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1 Introduction

At present regression analysis is one of the most popular and powerful analysis tools for

researchers, with a wide range of applications. One of the most common regression analysis

methods is the ordinary least squares method (OLS). This method relies on seven main

assumptions on the data generating process (Heij et al., 2004). Exogeneity is one of these

assumptions, when explanatory variables are not exogenous parameter estimates may be bi-

ased and/or inconsistent. There are ways to circumvent this problem. Instrumental variables

(IV) estimation provides us with a solution, these methods however come with their own

drawbacks. In order to obtain an unbiased estimate, the two stage least square (2SLS), the

conventional IV estimator for example, requires an instrument that is highly correlated with

the endogenous variable (Amemiya, 1975). Such an instrument is called a strong instrument

(Staiger & Stock, 1994). In practice it is however hard and not always possible to find a

strong instrument (Martens et al., 2006). It is therefore useful to have an IV estimation

method that (also) performs well under weak instrumental variables. Thus far not many

methods have been designed that fulfil that criteria, the main methods are the Fuller esti-

mation method proposed by Fuller (1977) and the Unbiased estimator proposed by Andrews

& Armstrong (2017). A method with such properties would have a wide variety of practical

applications in cases were the instruments are weak, for example when examining the effect

of migrations on countries’ productivity as is done by Hornung (2014) or to study the re-

lationship between education and labor market earnings as is done by Angrist & Krueger

(1995).

In order to analyse the Unbiased estimator, we aim to apply a simulation study to examine

the performance of this estimator in the case of both weak and strong instrumental variables.

We will therefore formulate the following central research question: “What are the bias and

deviation of the Unbiased estimator?”. We will also analyse a few extensions to our main

research question, we will formulate these extensions using different sub-questions.

First, we will compare our estimates with other estimates such as those obtained by 2SLS

or the Fuller estimation approach. We will also expand our comparison with other estimation

methods such as the limited information maximum likelihood (LIML) and the bias-adjusted

2SLS (B2SLS) as mentioned in Mills et al. (2014) and two estimators which we will propose

ourselves. “How do the bias and deviation of the Unbiased estimator compare to the 2SLS,

Fuller, LIML, B2SLS and our two self proposed methods?”. The unbiased estimation method

relies on prior knowledge on the coefficient sign within the first stage regression, our obtained

results may therefore be broadened by examining the effect on performance when assuming
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the wrong coefficient sign. “How do estimates fare when the sign assumption is violated?”.

Lastly, we will conduct an empirical application of our methodology to data from Card

(1993), who analyse the causal effects of education on earnings, using college proximity as

instrumental variable.

1.1 Structure

In the rest of this section we will discuss the literature related to our research. Section 2

introduces the notation, the Unbiased estimator and the estimators we would like to use for

our method comparison. Section 2 also discusses the theoretical consequences when the sign

assumption is violated. Thereafter Section 3 presents all our simulation results and aims to

answer the research questions of this paper. In Section 4 we conduct our empirical application

using the data from Card (1993). Lastly, Section 5 discusses the results and presents some

suggestions for future research. Auxiliary results and proofs are given in Appendix A.

1.2 Theoretical background

In practice, endogenous variables are far from rare (Martens et al., 2006). To bypass the

problems caused by endogenous variables one can consider using IV estimation to obtain

unbiased parameter estimates. This class of estimation methods use an instrument that is

uncorrelated to the error term but is (in theory) highly correlated to the endogenous variable.

In the first stage regression the relation between the instrument and the endogenous variable

is estimated, thereafter in the second stage regression this relation is used to estimate a

linear regression model of the dependent variable. Hirano & Porter (2015) prove that in a

linear IV model with weak instruments, mean, median and quantile unbiased estimations

are all impossible when the parameter space of the first stage regression is unrestricted. We

thus know that in order to produce an unbiased estimate under weak instruments we must

impose a restriction on the first stage regression. Staiger & Stock (1994) have proposed that

instruments be valued as weak whenever the F-statistic of the first stage regression has a

value less than ten, this rule of thumb was later refined and improved by Stock & Yogo

(2002) but is still widely accepted and used within academia.

Andrews & Armstrong (2017) propose exploiting information on the sign of the first stage

regression, i.e. whether the relationship between the instrument and the endogenous variable

is positive or negative, to circumvent the previously mentioned impossibility result. Using

this information they constructed unbiased estimates when instruments are weak, in both the
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single and multiple instrument case. In both cases the estimation methods converge towards

the 2SLS estimate when the instruments increase in strength, this is a very desirable property

since this implies that their method obtains asymptotically unbiased and efficient estimates

when instruments are strong, since the 2SLS estimator has this property (Amemiya, 1975).

2 Estimation

In this paper we suppose that our sample contains N observations of three different variables,

Yn, Xn and Zn where n = 1, . . . , N . Yn contains observations of our dependant variable, Xn

is our endogenous independent variable and Zn is a m× 1 vector of instrumental variables.

For further convenience we let Y and X be N × 1 vectors where row n contains the values

Yn and Xn respectively, also let Z be a N ×m matrix where row n contains the values of Z ′
n.

We can then capture the relationship between the variables using the following structural

form of the classic linear IV model:

Y = Xβ + Ũ

X = Zπ + V
(1)

The reduced form of Equation 1 can then be obtained by substituting the endogenous

variable X by its estimated value:

Y = Zπβ + U

X = Zπ + V,
(2)

where Ũ , U and V denote the error terms.

If we then denote the parameters of the OLS regression in the first- and second-stage by ξ1

and ξ2 respectively, we find that(
ξ1

ξ2

)
=

(
(Z ′Z)−1Z ′Y

(Z ′Z)−1Z ′X

)
∼ N

((
πβ

π

)
,

(
Σ11 Σ12

Σ21 Σ22

))
, (3)

where πi > 0 for each πi ∈ π. This restriction on the sign assumption can be made without

any loss of generality since if πi < 0 holds for any i = 1, ...,m, we can redefine our instrument

Z by multiplying each value in column i by -1.

We can now focus on estimation of ξ1 and ξ2 since these give us sufficient information to

obtain estimates for β and π in the case where the error terms Un and Vn are independent and

3



identically distributed (i.i.d.) over n. In the case where the regression in Equation 2 is just-

identified the parameters ξ1 and ξ2 are scalars and we can thus write the variance-covariance

matrix as follows:

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
= (I2 ⊗ (Z ′Z)−1Z ′)V ar((U ′, V ′)′)(I2 ⊗ (Z ′Z)−1Z ′)′ =

(
σ2
1 σ12

σ12 σ2
2

)
.

2.1 Unbiased estimation of the inverse of a normal mean

Let us assume that we can create an unbiased estimator τ̂ for 1/π that depends on the data

only through ξ2. We can then define the estimator δ̂ as

δ̂(ξ,Σ) = (ξ1 −
σ12

σ2
2

ξ2) (4)

By removing the explanatory power of ξ2 using the correlation between ξ2 and ξ1, δ̂ is

constructed is such a way that it is orthogonal to τ̂ (Kleibergen, 2002). This estimator

thus has the properties that E[δ̂] = πβ − σ12

σ2
2
π and due to orthogonality δ̂ is independent of

τ̂ . From this independence we get that E[τ̂ δ̂] = E[τ̂ ]E[δ̂] = β − σ12

σ2
2
, we can now see that

τ̂ δ̂+ σ12

σ2
2
will be an unbiased estimator of β. Our problem has therefore now become unbiased

estimation of τ , the inverse of a normal mean.

Nikulin & Voinov (2011) have shown that an unbiased estimator of τ indeed exists if we

assume the sign of π to be known. This estimator is given in Equation 5 and is a function of

Φ and ϕ which denote the cumulative distribution function (c.d.f.) and probability density

function (p.d.f.) of the standard normal distribution respectively.

τ̂(ξ2, σ
2
2) =

1

σ2

1− Φ(ξ2/σ2)

ϕ(ξ2/σ2)
(5)

We thus know that Eπ[τ̂(ξ2, σ
2
2)] =

1
π
for all π > 0. The derivation of this non-intuitive esti-

mator is based on the theory of bilateral Laplace transforms. Unbiasedness of this estimator

was verified by Andrews & Armstrong (2017).

2.2 Unbiased estimation of β

We can now construct an unbiased estimate for our parameter of interest. As mentioned

earlier τ̂ δ̂+ σ12

σ2
2
gives an unbiased estimate of β, if we now substitute Equation 4 and Equation

5 into our parameters δ̂ and τ̂ we obtain the following unique unbiased estimate of β:

β̂U(ξ,Σ) = τ̂(ξ2, σ
2
2)δ̂(ξ,Σ) +

σ12

σ2
2

=
1

σ2

1− Φ(ξ2/σ2)

ϕ(ξ2/σ2)
(ξ1 −

σ12

σ2
2

ξ2) +
σ12

σ2
2

(6)

4



This estimator is unbiased for β if the assumption that π > 0 holds.

The 2SLS estimate can be written as:

β̂2SLS =
ξ1
ξ2

=
1

ξ2
(ξ1 −

σ12

σ2
2

ξ2) +
σ12

σ2
2

We now find that β̂U differs from the 2SLS estimate only in the sense that it uses the

unbiased estimate τ̂ for 1/π instead of the plug-in estimate 1/ξ2. Baricz (2008) have shown

that τ̂ < 1/ξ2 for ξ2 > 0, this implies that whenever ξ2 > 0, β̂U will equal the 2SLS estimate

shrunk towards σ12/σ
2
2.

2.3 k-class estimators

An important family of estimators are the so called k-class estimators which have been

constructed based on studies conducted by Nagar (1959) and Theil (1961). Mills et al.

(2014) captured this family of estimators using the model specification as given in Equation 7.

Different estimation methods coincide with different values for the parameter k, for example

if k = 0 we obtain the OLS estimator and if k = 1 we get the 2SLS estimator. Parameter k

is an arbitrary scalar which can either be stochastic or non-stochastic (Theil, 1961). It has

been proven that in the general case parameter estimates using k-class estimators will be

consistent if plim
N→∞

(k − 1) = 0 (Savin, 1973). We will only consider non-stochastic values for

k, in order to guarantee consistency it therefore suffices to check whether lim
N→∞

(k − 1) = 0

holds.

As mentioned earlier, in our method comparison section we would like to analyse the four

existing estimation methods, namely: β̂2SLS, β̂Full, β̂LIML and β̂B2SLS which coincide with

the following values of k

2SLS : k = 1,

LIML : k = kLIML = the smallest root ι of det((Y ′PzY/N + Σ)− ιΣ) = 0,

B2SLS : k = 1 + (m− 2)/N,

Fuller : k = kLIML − 1/N.

β̂(k) =
X ′PZY +N(1− k)σ12

X ′PZX +N(1− k)σ2
2

, (7)

where PA = A(A′A)−1A′ for any full column matrix A.

Note that the Fuller method is part of a larger class of estimates. Fuller (1977) define

the modified limited information estimator class as the class for which it holds that k =
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kLIML − a/N for a ∈ R. The LIML and Fuller methods are both part of this class and

coincide with a value of a equal to 0 and 1 respectively. The different methods within this

class place different weights on the variance and covariance terms in Equation 7. Fuller

(1977) have argued that “If one desires estimates that are nearly unbiased a is set equal

to 1. [. . .] If one wishes to minimize the mean square error of the estimators an a of 4 is

appropriate.”(p. 951). This result seems to indicate the existence of a bias-variance trade-off

between different parameter values a.

We would like to further investigate this potential trade-off and will therefore propose

two new estimators which are contained within the modified limited information estimator

class. To our knowledge these methods have not yet been tested/used within other academic

papers. First, a value of a equal to -1 which we will refer to as the Mirrorfuller. Second, we

will use a value of a equal to 2 which we will refer to as the Doublefuller. Further method

comparison within the modified limited information estimator class is an interesting topic

for future research. The Mirrorfuller and Doublefuller methods coincide with the following

values of k

MirrorF : k = kLIML + 1/N,

DoubleF : k = kLIML − 2/N.

Anderson & Sawa (1979) have proven that in the just-identified case β̂LIML is equivalent to

the 2SLS estimator, this also implies that β̂B2SLS is equivalent to the Fuller estimator since

kLIML = 1 and m = 1 by definition. Due to this result we must reduce our analysis to the

comparison of β̂U with β̂2SLS, β̂Full, β̂MirrorF and β̂DoubleF . If we substitute the corresponding

values of k into Equation 7 we obtain the following four estimators:

β̂2SLS = β̂(1) =
ξ1
ξ2
,

β̂Full = β̂(1− 1/N) =
ξ2ξ1 + σ12

ξ22 + σ2
2

,

β̂MirrorF = β̂(1 + 1/N) =
ξ2ξ1 − σ12

ξ22 − σ2
2

,

β̂DoubleF = β̂(1− 2/N) =
ξ2ξ1 + 2σ12

ξ22 + 2σ2
2

(8)

These methods are all consistent since lim
N→∞

(k− 1) = 0 clearly holds for all four values of k.
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2.4 Asymptotic behaviour: β̂U under strong instruments

In Section 2.2 we have shown that β̂U is unbiased. Even though this is a very desirable

property we must also analyse the performance of this estimator when instruments become

more informative. Desirably we would want the Unbiased estimator to be asymptotically

efficient, i.e. to be efficient as instruments become stronger. This efficiency is achieved

if the estimator is asymptotically equivalent to an efficient (IV) estimator, such as 2SLS

(Amemiya, 1975). We will investigate the asymptotic properties by letting the parameter π

become increasingly larger. Conventionally one would keep π fixed and take the sample size

N → ∞, this would result in Σ → 0. Andrews & Armstrong (2017) have shown however

that results stay the same when one takes π to infinity, we will therefore focus on the latter

to simplify notation.

In Section 2.2 we also showed that the 2SLS estimator only differs from the Unbiased

estimator in the fact that it replaces τ̂(ξ2, σ
2
2) in Equation 6 by 1/ξ2. Intuitively one can see

that these two estimators for 1/π both converge toward zero as the value of ξ2 increases:

lim
ξ2→∞

τ̂(ξ2, σ
2
2) = lim

ξ2→∞
1/ξ2 = 0

Small (2010) more formally defined the conversion of these to estimators using the following

inequality:

σ2

∣∣τ̂(ξ2, σ2
2)− 1/ξ2

∣∣ ≤ ∣∣∣∣σ3
2

ξ32

∣∣∣∣
Here we see that the conversion happens rapidly since the right side of the inequality grows

as a cube of ξ2, therefore the two estimators coincide with high precision for large values of

ξ2. Next we know that parameter ξ2 has a mean equal to π, thus as π → ∞ we will also

find that ξ2 → ∞. We can then conclude that as π → ∞ the difference between τ̂(ξ2, σ
2
2)

and 1/ξ2 will converge toward zero rapidly, hence the estimator β̂U has the same limiting

distribution as β̂2SLS as instruments become more informative.

2.5 Violation of restriction on first stage sign

Given that the construction of the Unbiased estimator β̂U relies on the assumption that the

sign of π in Equation 2 is known, namely π > 0, it is interesting to analyse the performance

of β̂U when this assumption is violated. These results can for example be used to check

whether the right sign has been assumed within an empirical application or to improve the

robustness of the Unbiased estimator.
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Let us assume that we calculate the Unbiased estimator using an instrument Z∗, where

Z∗ = −1 · Z, for which it thus holds that Z∗ has a negative effect on X, i.e. π∗ < 0

in X = Z∗π∗ + V ∗. Within this first stage regression we obtain parameter ξ∗2 which (in

expected value) is equal to −1 · ξ2, where ξ2 is the correct parameter in the sense that ξ̂2

would be obtained in the first stage regression if we chose Z as instrumental variable. If we

now use ξ∗2 to calculate τ̂ in Equation 5 we obtain the following estimate for 1/π:

τ̂ ∗ = τ̂(ξ∗2 , σ
2
2) =

1

σ2

1− Φ(ξ∗2/σ2)

ϕ(ξ∗2/σ2)
=

1

σ2

Φ(ξ2/σ2)

ϕ(ξ2/σ2)
, (9)

where we use the fact that Φ(A) = 1− Φ(−A) and that ϕ(A) = ϕ(−A), ∀A ∈ R.
We will now derive the first moment of this new estimator τ̂ ∗ in order to analyse its

properties. From Equation 3 we know that ξ2/σ2 ∼ N(π/σ2, 1), let x = ξ2/σ2 we then have:

Eπ(τ̂(ξ
∗
2 , σ

2
2)) =

1

σ2

∫
Φ(x)

ϕ(x)
ϕ(x− π/σ2)dx

=
1

σ2

∫
Φ(x)exp((π/σ2)x− (π/σ2)

2/2)dx

=
1

σ2

exp(−(π/σ2)
2/2)

{[
Φ(x)(σ2/π)exp((π/σ2)x)

]∞
x=−∞

−
∫

(σ2/π)exp((π/σ2)x)ϕ(x)dx

}
We made use of integration by parts in the previous step of the derivation;

∫
udv = uv −∫

vdu, where u = Φ(x) and v = exp(π/σ2)x.

=
1

σ2

exp(−(π/σ2)
2/2)

[
Φ(x)(σ2/π)exp((π/σ2)x)

]∞
x=−∞

− 1

σ2

∫
(σ2π)exp((π/σ2)x− (π/σ2)

2/2)ϕ(x)dx

=
1

σ2

exp(−(π/σ2)
2/2) lim

t→∞

[
Φ(t)(σ2/π)exp(t(π/σ2))

− Φ(−t)(σ2/π)exp(−t(π/σ2))
]
− 1

π

∫
ϕ(x− π/σ2)dx

It can now clearly be seen that the limit within the square brackets in the last expression

will go towards infinity as t → ∞. We can thus conclude that E(τ̂(ξ∗2 , σ
2
2)) has an infinite

first moment for all π. Therefore if the sign assumption of π is violated β̂U will no longer be

an unbiased estimator for β, once noticed this problem can however easily be solved since

the instrumental variable can be redefined in order to obtain an unbiased estimate of β.
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3 Simulation studies

In this section we will present the results we obtained from our simulation study and aim to

compare the performance measures of the Unbiased estimator with the different estimation

methods proposed in Section 2.3. The Unbiased estimator β̂U as defined in Equation 6

relies on five parameters (β, π, σ2
1, σ12, σ

2
2). This five dimensional parameter space is too

large to fully explore via simulation, we will therefore reduce the parameter space using the

equivariance argument used by Andrews & Armstrong (2017). See Appendix A.2 for details.

We are able to set β = 0 and σ1 = σ2 = 1 without loss of generality, we thus only need to

explore the two dimensional parameter space (π, σ12) ∈ (0,∞) × [0, 1), which can be fully

explored via simulation. Since the reduced parameter space is quite small we were able to

obtain comprehensive simulation results.

3.1 Method comparison

3.1.1 Estimator mean

In the left column of Figure 1 we plot the bias comparison for β̂U , β̂Full and β̂DoubleF (we omit

β̂2SLS and β̂MirrorF from our comparison since the first moments of these two estimators do

not exist in the just-identified case). Here we analyse a wide range of values for π > 0 but

limit our analysis to σ12 ∈ {0.1, 0.5, 0.95}. We find that, as we would expect, the bias of

the Unbiased estimator is equal to zero for all values within our two dimensional parameter

space. Next we observe that the Doublefuller estimation method has a uniformly higher bias

for all three values of σ12 compared to the Fuller and Unbiased estimator.

If we, instead of analysing the mean bias, would consider the median bias it is then

possible to include β̂2SLS and β̂MirrorF to our analysis. Due to the nature of the Mirrorfuller

estimator it is possible to obtain a negative median bias. To make the comparison more easily

visible we will therefore plot the absolute median bias. Results are given in Appendix A.1.

We see that the relationship found when comparing the mean bias of the three previously

mentioned estimators still holds when analysing median bias. We find that the Doublefuller

estimator has the largest median bias for (nearly) the entire parameter space. For small

values of π, E[F ] ⪅ 2, the Unbiased estimator outperforms all other estimation methods.

When the instrument becomes stronger however the 2SLS estimate has the overall lowest

absolute median bias. As mentioned earlier we see that the absolute median bias of the

Mirrorfuller estimator is not uniformly decreasing over π, this is caused by the fact that

we are subtracting σ12 and σ2
2 in Equation 8 this may lead to a negative median bias thus
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increasing its absolute median bias. This does imply that the median bias of this estimator

crosses a value of zero, the Mirrorfuller has the smallest absolute median bias for E[F ] around

a value of five and for a value of E[F ] between approximately four and nine β̂MirrorF beats

all other methods except for the 2SLS estimator.

3.1.2 Estimator deviation

In the right column of Figure 1 we plot the logarithm of the median absolute deviation

(or equivalently, 50th percentile log absolute deviation) from the true parameter value β

for σ12 ∈ {0.1, 0.5, 0.95}. We plot the log quantiles as this makes the plots better visible.

Results have also been obtained for 10th and 90th percentile log absolute deviation and are

reported in Appendix A.1. Our results for β̂U , β̂2SLS and β̂Full are the same to those reported

in Section 4.1.2 of Andrews & Armstrong (2017), namely that β̂U has a uniformly lower 50th

and 90th percentile absolute deviation compared to β̂2SLS, also for the 10th percentiles we

find that β̂U outperforms β̂2SLS across nearly the entire parameter space except for cases

where σ12 is very high and π is very small. Similarly, we also find that β̂Full outperforms β̂U

except for the cases where σ12 is very high and π is fairly small.

If we now analyse the performance of β̂MirrorF and β̂DoubleF we find that β̂MirrorF has the

largest absolute deviation across all methods and across nearly the entire parameter space

with an exception for very small values of π. Conversely, β̂DoubleF exhibits the lowest absolute

deviation from the true parameter β across all methods except for cases where σ12 is very

high and π is fairly small. These results seem to indicate that there exists a bias-variance

trade-off between β̂MirrorF and β̂DoubleF since the method with the best performance in the

bias analysis has the worst performance in the absolute deviation analysis, and visa versa.
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Figure 1: The three panels in the left column plot the mean bias of three different estimators

against the mean of the F -statistic of the first stage regression, this is done for σ12 ∈
{0.1, 0.5, 0.95}. The three panels in the right column plot the median (50th percentile) log

absolute deviation from the true parameter value β for five different estimators, this is done

for the same three values of σ12. Based on 10 million simulation draws.
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3.2 Violation of restriction on first stage sign

A crucial assumption made when constructing the Unbiased estimator is the sign assumption

on the relationship between the instrument and your endogenous variable, π > 0 in Equation

2. If this inequality does not hold we need to redefine our instrumental variable. Theoretically

one needs to argue why this first stage sign is known using prior knowledge on the relationship

between the variables, in practice however it could be that one assumes the wrong sign for

parameter π. It is thus useful to analyse the behaviour of β̂U when the restriction on the first

stage sign is violated, these results may be used to verify the sign assumption or to improve

the robustness of the Unbiased estimator.

In Figure 2 we have again plotted the median bias and the logarithm of the median

absolute deviation in the left and right columns respectively, we have now however wrongly

assumed the sign of π, i.e. we assume π > 0 even though in reality π < 0 holds. It is

clear from the left column that the bias of the Unbiased estimator increases exponentially

as E[F ] increases, or equivalently as π decreases (becomes more negative). The median bias

of this estimator spans several orders of magnitude. Even for relatively low values of E[F ]

the Unbiased estimator still has a significantly higher bias that the other estimators. For a

value of E[F ] = 1.5 the median bias of β̂U is already more than twice as large as the bias of

β̂DoubleF , which has the largest bias out of the remaining estimators.

On inspection of the right column of Figure 2 we find that the median log absolute

deviation of the Unbiased estimator from the true parameter β seems to increase linearly

with E[F ]. Similar results are found for both the 10th and 90th percentile log absolute

deviation and are reported in Appendix A.1. This indicates that both the bias and the

absolute deviation increase exponentially with E[F ]. These results imply that one can quite

easily detect a wrongly assumed sign of the parameter π by comparing the result with other

estimation methods, such as the standard 2SLS estimator.

12



Figure 2: The three panels in the left column plot the median bias of five different estimators

against the mean of the F -statistic of the first stage regression, this is done for σ12 ∈
{0.1, 0.5, 0.95}. The three panels in the right column plot the median (50th percentile) log

absolute deviation from the true parameter value β for five different estimators, this is done

for the same three values of σ12. Here the assumption on the sign of π has been violated.

Based on 100.000 simulation draws.
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4 Empirical application: Card (1993)

In order to apply the unbiased estimation method to our empirical application we must first

redefine our notation in order to allow for extra exogenous variables in our model. As in

the general setup our sample contains N observations, we now however have four different

variables, Ỹn, X̃n, Z̃n and Wn where n = 1, . . . , N . Ỹn contains observations of our dependant

variable, X̃n is our endogenous independent variable, Z̃n is a m × 1 vector of instrumental

variables and Wn is a vector of additional exogenous variables. Let Ỹ = (Ỹ1, ..., Ỹn)
′, X̃ =

(X̃1, ..., X̃n)
′, Z̃ = (Z̃1, ..., Z̃n)

′ and W = (W1, ...,Wn)
′. We thereafter define the residual

maker matrix as MW = I − W (W ′W )−1W ′, lastly we let Y = MW Ỹ , X = MW X̃ and

Z = MW Z̃ denote the residuals from regressing Ỹ ,X̃ and Z̃ on W respectively. We can now

continue with the estimation procedure using the model as described in Section 2. First,

we estimate the variance-covariance matrix Σ using the following hetroskedasticity-robust

estimate in order to account for possible hetroskedastic data.

Σ̂ = N · (I2 ⊗ (Z ′Z)−1)E

(
Û2ZZ ′ Û V̂ ZZ ′

Û V̂ ZZ ′ V̂ 2ZZ ′

)
(I2 ⊗ (Z ′Z)−1)

Where Û and V̂ are the residuals obtained when estimating the models in Section 4.2, Table

2.

Finally, we use Σ̂ to calculate β̂U(ξ, Σ̂) as defined in Equation 6.

4.1 Data

Card (1993) study the effect of education on future earnings using data from the Young Men

Cohort of the National Longitudinal Survey (NLSYM), which is a project that follows the

lives of a sample of American youth. They argue that education is an endogenous variable

in the earnings equation and address this by taking the proximity to a 4-year college as

an exogenous instrument. Within their motivation they argue that students who live in

an area without a college face higher costs of college education since the option of living

at home is precluded. They believe that this higher cost reduces investments in higher

education, especially among low income families. For further information and motivation of

this instrument, see Card (1993). The above argument implies that the first stage sign is

known, we can thus apply the Unbiased estimation method.

We will also analyse data from the NLSYM obtained from the Erasmus University Rot-

terdam. We use the following notation: Ỹ = wage, X̃ = years of education, Z̃ = residence
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near a 4-year college and W = [a quadratic function of experience, residence in the South,

residence in a metropolitan area (SMSA), race], where residence near a 4-year college, res-

idence in the South, residence in SMSA and race are given as binary variables. In Table 1

some of the key characteristics of our data are given. In our sample of 3010 respondents

approximately 40% lived in the South, 70% lived in a metropolitan area, 70% lived near a

4-year college and 23% of the respondents are black.

Table 1: Sample characteristics of National Longitudinal Survey of Young Men.

Average St.Dev. Percent (%)

Years of education 13.3 2.7 Lived in the south 40.4

Years of experience 8.9 4.1 Lived in SMSA 71.3

Wage 6.3 0.4 Lived near 4-year college 68.2

Race: Black 23.4

Sample size (N) 3010

4.2 Results

To capture the relationship between education and earnings we use the following structural-

and reduced form models:

Table 2

Structural model: Reduced form models:

Y = Xβ + Ũ X = Zπ + V

Y = Zδ +R

Y = Zπβ + U

Table 3 presents the estimation results of our reduced form models and our structural

model using college proximity as an instrumental variable for completed education. Within

our reduced form models we used OLS to regress education and earnings on college proximity,

parameter estimates with corresponding F-statistics are given in columns 2 and 3. Growing

up near a college has a strong positive effect on both education (0.34 years of education) and

earnings (4.5 percent). We see that college proximity is a strong instrument as we find a first

stage F-statistic of 17.55, we would therefore expect parameter estimates of our structural

model to be similar for the different IV estimation methods.
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In the first column we find the estimated parameters for our structural model using

different estimation methods, with the standard errors for estimators with known second

moment given in parentheses. As expected the different IV estimation methods produce

very similar results with all results falling within a tenth of a standard deviation of the

2SLS estimate (0.1274 - 0.1372). The obtained OLS and 2SLS estimates are the same

as those found by Card (1993). With the use of college proximity as an instrument for

schooling, return to education is estimated to be approximately 0.13, this estimate implies

an earnings gain per year of additional schooling of approximately 13%. However, due to

the high standard deviation of the 2SLS estimate one cannot reject the hypothesis that OLS

parameter estimates are inconsistent. The consistency of the OLS parameter estimate is

examined using the Durbin–Wu–Hausman test (Hausman, 1978).

Table 3: OLS parameter estimates for reduced form models and parameter estimates for

structural model of earnings using different estimation methods. The standard errors, for

estimators with known second moment, are given in parentheses.

Structural model: Reduced form models:

Earnings [β] Education [π] Earnings [δ]

OLS 0.0740 (0.0035) 0.3373 (0.0824) 0.0446 (0.0170)

2SLS 0.1323 (0.0492) - -

Unbiased 0.1290 - -

Fuller 0.1287 - -

Mirrorfuller 0.1363 - -

Doublefuller 0.1287 - -

F-stat. - 17.55 7.439

5 Discussion

We have shown that there exists an unbiased estimator in the case of weak instrumental

variables, the unbiasedness does not come at the cost of increased estimator deviation. How-

ever, the Unbiased estimator does come at the cost of a restricted first stage parameter

space, namely a sign restriction on the parameter in the first stage regression. We compared

the performance of this estimator with members of the k-class estimator family such as the

Fuller estimator. Although the Unbiased estimator has the overall lowest absolute bias it
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is outperformed by other estimators when analysing absolute median bias or absolute es-

timator deviation. Our results suggest some areas of future research. First, we analysed

two estimators within the modified limited information estimator class, we found evidence

for the existence of a bias-variance trade-off. Therefore, it seems interesting to analyse the

performance of other estimators captured in this class in order to better understand the

relationship between estimator bias and variance. Second, Mills et al. (2014) finds certain

conditional t-tests that perform well in an instrumental variable regression model, it may

thus be interesting to examine possible tests based on the Unbiased estimator. Lastly, we

know that in order to produce an unbiased estimate under weak instruments we must restrict

the first stage parameter space, it may therefore be useful study other ways to make use of

our knowledge on the first stage sign for both estimation and testing purposes.
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A Appendix

A.1 Method comparison

Figure 3: The three panels in the left and right column plot the 10th and 90th percentile log

absolute deviation from the true parameter value β for five different estimators respectively,

this is done for σ12 ∈ {0.1, 0.5, 0.95}. Based on 10 million simulation draws.
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Figure 4: Absolute median bias for five different estimators, this is done for σ12 ∈
{0.1, 0.5, 0.95}. Based on 10 million simulation draws.
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Figure 5: The three panels in the left and right column plot the 10th and 90th percentile log

absolute deviation from the true parameter value β for five different estimators respectively,

this is done for σ12 ∈ {0.1, 0.5, 0.95}. Here the assumption on the sign of π has been violated.

Based on 100.000 simulation draws.
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A.2 Reduction of parameter space

The following proof is an exact citation of Appendix E.1 in Andrews & Armstrong (2017),

which discusses the dimension reduction of the parameter space discussed in Section 3 using

an equivariance argument:

“For comparisons between (β̂U , β̂2SLS, β̂FULL) in the just-identified case, it suffices to con-

sider a two-dimensional parameter space. To see that this is the case, let θ = (β, π, σ2
1, σ12, σ

2
2)

be the vector of model parameters and let A =

[
a1 a2

0 a3

]
, a1 ̸= 0, a3 > 0, be the transformation

gAξ = ξ̃ = A

(
ξ1

ξ2

)
=

(
a1ξ1 + a2ξ2

a3ξ2

)
,

which leads to ξ̃ being distributed according to the parameters

θ̃ = (β̃, π̃, σ̃2
1, σ̃12, σ̃

2
2),

where

β̃ =
a1β + a2

a3
,

π̃ = a3π,

σ̃2
1 = a21σ

2
1 + a1a2σ12 + a22σ

2
2,

σ̃12 = a1a3σ12 + a2a3σ
2
2,

and

σ̃2
2 = a23σ

2
2.

Define G as the set of all transformations gA of the form above. Note that the sign restriction

on π is preserved under gA ∈ G, and that for each gA, there exists another transformation

g−1
A ∈ G such that gAg

−1
A is the identity transformation. We can see that the model (2)

is invariant under the transformation gA. Note further that the estimators β̂U , β̂2SLS, and

β̂FULL are all equivariant under gA, in the sense that

β̂(gAξ) =
a1β̂(ξ) + a2

a3
.

Thus, for any properties of these estimators (e.g., relative mean and median bias, relative

dispersion) that are preserved under the transformations gA, it suffices to study these proper-

ties on the reduced parameter space obtained by equivariance. By choosing A appropriately,
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we can always obtain (
ξ̃1

ξ̃2

)
∼ N

((
0

π̃

)
,

(
1 σ̃12

σ12 1

))

for π̃ > 0, σ12 ≥ 0, and thus reduce to a two-dimensional parameter (π, σ12) with σ12 ∈
[0, 1), π > 0”
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