests that this model considers

lags up to ten days such that the starting date is 11 May 2014.
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Table 2: Regression results of the Heterogeneous AutoRegressive Jumps (HARJ) model. The dependent

variable is the daily (square root) realized volatility of Bitcoin in US dollars. The daily realized volatility

is aggregated by realized volatility in a frequency of five minutes.

Coef. Estimate Std.error t-value p-value Signf.

β0 0.0060749 0.0009451 6.428 1.97e-10 ***

β1 0.3263158 0.1811037 1.802 0.0719 .

β2 0.5629379 0.2403979 2.342 0.0194 *

β3 -0.035053 0.2328086 -0.151 0.8803

β4 0.1347861 0.1334814 1.010 0.3128

β5 -0.505911 0.2268156 -2.230 0.0259 *

β6 0.1910648 0.2711929 0.705 0.4813

Note. The codes of Signf. represent different significance levels (in parenthesis): ***(99.9%), **(99%), *(95%),

.(90%) and blank if less than 90%.

Figure 2: Actual realized volatility and predicted realized volatility of Bitcoin in US dollars by the

Heterogeneous AutoRegressive Jumps (HARJ) model over 1 May 2014 - 8 April 2017.

Lastly, our results are somehow different from Pichl and Kaizoji (2017). For the regression results,

their results additionally suggest the square root of realized volatility and the square root of jumps from

10 days ago are significant estimates. Furthermore, for the same significant regressors, they report much

lower p-values. The signs of the estimates are mostly matched except β4, but it is insignificant in both

our and their results though.

One possible explanation could be that our data for calculating realized volatility is different from

theirs. The actual values of realized volatility and bi-power variation are calculated from logarithm

returns. Nevertheless, after the first step of replicating the paper by Pichl and Kaizoji (2017), we obtain
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different logarithm returns compared to theirs. They do not report any treatments on the raw data and

the logarithm returns are straightforward to calculate, but we obtain different logarithm returns. Figure

2 also hints different input data. In Figure 2, the actual realized volatility only exceeds 0.15 once whereas

their plot has seven pikes more than 0.15. The general trend in our plot and theirs is similar. However,

for some periods with extreme realized volatility, like around January 2015 and May 2016, the shapes of

observed realized volatility vary.

5.2 Predictions of Bitcoin’s Daily Returns Based on Machine Learning

Following the description in Section4.2, the machine learning result for the test set (2 May 2016 - 8 April

2017) is present in Figure 3 and Figure 4. Figure 3 is the plot of original and predicted daily Bitcoin

logarithm returns over the test sample period, and Figure 4 shows the density of original and predicted

daily logarithm returns. These returns are scaled as in Equation (8).

Figure 3: The original and the MultiLayer Perceptron (MLP) predicted daily logarithm returns of Bitcoin

over the test set (2 May 2016 - 8 April 2017).
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Figure 4: The density distribution of scaled logarithm returns for both the original and the MultiLayer

Perceptron (MLP) predicted daily logarithm returns of Bitcoin.

For this machine learning result, the prediction measurement indicator RMSPE is 0.262677 and

the MAPE is 0.087975. It is obvious some large prediction errors occur as the difference between two

measurements is significantly large. Considering the mean of scaled logarithm returns is 0.008089, it

seems the prediction error interval is over wide. In Figure 3, we see this MLP method roughly captures

the trends of the original daily logarithm returns, the upward and downward trends are moderately

matched. However, the predicted values exhibit greater magnitude changes than the actual values in

cases of extreme returns switch like at day 50, 250 and 320. Additionally, this neural network sometimes

predicts daily returns in the opposite direction compared to actual ones. For example, around day 100 and

260, this neural network predicts sharp decreases whereas the actual returns have upward trends. Figure

4 indicates that the density of predicted logarithm returns has a higher peak than actual returns and

over predict (large) negative returns as shown in Figure 3 shows. This result leaves a future study path:

Is it possible to improve the prediction performance with more advanced machine learning techniques.

This subsection also aims to replicate the results by Pichl and Kaizoji (2017). However, our result

is different from theirs significantly. Firstly, like mentioned in Section 5.1, the different raw data are

the main reason why magnitudes of the our result differ. In addition, Pichl and Kaizoji (2017) do not

provide many details about scaling logarithm returns. It is also possible that the scaling methods used

in this research differ from their practices and this would possibly widen the gaps between their results

and ours. Lastly, Pichl and Kaizoji (2017) only report their original and predicted values for less than

300 days. However, their test set, one thirds of the complete sample period (May 2014 - 8 April 2017),

should lead to around 350 days and absolutely more than 300 days.
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5.3 Weekly and Daily Bitcoin Volatility in GARCH Models

This part presents the results of studying Bitcoin’s volatility with the GARCH (1,1), TGARCH (1,1) and

GARCH-MIDAS models. Table 3 presents the estimation results of the GARCH (1,1) and the TGARCH

(1,1) model for Bitcoin logarithm returns.

Table 3: The estimation results for the daily Bitcoin volatility in the GARCH (1,1) model and the

TGARCH (1,1) model over 1 May 2014 - 8 April 2017.

Parameter µ ω α β η

The GARCH (1,1) model

Estimate 0.000720 0.000007 0.156583 0.836544 -

Std. Error 0.000340 0.000002 0.021329 0.009476 -

p-value 0.034013 0.001176 0.000000 0.000000 -

The TGARCH (1,1) model

Estimate 0.000816 0.000854 0.195794 0.810782 0.048539

Std. Error 0.000231 0.000254 0.029651 0.033646 0.074289

p-value 0.000412 0.000783 0.000000 0.000000 0.513506

In Table 3, we see that both the mean of returns and the constant ω are significant, even though the

estimate of the constant is very close to zero. The sum of α and β equals to 0.99 and is smaller than 1.

Therefore, this GARCH (1,1) model is covariance stationary but it shows strong persistence of variance.

The TGARCH (1,1) model shows that the Bitcoin’s daily volatility is insensitive to negative returns as η

is an insignificant estimate. Bitcoin’s volatility does not show asymmetric property on returns and this

is consistent to the conclusion by Bouri et al. (2017).

Table 4: The estimation results for the weekly Bitcoin volatility in the GRACH-MIDAS model considering

the weekly CBOE NASDAQ 100 Voltility (VXN) over 1 May 2014 - 8 April 2017.

Parameter µ α β m θ ω2

Estimate 0.10447543 0.21291632 0.77768712 3.72554046 -0.16907115 1.00000206

Std. Error 0.09645122 0.07158138 0.05207983 1.48122044 0.07425561 0.66752809

p-value 2.156564e-03 4.710554e-04 4.440892e-16 2.855026e-01 3.878685e-01 3.758946e-01

Table 4 shows the parameter estimates for the GARCH-MIDAS model considering weekly VXN as the

long-term (weekly) volatility component. The short-term (daily) component of Bitcoin volatility follows

the GARCH(1,1) process and we still see that daily conditional variance stationary. For the long term

Bitcoin volatility, VXN shows a significant and negative influence on it as θ is negative. ϕ1(ω1, ω2), the

weight scheme with one week lag (this weight scheme is not present in the table as it needs manual print),

is 0.02. As the coefficient π1 is the multiplication of θ and ϕ1(ω1, ω2), this suggests that a one standard

deviation increase in VXN in a week leads to about -0.338% Bitcoin’s volatility in the next week.
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5.4 Bitcoin and Ethereum: Returns, Trading Volume and Numbers of Trades

in the VAR Model

This part first shows the lag selection and stability inspection of the VAR model, and then exhibits

our impulse responses analysis. Table 5 presents suggested VAR lag orders based on AIC, SC and HQ

considering maximum 10 lags. According to Heij et al. (2004), both SC and HQ offer consistent estimators

of lags for VAR models. Because the goal of our VAR model is observing the authentic effects of impulse

responses, we prioritize selecting correct lag orders rather than minimizing prediction errors. Therefore,

we do not consider the suggestion by AIC as it emphasizes more on reducing forecast errors. With the

consideration of parsimony modelling, we select 2 lags as SC suggests.

Table 5: Based on selection criteria, the suggested lag orders in the Vector AutoRegression (VAR) model.

AIC SC HQ

8 2 6

Note. The considered maximum lag order is 10.

As could be expected, taking logarithm returns indeed leads coins’ returns to stationary processes.

In Table 6, we see the results of the Augmented Dickey–Fuller (ADF) test show returns of both coins

are stationary. In addition, apart from the Bitcoin trades, all other three variables are stationary under

95% confidence levels. If we loosen the confidence level to 90%, all six variables are stationary. Hence,

we conclude the used these variables are suitable for constructing a VAR model. According to Eviews’

results, no root of the coefficient matrix lies outside the unit circle. Therefore, this VAR model satisfies

the stability condition and can be used to examine impulse responses.

Table 6: Results of the Augmented Dickey–Fuller (ADF) test for logarithm returns, volume and trades

of Bitcoin and Ethereum over 11 August 2015 - 13 April 2017.

Variable XBT Log Returns XBT Volume XBT Trades ETH Log Returns ETH Volume ETH Trades

t-stats -24.70828 -3.418578 -2.658772 -25.93423 -6.104142 -4.773666

Prob. 0.0000 0.0107 0.0820 0.0000 0.0000 0.0001

Due to a page limit, Figure 5, Figure 6 and Figure 7 only present valid impulse responses. The

complete plot of all impulse responses is in the Appendix. In each plot, the blue line is the median

impulse responses, the orange dashed lines are the boundaries of 95% confidence regions. The horizontal

axis (in days) provides two weeks to investigate dynamics of concerned responses. The vertical axis

are the scales of the affected variable. The unit of a shock is one standard deviation. If one plot has

boundaries covering both positive and negative areas with median impulse response in the middle right

after an impulse, no conclusion can be made. This is because, the response with that shape may have no
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reaction to shocks and this impulse responses become invalid to report.

(a) Bitcoin trades (b) Bitcoin volume

Figure 5: Bitcoin volume’s responses to a shock of

Note. The impulse refers to one standard deviation shock. The blue line is the median impulse response

and the orange dashed lines are the boundaries of 95% confidence regions. The observation period is 14

days.

In Figure 5(a), for one standard deviation shock of Bitcoin trades (1831 trades), we see Bitcoin’s

trading volume jumps to 600 within three days. After that, Bitcoin’s trading volume drops in two day

and this response’s effect dies out gradually. For Bitcoin trading volume itself (see Figure 5(b)), the

response to one shock of its own diminishes in three days.

(a) Ethereum returns (b) Ethereum trades (c) Bitcoin trades

Figure 6: Ethereum trades’ responses to a shock of

Note. See Figure 5

For one standard deviation shock of Ethereum returns, the numbers of Ethereum trades increases and

this refers to more active trading in three days, causing about 150 more trades. Considering the median

of Ethereum trades (479), this is response is influential. The vanishment of self response to Ethereum’s

numbers of trade takes nearly two weeks as shown in Figure 6(b). In Figure 6(c), we see an response

between two coins, Ethereum trades positively respond to a positive increase of Bitcoin trades but this

response is only significant in two days and dissipates afterwards.
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(a) Ethereum returns (b) Ethereum volume (c) Bitcoin trades (d) Bitcoin volume

Figure 7: Ethereum volume’s responses to a shock of

Note. See Figure 5

The trading volume of Ethereum shows a positive reaction to increases of Ethereum returns, Bitcoin

trades and Bitcoin volume as shown in Figure 7. About a 5000 more trading Ethereum volume responds

to one positive shock in Ethereum returns, this effect lasts roughly four days. Given that the mean

of Ethereum’s trading volume is 19091, this volume increase is crucial. Ethereum’s trading volume

also exhibits responses to Bitcoin’s information. For positive shocks in the numbers of trades and the

trading volume in Bitcoin, Ethereum’s trading volume replies with positive responses in five days. Lastly,

Ethereum’s trading volume needs nearly 12 days to return to the original level after one own standard

deviation shock.

For these two coins, their returns show no responses to shocks in any other variables. Since that

trading volume and numbers of trades cannot affect returns of the two coins, this may show the idea

of intrinsic value for Bitcoin and Ethereum, at least within this sample period. In addition, Bitcoin’s

number of trades is also insensitive to other factors. Lastly, most of those impulse responses ease up after

three days. This may remind investors to pay extra attention to the cryptocurrency market in first three

days after one shock mentioned above.

6 Conclusion

This research studies the daily Bitcoin volatility over May 2014 - April 2017 using Heterogeneous Au-

toRegressive Jumps (HARJ) model and the (Threshold) Generalized AutoRegressive Conditional Het-

eroskedasticity ((T)GARCH) models. Our findings show the HARJ model, modified by Pichl and Kaizoji

(2017), moderately captures the dynamics of Bitcoin’s daily realized volatility with earlier realized volatil-

ity and earlier jumps from five days ago, but this model does not provide very accurate predictions. The

GARCH (1,1) and TGARCH (1,1) models demonstrate that Bitcoin’s daily conditional volatility is sta-

tionary and symmetric to both positive and negative returns. For the same period, this study also uses

MultiLayer Perceptron (MLP) technique to predict daily logarithm returns of Bitcoin. The prediction
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with this machine learning measure tends to over forecast the magnitudes of daily returns. We also

apply the GARCH-MIDAS model with weekly CBOE Nasdaq 100 Volatility (VXN) as an explanatory

variable to study weekly Bitcoin volatility. We find an increase of weekly VXN would slightly decrease

Bitcoin volatility one week later. Lastly, this research implements a Vector AutoRegression (VAR) model

to study the impulse responses of logarithm returns, numbers of trades and trading volume of Bitcoin

and Ethereum on their own shocks over August 2015 - April 2017. In the VAR model, we see that the

numbers of trades and trading volume of Ethereum positively react to increases of Ethereum returns and

numbers of Bitcoin trades. Additionally, Bitcoin’s trading volume has a positive reaction to its numbers

of trades. Furthermore, returns of both coins are insensitive when encountering shocks in trading volume

or numbers of trades.

The limitations in this research and recommendation for future work are as follows. For the GARCH-

MIDAS model, our result finds that VXN somehow provides limited information about weekly Bitcoin

volatility. There are two suggestions for this. Firstly, future study could attempt other weekly variables

like VIX or commodity indexes to examine whether more prominent factors in weekly basis exist. Sec-

ondly, the frequency gap between weekly data and daily data is much smaller than that with monthly

data. As previous studies focus on monthly variables, the variables in bi-weekly (or other intermediate

frequencies) could be fresh sources to study volatility in Bitcoin. In the VAR model, we discover that in

the residual covariance matrix, for Ethereum, its trading volume and numbers of trades are (significantly)

positively correlated. This means their shocks are also positively correlated. Although the shocks of ei-

ther of them receive no responses, we could consider some restrictions on these two variables beforehand.

Further researchers could also attempt trading volume and/or numbers of trades on other assets when

developing VAR models. In addition, as we find three days is a common timing pattern in the impulse

responses, future study could attempt study Bitcoin and other cryptocurrencies in a basis of three days.
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Appendix

1. The Codes and Data Set

This research also provides the relevant codes and data sets corresponding to four different parts in our

methodology. The codes are with necessary comments.

2. The Plot of Weekly CBOE Nasdaq 100 Market Volatility Index (VXN)

Figure 8: Weekly CBOE Nasdaq Market Volatility Index (VXN) over the study period (1 May 2014 - 8

April 2017) for the GARCH-MIDAS model. The series starts from 28 April 2014 (17th Friday of 2017)

is because this index uses the close prices on every Friday.
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3. Complete Plots of All Impulse Responses

(a) Bitcoin returns (b) Bitcoin volume (c) Bitcoin trades

(d) Ethereum returns (e) Ethereum volume (f) Bitcoin trades

Figure 9: Bitcoin returns’ responses to a shock of

Note. The impulse refers to one standard deviation shock. The blue line is the median impulse response

and the orange dashed lines are the boundaries of 95% confidence regions. The observation period is 14

days.
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(a) Bitcoin returns (b) Bitcoin volume (c) Bitcoin trades

(d) Ethereum returns (e) Ethereum volume (f) Bitcoin trades

Figure 10: Bitcoin volume’s responses to a shock of

Note. The impulse refers to one standard deviation shock. The blue line is the median impulse response

and the orange dashed lines are the boundaries of 95% confidence regions. The observation period is 14

days.
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(a) Bitcoin returns (b) Bitcoin volume (c) Bitcoin trades

(d) Ethereum returns (e) Ethereum volume (f) Bitcoin trades

Figure 11: Bitcoin trades’ responses to a shock of

Note. The impulse refers to one standard deviation shock. The blue line is the median impulse response

and the orange dashed lines are the boundaries of 95% confidence regions. The observation period is 14

days.
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(a) Bitcoin returns (b) Bitcoin volume (c) Bitcoin trades

(d) Ethereum returns (e) Ethereum volume (f) Bitcoin trades

Figure 12: Ethereum returns’ responses to a shock of

Note. The impulse refers to one standard deviation shock. The blue line is the median impulse response

and the orange dashed lines are the boundaries of 95% confidence regions. The observation period is 14

days.
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(a) Bitcoin returns (b) Bitcoin volume (c) Bitcoin trades

(d) Ethereum returns (e) Ethereum volume (f) Bitcoin trades

Figure 13: Ethereum volume’s responses to a shock of

Note. The impulse refers to one standard deviation shock. The blue line is the median impulse response

and the orange dashed lines are the boundaries of 95% confidence regions. The observation period is 14

days.
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(a) Bitcoin returns (b) Bitcoin volume (c) Bitcoin trades

(d) Ethereum returns (e) Ethereum volume (f) Bitcoin trades

Figure 14: Ethereum trades’ responses to a shock of

Note. The impulse refers to one standard deviation shock. The blue line is the median impulse response

and the orange dashed lines are the boundaries of 95% confidence regions. The observation period is 14

days.
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