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Cost approximation for an (S-1, S) inventory model with 

rationing and demand lead times 
We study an inventory policy regarding spare parts. In this policy, we need to satisfy the orders of two 

demand classes. The orders that belong to the first class need to be fulfilled straight away, while the 

orders of the second class should be satisfied in given demand lead time. Also, we have two different 

types of criticality. For the critical class, a higher service level, for which we will use fill rate in this case, 

needs to be maintained than for the non-critical class. To manage the inventory, we investigate a (S-1, 

S) policy with backordering. Assuming Poisson demand arrivals for both classes, we will first replicate 

the approximation and simulation for the service level proposed by Koçaǵa and Şen (2007). We will 

then create expressions that enable us to calculate holding and penalty costs. We compare these 

approximations with simulated values and introduce a model to minimize the stock levels using this 

cost function. Finally, we compare the optimal cost level indicated by our derived approximation with 

the simulated optimal cost to determine the accuracy of our cost approximation. 

1. Introduction 

For our paper, we want to replicate and extend on the paper of Koçaǵa and Şen (2007). In 

their paper, a new inventory management policy is suggested. Considering demand lead 

times, they propose a rationing strategy to reduce the stock level to be maintained. They 

assume two demand classes. The demand of the first class must be satisfied immediately, 

while the demand of the second class needs to be fulfilled in a given demand lead time. 

Besides that, they also introduce two different types of criticality. Critical orders should be 

satisfied whenever there is stock available, while non-critical orders must be rationed, 

meaning that they will only be satisfied when the amount of stock is above a critical stock 

level. For the demand, they assume Poisson demand arrivals. In their paper, they follow a 

one-for-one replenishment policy (S-1, S). With these given assumptions, and a set service 

level for each criticality class, which is defined as the fill rate, they examine what savings can 

be made in the stock levels. We want to extend by considering penalty and holding cost. In 

Deshpande et al. (2003) spare parts inventory management with rationing for different 

demand classes is considered. They involve several types of costs regarding the holding, 

setup and backlogging of orders. We will examine a combination of inventory management 

with demand lead time and rationing for an (S-1, S) ordering policy with a cost function, 

consisting of a combined penalty cost, and holding cost. First, we will replicate the 

comparison of the simulation described by Koçaǵa and Şen (2007) with the approximation of 

the service level they provide. After that, we will approximate a total annual cost function and 

compare this with the simulation results. Finally, we find new stock levels while optimizing 

cost determined by the approximation and find the cost difference between the optimal 

stock levels determined by the approximation and the actual optimal stock levels found by 

the simulation. 

In this paper, we will first continue with explaining the relevance and the motivation of this 

research in the second section. In the third section, we perform a brief literature review, 

where we discuss existing papers regarding our subject. In section 4 we will discuss the 

theoretical background and the research methodology. We briefly discuss the service level 

calculations proposed by Koçaǵa and Şen (2007). After that, we derive an expression for 
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calculating the penalty costs for the critical and non-critical customers. In section 5, we will 

discuss the results of our replication of the study by Koçaǵa and Şen (2007). After that, we 

will test our penalty cost calculations against a simulation to validate the accuracy of our 

calculations. We conclude our paper in section 6. 

2. Relevance 

Regarding the relevance of this matter, this research is focused on a combination of two 

different aspects: the rationing of inventory using advanced demand information and setting 

up an annual cost function. Already separate research has been done into both aspects. By 

combining these two aspects, the result of our research could be even more applicable in the 

corporate field. The currently existing research is either only focused on rationing with costs 

with no demand lead time or focused on rationing with demand lead time without 

considering a separate cost function. Companies that have to deal with the distribution of 

spare parts of production machines, big transportation vehicles or any other objects, in reality 

do not only consider minimizing the stock level, or only deal with customers that need their 

spare part straight away. Also, situations where spare parts are needed in the future occur, 

and costs come into play in pretty much every event. Common costs in inventory 

management often consist of order costs, storage costs, handling costs, stockout costs, etc. 

Also, getting orders with a demand lead time would be a realistic possibility, since companies 

that need spare parts often do routine maintenance. In this case, the demand for such a 

certain spare part would most likely be ordered before it is actually needed. If we consider 

both of these occasions, we suspect that combining annual cost with advance demand 

information, could very well complement on situations that occur in reality. Also, for scientific 

relevance, it could widen the current field of research. Our research can again be extended 

on, for example by incorporating multiple demand classes. This would contribute to keep on 

extending the research of this general matter. 

3. Literature review 

For our literature review, we will first review general literature on inventory systems with 

demand lead time. We will then append rationing inventory based on criticality. Finally, we 

will review literature on minimizing cost for a rationing policy. 

One of the first research papers about demand lead time was the Simpson (1958) paper. In 

this research, service time for inventory in multi-stage production systems was examined. This 

was basically the first concept of a DLT. Hariharan & Zipkin (1995) then introduced the idea 

of customers that provide an advance warning of their demands. This introduced the idea of 

demand lead times bigger than zero. What actually both of these papers conclude, is that 

DLT reduces the inventory needed while still achieving the same service level, and has the 

same effect as the opposite of supply lead time. This is one of the factors that we also 

account for in our model. However, we have a complicating factor. This is the existence of the 

two different service level classes in our research. Kleijn & Decker (1999) explored an 

inventory system with several demand classes. Their first example implies a single-echelon 

system. In their model, they do consider more than two different demand classes. However, 

they are one of the first to introduce multiple demand classes in rationing inventory.  
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Another interesting piece of literature is Wang et al. (2002). In their work, they also studied a 

single-location system. Expressions for the inventory level distribution and the random 

customer delay were derived. They found that, if the probability that a replenishment order 

corresponding to a positive demand lead time arrives before the demand due date, the 

service level with demand lead times is higher than the service level for zero demand lead 

times. They extend their model to a two-echelon system after deriving the steady-state 

performance metrics for a single-location system. After analyzing this two-echelon results, it 

turned out that a system with two classes with different service levels results in quite 

significant inventory cost savings. 

The first implementation of rationing was presented in Veinott (1965). This paper considered 

several demand classes in inventory systems. Analyzed was an inventory model with zero lead 

time and n demand classes, as well as backlogging of unfilled orders. He also introduced the 

critical-level policy, which will be used in our paper as well. Another segment incorporates in 

his report are holding and penalty costs. His goal was to find an ordering policy to minimize 

these costs over an infinite time horizon. Ha (1997) considers an inventory rationing system 

with Poisson demand processes and lost sales. He examines optimal critical level policies, and 

with that comes up with time-independent stock and critical stock levels. De Véricourt et al. 

(2002) studies a similar model, but assume backordering is possible. 

To continue with costs, we consider Deshpande et al. (2003), which examined a rationing 

policy for two different demand classes and shortage penalty costs. They assumed Poisson 

demand arrivals in a continuous-review (Q, r) environment. In their model, they assume that 

there can be more than one order outstanding, which complicates the allocation of arriving 

replenishment orders. To overcome this issue, they compose a threshold clearing mechanism 

and created an accompanying algorithm to compute the optimal policy parameters (Q, r, K), 

with K as the threshold level. As a part of their model, they define an expected annual cost 

function for a given (Q, r, K) policy. This function consists of expected annual holding, setup 

and penalty costs. Our cost function will be very similar, apart from that we don’t include the 

holding costs, since we assume a fixed (S-1, S) policy.  

Tan et al. (2009) investigates the consequences of advance demand information that is not 

complete. They do this in an inventory system with rationing and two priority classes. Their 

main goal is to analyze this system with the objective of minimizing the expected total costs, 

with the assumption that all unsatisfied demand is lost. Kranenburg & Houtum (2005) 

consider cost optimization for an (S-1, S) inventory model with lost sales. Also, they assume 

more than two demand classes. Vicil (2022) also looks into cost optimization specifically for a 

(S-1, S) ordering policy, but with backorders. He considers two demand classes and rationing. 

He considers supply lead times that can be either deterministic or stochastic. 

 

4. Methodology 

To discuss our methodology, we first have to briefly discuss the theoretical background. Here, 

we will state the framework, definitions and theories we will use in our research. We will first 

start by setting our theoretical assumptions. Since we are extending the Koçaǵa and Şen 

(2007) paper, our assumptions will mostly match theirs. However, we will need additional 
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assumptions. 

In the basis of our research, we will investigate fill rates for a spare parts inventory 

management, where we will also incorporate annual cost. We will consider two different 

demand classes. The orders of the first demand class have to be satisfied immediately. For 

the second demand class orders, a demand lead time is given in which the orders should be 

fulfilled. Also, we have two different classes of criticality. We have a critical class and a non-

critical class. For the critical class, the service level requirement, which we set as the fill rate, is 

higher than for the non-critical class. We will look at two different cases: 

i. the first demand class consists of critical orders, the second demand class of non-critical orders 

ii. The first demand class consists of non-critical orders, the second demand class of critical orders 

We will model a single-echelon system, with Poisson demand for the two defined demand 

classes. We note these rates as λ1 and λ2. For this inventory management, we will study a (S-1, 

S) ordering policy, with S being the order-up-to level. For each spare part demand event, we 

order a new part with a deterministic replenishment lead time L. To calculate the service level, 

we will use the fill rate for each demand class. This is defined as the number of orders that 

can be satisfied at the needed demand lead time corresponding to the class, divided by the 

total placed orders by that class. Also, we assume that every order gets accepted. If not 

sufficient stock is available at the time of the demand event, the order will be placed in a 

queue, operating according to the FIFO strategy. This means that demand of the non-critical 

class will be backlogged when the stock level falls below the critical stock level, while demand 

of the critical class keeps being filled until no inventory is left. 

Furthermore, we also want to incorporate a cost function into our model. To do this, we will 

consider the following assumptions, also used in Deshpande et al. (2003). We assume a 

stockout cost per unit that has to be backordered πc and πn. We also assume a delay cost per 

period of delay per unit, 𝜋̂𝑐 and 𝜋̂𝑛. Proceeding this, we assume that πc > πn and 𝜋̂𝑐 > 𝜋̂𝑛, 

since the critical class is more important, which is also reflected in the service levels. The last 

cost we consider, is a holding cost per unit of stock per time period, h. We create a total 

expected cost function C(S-1, S), which consists of three parts in our case: Π(S − 1, S), Π̂(S −

1, S) and H(S − 1, S), which are the total stockout cost, delay cost and holding cost 

respectively. These assumptions are similar to the assumptions made by Deshpande et al. 

(2003). In our research, we won’t consider setup cost, since we assume a (S-1, S) policy, and 

do not compare different ordering policies. We want to minimize these costs, while still 

meeting fixed service levels. First, we will discuss the theorem needed for the replication 

study of Koçaǵa and Şen (2007) in subsection 4.1. In section 4.2 we will derive our own cost 

function approximation, using expressions from section 4.1 and Deshpande et al. (2003). We 

will finish with section 4.3, in which we state and discuss the cost optimization problem. 

4.1 replication study expressions 

In this section, we will discuss the service level expressions derived by Koçaǵa and Şen (2007). 

For both the critical and the non-critical class, a service level function is derived for either the 

critical class or the non-critical class having DLT = T. Furthermore, the same assumptions we 

described above in the methodology are used, without considering the cost function 

assumptions. We will briefly explain the logic behind these expressions, and we will later use 
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these functions in our replication study, as well as incorporate them into our annual stockout 

cost. 

We will start with the service level expression for the non-critical class. To get to this 

expression, we consider an interval (t, t + L]. If we assume that no demand occurs in the 

interval, the inventory would be S at time t + L, since the delivery of orders at time t would 

arrive at time t + L. Next, for an order to be satisfied at time t + L, the inventory level at that 

time has to be at least Sc+1. This would only occur if the sum of the class 1 demand during 

time (t, t + L] and the class 2 demand that is due in (t + t, t + L] is less than S - Sc. Note that 

for DLT=T, we do not need to take into account demands that are due in (t, t + T], since the 

replenishments for these demands would be received before t + L (assuming that T < L). 

Therefore, these demands do not affect the inventory level at t + L. Combining both DLT 

possibilities, we get the following service level for the non-critical demand class, as derived by 

Koçaǵa and Şen (2007): 

𝛽𝑗
𝑛(𝑆, 𝑆𝑐) = 𝑃{𝐷1(𝑡, 𝑡 + 𝐿] + 𝐷2(𝑡 + 𝑇, 𝑡 + 𝐿] ≤ 𝑆 − 𝑆𝑐 − 1}  ( 1 ) 

To be able to calculate this, the probability function for the Poisson distribution is used. We 

note this as 𝑝(𝑖; 𝜆) = 𝑒−𝜆𝜆𝑖/𝑖! . If we combine expression (1) with the probability function, and 

using the sums of independent Poisson-distributed random variables, Koçaǵa and Şen (2007) 

come to the following service level expression for the non-critical demand class: 

𝛽𝑗
𝑛(𝑆, 𝑆𝑐) = ∑ 𝑝(𝑖; 𝜆1𝐿 + 𝜆2(𝐿 − 𝑇))

𝑆−𝑆𝑐−1
𝑖=0     ( 2 ) 

For the critical demand class, we again consider the interval (t, t+L]. If we assume that no 

demand occurs in the interval, the inventory would be S at time t + L, since the delivery of 

orders at time t would arrive at time t + L. Next, for an order to be satisfied at time t + L, the 

inventory level at that time has to be at least one unit. If we consider demand class 2, note 

that if the due date is between (t, t+T], the corresponding replenishment will arrive in time 

interval (t+L-T, t+L]. To calculate the probability that the inventory level at time t+L is at least 

one, we use hitting time H, which is the arrival of S-Sc units of total demand that has a 

negative influence on the inventory. We condition on whether H is in one of two intervals, 

which are (t, t+L-T] and (t+L-T, t+L], or after time t+L. This gives us the following expression: 

βj
c(S, Sc) = P{Dj(t + H, t + L] ≤ Sc − 1,H ≤ L − T} 

+𝑃{𝐷𝑗(𝑡 + 𝐻, 𝑡 + 𝐿] ≤ 𝑆𝑐 − 1, 𝐿 − 𝑇 ≤ 𝐻 ≤ 𝐿} + 𝑃{𝐻 ≥ 𝐿}  ( 3 ) 

The next step in computing the service level would be to derive the density functions of the 

hitting time H for all three scenarios. We will not reproduce these derivations, but these 

derivations can be found in Koçaǵa and Şen (2007). We jump straight to the combination of 

these density functions, which together form the service level approximation for the critical 

demand class. This leads to the following expression: 
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𝛽𝑗
𝑐(𝑆, 𝑆𝑐) =  ∫ (𝜆1 + 𝜆2)

𝑆−𝑆𝑐𝑒−(𝜆1+𝜆2)𝑦
𝑦𝑆−𝑆𝑐−1

(𝑆−𝑆𝑐−1)!
 × (∑ 𝑝 (𝑖: 𝜆𝑗(𝐿 − 𝑦))

𝑆𝑐−1
𝑖=0 ) 𝑑𝑦

𝐿−𝑇

0
+

            ∫ 𝜆1𝑒
−(𝜆1𝑦+𝜆2(𝐿−𝑇))

[𝜆1𝑦+𝜆2(𝐿−𝑇)]
𝑆−𝑆𝑐−1

(𝑆−𝑆𝑐−1)!
 × (∑ 𝑝 (𝑖: 𝜆𝑗(𝐿 − 𝑦))

𝑆𝑐−1
𝑖=0 ) 𝑑𝑦

𝑇

𝐿−𝑇
+

           ∑ 𝑝(𝑖: 𝜆1𝐿 + 𝜆2(𝐿 − 𝑇))
𝑆−𝑆𝑐−1
𝑖=0        ( 4 ) 

Note that the expression for the critical service level approximates the actual service level, 

since it is not known how incoming replenishment orders are handled after the hitting time. 

The last part that we need to fully perform our replication study, is the optimization problem 

for the stock level. Koçaǵa and Şen (2007) optimize the stock according to the following 

minimization problem: 

𝑚𝑖𝑛
𝑆,𝑆𝑐

 𝑆,         ( 5 ) 

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝛽𝑗
𝑐(𝑆, 𝑆𝑐) ≥ 𝛿𝑗𝛽̅𝑗,                 𝑗 = 1, 2,   ( 6 ) 

          𝛽𝑗
𝑛(𝑆, 𝑆𝑐) ≥ (1 − 𝛿𝑗)𝛽̅𝑗, 𝑗 = 1, 2,     

 ( 7 ) 

          𝑆, 𝑆𝑐 ≥ 0,       

 ( 8 ) 

Where 

𝛿𝑗 = {
1, if 𝛽̅𝑗 = maxk𝛽̅𝑘 

0, otherwise.         
                               

In this model, we minimize the stock level, while maintaining a minimum fixed service level. 

With 𝛿𝑗 , the constraint for the appropriate situation is set active. With now all the expressions 

from Koçaǵa and Şen (2007) stated, we can perform the replication study in section 5.1. We 

will now continue with the cost function approximation. 

 

4.2 Cost function approximation 

To get a better insight into the annual costs, we will derive an annual cost function 

approximation. This approximation should approach the actual cost, just like the service level 

approximation approaches the service level. We will compare our approximation with a 

simulation study in order to check how accurate our approximation is in different cases. In 

this part of the methodology, we will guide you through the structure of the approximation. 

In order for us to create an approximation for the annual costs, there are several things we 

need. As discussed before, we already made assumptions for the stockout and delay costs. 

We will later vary these parameters to test the approximation. The second thing that is of big 

importance, is the development of the demand events. We have to approximate how often a 

demand event cannot be satisfied for each class, and how long that demand is backlogged 

before it is finally satisfied. 

First, we will create an expression for estimating the stockout costs. These penalty costs are 

calculated by multiplying the amount of backlogged demand events with the stockout cost π. 

This stockout cost π differs for the critical and non-critical class, but can be chosen to be any 
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value. Therefore, we will start with finding an expression that approximates the amount of 

backlogged demand events as close as possible. One last thing we have to note, is that the 

service level expressions proposed by Koçaǵa and Şen (2007), can be used to compute the 

stockout costs. We will start with these same expressions and clarify why we come to these 

expressions. 

We already have the first part we need for the stockout cost, namely the service level 

expressions from 4.1. These expressions display what percentage of the demands from either 

the critical or non-critical class can be fulfilled at their due date. If we subtract this percentage 

from 1, we get the percentage of non-critical demands that could not be fulfilled at their due 

date. Multiplying this with the according stockout cost π and the amount of expected 

demand events of the corresponding class λ, we get the total stockout cost. If λ, as well as L 

and T are expressed in years, this function automatically becomes the annual cost for 

stockout. Combining these factors, we get the following expressions for the total stockout 

cost of the critical and non-critical demand class  

𝛱𝑗
𝑛 = (1 − 𝛽𝑗

𝑛(𝑆, 𝑆𝑐)) ∗ 𝜋𝑛 ∗ 𝜆𝑛    ( 9 ) 

and 

𝛱𝑗
𝑐 = (1 − 𝛽𝑗

𝑐(𝑆, 𝑆𝑐)) ∗ 𝜋𝑐 ∗ 𝜆𝑐      ( 10 ) 

The next part of cost we want to approximate, are the delay costs. We will first consider the 

non-critical demand class. When an order cannot be satisfied at its due date, it will be 

backlogged. In this case, that would be because the inventory level is below the critical stock 

level. With backlogging, we basically mean that it gets placed in a FIFO-queue with all other 

non-critical demands that are currently backlogged. When a replenishment order comes in, 

one of the following three events occurs. Either a critical class backorder is cleared, the 

replenishment order is added to the on-hand stock, or a non-critical class backorder is 

cleared if the on-hand stock is equal to or above the critical stock level. We will take as basis 

the expressions for the long-run average number of backorders, derived by Deshpande et al 

(2003). They start off with deriving the number of backorders at a given time t, denoted as 

BOi(t). For both the demand classes, this is noted as 

𝐵𝑂1(𝑡 + 𝜏) = [𝐷1(𝑡𝐾 , 𝑡 + 𝜏) − 𝐾]
+    ( 11 ) 

𝐵𝑂2(𝑡 + 𝜏) = 𝐷2(𝑡𝐾 , 𝑡 + 𝜏)      ( 12 ) 

with 𝐷𝑖(𝑡𝑗, 𝑡𝑗 + 𝜏) the number of demands of class I that arrive between the placement and 

the receipt of replenishment order j. Also, tK is defined as the time of 𝑦 –  𝐾𝑡ℎ demand arrival 

in the interval (𝑡, 𝑡 + 𝜏). If 𝑦 < 𝐾, tK is defined as the last time the inventory was at the critical 

stock level K, before reaching y at time t. With these expressions, Deshpande et al (2003) 

compute the limiting backorder distributions for both demand classes. With 𝛼𝑖 = λi/ λ being 

the probability of an arrival being class i, i = 1, 2, and 𝜏 = 𝐿, the limiting backorder 

distributions are given by 

𝑃𝑟𝑜𝑏[𝐵𝑂𝑖(∞) = 𝑗] =
1
𝑄
∑ 𝑃𝑟𝑜𝑏𝑟+𝑄
𝑦=𝑟+1 [𝐵𝑂1(∞) = 𝑗|𝐼𝑃(∞) = 𝑦]   ( 13 ) 
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where 

𝑃𝑟𝑜𝑏[𝐵𝑂1(∞) = 𝑗|𝐼𝑃(∞) = 𝑦] =

{
  
 

  
 ∑ 𝑏(𝛼1; 𝑥 − 𝑦 + 𝐾;𝐾 + 𝑗)𝑝(𝑥: 𝜆𝜏)

∞

𝑥=𝑦+𝑗

                       𝑖𝑓 𝑗 > 0

1 − (∑ ∑ 𝑏(𝛼1; 𝑥 − 𝑦 + 𝐾;𝐾 + ℎ)𝑝(𝑥: 𝜆𝜏)

∞

𝑥=𝑦+ℎ

∞

ℎ=1

)  𝑖𝑓 𝑗 = 0

 

and 

𝑃𝑟𝑜𝑏[𝐵𝑂2(∞) = 𝑗|𝐼𝑃(∞) = 𝑦] = ∑ 𝑏(𝛼1; 𝑥 − 𝑦 + 𝐾;𝐾 + 𝑗)𝑝(𝑥: 𝜆𝜏)

∞

𝑥=(𝑗+𝑦−𝐾)+

 

 These expressions are used to calculate the average number of backorders in a system with 

rationing, but without DLT. The expressions below denote the limiting backorder distribution 

for both the critical and the non-critical demand class, in the case where DLT = 0 for both the 

critical and the non-critical class. With 𝛼𝑖 = λi/ λ being the probability of an arrival being class 

i, i = 1, 2, 𝜏 = 𝐿, 𝐵𝑖(𝑄, 𝑟, 𝐾) and denoting the average number of backorders for class I, we get 

𝐵𝑖(𝑄, 𝑟, 𝐾) =
1

𝑄
∑ 𝑏𝑖(𝑦, 𝐾)
𝑟+𝑄
𝑦=𝑟+1 ,     ( 14 ) 

where 

𝑏1(𝑦, 𝐾) = ∑∑ 𝑗𝑏(𝛼1; 𝑥 − 𝑦 + 𝐾;𝐾 + 𝑗)𝑝(𝑥: 𝜆𝜏)

𝑥−𝑦

𝑗=0

∞

𝑥=𝑦

 

and 

𝑏2(𝑦, 𝐾) = {
∑ 𝛼2(𝑥 − 𝑦 + 𝐾)𝑝(𝑥: 𝜆𝜏)

∞

𝑥=𝑦−𝑘

 𝑖𝑓 𝐾 ≤ 𝑦

𝜆2𝜏 + 𝛼2(𝐾 − 𝑦)                         𝑖𝑓 𝐾 > 𝑦

 

Note that up to this point, these expressions were derived by Deshpande et al (2003). Now 

that we have these expressions, a few adaptations have to be made to fit our assumption of 

DLT. First of all, since we consider an (S-1, S) ordering policy, the summation of 𝑏𝑖(𝑦, 𝐾) 

becomes unnecessary. This is because the value of y that is summed over can only attain the 

stock level S. Therefore, we get 𝑏𝑖(𝑆, 𝐾) as an expression for the average number of 

backorders of class i.  

Since we only test the (S-1, S) policy, we can fix y simply to the stock level. We adjust this 

function to work for j = 1, 2, with j indicating the demand class that is the non-critical class. 

Now we want to add demand lead time into the average backorder expression. For the first 

demand class, the DLT = 0. Therefore, we still multiply λ1 with the replenishment lead time T. 

However, we now have the second demand class with DLT = T. Since from its due date, it 

takes (L – T) until the replenishment order arrives, we multiply λ2 with (L – T). Now that we 
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have incorporated the DLT, we get the expression for the average backorders of the non-

critical class as 

𝑏𝑗
𝑛(𝑆, 𝐾) = ∑ 𝛼𝑛(𝑥 − 𝑆 + 𝐾)𝑝(𝑥: 𝜆1𝐿 + 𝜆2(𝐿 − 𝑇))

∞
𝑥=𝑆−𝑘    ( 15 ) 

 

Now, we can add the delay cost 𝜋̂𝑛 to get the following expression for the total delay cost of 

the non-critical delay cost: 

𝛱𝑗
𝑛 = 𝜋̂𝑛𝑏𝑗

𝑛(𝑆, 𝐾)     ( 16 ) 

 

Next, we want to derive an expression for the average delay cost of the critical demand 

group. We again consider an expression derived by Deshpande et al (2003) from the previous 

expression (14), which is very similar to the expression for the non-critical class. However, in 

this expression, a binomial distribution is needed. Again, we incorporate the DLT by changing 

λ to λ1L + λ2(L-T), set y to the stock level and make the function suitable for j = 1, 2, with j in 

this case indicating the demand class that is the critical class. Implementing these 

adjustments gives us 

𝑏𝑗
𝑐(𝑆, 𝐾) = ∑ ∑ 𝑗𝑏(𝛼𝑐; 𝑥 − 𝑆 + 𝐾;𝐾 + 𝑗)𝑝(𝑥: 𝜆1𝐿 + 𝜆2(𝐿 − 𝑇))

𝑥−𝑆
𝑗=0

∞
𝑥=𝑆   ( 17 ) 

Now, we can add the delay cost 𝜋̂𝑛 to get the following expression for the total delay cost of 

the critical delay cost: 

𝛱𝑗
𝑐 = 𝜋̂𝑐𝑏𝑗

𝑐(𝑆, 𝐾)     ( 18 ) 

Finally, we consider the holding cost of the inventory. This cost is the cost of holding one unit 

of stock per time unit times the average inventory. To calculate this, we use another 

expression derived by Deshpande et al (2003) and modify this expression to work for our 

case with DLT. This expression is  

𝑃𝑟𝑜𝑏[𝑂𝐻(∞) = 𝑗|𝐼𝑃(∞) = 𝑦]

=

{
 
 

 
 
𝑝(𝑦 − 𝑗; 𝜆𝜏) 𝑖𝑓 𝑦 ≥ 𝑗 ≥ 𝐾,   𝑗 > 0                                                                 

∑ 𝑏(𝛼1; 𝑥 − 𝑦 + 𝐾;𝐾 − 𝑗)𝑝(𝑥: 𝜆1𝐿 + 𝜆2(𝐿 − 𝑇))  𝑖𝑓 0 < 𝑗 < 𝐾
∞
𝑥=𝑦−𝑗

∑ ∑ (𝛼𝑐; 𝑥 − 𝑦 + 𝐾; 𝑧)𝑝(𝑥: 𝜆1𝐿 + 𝜆2(𝐿 − 𝑇))
𝑥−𝑦+𝐾
𝑧=𝐾

∞
𝑥=𝑦  𝑖𝑓 𝑗 = 0         

0                                                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.    

       

In this function, OH(t) is referred to as the on-hand inventory, and IP(t) is referred to as the 

inventory position process. With this expression, we can calculate the chance that the 

inventory level will be j. If we do this for all possible stock levels j ≤ S, we get the average 

inventory level. We add demand lead time in all Poisson probability functions in the same 

manner we did before with the delay cost. Furthermore, we make sure that the average 

inventory is usable for both critical and non-critical customers having either DLT=0 or DLT=T. 

Also, we can again set y to the stock level, because of our fixed ordering policy. Applying all 

these modifications, we get the following functions for the stock levels: 
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𝑃𝑟𝑜𝑏[𝑂𝐻(∞) = 𝑗|𝐼𝑃(∞) = 𝑆]       

=

{
 
 

 
 

𝑝(𝑆 − 𝑗; 𝜆1𝐿 + 𝜆2(𝐿 − 𝑇)) 𝑖𝑓 𝑆 ≥ 𝑗 ≥ 𝐾,   𝑗 > 0                                       

∑ 𝑏(𝛼1; 𝑥 − 𝑆 + 𝐾;𝐾 − 𝑗)𝑝(𝑥: 𝜆1𝐿 + 𝜆2(𝐿 − 𝑇))        𝑖𝑓 0 < 𝑗 < 𝐾
∞
𝑥=𝑆−𝑗

∑ ∑ 𝑏(𝛼1; 𝑥 − 𝑆 + 𝐾; 𝑧)𝑝(𝑥: 𝜆1𝐿 + 𝜆2(𝐿 − 𝑇))
𝑥−𝑦+𝐾
𝑧=𝐾

∞
𝑥=𝑆      𝑖𝑓 𝑗 = 0         

0                                                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.   

        

With the functions now determined for the inventory levels, we can obtain the average 

inventory level, and multiply this with the average cost of holding one unit of stock. This gives 

us the total holding cost 

𝐻𝑇 = ℎ ∗ ∑ (𝑗 ∗ 𝑃𝑟𝑜𝑏[𝑂𝐻(∞) = 𝑗|𝐼𝑃(∞) = 𝑆])𝑆
𝑗=0     ( 19 ) 

With all of the separate cost functions now defined, we can now setup our total cost function, 

which will be tested in our study. The total annual cost function is defined as  

𝐶(𝑆 − 1, 𝑆) = Sj
n + Sj

c + Dj
n + Dj

c +𝐻𝑇 

We can now fill in all parts of this cost function. This gives us the cost function that we will 

use to calculate the total annual cost later in our study: 

𝐶(𝑆 − 1, 𝑆) = (1 − 𝛽𝑗
𝑛(𝑆, 𝑆𝑛)) ∗ 𝜋𝑛 + (1 − 𝛽𝑗

𝑐(𝑆, 𝑆𝑐)) ∗ 𝜋𝑐 + 𝜋̂𝑛𝑏𝑗
𝑛(𝑆, 𝐾) + 𝜋̂𝑐𝑏𝑗

𝑐(𝑆, 𝐾) + 𝐻𝑇  ( 20 ) 

4.3 Cost optimization 

Now that we have derived all components of the cost function, we can setup a minimization 

model to optimize the annual cost. In this model, we also want to take service level 

requirements into account: 

𝑀𝑖𝑛 𝐶(𝑆 − 1, 𝑆)       ( 21 ) 

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝛽𝑗
𝑐(𝑆, 𝑆𝑐) ≥ 𝛿𝑗𝛽̅𝑗,                 𝑗 = 1, 2,   ( 22 ) 

          𝛽𝑗
𝑛(𝑆, 𝑆𝑐) ≥ (1 − 𝛿𝑗)𝛽̅𝑗, 𝑗 = 1, 2,     ( 23 ) 

          𝑆, 𝑆𝑐 ≥ 0,       ( 24 ) 

Where 

𝛿𝑗 = {
1, if 𝛽̅𝑗 = maxk𝛽̅𝑘 

0, otherwise.         
                               

This optimization is very similar to the optimization problem stated by Koçaǵa and Şen 

(2007), but in our case we of course want to minimize total cost instead of stock level. The 

first constraint makes sure that if the critical class is of demand class j, the service level is at 

least the minimum required service level by setting  𝛿𝑗 = 1. If 𝛿𝑗 = 0, class j is the non-critical 

class, and the second constraint ensures that the non-critical service level is at least the 

minimum required service level. The last constraint makes sure that the stock and critical 

stock levels are non-negative. In section 4, we will apply this model to multiple instances by 

using brute force. Since the chosen instances are quite small, it is not very time consuming. 

For instances with larger parameters, obviously time could be saved by implement an 

optimizing algorithm. 
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5. Study 

Our study consists of three parts. In section 5.1, we will replicate a part of the study 

performed by Koçaǵa and Şen (2007). We calculate their proposed service level expressions, 

and setup a simulation1 to replicate the accuracy testing of their critical class service level 

approximation. In section 5.2, we test our composed cost function. We use the same 

simulation program to test the accuracy of our cost function for different instances of 

parameters. In section 5.3, we will look at the performance of the total cost composed by the 

approximation against the simulated cost. 

5.1 replication study 

In this section, we replicate the study performed by Koçaǵa and Şen (2007). We take the 

same steps of computing their simulation results, to see whether we come to the same 

results. All tables show the difference between the exact and the simulated non-critical 

service level. This could give an indication on how accurate our simulation is. Furthermore, we 

find the simulated critical service level, the approximated critical service levels and the 

percentage difference between these two service levels, which is calculated as (βcsim- 

βcapp)*100. Also, the values between brackets next to the simulated critical service level 

shows the difference between our simulated values and the values simulated by Koçaǵa and 

Şen (2007). 

    c = 1, n = 2  c = 2, n = 1 

 

λc 

 

λn 

 

S 

 

Sc 

βn 
diff (%) 

βc 

(sim) 

βc 

(approx.) 

Perc. 

diff (%) 

 βn 
diff (%) 

βc 

(sim) 

βc 

(approx.) 

Perc. 

diff (%) 

1 4 5 3 0.00 0.9995 (0.0000) 0.9976 0.19  0.28 0.9990 (0.0003) 0.9976 0.14 

2 4 6 3 0.07 0.9979 (0.0002) 0.9927 0.52   0.18 0.9975 (0.0002) 0.9927 0.48 
3 4 7 3 0.13 0.9970 (0.0002) 0.9892 0.78  0.02 0.9965 (0.0001) 0.9891 0.74 

4 4 8 3 0.00 0.9964 (0.0002) 0.9877 0.87   0.03 0.9960 (0.0002) 0.9877 0.83 
5 4 9 3 0.08 0.9957 (0.0001) 0.9876 0.81  0.02 0.9961 (0.0003) 0.9877 0.84 

6 4 10 3 0.04 0.9957 (0.0001) 0.9884 0.73   0.02 0.9966 (0.0003) 0.9885 0.81 
7 4 11 3 0.05 0.9960 (0.0000) 0.9896 0.64  0.08 0.9973 (0.0000) 0.9898 0.75 

8 4 12 3 0.05 0.9961 (0.0003) 0.9909 0.52   0.03 0.9977 (0.0002) 0.9913 0.64 
9 4 13 3 0.14 0.9966 (0.0001) 0.9922 0.44  0.05 0.9983 (0.0000) 0.9927 0.56 

10 4 14 3 0.01 0.9971 (0.0000) 0.9934 0.37   0.00 0.9984 (0.0003) 0.9940 0.44 
11 4 15 3 0.06 0.9974 (0.0001) 0.9945 0.29  0.02 0.9988 (0.0002) 0.9951 0.37 

12 4 16 3 0.02 0.9979 (0.0001) 0.9954 0.25   0.02 0.9991 (0.0001) 0.9961 0.3 
2 4 8 1 0.00 0.9982 (0.0001) 0.9963 0.19  0.02 0.9973 (0.0000) 0.9957 0.16 

3 4 8 2 0.05 0.9973 (0.0001) 0.9928 0.45   0.04 0.9968 (0.0001) 0.9927 0.41 
4 4 8 3 0.00 0.9964 (0.0002) 0.9877 0.87  0.03 0.9960 (0.0003) 0.9877 0.83 

5 4 8 4 0.04 0.9941 (0.0002) 0.9802 1.39   0.08 0.9950 (0.0004) 0.9802 1.48 
6 4 8 5 0.14 0.9920 (0.0003) 0.9697 2.23  0.05 0.9946 (0.0002) 0.9697 2.49 

7 4 8 6 0.02 0.9909 (0.0001) 0.9554 3.55   0.05 0.9946 (0.0001) 0.9554 3.92 
8 4 8 7 0.00 0.9918 (0.0003) 0.9368 5.50  0.01 0.9953 (0.0003) 0.9367 5.86 

Table 1: Replication of the Koçaǵa and Şen (2007) approximation performance for a fixed service level of 99% (L = 0.5 and T = 0.1) 

 
1 The simulation code is adapted from the Monte Carlo and discrete event simulation Java code provided by Nemanja Milovanovic, 
Erasmus University Rotterdam  
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In table 1, we find the first results of our simulation, with the value in between the brackets 

being the absolute difference in simulation outcome values between our service level, and 

the service level obtained by Koçaǵa and Şen (2007). 

We will also replicate table 2 of Koçaǵa and Şen (2007). For this table, we also assume the 

same supply lead time, as well as the same DLT, which will again be L = 0.5, and T = 0.1. 

Below, we can find our replication of this second table. 

    c = 1, n = 2  c = 2, n = 1 

 

λc 

 

λn 

 

S 

 

Sc 

βn 
diff (%) 

βc 

(sim) 

βc 

(approx.) 

Perc. 

diff (%) 

 βn 
diff (%) 

βc 

(sim) 

βc 

(approx.) 

Perc. 

diff (%) 

4 1 5 2 0.29 0.9395 (0.0015) 0.9190 2.05  0.15 0.9602 (0.0007) 0.9208 3.94 

5 1 6 2 0.05 0.9486 (0.0005) 0.9339 1.47   0.16 0.9712 (0.0000) 0.9368 3.44 
6 1 7 2 0.12 0.9573 (0.0000) 0.9467 1.06  0.02 0.9788 (0.0002) 0.9505 2.83 

7 1 8 2 0.20 0.9656 (0.0004) 0.9573 0.83   0.08 0.9847 (0.0003) 0.9617 2.30 
8 1 9 2 0.09 0.9720 (0.0002) 0.9658 0.62  0.15 0.9892 (0.0000) 0.9706 1.86 

9 1 10 2 0.07 0.9768 (0.0004) 0.9726 0.42   0.06 0.9917 (0.0006) 0.9776 1.41 
5 1 7 1 0.05 0.9762 (0.0001) 0.9722 0.40  0.01 0.9881 (0.0002) 0.9785 0.96 

6 1 7 2 0.12 0.9573 (0.0000) 0.9467 1.06   0.02 0.9788 (0.0002) 0.9505 2.83 
7 1 7 3 0.05 0.9328 (0.0007) 0.9118 2.10  0.14 0.9666 (0.0000) 0.9130 5.36 

8 1 7 4 0.05 0.9039 (0.0001) 0.8671 3.68   0.07 0.9512 (0.0005) 0.8673 8.39 
Table 2: Replication of the Koçaǵa and Şen (2007) approximation performance for a fixed service level of 95% (L = 0.5 and T = 0.1) 

For this instance, they tried to create ten instances, where the service level would be around 

95%. We see that the differences between our simulated service levels, and the service levels 

simulated by Koçaǵa and Şen (2007), are again considerably small. This means that we 

observe the same as Koçaǵa and Şen (2007). The approximation works well for the 95% 

service level, however not as well as for the 99% service level cases. The average differences 

between the approximation and our simulation are 1.37% and 3.33% for the two different 

cases. 

If we compare the results from Koçaǵa and Şen (2007) with our own simulation, we can 

assume that the results they obtained are very plausible. Also, we see that their calculation 

for the non-critical, and their approximation for the critical service levels, match with our 

calculated service levels. Therefore, we presume that all these results are correct, and that we 

can use the approximation as a foundation for our subsequent research. 

There is however a minor error in their definitions. They choose the percentage difference to 

be 100 times simulation approximation / simulation, however the values they placed in the 

table is calculated as simulated service level minus the approximated service level, and then 

multiplied by 100 to get a percentage value. We will use this exact method to calculate the 

percentage differences. 

Finally, we reproduce the third table presented by Koçaǵa and Şen (2007), where they test the 

performance of their approximation by varying a single parameter. They test for only varying 

stock, arrival rate of the critical class, arrival rate of the non-critical class and the Demand 

Lead Time. 
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      c = 1, n = 2  c = 2, n = 1 

 

S 

 

Sc 

 

λc 

 

λn 

 

L 

 

T 

βn 
diff (%) 

βc 

(sim) 

βc 

(approx.) 
Perc. 

diff (%) 

 βn 
diff (%) 

βc 

(sim) 

βc 

(approx.) 
Perc. 

diff (%) 

7 2 6 2 0.5 0.1 0.06 0.9490 (0.0004) 0.9225 2.79  0.02 0.9672 (0.0006) 0.9258 4.28 

8 2 6 2 0.5 0.1 0.00 0.9773 (0.0000) 0.9655 1.21   0.04 0.9869 (0.0002) 0.9678 1.94 

9 2 6 2 0.5 0.1 0.03 0.9907 (0.0002) 0.9861 0.46  0.08 0.9954 (0.0000) 0.9874 0.80 

10 2 6 2 0.5 0.1 0.09 0.9966 (0.0001) 0.9949 0.17   0.02 0.9985 (0.0000) 0.9955 0.30 

11 2 6 2 0.5 0.1 0.04 0.9988 (0.0001) 0.9983 0.05  0.03 0.9995 (0.0000) 0.9986 0.09 

5 2 1 1 1 0.5 0.10 0.9947 (0.0003) 0.9860 0.87  0.14 0.9959 (0.0035) 0.9989 -0.30 

5 2 2 1 1 0.5 0.14 0.9474 (0.0007) 0.9008 4.92  0.11 0.9780 (0.0173) 0.9906 -1.29 

5 2 3 1 1 0.5 0.19 0.8390 (0.0013) 0.7378 12.06   0.06 0.9410 (0.0425) 0.9662 -2.68 

5 2 4 1 1 0.5 0.15 0.6971 (0.0010) 0.5438 21.99  0.14 0.8876 (0.0733) 0.9208 -3.74 

5 2 5 1 1 0.5 0.23 0.5597 (0.0017) 0.3668 34.46  0.27 0.8202 (0.1055) 0.8543 -4.16 

5 2 1 1 1 0.5 0.07 0.9947 (0.0003) 0.9860 0.87  0.14 0.9959 (0.0035) 0.9989 -0.30 

5 2 1 2 1 0.5 0.09 0.9938 0.0002) 0.9686 2.54   0.05 0.9893 (0.0092) 0.9972 -0.80 

5 2 1 3 1 0.5 0.09 0.9929 (0.0001) 0.9484 4.48  0.11 0.9848 (0.0125) 0.9946 -1.00 

5 2 1 4 1 0.5 0.03 0.9925 (0.0002) 0.9274 6.56   0.15 0.9835 (0.0127) 0.9914 -0.80 

5 2 1 5 1 0.5 0.03 0.9922 (0.0001) 0.9072 8.57  0.03 0.9845 (0.0109) 0.9980 -1.37 

14 3 10 4 0.5 0.10 0.00 0.9971 (0.0000) 0.9934 0.37  0.00 0.9986 (0.0001) 0.9940 0.46 

14 3 10 4 0.5 0.20 0.13 0.9982 (0.0001) 0.9953 0.29  0.04 0.9997 (0.0001) 0.9975 0.22 

14 3 10 4 0.5 0.30 0.10 0.9990 (0.0000) 0.9973 0.17   0.01 1.0000 (0.0000) 0.9996 0.04 

14 3 10 4 0.5 0.40 0.02 0.9994 (0.0000) 0.9986 0.08  0.00 1.0000 (0.0000) 1.0000 0.00 

14 3 10 4 0.5 0.50 0.38 0.9995 (0.0000) 0.9993 0.02   0.00 1.0000 (0.0000) 1.0000 0.00 

Table 3: Replication of the Koçaǵa and Şen (2007) performance of the approximation with varying system parameters 

In the top part of the table, we can see that all service levels become higher if we increase the 

stock level. Also, the approximation becomes better as the stock level rises. In the second and 

third part of the table, we look at the impact of the arrival rates. In the second part, we 

change the critical arrival rate, in the third part we change the non-critical arrival rate. We can 

see in the second part of the table that the critical arrival rate has quite a big impact on the 

performance of the approximation. The approximation performs considerably worse as the 

critical arrival rate starts becomes higher. This impact on the performance of the 

approximation is much smaller if we test for different levels of non-critical arrival rates. If we 

look at the fourth part of the table, we study the impact of the Demand Lead Time T. If T 

increases, the service levels also increase for both criticality classes. However, the 

approximation performs quite well for all different Demand Lead Times. 

 c = 1, n = 2  c = 2, n = 1 

 

𝛽𝑐̅̅̅ 𝑆𝑟
∗

 𝑆 𝑆𝑐 

Percentage 

Saving (%) 𝑆∗  𝑆𝑐
∗ 

Percentage 

Saving (%) 

 

𝑆𝑟
∗ 𝑆 𝑆𝑐 

Percentage 

Saving (%) 𝑆∗ 𝑆𝑐
∗ 

Percentage 

Saving (%) 

0.900 33 32 2 3.03 31 1 6.06  35 35 0 0,00 34 1 2.86 

0.925 33 33 0 0.00 31 1 6.06  36 35 2 2.78 34 1 5.56 

0.950 34 34 0 0.00 31 1 8.82  37 36 3 2.70 34 1 8.11 

0.970 36 35 5 2.78 32 2 11.11  39 36 3 7.69 35 2 10.26 

0.980 37 35 5 5.41 32 2 13.51  40 37 4 7.50 35 2 12.50 

0.985 37 36 6 2.70 32 2 13.51  40 37 4 7.50 35 2 12.50 

0.990 38 36 6 5.26 33 3 13.16  41 38 5 7.32 36 3 12.20 

0.995 40 37 7 7.50 33 3 17.50  43 39 6 9.30 36 3 16.28 

Table 4: Replication of the Koçaǵa and Şen (2007) optimal parameters: approximation vs simulation (𝜆𝑐 = 5, 𝜆𝑛 = 10, 𝐿 = 2, 𝑇 =

0.5 𝑎𝑛𝑑 𝛽̅𝑛 = 0.80) 
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Finally, we replicate the comparison of the approximation savings with the simulated savings. 

In table 4, we find this for fixed parameters, and only varying the required service level of the 

critical class. If we compare the approximated savings against the simulated savings, we see 

that in none of the 16 instances, the approximation estimates the same savings as the 

simulated savings displays. It seems though as our simulation obtains lower stock levels in 

some situations than the stock level obtained in the simulation made by Koçaǵa and Şen 

(2007). In 13 of the 16 instances, the approximation does however provide a lower stock level 

than would be needed if no rationing was applied. Also, we see that the savings become 

higher as the service level of the critical class has to be higher. This seems logical, since when 

the difference between the two service levels becomes bigger, a round-up policy is not 

convenient, since the non-critical class gets a much higher service level than is required.   

If we compare the simulation of Koçaǵa and Şen (2007) with our simulation results, we can 

see that the service levels are in most situations very comparable. However, if we look in the 

second and third part of the table, for the situation where the second demand class is critical, 

our simulation seems to get very different results from the results of Koçaǵa and Şen (2007). 

The first and fourth part of the table are however almost identical to the results of Koçaǵa 

and Şen (2007). This could be due to a mistake in the simulation, since our simulated service 

levels are lower than the service level that follow from the approximation. We have marked 

these simulation results with red crossed out lettering. However, it is also possible that the 

results obtained by Koçaǵa and Şen (2007) are wrong for these instances, since all other 

simulated service levels seem to correspond to their simulated values. 

If we summarize the comparison between our simulation results and the results obtained by 

Koçaǵa and Şen (2007), we see that our simulated service levels are mostly corresponding. In 

both cases, the approximation Koçaǵa and Şen (2007) proposed seems to be quite accurate. 

We will therefore use their approximation as basis for our extension, where we will include 

the costs of delay and stockout. 

5.2 Cost approximation study 

Now that we have established that the service level approximation created by Koçaǵa and 

Şen (2007) looks correct, we can start to test our cost function approximation. We will 

compare the approximation results with a simulated cost function. For this simulation, we use 

a modified version of our simulation used for the replication study. In table4, we choose the 

same parameter values as in table 1 used for the replication study. In column 5-9, we find the 

difference in simulation and approximation for all 5 cost function components for the critical 

customers being the first demand class, and the non-critical customers being the second 

demand class. In column 10-14, we find the same, but now for the case where the critical 

customers are of the second demand class, and the non-critical customers are of the first 

demand class. As for the different colors, they roughly indicate how big the simulated cost 

component is. Red differences correspond with an absolute simulated value bigger than 1, 

orange differences correspond with absolute simulated values between 0.1 and 1, and green 

differences correspond with absolute simulated values between 0.001 and 0.1. If the 
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difference has no color, the simulated value is smaller than 0.0001. We also apply this 

grouping later in table 6 and 7. 

        c = 1, n = 2 c = 2, n = 1 

        Π𝑐 Π𝑛 Π̂𝑐 Π̂𝑛 H Π𝑐 Π𝑛 Π̂𝑐 Π̂𝑛 H 

λc λn S Sc Diff. Diff. Diff. Diff. Diff. Diff. Diff. Diff. Diff. Diff. 

1 4 5 3 -0,002 0,004 0,000 0,043 0,774 -0,001 -0,004 0,000 0,065 0,941 

2 4 6 3 -0,011 0,001 -0,001 0,049 0,466 -0,010 -0,001 -0,001 0,066 0,542 

3 4 7 3 -0,024 -0,002 -0,001 0,044 0,301 -0,023 0,001 -0,001 0,053 0,326 

4 4 8 3 -0,033 0,002 -0,001 0,037 0,199 -0,034 0,003 -0,001 0,038 0,200 

5 4 9 3 -0,040 -0,002 -0,002 -0,096 0,140 -0,043 0,000 -0,001 0,027 0,127 

6 4 10 3 -0,044 0,000 -0,001 0,024 0,099 -0,050 -0,002 -0,001 0,019 0,082 

7 4 11 3 -0,045 -0,004 -0,001 0,019 0,071 -0,053 -0,001 0,000 0,013 0,049 

8 4 12 3 -0,043 0,002 -0,001 0,015 0,051 -0,053 -0,001 0,000 0,009 0,037 

9 4 13 3 -0,040 0,002 -0,001 0,012 0,037 -0,051 0,001 0,000 0,006 0,022 

10 4 14 3 -0,037 0,001 -0,001 0,009 0,028 -0,046 0,001 0,000 0,004 0,011 

11 4 15 3 -0,033 0,000 -0,001 0,007 0,019 -0,043 0,000 0,000 0,002 0,010 

12 4 16 3 -0,028 0,000 -0,001 0,006 0,018 -0,038 0,001 0,000 0,002 0,005 

2 4 8 1 -0,004 0,014 0,000 0,002 0,502 -0,004 0,001 0,000 0,001 0,006 

3 4 8 2 -0,008 0,114 0,000 0,015 0,513 -0,013 0,001 0,000 0,007 0,047 

4 4 8 3 -0,015 0,323 -0,001 0,071 0,573 -0,034 0,003 -0,001 0,038 0,200 

5 4 8 4 -0,025 0,454 -0,002 0,192 0,688 -0,076 0,001 -0,003 0,140 0,524 

6 4 8 5 -0,038 0,304 -0,002 0,346 0,843 -0,150 0,000 -0,004 0,385 0,951 

7 4 8 6 -0,050 0,115 -0,003 0,507 1,003 -0,275 0,006 -0,009 0,842 1,376 

8 4 8 7 -0,441 0,001 -0,024 1,690 1,946 -0,471 0,004 -0,016 1,534 1,860 

Table 5: Performance of the separate cost component approximations for a fixed critical service level of 99% (L = 0.5 and T = 0.1) with all cost πc, 

πn, 𝜋̂𝑐, 𝜋̂𝑛 and h to 1 for comparison purposes 

If we look at the results of our first performance results, a few things become obvious straight 

away. The stockout cost for the non-critical class should be the same for the simulation as for 

our expression, since the expression uses an exact calculation for the backorders of the non-

critical class. The small differences in column 6 are therefore probably due to a slight error in 

the simulation. Also, we can see that our approximation for the delay cost of the critical class 

gives almost the same output as the simulation suggests, but this seems reasonable since the 

simulated values are very small. What we see is that all other approximations work quite well, 

but start to differ more from the simulated values for a critical stock level close to the total 

stock level. Mainly the approximation for the delay cost for the non-critical class and the 

holding cost then become considerably worse. This corresponds to what we see in our 

replication study for the service level approximation, which also performs worse in the same 

cases as we see here. 

In the table 6, we repeat the previous performance, but we now choose parameters that 

result in a critical service level of around 95% instead of 99%. Again, in this instance we have 

supply lead time L = 0.5, and DLT T=0.1. Again, the stockout cost for the non-critical class 

calculated by the approximation is equal to the outcome of the simulation. Also, the delay 

cost for the critical class calculated by the approximation is again practically equal to the 

simulation results. We see that for the rest of the terms, the difference becomes bigger when 
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we get towards a worse service level approximation, which we can see in table 2 is much 

worse for the last case for example. The differences we see here are however smaller than for 

the fixed critical service level of 99%.  

        c = 1, n = 2 c = 2, n = 1 

        Π𝑐 Π𝑛 Π̂𝑐 Π̂𝑛 H Π𝑐 Π𝑛 Π̂𝑐 Π̂𝑛 H 

λc λn S Sc Diff. Diff. Diff. Diff. Diff. Diff. Diff. Diff. Diff. Diff. 

1 4 5 3 -0,076 0,000 -0,005 0,031 0,082 -0,159 0,000 -0,003 0,021 0,060 

2 4 6 3 -0,073 0,001 -0,005 0,021 0,051 -0,171 0,001 -0,002 0,013 0,034 

3 4 7 3 -0,065 0,001 -0,003 0,016 0,037 -0,170 0,001 -0,002 0,007 0,020 

4 4 8 3 -0,055 0,001 -0,003 0,012 0,024 -0,163 0,001 -0,001 0,005 0,012 

5 4 9 3 -0,049 0,001 -0,002 0,009 0,019 -0,148 -0,001 0,000 0,003 0,007 

6 4 10 3 -0,039 0,000 -0,002 0,006 0,010 -0,132 0,000 0,000 0,002 0,002 

7 4 11 3 -0,020 0,000 -0,001 0,003 0,004 -0,049 0,000 0,000 0,001 0,002 

8 4 12 3 -0,065 0,001 -0,003 0,016 0,037 -0,170 0,000 -0,002 0,007 0,020 

9 4 13 3 -0,143 -0,002 -0,009 0,064 0,118 -0,375 0,001 -0,004 0,036 0,083 

10 4 14 3 -0,299 0,001 -0,023 0,202 0,276 -0,672 -0,001 -0,010 0,123 0,208 

Table 6: Performance of the separate cost component approximations for a fixed critical service level of 95% (L = 0.5 and T = 0.1) with all cost πc, 

πn, 𝜋̂𝑐, 𝜋̂𝑛 and h to 1 for comparison purposes 

In table 7, we don’t attain parameters to reach a certain service level. We now choose the 

parameters freely and vary also in supply lead time and DLT. We only vary one parameter at a 

time, to see for which parameter change the approximations work well, and for which they 

approach the simulation results a bit worse. We see that varying the DLT basically has no 

impact on any of the cost component approximations. The biggest differences appear in the 

case where we vary the parameter of the critical class demand arrivals. We can see that 

mainly the critical stockout cost component is quite different from the simulated critical 

           c = 1, n = 2  c = 2, n = 1 

           Π𝑐 Π𝑛 Π̂𝑐 Π̂𝑛 H  Π𝑐 Π𝑛 Π̂𝑐 Π̂𝑛 H 

S Sc λc λn L T  Diff. Diff. Diff. Diff. Diff.  Diff. Diff. Diff. Diff. Diff. 

5 2 1 1 1 0.5  -0,009 0,000 0,000 0,006 0,060  -0,010 0,000 0,000 0,008 0,063 

5 2 2 1 1 0.5  -0,094 0,002 -0,004 0,039 0,141  -0,127 -0,001 -0,003 0,025 0,091 

5 2 3 1 1 0.5  -0,297 0,001 -0,028 0,123 0,208  -0,470 0,001 -0,010 0,053 0,119 

5 2 4 1 1 0.5  -0,611 -0,001 -0,109 0,280 0,265  -1,044 0,000 -0,025 0,095 0,144 

5 2 5 1 1 0.5  -0,970 -0,001 -0,279 0,521 0,307  -1,730 0,002 -0,053 0,151 0,169 

5 2 1 1 1 0.5  -0,009 0,000 0,000 0,460 0,060  -0,010 0,000 0,000 0,008 0,063 

5 2 1 2 1 0.5  -0,025 0,000 0,000 0,017 0,178  -0,025 0,001 -0,003 0,049 0,304 

5 2 1 3 1 0.5  -0,045 0,002 -0,001 0,035 0,341  -0,045 0,002 -0,006 0,120 0,645 

5 2 1 4 1 0.5  -0,065 0,003 -0,001 0,055 0,528  -0,066 -0,001 -0,011 0,202 0,963 

5 2 1 5 1 0.5  -0,085 -0,001 -0,002 0,078 0,720  -0,088 0,001 -0,017 0,289 1,202 

14 3 10 4 0.5 0.10  -0,037 0,001 -0,001 0,009 0,028  -0,046 0,001 0,000 0,004 0,011 

14 3 10 4 0.5 0.20  -0,028 0,000 0,000 0,005 0,015  -0,022 0,001 0,000 0,001 0,002 

14 3 10 4 0.5 0.30  -0,017 0,001 0,000 0,003 0,090  -0,003 0,000 0,000 0,000 0,001 

14 3 10 4 0.5 0.40  -0,008 0,000 0,000 0,002 0,007  0,000 0,000 0,000 0,000 0,000 

14 3 10 4 0.5 0.50  -0,002 -0,012 0,000 0,000 0,001  0,000 0,000 0,000 0,000 0,000 

Table 7: Performance of the separate cost component approximations for varying parameters (L = 0.5 and T = 0.1) with all cost πc, πn, 𝜋̂𝑐, 𝜋̂𝑛 and h 

to 1 for comparison purposes 
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stockout cost in the case where the critical customers are of demand class 2. This however 

coheres with a probable error of the critical service level calculation in our simulation. We 

already saw in table 3 that these values are incorrect. While we directly use these service level 

approximation values to calculate our stockout cost, suspect that to be the cause of the big 

differences in this case, especially since the other cost components differ less from their 

simulated values. This also applies to the rows where we vary the non-critical demand events.  

After analyzing the performance of our separate cost function expressions, we see that in 

most situations, the approximations can be used to estimate actual cost quite accurately. For 

the stockout cost for the non-critical class we have an exact expression. We see that for the 

stockout cost and the delay cost for the critical class, we actually have an upper bound. Note 

that the delay cost for the critical class appears to be very similar to the simulation, but this is 

due to the delay cost being very small in most instances. There are however a few instances 

where the delay cost is slightly larger, and there you can see the approximation starting to 

differ from the simulated delay cost. For the delay cost of the non-critical class and the 

holding cost, we have an upper bound. We keep in mind that for the situations, for which in 

the first three tables we see that the critical service level approximation is close to the 

simulated service level, we have a good accurate cost function approximation. 

5.3 Cost optimization study 

After testing the expressions for the components of our composed function, we will now 

optimize the cost function as described in section 4.3. We find the minimum cost using the 

approximation of the cost function and compare this with the minimum cost found by the 

simulation. In table 8, we compare cost for fixed stock and critical stock level, lead times and 

critical demand events, for different values of non-critical demand events. In table 9, we 

switch the critical and non-critical demand events, so we fix the non-critical demand events 

and test different values of critical demand events. In the first column, we can find the chosen 

value for the corresponding demand event parameter. The table is split up in two parts. We 

again consider both cases. For columns 2-8, demand class 1 consists of critical customers, 

and for columns 9-15, demand class 2 consists of critical customers. For each case, the first 

three columns show the optimal stock levels and total cost found by the simulation. The next 

three columns after that, show the optimal stock levels and total cost for minimizing the 

approximated total cost level. In the last column, we can find the difference in total cost, 

which can be used as a measure of the performance of the approximation. If we look in table 

8, we see that for the critical customers being of the first demand class, the cost difference 

 c = 1, n = 2  c = 2, n = 1 

  Simulation cost  Approximation cost Difference  Simulation cost  Approximation cost Difference 

λn S Sc C  S Sc C in cost (%)  S Sc C  S Sc C in cost (%) 

2 4 0 0.17  4 0 0.17 0.00  4 0 0.17  4 0 0.17 0.00 

4 5 0 0.20  6 0 0.21 5.00  6 0 0.21  6 0 0.21 0.00 

6 7 0 0.24  8 0 0.27 12.50  7 0 0.25  7 0 0.25 0.00 

8 8 0 0.26  9 0 0.28 7.69  9 0 0.28  9 0 0.28 0.00 

10 9 0 0.29  11 0 0.34 17.24  10 0 0.31  11 0 0.32 3.22 

Table 8: Optimal stock with cost for 𝛽̅𝑐 = 0.99, 𝛽̅𝑛 = 0.80, with λc=1, L = 0.5, T=0.1, and cost parameters set to πc = 0.5, πn = 0.1, 𝜋̂𝑐 = 0.1, 𝜋̂𝑛 =

0.02 and h = 0.05 
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between the simulation and the approximation is not very large. The difference does however 

become larger as the parameter 𝜆𝑛 becomes larger. In the case where the non-critical 

customers are of the first demand class, we even see that the approximated cost are almost 

exactly the same as our simulated cost. 

If we look at table 9, we see that the differences are again reasonably small. When the critical 

customers are of the first demand class, note that the difference in cost appears to get 

smaller as the parameter for the critical demand events becomes larger. When the non-

critical customers are of the first demand class, this also seems to be the case. The difference 

in cost is however bigger in this table than in table 8, where we varied the non-critical 

demand event parameter. 

1.  c = 1, n = 2  c = 2, n = 1 

  Simulation cost  Approximation cost Difference  Simulation cost  Approximation cost Difference 

λc S Sc C  S Sc C in cost (%)  S Sc C  S Sc C in cost (%) 

2 5 1 0.20  6 0 0.23 15.00  5 1 0.20  6 0 0.24 20.00 

4 7 1 0.25  8 0 0.29 16.00  7 1 0.26  7 0 0.26 0.00 

6 9 1 0.30  9 0 0.31 3.33  8 1 0.28  8 0 0.29 3.57 

8 11 2 0.35  11 0 0.35 0.00  9 3 0.32  10 0 0.34 6.25 

10 12 2 0.37  12 0 0.38 2.70  11 2 0.36  11 0 0.36 0.00 

Table 9: Optimal stock with cost for 𝛽̅𝑐 = 0.99, 𝛽̅𝑛 = 0.80, with λn=1, L = 0.5, T=0.1, and cost parameters set to πc = 0.5, πn = 0.1, 𝜋̂𝑐 = 0.1, 𝜋̂𝑛 =

0.02 and h = 0.05 

Finally, we create table 10. This table is a replication of table 4 of Vicil (2022), but now with 

DLT incorporated. Note that we only created this table for the case where the non-critical 

class has a DLT. In columns 1-3, model parameters are stated. In columns 4, 7, 10 and 13 the 

optimal stock levels suggested by the simulation are shown. In columns 5, 8, 11 and 14 we 

find the optimal stock levels that are suggested by the cost approximation. In column 6, 9, 12 

and 15 we compare the simulated cost when using the simulation optimal stock levels, with 

  c = 1, n = 2 

   𝜆𝐿 = 2.5 𝜆𝐿 = 5 𝜆𝐿 = 10 𝜆𝐿 = 20 

πn λc λn (𝑆, 𝑆𝑐) (𝑆∗, 𝑆𝑐
∗) % Gap (𝑆, 𝑆𝑐) (𝑆∗, 𝑆𝑐

∗) % Gap (𝑆, 𝑆𝑐) (𝑆∗, 𝑆𝑐
∗) % Gap (𝑆, 𝑆𝑐) (𝑆∗, 𝑆𝑐

∗) % Gap 

0.1 0.75 0.25 (7, 3) (5, 0) 146,35% (10, 5) (8, 0) 192,82% (15, 7) (14, 1) 105,03% (26, 8) (20, 0) 1305,27% 

0.5 0.75 0.25 (7, 3) (5, 0) 144,38% (10, 4) (8, 0) 185,85% (16, 5) (14, 1) 99,21% (26, 7) (20, 0) 1226,56% 

1 0.75 0.25 (7, 2) (5, 0) 142,73% (10, 3) (8, 0) 177,43% (16, 4) (14, 1) 91,76% (27, 5) (20, 0) 1165,52% 

2 0.75 0.25 (7, 1) (5, 0) 140,76% (11, 2) (8, 0) 170,40% (17, 3) (14, 0) 127,92% (28, 3) (20, 0) 1102,96% 

0.1 0.5 0.5 (5, 3) (4, 0) 212,51% (8, 3) (7, 0) 153,33% (12, 4) (12, 0) 175,02% (18, 6) (19, 0) 488,63% 

0.5 0.5 0.5 (5, 2) (4, 0) 194,14% (8, 3) (7, 0) 142,14% (12, 4) (12, 0) 148,42% (21, 4) (19, 0) 401,76% 

1 0.5 0.5 (6, 2) (4, 0) 182,76% (8, 2) (7, 0) 124,19% (13, 3) (12, 0) 125,91% (22, 3) (19, 0) 344,02% 

2 0.5 0.5 (6, 1) (5, 0) 35,34% (9, 1) (7, 0) 116,81% (14, 2) (12, 0) 112,18% (24, 2) (19, 0) 321,70% 

0.1 0.25 0.75 (4, 2) (4, 0) 67,89% (5, 2) (6, 0) 129,54% (8, 3) (10, 0) 174,95% (13, 3) (17, 0) 240,11% 

0.5 0.25 0.75 (4, 2) (4, 0) 50,27% (6, 2) (6, 0) 98,78% (9, 2) (10, 0) 116,46% (16, 3) (17, 0) 146,10% 

1 0.25 0.75 (4, 1) (4, 0) 39,47% (7, 1) (6, 0) 71,07% (11, 2) (10, 0) 81,66% (18, 2) (17, 0) 105,97% 

2 0.25 0.75 (5, 1) (4, 0) 32,97% (7, 1) (6, 0) 62,16% (12, 1) (10, 0) 73,76% (20, 1) (17, 0) 93,64% 

Table 10: Optimization table with parameters chosen as in Vicil (2022), T = 0.5 ∗ L and cost parameters set to 𝜋𝑐 = 10, 𝜋̂𝑐 = 20, 𝜋̂𝑛 = 2 ∗ 𝜋𝑛 and h 

= 1 
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the simulated cost when using the approximated optimal stock levels, calculated as ((app. 

cost – sim. cost)/sim. cost)*100%. Looking at the table, we see that the gap between the cost 

varies from reasonably small to inordinately large. Especially for cases where the 

replenishment lead time is very large, the cost approximation becomes wildly ineffective. 

After comparing specific cost components, it appears that especially the delay cost for the 

critical class is not well approached for cases where the critical service level is low. This shows 

a weak point in our cost approximation. 

Concluding from these tables, it appears that our cost function operates reasonably well for 

instances where a high service level is present. However, a considerable drawback is that 

when a minimum service level is not required, the approximation starts to deviate very much 

from the actual cost, which can lead to very inefficient stock levels. 

6. Conclusion 

In this paper, we examined a cost function for an (S-1, S) inventory management system with 

two demand classes. We considered two different types of criticality. Customers can either be 

of the critical, or the non-critical class. Also, we have two different demand classes. Orders of 

the first demand class should be satisfied at the time of the incoming demand, while orders 

of the second demand class should be satisfied after a given DLT. The model we use is 

referred to as a single-echelon inventory model. We incorporate a rationing policy that sets a 

critical stock level, such that when the stock drops below this level, we only help the critical 

customers and therefore ration the non-critical class. For this system, we replicate the 

approximation proposed by Koçaǵa and Şen (2007) and replicate their study to test their 

approximation against a simulation. After conducting this replication, we compose an 

approximation for a cost function. This cost function consists of 2 types of penalty cost and 

holding cost. Next, we also test this total cost function approximation against a simulation. 

From this study, we find that our cost function approximation is quite accurate for most 

instances. With this cost function, we finally optimize stock levels, and compare the cost for 

several instances with the cost that follows from our simulation. We show with this 

comparison that considering cost, minimizing the stock level may often not be the most cost-

efficient policy. 

In our results, we see that mainly for only varying the non-critical demand event parameter, 

considerable cuts in cost can be made by actually attaining a higher inventory level. This is 

especially the case when the critical customers are of the first demand class, but also for the 

case when the critical customers are of the second demand class to a lesser extent. Of course, 

these results are dependent on the cost parameters we have chosen for our instances. 

However, this is a very good indication that choosing the stock based on minimizing the 

annual cost function, can lead to different stock levels which are more cost efficient. 

Regarding the accuracy and robustness of the cost approximation, there are still some 

improvements to make. We observe that, especially when no fixed service level is required, 

the cost function can perform quite bad. After looking at the separate cost components, we 

conclude that this is due to the service level approximation that is used in the stockout cost 

for the critical class. This approximation performs much worse when the service level gets 
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lower, which leads to suboptimal stock levels. In future research, incorporating a more 

accurate service level approximation could very well lead to a better cost approximation. As 

an extension, considering stochastic DLT might be very interesting and useful. Also, 

expanding the criticality classes could be very enlightening.  

As far as we are aware of, a cost function has not yet been incorporated into a system with 

rationing as well as DLT. Considering a form of a cost function could even further reduce the 

cost of an inventory system. 
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Appendices 

Appendix 1 

In table 5*, 6* and 7*, we can see table 5, 6 and 7, but now the differences are given in 

percentages. Note that percentages may appear high, while the cost values may be of 

multiple digits after the decimal point. Therefore, differences of well over a 1000% can be 

present in these tables. 
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        c = 1, n = 2  c = 2, n = 1 

        sc sn dc dn h sc sn dc dn h 

λc λn S Sc diff. diff. diff. diff. diff. diff. diff. diff. diff. diff. 

1 4 5 3 300% 0% -70% -8% -23% 172% 0% 213% -9% -28% 

2 4 6 3 275% 0% 0% -14% -12% 200% 0% 164% -15% -15% 

3 4 7 3 267% 0% 1696% -18% -7% 230% 0% 211% -19% -8% 

4 4 8 3 206% 0% 120% -21% -4% 227% 0% 133% -21% -4% 

5 4 9 3 182% 0% 0% 9600% -3% 239% 0% 112% -24% -2% 

6 4 10 3 176% 0% 100% -26% -2% 263% 0% 117% -26% -1% 

7 4 11 3 161% 1% 100% -28% -1% 279% 0% 21% -27% -1% 

8 4 12 3 143% 0% 100% -29% -1% 312% 0% 44% -28% -1% 

9 4 13 3 133% -1% 100% -32% -1% 340% 0% 61% -29% 0% 

10 4 14 3 128% 0% 100% -31% 0% 329% -1% 51% -29% 0% 

11 4 15 3 122% 0% 100% -32% 0% 391% 0% 51% -22% 0% 

12 4 16 3 108% 0% 0% -35% 0% 422% -1% 47% -33% 0% 

2 4 8 1 6352% -17% 7520% -29% -8% 80% -1% 49% -11% 0% 

3 4 8 2 1973% -23% 1821% -27% -9% 144% 0% 79% -15% -1% 

4 4 8 3 1500% -22% 1187% -29% -11% 227% 0% 133% -21% -4% 

5 4 8 4 625% -16% 644% -27% -13% 330% 0% 300% -29% -12% 

6 4 8 5 422% -8% 425% -23% -16% 469% 0% 200% -37% -20% 

7 4 8 6 357% -3% 341% -20% -17% 743% 0% 450% -45% -27% 

8 4 8 7 678% 0% 600% -52% -35% 1346% 0% 800% -52% -32% 

Table 5*: Performance of the separate cost component approximations in percentages for a fixed critical service level of 99% (L = 0.5 and T = 0.1) 

with all cost πc, πn, 𝜋̂𝑐 , 𝜋̂𝑛 and h to 1 for comparison purposes 

        c = 1, n = 2  c = 2, n = 1 

        sc sn dc dn h sc sn dc dn h 

λc λn S Sc diff. diff. diff. diff. diff. diff. diff. diff. diff. diff. 

4 1 5 2 31% 0% 20% -30% -3% 101% 0% 23% -29% -2% 

5 1 6 2 28% 0% 22% -30% -2% 118% 0% 18% -32% -1% 

6 1 7 2 25% 0% 14% -33% -1% 134% -1% 25% -29% 0% 

7 1 8 2 23% -1% 17% -35% -1% 155% -1% 17% -33% 0% 

8 1 9 2 22% -1% 13% -38% 0% 170% 1% 0% -33% 0% 

9 1 10 2 19% 0% 15% -35% 0% 189% 0% 0% -33% 0% 

5 1 7 1 17% 0% 11% -30% 0% 83% 0% 0% -25% 0% 

6 1 7 2 25% 0% 14% -33% -1% 134% 0% 25% -29% 0% 

7 1 7 3 30% 0% 22% -41% -4% 160% 0% 25% -40% -2% 

8 1 7 4 39% 0% 33% -52% -9% 173% 0% 37% -50% -6% 

Table 6*: Performance of the separate cost component approximations in percentages for a fixed critical service level of 95% (L = 0.5 and T = 0.1) 

with all cost πc, πn, 𝜋̂𝑐 , 𝜋̂𝑛 and h to 1 for comparison purposes 
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          c = 1, n = 2  c = 2, n = 1 

          sc sn dc dn h sc sn dc dn h 

S Sc λc λn L T diff. diff. diff. diff. diff. diff. diff. diff. diff. diff. 

5 2 1 1 1 0.5 180% 0% 14% -12% -2% 250% 0% 56% -15% -2% 

5 2 2 1 1 0.5 90% 0% 21% -22% -5% 289% 0% 60% -26% -3% 

5 2 3 1 1 0.5 61% 0% 27% -33% -11% 267% 0% 48% -34% -4% 

5 2 4 1 1 0.5 50% 0% 38% -45% -19% 233% 0% 45% -41% -6% 

5 2 5 1 1 0.5 44% 0% 50% -54% -30% 192% 0% 46% -48% -9% 

5 2 1 1 1 0.5 180% 0% 14% -91% -2% 250% 0% 56% -15% -2% 

5 2 1 2 1 0.5 417% 0% 20% -10% -6% 227% 0% 300% -15% -11% 

5 2 1 3 1 0.5 643% 0% 145% -10% -12% 300% 0% 300% -14% -27% 

5 2 1 4 1 0.5 813% 0% 139% -9% -20% 388% 0% 550% -13% -46% 

5 2 1 5 1 0.5 1063% 0% 289% -9% -30% 550% 0% 850% -12% -61% 

14 3 10 4 0.5 0.10 128% 0% 100% -31% 0% 329% -1% 51% -29% 0% 

14 3 10 4 0.5 0.20 156% 0% 45% -28% 0% 733% -2% 38% -33% 0% 

14 3 10 4 0.5 0.30 170% -1% 43% -27% -1% 862% 0% 0% -22% 0% 

14 3 10 4 0.5 0.40 133% 0% 1% -33% 0% 0% 0% 0% 0% 0% 

14 3 10 4 0.5 0.50 40% 28% -45% 0% 0% 0% 0% 0% 0% 0% 

Table 7*: Performance of the separate cost component approximations in percentages for varying parameters (L = 0.5 and T = 0.1) with all cost πc, 

πn, 𝜋̂𝑐, 𝜋̂𝑛 and h to 1 for comparison purposes 


