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Abstract

This paper proposes a novel extension to the Macroeconomic Random Forest (MRF) algorithm

of Coulombe (2021) to model inflation. More specifically, I augment the MRF splitting pro-

cedure to accommodate panel data across European countries to exploit commonality in the

inflation patterns. We then use this model to assess which macroeconomic state variables are

the most important determinants of short-term oil pass-through. Through a forecasting study,

we document that pooled MRF outperforms various benchmark models, including plain RF, for

periods with inflation of moderate magnitude. I proceed to investigate the pooled MRF output

by means of variable importance analysis and surrogate trees on the path of the short-term

oil pass-through coefficient. The results indicate that the fuel intensity, exchange rate, debt to

GDP ratio, and output gap play a prominent role in the level of oil pass-through in a country.

The views stated in this paper are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Understanding the empirical relationship between oil prices and inflation rates is crucial

for monetary authorities aiming to keep inflation under control. In this regard, oil shocks

pose a challenging trade-off for policy makers between either a higher inflation or a higher

unemployment rate (Herrera & Pesavento, 2009; Bernanke et al., 1997). Understanding

the effect of oil shocks on inflation has recently gained prominence again with the rapidly

increasing energy prices and inflation rates across the world. While many past studies have

focused on estimating the level of oil price pass-through into consumer prices (Hooker,

2002; Chen 2009), there has been relatively little research into what actually influences

this level of oil pass-through. A better understanding of such economic state variables

could help economies better manage oil shocks and the associated inflationary influences.

The vast majority of papers to date has focused on traditional time series models in

estimating oil pass-through and analyzing what economic state variables are responsible

for changes within countries, and differences across countries. However, recent advances

in the interpretability of Machine Learning (ML) (Molnar, 2019) paired with increased

data availability in macroeconomics make ML a viable new methodology to investigate

this topic with. Recent studies show, for example, that Machine Learning has strong

potential in modelling inflation dynamics. One such study is that of Medeiros et al.

(2019), who document that Random Forest models can consistently outperform the ran-

dom walk (RW), autoregressive (AR) and unobserved components stochastic volatility

(UCSV) model benchmarks in inflation forecasting. This is particularly noteworthy as an

extensive literature exists that documents these benchmarks are ”exceedingly difficult to

improve upon” (Stock & Watson, 2010).

Coulombe (2021) builds further upon these findings by proposing a novel extension

to the random forest algorithm, called Macroeconomic Random Forest (MRF). The key

difference of this algorithm in comparison to ”plain” RF is that it performs a linear regres-

sion in each leaf of the regression trees, similar to the Local Linear Forests of Friedberg

et al. (2019). Firstly, this facilitates interpretation of the model, as MRF now estimates

economically meaningful coefficients. Secondly, Friedberg et al. (2019) show that such a

linear regression improves the model fit of the algorithm in the case of (strong) smooth

signals, which often exist in macroeconomic relationships. MRF is also able to nest many

popular non-linearities and has the advantage of letting the data decide which one, or

combination, is most appropriate. This stands in contrast with the previously consid-

ered time series models, in which the researcher has to employ their own judgement and

decide beforehand which type of model to use. For instance, Ferry et al. (2001) model
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inflation with a regime switching Phillips curve model, while Hooker (2002) makes use

of a structural break model, and Eliasson (2001) relies on a smooth transition model.

MRF can nest each of these non-linear elements, which has been shown to improve model

fit and forecasting performance for quarterly US inflation between 1960Q1 and 2015Q4

(Coulombe, 2021).

This paper presents an extension to the MRF framework, with the goal to assess

which economic state variables are the main determinants of change in oil pass-through

into consumer prices in Europe. The central idea of this extension is to exploit the

commonalities in inflation rates across the similar countries by pooling the data after

taking into account long-run differences. The MRF methodology is remarkably suited to

such a pooled estimation approach, as rather than requiring identical coefficients over the

whole sample period for all countries, it allows to assign those sub-periods of countries

that are most similar in their coefficients to a common leaf. Only then does the algorithm

proceed to estimate these coefficients. Hence, while the data in each leaf will likely exhibit

a higher heteroskedasticity, there is potential to exploit a stronger signal. This way, a

more data-rich regression can be achieved for each sub-period in time of every country

than would otherwise be possible.

I start by constructing a dataset on CPI inflation, the oil price in euros per barrel and

108 features motivated by the economic literature as being relevant in estimating inflation

and oil pass-through to grow the MRF. These include amongst others trade openness, the

exchange rate, fuel intensity and the output gap of a country, motivated by Chen (2009)

and Gelos & Ustyugova (2017). The dataset comprises quarterly data of 18 European

countries from 2004Q1 up to 2021Q4. Importantly, for most of these countries the data

availability is insufficient to consider applying MRF and many other ML methods directly.

An initial inspection of the inflation rates of these countries shows highly similar patterns

over time and high correlations. To make the pooled estimation more meaningful, I adjust

each of these inflation series by their long-run mean to fully exploit the commonality in

the inflation patterns.

Next, I augment the splitting procedure of MRF to accommodate for pooled data of

several countries. This is achieved by splitting observations not only over time, but also

over countries, such that country-time pairs are assigned to leafs. Additionally, I build a

Phillips curve model augmented with lags for changes in the oil price. The formulation

of this Phillips curve model is motivated by the research of Chen (2009), Musso et al.

(2009) and Faust & Wright (2013). I use this model in the leafs of the regression trees

that constitute the MRF. Finally, through variable importance analysis and the usage of
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surrogate trees I analyze which variables are the main determinants of changes in the oil

pass-through over time for the countries in the sample.

Our main results are that pooled MRF outperforms all benchmark models, including

plain RF, for periods with inflation of moderate magnitude. However, for periods with

large and rapid changes in inflation, MRF cannot outperform the existing autoregressive

and Phillips Curve models. The variable importance analysis and an inspection of the

surrogate trees give strong indication that the fuel intensity, exchange rate, debt to GDP

ratio, and output gap play a prominent role in the level of oil pass-through in a country.

This is largely consistent with the findings of De Gregorio et al. (2008), Chen (2009)

and Gelos & Ustyugova (2017). A difference with regards to Gelos & Ustyugova (2017),

however, is that I find only a moderate effect for trade openness and the weights of food

in the CPI inflation basket of a country.

The remainder of this paper is structured as follows. Section 2 provides a summary of

the literature related to oil pass-through and random forests. Then, Section 3 describes

the data and which transformations I apply to exploit the commonality in the inflation

patterns. Section 4 outlines the augmented MRF methodology and how the Phillips curve

will be modelled. Section 5 presents the estimation results, variable importance analysis

and surrogate trees for the short-term oil pass-through. Finally, Section 6 provides a

conclusion and formulates an answer to the research question.

2 Theoretical Framework

This section first outlines the existing literature on the effect of oil shocks on the inflation

rate. Then, I provide a brief overview of the relevant literature on regression trees, random

forests and local linear forests.

2.1 Determinants of oil pass-through

One of the first papers to analyze the causes for changes within countries and differences

across countries in oil pass-through is De Gregorio et al. (2008). Using Phillips curve

models for 34 countries, they find evidence that the oil pass-through has declined in recent

decades, in particular for industrial countries. Their analysis shows that the reduction

in oil pass-through is likely primarily attributable to a decrease in fuel intensity of many

countries as well as a reduction in exchange rate pass-through.

Chen (2009) builds upon these findings and tries to explain the decline in oil pass-

through further. In an analysis of 19 developed countries, he regresses the time-varying
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short-run pass-through coefficients of the countries on several economically characterizing

variables and finds that the appreciation of the domestic currency, a more active monetary

policy in response to inflation, and a higher degree of trade openness explain the observed

decline in oil price pass-through. Contrary to De Gregorio et al. (2008), Chen (2009)

finds no evidence that fuel intensity plays a significant role in oil pass-through.

The paper most similar in spirit to ours is that of Gelos & Ustyugova (2017). This

paper takes a more systematic approach to determining what economic variables are

associated with the level of oil pass-through. For a large set of countries for the period

2001-2010 they consider a range of 20 structural country characteristics and policies within

these countries that may contribute to differences in oil pass-through. Then using Phillips

curve and VAR models, they test which variables have a significant impact on the oil

pass-through in a country. The set of variables considered by Gelos & Ustyugova (2017)

contained amongst others the variables used by Chen (2009). They find that countries

with higher shares of food consumption, fuel intensities, and pre-existing inflation levels

experienced higher oil pass-through. Additionally, they find a small attenuating effect for

inflation targeting on oil pass-through. These findings are not in line with those of Chen

(2009), as trade openness and appreciation of the domestic currency are not found to be

significant determinants of oil-pass through.

2.2 Regression Tree

Before discussing the Random Forest algorithm, it is first important to briefly describe

what a regression tree is and how it can be obtained. In essence, there are two steps to

creating a regression tree (Breiman et al., 1984):

1. Divide the set of all possible values for predictors X1, ... , Xp (predictor space) into

K regions that don’t overlap. Let R1, ... , RK denote these regions.

2. Then the prediction for each observation in a particular region Rk is the average of

the values that belong to that region.

In this procedure the regions Rk are usually obtained by applying a top-down, greedy

algorithm. More specifically, a recursive splitting procedure is applied such that each

parent node is split into two subsamples using the predictor Xj and a cut point c so

that the greatest possible reduction in total sum of squared error is achieved (James et

al., 2021). In mathematical notation, at each parent node we aim to solve the following

minimization problem:
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min
j ∈J , c∈R

[
min
β1

∑
{i:xi∈R1(j,c)}

(yi − ŷR1)
2 + min

β2

∑
{i:xi∈R2(j,c)}

(yi − ŷR2)
2

]
, (1)

where J denotes the set of all predictors, and R1(j, c) and R2(j, c) correspond to the

region of the predictor space for which Xj ≤ c and Xj ≥ c, respectively. ŷRk
represents

the prediction of subregion k, which is simply the average of the observations belonging

to subregion k. Note that this procedure does not consider all possible partitionings of

the predictor space, as this would be computationally too intensive. Instead, at every

step it tries to split a given region into two subsets in a locally optimal way until a certain

stopping condition is met.

After obtaining a regression tree, it is often recommended to prune some of the splits

to prevent overfitting. This is important because while overfitting may result in a strong

fit on the training data, the model will often perform poorly on a testing set. Additionally,

pruning enhances interpretability of the tree and leads to lower variance of the predictions

(James et al., 2021). This does often come at a (small) cost in increased bias. The

pruning can be achieved by using cost-complexity pruning (Breiman et al., 1984; James et

al., 2021). This method aims to find those subtrees T ⊂ T0 that minimize the following

cost-complexity function for a given cost-complexity parameter α:

|T |∑
k=1

∑
xi∈Rk

(yi − ŷRk
) + α|T |, (2)

where |T | denotes the number of terminal nodes of the subtree, and Rk denotes the subset

of the predictor space corresponding to terminal node k. In this function α = 0 yields the

original tree T0. The optimal parameter α can be obtained throughK-fold cross-validation

(James et al., 2021).

2.3 Random Forests

A widely used method in Machine Learning that builds on regression trees is Random

Forest (RF) (Breiman, 2001). RF is an ensemble method, which means that it builds on

multiple models to create its final prediction, rather than relying on a single model. This

often produces more accurate, and in particular, less variant predictions. Random Forest,

as the name suggests, relies on many regression tree models to obtain its final prediction.
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2.3.1 Bagging & De-correlating

The two key concepts of RF are Bootstrap Aggregation, or simply bagging, and de-

correlating. Bagging is used to reduce the variance of the estimates of a collection of

trees. In practice, this can be achieved by training every tree on a different bootstrapped

sample. More specifically, from the sample data one draws B new samples with replace-

ment to create B regression trees. Then averaging the predictions of all these trees will

often produce a highly accurate estimate with a variance lower than that of a single re-

gression tree (Breiman, 2001). The number of bootstrapped samples B should be chosen

sufficiently large to reduce the variance of the ultimate estimate to an acceptable level.

James et al. (2021) suggest B = 100, as a rule of thumb in practice. In general, the gains

in accuracy of the model become negligible as the number of trees considered becomes

large.

However, the efficacy of the outlined approach may be jeopardized when the trees

produce highly correlated estimates. This can happen, for example, when one predictor

is considerably stronger than all the other predictors. In this case, it is likely that all

trees will select this strong predictor for the first split of the tree, and consequently all

trees will produce correlated estimates. Here, taking the average of many highly correlated

estimates does not produce the desired reduction in the variance of the estimate. Random

Forests tackle this problem by using de-correlated trees (Breiman, 2001). This means

that each tree, beside using a different bootstrapped sample, considers a different set

of predictors for each split. Specifically, every tree uses a random (small) subset of m

predictors out of the total set of p available predictors at each splitting point. This way

different trees give different predictors a chance to be considered for splitting the node.

Ultimately, this reduces the variance of the average estimate across all trees. The fraction

of m predictors out of the total set of predictors p that is chosen is a hyperparameter

that is often referred to as mtry. Usually, this parameter is set at one-third for regression

settings (Coulombe, 2021). Alternatively, it can be tuned by using k-fold cross-validation

on a grid of possible values. An additional benefit of a Random Forest over a regular

regression tree, is that in general it is not prone to overfitting once a sufficiently large

number of trees B is used, contrary to a single tree that may need pruning (Coulombe,

2021). Thus, a Random Forest combines bagging and de-correlation to obtain a highly

accurate estimate with a low variance. Its final prediction is the average of the predictions

of each tree.
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2.4 Local Linear Forests

While RF has been shown to be an effective method in a variety of fields and applications

(Medeiros et al., 2019), one key drawback that remains is that RF cannot fit well a strong,

smooth signal (Friedberg et al., 2019). More specifically, when RF is attempting to fit a

smooth regression surface, it fails to exploit strong local trends and often fits an incorrect

shape to the target. Friedberg et al. (2019) overcome this issue firstly by considering RF

as a ensemble method that generates kernel weights, similar to Meinshausen (2006) and

Athey et al. (2019). Then, once these weights are obtained, the final prediction follows

from a weighted linear regression (WLS). In this regression, Friedberg et al. (2019) also

fit a ridge penalty to prevent overfitting to the local trend and reduce variance of the final

estimates. Hence, Local Linear Forest first recursively applies an augmented splitting

procedure to obtain the terminal nodes Lb for each tree b, and then constructs from these

leafs the following weights:

αt(x0) =
1

B

B∑
b=1

I(Xt ∈ Lb(x0))

|Lb(x0)|
, (3)

where I(Xi ∈ Lb(x0)) is an indicator function. Then these weights are used in:

∀t : argmin
βt

{ T∑
t=1

α(x0)(Yt −Xtβt)
2 + λ||βt||22

}
(4)

to obtain the final estimates of the conditional mean. Friedberg et al. (2019) present

evidence that Local Linear Forests outperform plain RF when strong smooth signals exist

in both an application to wage estimation as well as various simulations.

3 Model Data & Features of MRF

The data for our empirical analysis is of a qaurterly frequency and comprises 18 European

countries. The sample period extends from 2004-Q1 up to 2021-Q4 (72 observations per

country, 1296 observations in total). Additionally, I use 108 unique features to grow

the MRF. The data are collected from the OECD database, FRED-QD and the IMF

Financial Statistics database.1 The countries are selected based upon data availability

and similarities in the time pattern of inflation. Initially, out of all European countries, 20

1The OECD database can be accessed online at https://data.oecd.org/. The FRED-QD is publicly
available at the Federal Reserve of St-Louis’s website. Lastly, the IMF Financial can be accessed online
at https://data-imf-org.eur.idm.oclc.org/.
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satisfied the data availability condition. Out of these 20 countries, we keep those countries

that exhibit a correlation of 0.70 or higher with at least one other country in the sample.

This is to ensure that the observations of the countries can be meaningfully pooled and

then estimated. Because of this, Norway and Switzerland were excluded from the sample,

which yields our ultimate sample of 18 European countries. The sample period is chosen to

include several economic recessions as well as the recent peak in inflation starting in 2021-

Q1, with the associated rise in the oil price in euros. This period is particularly relevant,

as the oil pass-through may have changed here relative to the stable, low-inflation years

before.

In our analysis we focus on inflation as measured by CPI, similar to Chen (2009) and

Gelos & Ustyugova (2017). This is done firstly because revisions to CPI inflation are

infrequent and often negligible, while for other inflation measures revisions can be large

and include benchmark changes or changes in conceptual definitions (Faust & Wright,

2013). Secondly, the usage of CPI inflation accommodates the usage of CPI basket weights

as features when growing the Macroeconomic Random Forest. These variables have been

found to play an important role in oil pass-through by Gelos & Ustyugova (2017). In the

Phillips curve models, we use the first lag of quarterly unemployment as a measure of

economic slack, as is common in the literature (Stock & Watson, 2008; Faust & Wright,

2013). For the oil price terms in the Phillips curve, we use the price per oil barrel in euros,

similar to Musso et al. (2009).

3.1 Data Characteristics

Figure 1 plots the quarterly inflation and the unemployment rate for the countries in

our sample. We observe that all countries share important similarities in their inflation

patterns over time. Firstly, all countries exhibit a large and rapid drop in inflation starting

in 2008-Q2, during the financial crisis in this year. Secondly, as countries recovered,

inflation rose back up gradually to levels slightly lower than in 2007. Thirdly, all countries

experience a gradual decrease in inflation after approximately 2012-Q1, which has been

associated with decreases in energy prices as well as increases in economic slack (Koester

et al., 2021). Lastly, the inflation of each country increases noticeably after the reopening

of economies and various fiscal stimuli in many European countries in 2021-Q1 following

the Covid-19 pandemic.

In the unemployment rate curves of many countries, we observe a clear negative corre-

lation with the inflation rates. This can be observed most noticeably overall in the period

2012Q1- 2019-Q1, where for many countries inflation is often a mirror image compared
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to the unemployment rate. See for example Belgium, Luxembourg and France. Impor-

tantly, there are also clear differences in the average levels of inflation and unemployment

across countries. Countries such as Spain, Portugal and Greece experience historically

high unemployment rates, often in excess of 15%, while countries like the Netherlands,

Denmark and the United Kingdom, have much lower unemployment rates of around 5%

on average.

To investigate the commonality in the inflation patterns further, Table 1 shows the cor-

relations between the CPI inflation of the countries. We observe that almost all countries

have at least one other country with which they exhibit a correlation above 0.75, while

most countries also have several countries with which a correlation above 0.80 exists. The

exceptions are Hungary, Sweden and The Netherlands. These countries, however, still

exhibit a correlation of more than 0.70 with at least one other country in the sample.

This gives indication that the pooled MRF approach may yield benefits in estimation, as

overall most countries show high correlations in their CPI inflation rates.

Table 1: Correlations between CPI inflation of 18 sample European countries, 2004Q1-
2021-Q4 (Correlations in excess of 0.75 or higher in bold)

AUT BEL CZE DEU DNK ESP FIN FRA UK GRC HUN IRL ITA LUX NLD PRT SVN SWE

AUT 1.00
BEL 0.81 1.00
CZE 0.67 0.67 1.00
DEU 0.85 0.70 0.75 1.00
DNK 0.67 0.75 0.61 0.60 1.00
ESP 0.78 0.80 0.66 0.77 0.78 1.00
FIN 0.74 0.70 0.63 0.69 0.71 0.60 1.00
FRA 0.78 0.80 0.71 0.74 0.74 0.83 0.64 1.00
GBR 0.74 0.71 0.51 0.65 0.77 0.66 0.77 0.63 1.00
GRC 0.53 0.69 0.44 0.47 0.77 0.74 0.47 0.70 0.62 1.00
HUN 0.48 0.40 0.59 0.58 0.61 0.60 0.49 0.62 0.49 0.64 1.00
IRL 0.62 0.63 0.58 0.70 0.46 0.72 0.63 0.63 0.42 0.43 0.42 1.00
ITA 0.77 0.82 0.67 0.71 0.86 0.86 0.76 0.84 0.74 0.71 0.64 0.63 1.00
LUX 0.83 0.81 0.66 0.80 0.82 0.87 0.70 0.85 0.77 0.71 0.60 0.66 0.86 1.00
NLD 0.70 0.55 0.60 0.69 0.46 0.51 0.62 0.55 0.66 0.24 0.37 0.39 0.55 0.64 1.00
PRT 0.65 0.75 0.48 0.60 0.74 0.81 0.62 0.75 0.59 0.69 0.50 0.75 0.83 0.81 0.28 1.00
SVN 0.65 0.68 0.80 0.73 0.68 0.76 0.62 0.81 0.52 0.65 0.72 0.66 0.79 0.74 0.46 0.64 1.00
SWE 0.67 0.73 0.65 0.68 0.55 0.57 0.73 0.62 0.71 0.46 0.38 0.56 0.56 0.67 0.56 0.54 0.54 1.00

Figure 2 plots the oil price per barrel between 2004Q1 and 2021Q4. When we compare

this time series to those of the inflation rates of the countries, we observe a highly similar

pattern. The oil price also peaks just before the financial crisis in 2008Q1, to the rapidly

decrease and rebound to its previous level in the years following the financial crisis. Ad-

ditionally, the oil price rapidly increases starting in 2020Q1. A difference between the oil

price time pattern and that of the inflation rates of many countries is that the oil price

decreases much more slowly following 2012Q1.

Next, I describe the most important features that will be employed by the Macroeco-
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Figure 1: Inflation (solid) and unemployment rate for 18 European countries (dashed),
2004Q1 - 2021Q4

nomic Random Forest algorithm. For each of these I briefly explain the economic rationale

for their relevance relating to changes in the oil pass-through. Afterwards, I explain the
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Figure 2: Oil price in euros per barrel, 2004Q1 - 2021Q4

importance of using Moving Average Factors in growing the MRF. Beside the features

relevant to oil pass-through, various features are also of importance to modelling the re-

lationship between inflation, its lags and the measure of economic slack (unemployment

rate). These include amongst others the M1 and M3 money supply, the normalized ca-

pacity utilization of each country, the PPI, and short and long term interest rates for each

country. See appendix A for a complete list of the features and associated transformations.

3.2 Most Important Features for Oil pass-through

• Financial Development : As Gelos & Ustyugova (2017) point out, a better developed

financial system often allows for more effective monetary policy. Hence, a more

developed financial system can allow a country to control the effects of an oil-shock

better. We rely on the Financial Development index data of the IMF Financial

Statistics database for this variable.

• Food and Transport weights in CPI basket : Food prices have been found to be posi-

tively correlated with oil prices and oil price uncertainty (Alghalith, 2010). Similarly,

as many modes of transport run on oil-based fuels, transport costs are positively

correlated with the oil price. Hence, oil pass-through into CPI inflation often posi-

tively correlates with the weights of Food and Transport in the CPI basket (Gelos

& Ustyugova, 2017).

• Fuel Intensity : Countries that consume more fuel per capita are likely to be more

sensitive to oil shocks (Hooker, 2002; Chen, 2009).

• Trade openness : A significant negative relationship has been found between a coun-

try’s trade openness, as measured by the sum of exports and imports as a percentage
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of GDP, and a country’s oil pass-through (Romer, 1993, Chen, 2009). More specifi-

cally, importing goods cheaply abroad can offset the inflationary effects of oil shocks.

We use the sum of exports and imports as a percentage of GDP to measure trade

openness.

• Public debt/GDP : Celasun et al. (2004) find that improvements in fiscal balances

and fiscal credibility significantly decrease inflation expectations. Consequently, oil

shocks can have a smaller effect on countries with lower public debt as a share of

GDP.

• Output gap: This variable is often used as a measure of economic slack in inflation

models. When the output gap is small, an oil shock will likely have a larger pass-

through into consumer prices (Gelos & Ustyugova, 2017). To estimate this variable

I rely on the Hodrick-Prescott filtered output gap, with a penalty parameter equal

to 100, as is common in the literature.

• Low inflation environment : Taylor (2000) documents that in countries with a lower

inflation level, producers are less likely to pass through changes in costs to con-

sumers. The rationale here is that firms change their prices depending on how

persistent they expect the change in costs to be. In low inflation environments

changes in costs are generally believed to be less persistent (Chen, 2009; Gelos &

Ustyugova, 2017).

• Exchange rate: Oil transactions between countries are usually conducted in terms

of dollars. Hence, a shock in the oil price will often have larger consequences for

inflation if the exchange rate with respect to the dollar depreciates (Chen, 2009;

Gelos & Ustyugova, 2017).

3.3 Moving Average Factors

As Coulombe (2021) points out, one drawback of random forests in time series applications

is the difficulty it faces when extracting the relevant information from many lags of a

feature. In the current application of inflation modelling, for example, it could be that

the first 8 lags of capacity utilization are relevant due to sticky prices or rigidities in the

labour market. A random forest may then spend a split first on the 2nd lag, then the 5th

lag, followed by a split on the 3rd, etc.

Coulombe et al. (2021) propose instead to consider a weighted average of the first

P lags of a variable that best capture the temporal pattern of the specific feature. This
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can be achieved by applying principal component analysis to these P lags of a feature

(Coulombe et al., 2021). This has two advantages: first it facilitates a more straight-

forward interpretation. Secondly it has been shown that the inclusion of such Moving

Average Factors (MAFs) improves the root mean squared error (RMSE) of the model in

predicting on both long and short horizons (Coulombe et al., 2021). Hence, we apply

PCA to various lag polynomials for which we believe the temporal pattern could be of

relevance. Here, the availability of a sufficient number of lags for each feature is sometimes

binding (See Appendix A). Similar to Coulombe (2021), we use P = 8 lags for quarterly

data, which corresponds to two years.

4 Methodology

This section introduces pooled Macroeconomic Random Forests (MRF). First, I describe

the Phillips curve model I use in the leafs of MRF, and how it can be augmented to exploit

commonality across the European countries. Next, I explain how the MRF algorithm

works and how I adapt it to pooled data. Finally, I provide an explanation of how variable

importance analysis and surrogate trees will be used to analyze the MRF output and to

determine which economic state variables determine changes in the oil pass-through of

European countries.

4.1 Pooled Phillips Curve

A model that is commonly used in the literature to investigate oil pass-through is that of

a Phillips curve with added lags of the change in the oil price (Chen, 2009; Musso et al.,

2009; Faust & Wright, 2013). This motivates the following general model specification:

πt = α +

p∑
i=1

δiπt−i + γut−1 +

p∑
i=1

θi∆ot−i + εt, (5)

where πt denotes the CPI inflation of a country at time t, α is an intercept and ut−1

represents the first lag of the unemployment rate of a country. Lastly, ∆ denotes the first

difference and ot denotes the log of the price of an oil barrel in euros. From this model the

short-term oil pass-through can be obtained simply as θ1. The long-run oil pass-through

can be computed as ϕ =
∑p

i=1 θi/(1−
∑p

i=1 δi). We use p = 4 lags, as this minimizes the

Schwarz Information Criterion (SIC) for the vast majority of countries we consider.

Next, it is important to augment this model in such a way that it allows for meaningful
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pooled estimation. Clearly, a common intercept across countries is too restrictive. This is

because each country has a different long-run level of inflation (See Section 3.1). Hence,

we first adjust the Phillips curve model of Equation (3) to take into account varying long-

run levels of inflation. We can achieve this by subtracting a long-run inflation factor πLR
t−1

from each country’s respective inflation series at every point in time. This method has

been shown to work well in pooled estimation of volatility across asset classes (Bollerslev,

2017). We use the expanding window sample mean from the start of the sample up until

quarter t − 1 as the long-run inflation πLR
t−1. This gives the following augmented Phillips

Curve model:

πt − πLR
t−1 =

4∑
i=1

δi(πt−i − πLR
t−1) + γut−1 +

4∑
i=1

θi∆ot−i + εt. (6)

In the remainder of the paper we denote the model of Equation (6) as

yt = Xtβt + εt, (7)

where yt = [πt − πLR
t−1] and Xt denotes the 1×9 row vector of the regressors in Equation

(6). βt represents the associated 9×1 column vector of coefficients in Equation (6). This

is for the purpose of brevity and ease of notation when describing the splitting procedure.

4.2 General Model MRF

Next I describe the general MRF framework. The key difference between MRF and plain

RF, is that the regression trees upon which the model builds, do not simply predict the

average of the observations in the particular leaf. Instead, MRF performs a regression

in each leaf, similar to the Local Linear Forests of Friedberg et al. (2019), and so shifts

the focus of the random forest towards predicting the beta coefficients of this regression,

rather than the dependent variable. Additionally, as previously discussed (Section 2.4),

this linear regression allows the MRF model to better capture strong smooth signals, which

often exist in macroeconomic relationships (Coulombe, 2021). This gives the following

general model (Coulombe, 2021):

yt = Xtβt + εt

βt = F(St)

where F denotes a random forest and St is the set of features we consider for splitting. In

our case, these are economic characteristics of countries that determine the time variation
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in βt (See Section 3.2 and Appendix A for more information). In general, it holds thatXt ⊂
St. Hence, the regressors used within the leafs are also features themselves. By performing

in each leaf the regression above, MRF obtains General Time Varying Parameters (GTVP)

(βt). Following Coulombe (2021) and Friedberg et al. (2020), the general tree splitting

procedure becomes:

min
j ∈J−, c∈R

[
min
β1

∑
{t∈l|Sj,t≤c}

(yt−Xtβ1)
2+λ ||β1||22 +min

β2

∑
{t∈l|Sj,t>c}

(yt−Xtβ2)
2+λ ||β2||22

]
. (8)

In this equation J − denotes the random subset of regressors of St that are used in the

particular tree split under consideration. Furthermore, l represents the parent node we

aim to split. The goal of this minimization problem is to find the optimal regressor Sj for

j ∈ J − by which to split the parent node l and at which cut point value c of the regressor

Sj this split should be made. We apply this minimization problem recursively to the two

split samples produced by the splitting procedure. This continues until a certain stopping

criterion is met. This ultimately produces a tree. Note that Equation (8) also contains a

ridge penalty represented by the λ term. This term is included to prevent overfitting to

a possible strong trend and reduce the variance of the parameter estimates (Friedberg et

al., 2019).

In general, MRF aims to use trees with a very high depth (Coulombe, 2021). While

for normal regression trees it is then recommend to prune some of the terminal nodes

to prevent overfitting and improve interpretability (Breiman, 1984), this is not necessary

for a sufficiently diversified ensemble of trees. More specifically, Goulet Coulombe (2020)

presents evidence that the out-of-sample prediction of a ”non-pruned” RF is identical

to that of an optimally pruned one, when the trees are sufficiently diversified. In our

case this means that if a reasonably large number of trees B is chosen paired with a

reasonable fraction of predictors at each split (also called mtry, see Section 2.3.1 on de-

correlating trees), the trees will not be over-split. Accordingly, the model will not predict

time-variation when it is not there (Coulombe, 2021). The final prediction of MRF is the

average of all βt predictions over the B trees.

In comparison to plain RF, MRF inherits many desirable properties. Firstly, MRF

like RF has relatively few tuning parameters, which Coulombe (2021) argues are of little

importance to the performance and robustness of the algorithm. Secondly, MRF perfor-

mance is relatively unaffected by the inclusion of many irrelevant features in St (Friedman

et al., 2001). Thirdly, with a sufficiently large mtry, the model can handle sparsity in the

features and so discard less meaningful predictors (Coulombe, 2021).
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4.3 Augmenting the splitting rule

Next, the single country splitting procedure needs to be adapted to accommodate for

the pooled inflation data. The MRF framework can be remarkably suited to a pooled

estimation approach, as rather than requiring coefficients to be the same over the whole

time series of every country, we let the algorithm decide based on the data and features

which country’s coefficients are most similar during specific sub-periods in time. This

stands in constrast with a normal pooled OLS approach, where the coefficients of the

countries need to be highly similar across the whole time period under consideration.

The goal of the original splitting procedure of Equation (8) was to find at each node

the best variable Sj out of the random subset of predictors J− to split the quarterly

observations across two leafs, and at which value c of that variable the split should occur.

Hence, fundamentally, observations corresponding to time indices t were assigned to leafs.

However, after pooling the data, each quarter t exists for every country in the sample.

Therefore, the splitting procedure should now not only split according to time index t

but also according to country q. This is simply because quarter t of one country does not

necessarily have to be in the same leaf as the quarter t of another per se. For this purpose

we consider country-quarter pairs (q, t) that will be assigned to leafs. Additionally, we

need to consider that each feature Sj,t exists for every country q. Hence, this becomes

Sj,q,t. Jointly, this gives the following augmented splitting rule:

min
j ∈J−, c∈R

[
min
β1

∑
{(q,t)∈l|Sj,q,t≤c}

(yq,t −Xq,tβ1)
2 + λ ||β1||22

+ min
β2

∑
{(q,t)∈l|Sj,q,t>c}

(yq,t −Xq,tβ2)
2 + λ ||β2||22

]
.

(9)

The goal of this problem is to find the best variable Sj out of the random subset of

predictors J− to split the sample with, and at which value c of that variable the split

should occur. Now, however, the variable Sj can take values c across countries. In

practice, we implement this minimization problem by first sorting the unique values of

Sj,q,t from high to low for each j, and then considering values c at intervals of a length of

5% of the number of unique values Sj,q,t. Then for each value c, we split the observations

over two subsets as detailed in Equation (9) and perform two ridge regressions on the

subsets. Again, the ridge penalty is included to prevent overfitting and to decrease the

variance of the parameter estimates (Friedberg et al., 2019). We use 5-fold cross-validation
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to tune the ridge parameter λ. For this purpose I use the cv.glmnet function from the

glmnet package, which performs the optimization problem of finding the appropriate λ

parameter (Friedman et al., 2022).

To stop the splitting procedure I use two stopping criteria. Firstly, the minimum node

size for a leaf to be considered for splitting is 140 observations. Secondly, for a split to

be considered valid, it should have at least 6 observations per regressor (minimum leaf

fraction (MLF) = 6). Both of these stopping criteria are higher than the recommenda-

tion of Coulombe (2021) to use minimum node size = 10 for quarterly data and a MLF

between 1 and 2. This is for three reasons. First, pooling the data leads to a considerably

larger number of available observations than would otherwise occur using quarterly data

of a single country. More specifically, after pooling we have 1296 observations for all vari-

ables, while for a country with 50 years of quarterly data (which is often unavailable), one

would only have 200 observations. Therefore, the tree already attains sufficient depth by

stopping splitting earlier. Secondly, Coulombe (2021) focuses on small models with few

explanatory variables, such that estimation is possible with fewer observations. This paper

investigates a relatively larger model with nine parameters (compared to four parameters

of Coulombe (2021)). Hence, a larger minimum number of observations is justified to

facilitate estimation. Thirdly, Coulombe (2021) employs a random walk regularization in

estimation, that includes the first two lags and first two forwards of each observation t in

a leaf. This means that often in regressing, effectively many more observations are used

than is implied by the minimum node size and MLF. In a pooled setting, however, including

lags and forwards of each t of a country is less meaningful. Hence, this regularization is

not included. This necessitates a larger minimum node size and minimum leaf fraction

for meaningful estimation. Based on trial runs with MLF ∈ {20, 30, 40, 50, 60, 70, 80, 90}, I
find that MRF performance does not improve appreciably for MLF ≥ 60. For lower MLF we

find a sharp increase in model performance based on both in-sample fit and out-of-sample

forecasting performance.

Lastly, in growing the MRF I use a fraction mtry= 0.25 of the total number of available

features in determining each split. This is slightly lower than the recommended value of

one third in the literature (James et al., 2021). However, based on experimentation, and

in line with Coulombe (2021), we find that MRF performance does not change appreciably

when considering mtry ∈ {0.1, 0.25, 0.33, 0.5}, while computational burden is strongly

affected. A possible explanation for this is that macroeconomic data often has a factor

structure. For example, if for a certain split the variable unemployment is not selected,

there are many other correlated variables such as output gap or other labour indicators
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that will produce similar results. This is because these variables often represent a similar

latent factor (Coulombe, 2021).

Note that, ultimately, the algorithm is not optimally tuned. However, as Coulombe

(2021) points out, this is generally not problematic for Random Forest algorithms as often

the performance gains from optimizing the tuning parameters are ”miniscule”. Hence,

most parameters are set based on theoretical arguments and a limited number of trial

runs that assess both in-sample fit, and prediction accuracy for those observations not

used in growing the trees (due to sampling with replacement). For this purpose I evaluated

the root mean squared error in both cases.

4.4 Assessing relative performance of Pooled MRF

To assess the relative performance and viability of Pooled MRF, we consider both the

in-sample fit and a forecasting exercise in which we forecast the period 2018Q1-2021Q4.

This period includes part of the recent peak in inflation and energy prices and is chosen to

assess the performance of the model both in a period of stability as well as rapid change

in inflation. In the forecasting exercise we compare pooled MRF to the following models:

• The Phillips curve model of Equation (6), where the coefficients are estimated once

based on the training set of 2004Q1-2018Q4 for each country separately.

• A Random Walk (RW) model considered by Faust and Wright (2013) in which

πt+1 = πt. This model is found to outperform the Atkeson & Ohanian (2001)

model, which is often used as a benchmark for out-of-sample inflation forecasting.

• A plain Random Forest model that is grown using the same features, mtry and

number of trees as pooled MRF. This model also uses the pooled data.

• An AR(4) model that is estimated on the training set 2004Q1-2018Q4 for each

country and then makes one-quarter ahead forecasts. Faust & Wright (2013) use a

highly similar model as their benchmark for inflation forecasting.

Here the pooled MRF and plain RF models are estimated only once based on the

2004Q1-2018Q4 pooled data. We compare the models by assessing differences in the

Root Mean Squared error, which can be computed as:

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2. (10)
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As for each country only 16 out-of-sample observations exist, we compare the predictive

accuracy of the models using a small-sample adjusted Diebold-Mariano test (Harvey et

al., 1997). This adjusts for the asymptotic results used in the usual Diebold-Mariano

test (Diebold & Mariano, 1995). In this test we consider the squared estimation error as

the loss function. Furthermore, we test the two sided null hypothesis of equal predictive

accuracy. The adjusted test statistics S∗ can be computed based on the usual Diebold

Mariano test statistic S as:

S∗ =

(
n− 1− 2h+ n−1h(h− 1)

n

)
S, (11)

where n is the number of observations we forecast, and h is the forecasting horizon. In

our case this gives n = 16 and h = 1. The test statistic follows a Student’s t distribution

with (n− 1) degrees of freedom.

4.5 Interpreting MRF

Generally, Random Forests are regarded as black box models and, hence, often require

external devices to facilitate interpretation (Molnar, 2019). While MRF improves inter-

pretability by providing economically meaningful and time-varying coefficients, under-

standing what drives this time-variation, similar to RF for the dependent variable yt, still

requires external devices. In this section I outline how the MRF output can be analyzed to

answer what economic variables are the main determinants of changes in oil pass-through.

I focus on Variable Importance (VI) as well as surrogate trees.

4.5.1 Variable Importance

The central idea of Variable Importance in random forests is analyzing how the predictive

accuracy of the model changes on a testing set when we replace a feature Sj by a random

permutation of this feature.

The measure of VI we consider is that of V IOOB, where the observations not used in

growing the trees (due to sampling with replacement) of the RF, also called out-of-bag,

are used as the testing set (Breiman, 2001). To analyze the VI, we first compute the Root

Mean Squared Error (RMSE) of this testing set before permuting any feature. We can

compute the RMSE as

RMSE =

√
1

#OOB

∑
q∈Q

∑
t∈OOB(q)

(yq,t − ŷq,t)2, (12)
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where Q is the set of all countries, OOB(q) denotes the set of out-of-bag observations

for country q and #OOB denotes the total number of out-of-bag observations. Then we

permute each feature j one at a time and compute the RMSE again. Finally, the VI for a

tree can be computed as the percentage reduction in RMSE when the variable is included

compared to when it is randomly permuted. The VI measure for the pooled Random

Forest is the average of VI across all trees. A key drawback of this method is that when

features are highly correlated, VI can experience difficulty in deciding which of the two

features is most important. Therefore, the results of this analysis should be interpreted

with caution.

4.5.2 Surrogate Trees

Another way to assess which variables are most important for oil pass-through is by

growing a so-called surrogate tree on the path of the βk,t coefficients that relate to short-

term oil pass-through (Ribeiro et al., 2016). The goal of this surrogate tree is to gauge

which features are most important in explaining the path of the coefficients. Hence, the

surrogate tree focuses on explaining the model rather than the data (Coulombe, 2021).

We use a cost-complexity parameter of 0.04 in growing this surrogate tree. This parameter

is set to take into account the trade-off between the fit of the surrogate tree on the GTVP

path and interpretation. In short, a surrogate tree is a regression tree that tries to replicate

the MRF model predictions of βk,t by only using a handful of leafs.

5 Results

This section describes the findings relating to which variables are most important in

the inflation forecasts of pooled MRF, and in the path of short-term oil pass-through

coefficient. As discussed, I first assess the in-sample fit and out-of-sample forecasts of

pooled MRF relative to four benchmark models. Next, I present the results of the variable

importance analyses. Finally, we use the features most relevant for oil pass-through to

grow a surrogate tree.

5.1 Relative Performance MRF

Figure 3 plots the in-sample predictions of pooled MRF in comparison to the PC model

and true inflation for France, Ireland and Hungary. These countries are chosen to il-

lustrate the strengths and weaknesses of pooled MRF most strikingly, although similar
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patterns exist for the other countries (See Appendix B for the in-sample predictions of

each country).

For France, we observe that both pooled MRF and the augmented PC model capture

the time-pattern of the adjusted inflation well. Both models manage to fit the peaks

and lows of the true inflation, albeit with a slight delay due to the autoregressive nature

of the models. A notable difference between pooled MRF and the Phillips curve model

appears to be that the pooled MRF forecasts are considerably more smooth than those of

the augmented PC model. This can be most clearly seen for the period 2016Q1-2018Q4,

where both the actual inflation and the PC model exhibit small peaks and lows, while

pooled MRF fits a smooth averaging line through the pattern. As the augmented PC

model is in essence an AR model, this often means that the fit is worsened, as the model

still attempts to capture the previous period peak, while this period true inflation has

dropped again.

For Ireland, we observe a key weakness of pooled MRF. More specifically, we observe

that pooled MRF exhibits difficulty in capturing extreme absolute values of inflation,

where augmented PC does not. Following the financial crisis of 2008, Ireland experienced

a period of deflation, which produced a deep trough for the adjusted inflation pattern.

Pooled MRF does not fit this decrease timely and fully. A potential explanation for this

is that too few observations exist with such a rapid and deep decline in inflation across

the countries. Hence, the observations corresponding to Ireland in the period 2008Q1-

2010Q1 are estimated in a common leaf with observations that have a less extreme decline

in inflation. The result is that the coefficients for Ireland in this specific period are not of

the magnitude required to fit the rapid decline in inflation, and hence the trough is never

fully captured.

For Hungary, it can be observed that both Pooled MRF and the augmented PC model

fit the inflation pattern well. This is an interesting result, because in Section 2 we noted

that Hungary had the lowest correlation with the other countries in the sample. The

strong fit of Hungary shows the flexibility of pooled MRF for inflation forecasting in two

ways. Firstly, even when the inflation pattern of a country exhibits low correlation with

those of another country, if at specific points in time the coefficients correspond to those

of other countries at different points in time, pooled MRF can still produce a good fit.

Secondly, if a country has no countries that ever exhibit a similar autoregressive structure,

MRF can assign the observations of the specific country to an isolated leaf for estimation.

An inspection of the MRF trees, however, shows that this was not the case for Hungary.

Therefore, the first explanation is more probable.
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Overall, an inspection of all three countries gives indication that pooled MRF performs

best when inflation is changing in a gradual manner. This is in line with the findings of

Coulombe (2021) for regular MRF. Specifically, he presents evidence that MRF performs

best when a time-series exhibits strong persistence. A possible explanation for the rela-

tively strong performance of pooled MRF in such cases is that many observations exist

for which inflation is changing only gradually, such that the coefficients can be estimated

well. Additionally, in periods of gradual change, inflation exhibits altering small peaks

and lows, which pooled MRF can smooth out nicely. In particular AR models struggle

with such small altering ups and downs, due to the lagged capturing of either movement

(See France 2016Q1-2018Q1).

Figure 3: Adjusted inflation (green), pooled MRF prediction (orange) and augmented PC
prediction (blue) for France, Ireland and Hungary, 2004Q1-2021Q4

Next, we compare the pooled MRF model to the augmented PC model, an AR(4)

model, an adapted version of the Atkeson and Ohanian (2001) random walk model, as

used by Faust &Wright (2013), and plain RF. First, we compute the predictive accuracy of

all models using the RMSE. Second, we compare the predictive accuracy of the models for

the period 2018Q1-2021Q4, using a small-sample adjusted Diebold Mariano test (Harvey

et al., 1997). This period poses a considerable challenge for pooled MRF, as the rapidly

23



increasing inflation period of 2021Q1-2021Q4 is included in the sample. Therefore, the

results should be interpreted as being conservative estimates of the performance of pooled

MRF in general.

Table 2 shows the RMSE for each model and each country for the one quarter ahead

forecasts corresponding to 2018Q1-2021Q4. We observe that for most countries, the

pooled MRF model does not differ significantly in its predictive accuracy in comparison

to the augmented PC, plain RF and AR (4) models. The PC, RF and AR(4) models

outperform pooled MRF for 5, 6 and 6 countries, respectively. Pooled MRF does, however,

appear significantly more accurate than the random walk model. The relatively poor

performance of this models is likely attributable to short forecast horizon of one-quarter

ahead (Faust & Wright, 2013). Hence, overall the AR(4) model and the augmented

Phillips curve perform best, followed by RF and the Pooled MRF model and finally the

RW model.

Table 2: Root Mean Squared Errors for predicting adjusted inflation one quarter ahead
over period 2004Q1-2021Q4

Country/Model P. MRF Aug. PC RW RF AR(4)

AUT 0.57 0.27 0.75 0.43 0.29
BEL 1.11 0.96 1.89* 0.81 0.66
GER 1.05 0.57 2.12* 0.93 0.61
FIN 0.54 0.46 4.43*** 0.44 0.33
FRA 0.30 0.23 1.41*** 0.29 0.23
DNK 0.62 0.40 0.51 0.25*** 0.25***
GBR 0.56 0.14* 1.68 0.42 0.39
ITA 0.81 0.18*** 3.31*** 0.32*** 0.20***
LUX 0.77 0.51 1.43* 0.60 0.62
NLD 0.68 0.46 2.55*** 0.60 0.55
SWE 0.48 0.22 3.21*** 0.51 0.37
ESP 1.69 2.46 2.48 1.04** 0.81**
CZE 1.28 0.67 2.70* 1.13 0.54
PRT 1.00 0.28*** 2.02** 0.21*** 0.16***
GRC 3.45 1.04*** 3.86 1.44*** 0.86***
HUN 1.39 1.85 4.66* 1.45 1.68
IRL 1.69 0.54* 2.49 1.26 1.31
SVN 1.22 0.82 1.83** 0.39*** 0.46**

Note. * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Interestingly, the pooled MRF model appears to perform best for Hungary. This is

particularly remarkable, because Hungary is the country that has the least commonality

in its inflation pattern in comparison to the other countries. A potential explanation

for this is that for this country the rapid rise in inflation of 2021, set in slightly later.
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While for most countries inflation started to increase in 2020Q4, Hungary’s inflation

remained approximately equal between 2020Q4 and 2021Q1. This in line with the findings

previously discussed, that pooled MRF performs best for inflation of moderate magnitude

and with moderate change.

Lastly, as we observed the performance of pooled MRF to be particularly strong in

capturing the inflation levels that are not extreme in magnitude, we also consider the

out-of-sample predictive performance over all countries based on the magnitude of the

adjusted inflation. To achieve this we split the out-of-sample data into quartiles and

compute RMSE and small-sample adjusted DM test for each quartile. In each of these

tests we compare the predictive accuracy of pooled MRF to those of the other 4 models.

Table 3 presents the RMSEs and associated small-sample DM test results. We observe

that the augmented PC and AR(4) models are significantly more accurate when predicting

values of inflation in the highest and lowest quartiles. Interestingly, however, Pooled

MRF performs equally well as the augmented PC model for observations of inflation in

the second quantile, and outperforms all models significantly at the 1% level for inflation

observations in the third quartile. More specifically, pooled MRF attains a RMSE 80%

smaller than the next best model for this quartile. These findings are in line with our

previous results and the findings of Coulombe (2021).

Table 3: Root Mean Squared Error for each quantile based on magnitude of the adjusted
inflation value to be forecasted

Quantile/Model P. MRF Aug.PC RW RF AR(4)

1 1.76 0.99** 2.85*** 0.29*** 0.55***
2 0.43 0.42 1.34*** 0.18*** 0.21***
3 0.06 0.34*** 1.26*** 0.36*** 0.31***
4 2.02 0.93*** 4.17*** 1.96 1.23***

Note. * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

5.2 Variable Importance Analysis

Next, we analyze the pooled MRF output through variable importance analysis. Figure

4 plots the relative reduction in RMSE based on a random permutation of each feature.

The results indicate that the first lag of exports as a percentage of GDP has the largest

effect on the fit of the pooled MRF. This is consistent with the findings of Romer (1993)

and Chen (2009), who find that trade-openness significantly reduces oil pass-through and
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so affects inflation. Accordingly, the first lag of exports and the first lag of the percentage

change in exports are both in the top 10 of most important features.

Another variable that is strongly related to oil pass-through is fuel intensity. In line

with the results of Chen (2009), we find that fuel intensity is an important feature in

modeling inflation. Almost certainly this is attributable to its effect on oil pass-through.

Economic theory suggests that if a country consumes more oil per capita, an increase

in the oil price will lead to a higher experienced inflation in this country. Similarly,

Hooker (2002) related the attenuation of oil pass-through after the 1980s to a decreasing

fuel intensity. As fuel intensity is the fifth most important variable, this confirms the

significant role for fuel intensity.

Figure 4: Relative reduction in RMSE based on random permutation of each feature for
2004Q1-2021Q4 adjusted inflation

Lastly, we observe that the second and seventh lag of adjusted inflation are important

features in the pooled MRF model. This can be related to the findings of Chen (2009) and

Gelos & Ustyugova (2017), who find that a low inflation environment significantly reduces

oil pass-through. From an economic perspective, the historic level of inflation is related

to how persistent producers will think a price shock to be, which affects oil pass-through

(Taylor, 2000).

An additional observation is the the short-term interest rate forecast provided by the

OECD appears of significant importance. This is particularly striking as both the first

and second lag of this variable score very high in the variable importance analysis. This
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provides strong indication that the short term interest rate is an important determinant

of inflation. This is also in line with economic intuition, think for example of the famous

Taylor Rule model.

5.3 Surrogate Trees

We proceed to analyze the short-term oil pass-through and which features are most rel-

evant in this regard by growing surrogate trees on the short term oil pass-through for

each country between 2004Q1 up to 2021Q4. For this purpose, we consider the features

outlined in Section 2, which past studies have found to be most important in determining

oil pass-through.

Figure 5 plots the coefficient θ1 over time and the surrogate tree fit of this coefficient.

In general for most countries we observe that the oil pass-through gradually decreased

from 2007Q1 onward up to 2016Q1 approximately, although the path is volatile. Addi-

tionally, we observe that for a majority of the countries, the short-term oil pass-through

did not change considerably following the Covid-19 crisis, although a small increase can

be observed. This is an interesting finding, as it suggests that the currently increasing

energy prices are primarily a result of an increasing level in oil prices, rather than an

increase in oil pass-through.

Table 4 shows the correlation between the surrogate tree fitted path of θ1 and its actual

path. We observe that overall for most countries, the surrogate trees provide a strong fit

to the path of θ1. This is confirmed by the high correlations between the surrogate tree

fit and the actual path of θ1. Indeed, most correlations are larger than or equal to 0.70.

Still, the features are not a perfect fit to the path of θ1. Most notably for Italy, it can

be seen that the surrogate tree misses many of the peaks and troughs after 2016Q1. On

the other hand, the surrogate tree for countries such as Austria, Czech Republic, Ireland,

Slovenia and Belgium, the peaks and troughs are very well captured.

Table 4: Correlation between path of θ1 and the fitted path of the surrogate tree

Country AUT BEL GER FIN FRA DNK GBR ITA LUX NLD SWE ESP CZE PRT GRC HUN IRL SVN

Correlation 0.71 0.72 0.64 0.57 0.71 0.64 0.71 0.58 0.65 0.59 0.59 0.76 0.80 0.71 0.64 0.75 0.66 0.71

Next, we analyze the features of main importance in growing the surrogate trees more

in depth. Figure 6 shows how many times a tree has selected a certain feature for splitting

at least once. We observe that similar to the feature importance analysis from before, the

first lag of fuel intensity appears important. This feature is selected by more than half of

the surrogate trees. Second, we see that the exchange rate is of significant importance,
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Figure 5: θ1 coefficient for short-term oil pass-through (blue) and surrogate tree fit (or-
ange) for each country, 2004Q1-2021Q4

as both the first lag and second lag of this feature are in the top 4 of most used features,

each being used in almost half of the surrogate trees. This is particularly interesting,
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because these features are highly correlated. Hence, that both appear so high, confirm

the importance of this feature. Third, we observe that the output gap is second highest in

the list of features used. This relates to the argument of Gelos & Ustyugova (2017) that

oil pass-through is significantly higher when the economy has a positive output gap. More

specifically, producers can more easily pass on the increased energy price to consumers

in such economic conditions. Lastly, the ratio of debt to GDP also appears to play an

important role across the countries in replicating the path of short-term oil pass-through.

This can be seen by the first and second lag both appearing relatively high in the ranking.

The other features appear to be of importance only to a handful of specific countries.

Figure 6: Frequency of selection of each feature across all countries in growing the surro-
gate trees

For illustrative purposes, we now consider the surrogate trees of Finland (top left),

Denmark (top right), Luxembourg (bottom left) and France (bottom right). Each leaf

shows the estimated θ1 coefficient as well as the number of observations in the leaf.

Inspection of the surrogate trees for Finland, Denmark, and Finland confirm the pre-

vious arguments that a higher fuel intensity is correlated with a higher short term oil

pass-through. More specifically, we see that for a lower fuel intensity, each country has

a lower oil pass-through. Moreover, Finland and Denmark use fuel intensity for the first

split, which provides further indication for the strength of this feature.

If we look at the surrogate trees of Luxembourg and France, we observe secondly

that a higher debt/GDP ratio is associated with a lower oil pass-through. This stands

in contrast with the findings of Celasun et al. (2004), who argue that if a country has

a stronger fiscal balance, it can intervene better and more credibly to contain an oil-
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Figure 7: Surrogate Tree of Finland (top left), Denmark (top right), Luxembourg (bottom
left) and France (bottom right) for θ1

shock. The observed pattern in the surrogate trees, however, can likely be attributed to

the contemporaneous rapid increase in (1) inflation, (2) sovereign debts relative to GDP

and (3) the oil price following the Covid-19 pandemic. The model, therefore, tries to

capture the higher inflation by associating a higher debt to GDP ratio with a higher oil

pass-through.

For Finland, Denmark and Luxembourg we see that in the left subtrees, the exchange

rate is negatively associated with the exchange rate. This is in line with expectations

as a higher exchange rate in terms of dollars, means oil can be more cheaply acquired.

Therefore, a higher exchange rate is associated with a lower oil pass-through. This is also

consistent with the findings of Chen (2009) and Gelos & Ustyugova (2017). Additionally,

we observe in the left subtree of Finland that trade openness positively correlates with

lower oil pass-through. This is in line with the arguments of Romer (1993) and Chen

(2009) that goods can often be imported more cheaply to offset oil shocks. Lastly, we
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observe in the surrogate trees of Denmark and Luxembourg that a larger (standardized)

output gap is associated with a higher oil pass-through. This makes sense, because a

positive output gap is associated with very little economic slack, such that an oil shock

leads to higher pass-through in consumer prices (Gelos & Ustyugova, 2017). Overall, the

surrogate trees illustrate the prominent role that fuel intensity, the exchange rate and the

output gap play in the paths of the short-term oil pass-through coefficients.

6 Conclusion

This paper proposes a novel extension to the Macroeconomic Random Forest (MRF) al-

gorithm to model inflation. More specifically, I augment the MRF splitting procedure to

accommodate panel data across European countries to exploit commonality in the infla-

tion patterns. We then use this model to assess which macroeconomic state variables are

the most important determinants of short-term oil pass-through. Through a forecasting

study we document that pooled MRF outperforms all benchmark models, including plain

RF, for periods with inflation of moderate magnitude. However, for periods with extreme

changes in the inflation rate, pooled MRF cannot outperform the existing autoregressive

and Phillips curve models. Through an in depth assessment of the pooled MRF output by

means of variable importance analysis and surrogate trees on the path of the short-term

oil pass-through coefficient, we find evidence that the fuel intensity, exchange rate, debt

to GDP ratio, and output gap play a prominent role in the level of oil pass-through in a

country. These results are largely consistent with the findings in the existing literature of

Gelos & Ustyugova (2017) as well as Chen (2009). A difference with Gelos & Ustyugova

(2017) is that the weights of food in the CPI inflation basket are found to be only of

minor importance.

For further research we suggest to consider a larger set of features. A major challenge

in constructing the model rested with data availability for all features across all countries

for the time period under consideration. This meant that certain variables that are

often found to be of significant importance in inflation modelling, such as the number of

construction permits and various indicators on the housing market, could not be used.

Additionally, further research could investigate applying the pooled MRF framework to

a larger set of countries across the world. Our results indicate that pooled MRF works

remarkably well even for countries with relatively low correlations in their inflation pattern

with other countries. This provides a basis for the inclusion of more countries, which could

in turn improve fit for the countries already considered in the model.
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Appendix A List of Features and Transformations

Table 1: Features and corresponding transformations
Feature Transformation Lags MAF

Inflation - 2 -
Inflation Subtraction of long-run mean 8 2
output gap Hodrick-Prescott filtered 2 -
output gap Normalized for each country 2 2
oil price - 2 -
oil price log of first difference 4 2
Euro/dollar exchange rate - 2 2
Unemployment rate - 2 -
Unemployment rate Normalized for each country 2 2
Unemployment rate growth rate compared to last quarter 2 -
Capacity Utilization - 2 2
Capacity Utilization growth rate compared to last quarter 2 -
Capacity Utilization US - 2 2
Long term interest - 2 -
Long term interest forecast - 2 -
Short term interest - 2 -
Short term interest forecast - 2 -
Unit Labour Cost growth rate - 2 -
M1 growth rate - 2 -
M3 growth rate - 2 -
Domestic demand forecast - 2 2
PPI growth - 2 2
Imports percentage change - 2 -
Exports percentage change - 2 -
Exports % of GDP 2 -
Imports % of GDP 2 -
Trade Openness % of GDP 2 -
Current Account Balance % of GDP 2 -
GDP growth rate compared to last quarter 2 2
GDP forecast - 2 -
Share Prices - 2 -
Share Prices growth rate compared to last quarter 2 -
Housing prices - 2 -
Housing prices growth rate compared to last quarter 2 -
Debt/GDP - 2 -
Fuel Intensity Per capita 2 -
Transport weight in CPI basket - 2 2
Food weight in CPI basket - 2 2
Financial development index 2 -
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Appendix B In-sample predictions pooled MRF

Figure B.1: Inflation (solid) and unemployment rate for 18 European countries (dashed),
2004Q1 - 2021Q4 (Correlations in excess of 0.75 or higher in bold)
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Appendix C Code Description

In this Appendix I outline what each of my codes is used for and how it relates to the

results obtained in this paper.

• PMRF and VI : This code is used firstly to obtain the pooled MRF estimates on

the in-sample data and the full sample data. Additionally, this code provides the

out-of-bag observations of each tree used and how these can be used to compute the

variable importance of each feature.

• Quarterly Data Preparation: This code outlines how all the data obtained from the

databases are augmented, how MAFs are computed and what variable relates to

which economic indicator.

• DM tests : This code obtains all the fitted values for each of the 4 models I consider

in the forecasting exercise and computes both the RMSEs and the small-sample

adjusted DM tests.

• Surrogate Trees : This code outlines how all the surrogate trees are grown, and how

the plots are obtained.
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