
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Bachelor Thesis BSc2 Econometrics/Economics (FEB24100)

The profitability of drones in the vehicle routing problem with

stochastic drone delivery

Name student: Jimme van der Leij

Student ID number: 513394

Supervisor: Ymro Hoogendoorn

Second assessor: Dr. Oguzhan Vicil

Date: 03-07-2022

Abstract

Using unmanned aerial vehicles, also known as drones, to deliver packages could revolutionize the logistics

industry. Incorporating drones into delivery systems could save costs, minimize delivery time and decrease

pollution. For this reason, many delivery companies have started to experiment with using drones. There

are, on the other hand, also great concerns about the safety of drones. Drones have a risk to collide

with objects or other drones in mid-air and, as a consequence, fall down potentially hurting people on

the ground. From an operations research perspective, extensive literature already exists on using drones

in logistics systems. However, incorporating a risk of failed drone delivery by, for example, a collision

into a mathematical formulation has not yet been implemented. Therefore, a variation on the Vehicle

Routing Problem with Drones, by Sacramento, Pisinger, and Ropke (2019), will be studied in this paper

to incorporate a failure probability for drone delivery. Our formulation will be called the Vehicle Routing

Problem with Stochastic Drone Delivery. This formulation considers a fleet of trucks all accompanied

by a single drone, which needs to serve a set of customers with a service level guarantee. While delivery

by truck is considered to be always successful, drone delivery will have a chance to fail. This paper will

then assess the effect of this failure probability on the profitability of drones in delivery systems. To

get good solutions for our model in reasonable running times an Adaptive Linear Neighbourhood Search

metaheuristic will be used from Sacramento et al. (2019), which was adapted to fit our formulation.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor,

Erasmus School of Economics or Erasmus University Rotterdam.

Contents

1 Introduction 1

2 Literature review 2

3 Vehicle routing problem with stochastic drone delivery 4

3.1 Problem description . 4

3.2 Parameters . 7

4 Methodology 7

4.1 Adaptive large neighbourhood search . 8

4.2 Initial solution . 9

4.3 Destroy methods . 10

4.3.1 Random destroy . 11

4.3.2 Cluster destroy . 12

4.4 Repair methods . 12

4.4.1 Greedy truck-first sortie-second repair method . 12

4.4.2 Nearby-area truck-first sortie-second repair method . 13

4.4.3 Closest insertion repair method . 13

4.5 Recourse policy . 14

5 Experimental results 16

5.1 Instances . 17

5.2 Performance ALNS algorithm . 17

5.3 Effect of the failure probability on profitability of drones . 21

5.3.1 Test instances . 22

5.3.2 Results . 22

5.3.3 Solution performance under uncertainty . 24

5.4 Recourse policy . 25

6 Conclusion 27

References 30

A Appendix 32

A.1 Explanation of the programming files . 32

ii

1 Introduction

In 2013 Jeff Bezos, CEO of Amazon, announced for the first time that it was developing an unmanned aerial

vehicle (UAV) for parcel delivery (Rose, 2013). These UAVs, commonly known as drones, showed great

promise to revolutionize the logistics industry, due to the fact that they are, in contrast to usual delivery

vehicles, not bound to the road network but have the ability to travel via the air. In addition, drones do not

need the guidance of personnel and, as a result, drones could save significant time and operating costs for a

logistics operation.

An initial cost-benefit analysis into Amazon’s Prime Air operations confirmed this potential (Welch, 2015).

Welch (2015) concluded that not only do the revenues from using UAVs in the logistics system outweigh

the start-up and operational costs, but also that the incorporation of UAVs would lead to a competitive

advantage due to faster delivery and greater customer satisfaction. In recent years, however, Amazon’s Prime

Air operation has had some difficulties in getting its drone deliveries off the ground and it is speculated that

it will not be able to deliver on its initial promise (Kersley, 2021).

Other companies on the other hand, such as DHL and Alphabet, are making great progress in drone delivery

(Dell’Amico, Montemanni, & Novellani, 2021). While both Alphabet and DHL have begun testing, DHL’s

Parcelcopter has already completed a 3-month successful trial of delivering medical and urgent goods to a

German Island (DHL, 2016).

Commercial use of drones is hardly limited to parcel delivery. Manna, a company founded in 2019, had, as of

August 2021, an average of around 2000 successful food delivery flights by UAVs daily with an average service

time below three minutes (Koetier, 2021). After successfully launching in Dublin, Manna is now planning to

expand their operations to six other European countries (Keane, 2022). Other domains, where drones are

currently used, include drug deliveries, agriculture, entertainment, and surveillance (Rao, Gopi, & Maione,

2016). While many of these objectives are open to academic research, the scope of this thesis is limited to the

use of drones for parcel deliveries.

Using drones for deliveries also has potential benefits for society. Drones are electric and, as a result, do not

directly pollute the air or emit greenhouse gasses while flying. However, assessing the environmental impact

of drones is very complex and depends on the deployment of drones (Kellermann, Biehle, & Fischer, 2020).

Goodchild and Toy (2018) suggest a blended approach of drones and trucks delivering parcels: trucks should

deliver to further addresses, while drones can be used for nearby customers since drones have a small payload

capacity and short-range because of limited battery capacity.

Using the same reasoning, Murray and Chu (2015) suggest combining a UAV on a truck, as this ensures the

advantages of both modes of transport. The truck will function both as a delivery vehicle, as well as a mobile

depot from which the UAV can leave to deliver to nearby customers. This approach uses the ability of the

truck to cover large distances and the ability of the drone to quickly deliver parcels to nearby customers. For

1

this reason, it is expected that this approach will decrease the environmental impact of the truck. However,

solid scientific evidence is, to the best of our knowledge, still lacking.

There are, on the other hand, also great concerns about the expansion of commercial drones. UAVs have a risk

of air collisions, malfunctions or misuse by criminal or terrorist organizations and can, as a consequence, do

severe harm to individuals (Smith, 2015; Stöcker, Bennett, Nex, Gerke, & Zevenbergen, 2017). To minimize

these risks, European legislation is strict but still evolving. More importantly, from a commercial perspective

legislation is moving in the right direction (Alamouri, Lampert, & Gerke, 2021). The legislation now provides

detailed documentation and standardized procedures to acquire flight permission, which makes investing in

drones more reliable.

Due to these advancements in technology and legislation, it becomes interesting to research the incorporation

of drones in logistic systems. While extensive literature and several mathematical formulations already exist

on UAVs and trucks cooperating in a logistics system, so far a probability of failure for drone delivery, due

to for example a collision or malfunction, has not yet been incorporated into a model. Since drone failures

are likely to occur and can have large consequences on the viability of using drones in logistics systems, this

thesis will try to answer the following research question:

How does the probability of a drone failure impact the profitability of drones in logistics systems?

To answer this question we will consider the delivery of drones as stochastic, meaning it is uncertain whether

a planned drone delivery will be successful.

In Section 2 a literature review is provided to assess the current scientific knowledge. Next, in Section 3 the

problem at hand and its parameters are defined and explained. To obtain good solutions in reasonable time

an Adaptive Large Neighbourhood Search (ALNS) algorithm is used and discussed in Section 4 based on the

paper from Sacramento et al. (2019). Thereafter, in Section 5 the results from our implementation of the

ALNS algorithm will be discussed. Lastly, we will conclude what the effects of the probability of destruction

are on the viability of using drones in logistics systems in Section 6.

2 Literature review

The well-known traveling salesman problem (TSP), explained by, for example, Applegate, Bixby, Chvatal,

and Cook (2011), is not very applicable to UAVs. In the TSP a vehicle or a salesman has to serve as a set of

customers on a single route, while minimizing, for example, the costs of the route. For a UAV, however, this

formulation does not seem practical. Due to the limited battery and payload capacity of the drone, it is in

many cases infeasible to let the drone visit several customers in a row.

For this reason, Murray and Chu (2015) were the first to create a variant on the TSP that allows for the

incorporation of a drone. They presented the flying sidekick traveling salesman problem (FTSP): a TSP where

2

the delivery truck is accompanied by a UAV that can leave the truck to deliver a package to a customer. After

delivering a package, the drone returns to the truck at a different location. This formulation is a more realistic

scenario for drones because the truck driver is able to change the batteries of the UAV after every delivery.

Secondly, they provided another formulation where a fleet of drones and one truck work independently from

the same depot. In this problem, which was named the parallel drone TSP (PDTSP), the truck follows a

TSP route and in the meantime, the drones deliver packages to other customers from the base depot. Their

paper started a new branch of operations research, where drones are incorporated into traditional operations

research formulations.

A logical extension to the FTSP was provided by Sacramento et al. (2019). They kept the same scenario: a

single truck is accompanied by a drone. However, they extended the formulation to account for more than one

truck. They defined this problem as a vehicle routing problem with drones (VRP-D). A number of trucks all

accompanied by a single drone needs to serve a set of customers. Every truck has a single route starting and

ending at the depot. Drones can leave from their respective truck to deliver a package to a single customer,

whereafter it is retrieved by its a truck at a different node. Because of the realistic applicability of their

formulation, we will use their formulation as the basis for our research.

Other interesting formulations, though not considered in this paper, are for example the multi-traveling

salesmen problem with drones (mTSPD) presented by Kitjacharoenchai et al. (2019) or the hybrid vehicle

routing problem with drones (HVRPD) presented by Karak and Abdelghany (2019). Kitjacharoenchai et al.

(2019) present a variation of a multi-traveling salesman problem (mTSP), where a number of trucks has to

deliver to a set of customers, while simultaneously a fleet of drones delivers packages to customers. These

drones can be launched and retrieved by either a truck or the home depot. Moreover, drones are not assigned

to any truck but can return to a different truck than they have departed from.

In the HRVPD a single truck carries a fleet of drones and packages (Karak & Abdelghany, 2019). The truck

acts as a mobile depot from which drones can be launched to deliver parcels to customers. In Karak and

Abdelghany’s (2019) formulation drones can first deliver packages and then to pick up packages at other nodes

that need to be returned. While these different formulations all have their advantages and disadvantages, it is

yet to be seen which design is the most practical.

Stochasticity of delivery has, to our knowledge, not yet been implemented into a problem formulation with

drones. However, stochasticity has been widely included in formulations of the VRP (Gendreau, Laporte, &

Séguin, 1996). Common examples of including stochasticity are: stochasticity of demand or stochasticity of

travel time. Another type of stochasticity, described by Bertsimas (1988), considers the set of customers itself

as stochastic, customers can appear on the route with a certain probability pi for every customer i. Bertsimas

(1988) termed this formulation the probabilistic VRP. Later, this formulation was commonly referred to as

the VRP with stochastic customers (VRPSC) (Gendreau et al., 1996).

3

This latter stochastic formulation shows similarities to the formulation considered in this paper. However,

instead of customers existing or spawning with a certain probability, delivery of a customer by drone is

stochastic, i.e., a customer is successfully served by a drone with a certain probability p. As a consequence of

the stochastic element, it is for both formulations uncertain, whether a customer can be served successfully.

Solving the FTSP, VRP-D or VRPSC to optimality with exact methods in reasonable running times can

only be done for small instances (Sacramento et al., 2019). Therefore, heuristic solutions are used to get a

relatively good solution in a reasonable running time. In this paper, we will use an extension of the large

neighborhood search (LNS), which is called an adaptive large neighborhood search (ALNS)

The LNS algorithm, first proposed by Shaw (1998), destroys and repairs a current solution to find new

local minima and improve the solution (Pisinger & Ropke, 2019). Since an LNS algorithm searches a large

neighborhood the algorithm is relatively time-consuming per iteration. However, it is also able to find better

solutions at every iteration.

The ALNS algorithm, first defined by Ropke and Pisinger (2006), extends the LNS algorithm by allowing

several destroy en repair methods to be chosen (Pisinger & Ropke, 2019). The methods are dynamically

assigned weights based on their performance and methods are chosen based on their relative weights. As a

result, methods that helped to improve the solution will have a higher probability to be selected again by the

algorithm.

3 Vehicle routing problem with stochastic drone delivery

In this section we will define and discuss the vehicle routing problem with stochastic drone delivery. First, we

will define and discuss the problem at hand in Section 3.1. Then, we will discuss the values of the parameters

that we use in Section 3.2.

3.1 Problem description

In the VRP-D a set of homogenous trucks, all equipped with a single drone , have to deliver packages to

a set of customers C. In the original problem, defined by Sacramento et al. (2019), each customer has to

be served exactly once by either a truck or a drone. In this formulation, every customer has to be served

with a probability of at least δ, which will be called the individual service requirement. Additionally, on

average every customer has to be successfully served with a probability γ ≥ δ, which is the average service

requirement. Each truck starts and ends its route at the home depot. The drone can leave its respective truck

along the route to serve a customer, whereafter it has to return to its truck. Every move of a vehicle V , which

can be a drone D or a truck T , from node i to j has a travel time τVi,j =
di,j

vV , where di,j , v
V represent the

distance and travel speed respectively.

A truck will always serve a customer successfully with a probability equal to one. A drone, on the other hand,

4

has a probability p ≤ 1 for each independent visit to successfully deliver and return. For this reason, we call

this formulation the vehicle routing problem with stochastic drone delivery (VRPSDD). As discussed earlier,

there are many possible reasons for a drone to fail at delivering its package. Therefore in this formulation,

this probability is included.

Boeing (2021) concludes in their summary report that only around ten percent of all airplane accidents happen

while cruising and that the other ninety percent occur, while a plain is taking off, ascending, descending,

or landing. For UAVs statistics on when accidents occur are still missing. However, we believe that drone

accidents will similarly occur in these stages, as drones are then close to obstacles, like buildings or trees. In

the air, accidents are less likely to occur since there are fewer obstacles. As a consequence, we assume that the

probability of a failure p̄ = 1− p and p is constant and does not depend on the time flown or distance traveled.

A truck is only equipped with one drone. Therefore, as soon as a drone failure occurs, the drone will not

be able to visit any customers later on the route. The probability that the customer of the i-th drone visit

successfully gets his package is then equal to pi. If a drone delivery fails, it is assumed that the package will

be lost and therefore, that the truck will not be able to deliver a package to that customer. Thereafter, the

truck will take over the planned drone sorties. This will be done in the following way. At every subsequent

drone launch position i of drone sortie (i, j, k), where i represents the launch node, j the customer’s node, and

k the recovery node, instead of the drone visiting the customer j, the truck travels to j, whereafter it returns

to its initial route. This will be called a route adjustment and this will be considered the simple recourse

policy. This adjustment might not be optimal but practical to implement in reality for every drone failure.

Moreover, it is possible to calculate the expected costs of this adjustment. It is important to note that the

route after the adjustment could exceed the maximum route time Tmax. This, however, can only happen

after a failure and will be seen as an exceptional situation. In a later section, Section 4.5, however, we will

implement a more advanced recourse policy, which uses a route reoptimization to minimize the adjustment

costs when an actual failure occurs.

Every drone visit has to respect both the payload and battery capacity e of the drone. Because drones can

mostly hold one package, they can only serve one customer at a time. It is allowed, however, for the drone to

depart and return several times along the truck route. There are two ways a drone can deliver a package to

its customer. It can either drop off packages by lowering them from the drone or it can land at a platform of

a customer and detach the package there. Similar to other papers that focus on the technical aspects of drone

delivery, for example, Miranda et al. (2022), we assume that all customers have a landing platform on which

a drone lands to deliver a package. As a consequence, we can assume that drones are able to land at the

recovery position k of a sortie and can wait there until a truck picks them up. Therefore, the total travel and

service time of the truck route between node i and k does not have to satisfy the drone’s endurance. Only

the total travel, service sD, launch sL and recovery sR time of the drone need to be smaller or equal to the

drone’s endurance. The following, thus, needs to hold for a feasible sortie s = (i, j, k):

5

sL + τDi,j + sD + τDj,k + sR < e (1)

The order of operations of the truck at a launch or recovery node i determines the time at node i in the

route. We assume that the truck driver will always first serve customer i before launching the drone if node i

represents a launch node and will always first recover the drone before serving customer i if node i represents

a recovery node, this ensures that the time the truck driver is away from the drone is minimized. However,

this might come at the cost of having a larger total route time.

There is a cost cVi,j associated for every move dependent on the distance from node i to j of the truck T or

drone D. Denoting mc a mile to kilometer converter, fc fuel consumption per kilometer, and fp the fuel price

per liter. The travel costs in euro of the truck are equal to cTi,j = di,j ·mc · fc · fp. The travel costs of the

drone will then be set to a factor a < 1 times the truck’s travel costs. This factor will be smaller than one

since we assume that drones will be have lower travel costs than drones.

Trucks have a limited total travel time for their route since delivery drivers have a limited working period

Tmax. When drones are recovered by the truck, they are transported by the truck and do not incur any extra

costs. The objective is to minimize the total costs of serving all customers, the total costs consist of the total

truck’s traveling costs and the sortie costs SC. Sorties incur the following costs depending on whether the

drone delivery has been successful. Let P be the set containing all feasible sorties then the costs associated

with a successful delivery for the n-th drone visit are equal to:

Sn = cDi,j + cDj,k (2)

The probability that the delivery of the n-th sortie is successful, is equal to pn. Secondly, if the drone has a

failure on the n-th delivery we incur the fixed costs F for the repair costs of the drone and additional delivery

costs. These additional delivery costs are set to the traveling costs of a truck from the depot to a customer

and back cT0,j , where node 0 represents the depot and j the customer of the sortie. In reality, the costs of

delivering a package to that customer will be lower, since the customer could be incorporated into a route.

However, this will provide us with an upper bound on the actual costs. The total fixed costs of the n-th drone

visit are equal to:

Fn = F + 2cT0,j (3)

The chance of having a failure at the n-th drone sortie will be equal to pn−1(1 − p). Lastly, drone sorties

incur adjustment costs if the drone fails before it is set to serve the customer at that sortie. These adjustment

costs are equal to: the truck’s traveling cost of moving from the launch position i to the customer j; plus

the traveling costs of moving from customer j to the next node in the route of the truck i+ 1; minus the

traveling costs of moving the truck from node i to k, since the truck does not travel from i to k anymore. The

6

adjustment costs become:

An = cTi,j + cTj,i+1 − cTi,i+1 (4)

Note that i+ 1 represents the node after i in the truck route, which not necessarily has to be the recovery

node. The probability of incurring adjustment costs at the n-th sortie is equal to (1− pn−1). Taking into

account all these costs, the expected total sortie costs of the i-th sortie are equal to:

SCi = piSi + pi−1(1− p)Fi + (1− pi−1)Ai (5)

Due to the fact that the sortie costs are asymmetric for p < 1, the total costs would become also asymmetric

for p < 1. To prevent asymmetric costs the total costs of a truck route are determined by the traveling costs

of the truck, which are symmetric, plus the minimum of both orientations of the sortie costs. This ensures

that the costs are set to the minimum of both route orientations and thus, the route costs become symmetric

again.

3.2 Parameters

There are many parameters related to the abilities of the drone and truck relevant for the VRP-D. To be

able to compare this implementation of the VRP-D with Sacramento et al. (2019)’s formulation, most of the

values of the parameters will be selected from their paper. They have tried to select parameters that are close

to reality. However, due to the fact that drone delivery is not widely used yet and is still likely to improve,

the parameters might be inaccurate. An overview of the parameters can be found in Table 1.

In addition, we set the average service requirement γ and the individual service requirement δ to 0.999 and

0.99 respectively. These are reasonably low service level guarantees, to ensure that it is still feasible to let

customers be served by drones.

The production costs of an octocopter drone similar to Amazon’s, the DJI spreading wings SJ100, are between

1000-3000 US dollars. Including a software cost estimation of around 2000 US dollars, we estimate the total

production cost of a drone to be 4000 US dollars (Keeney, 2021). Since the damage after a drone failure

differs, we set the estimated repair costs to halve of the production cost, which is 2000 US dollars. To get a

nice round number, we assume a favorable exchange rate of one-to-one and set the fixed repair costs F of the

drone to 2000 euros.

.

4 Methodology

Heuristics are used to find good solutions in reasonable running times. In this case, we will use an ALNS

algorithm based on Sacramento et al. (2019). In section 4.1 the ALNS algorithm is described. Next, we

7

Table 1: Parameters of VRP-D

Parameter Notation Value

Individual service requirement δ 0.99
Average service requirement γ 0.999

Launch time sL 1 min
Recovery time sR 1 min

Service time truck sT 2 min
Service time drone sD 1 min

Truck speed vT 35 mph
Drone speed vD 50 mph

Drone endurance e 30 min
Truck capacity Q 1400 kg
Drone capacity QD 5 kg

Fuel price fp 1.13 €/l
Fuel consumption fc 0.07 l/km
Miles converter mc 1.61 km/mi
Drone factor cost α 0.1

Maximum route duration Tmax 8 h
Fixed costs drone failure F 2000 €

describe how to obtain an initial solution for the ALNS algorithm in Section 4.2. In the following section,

Section 4.3, the random and cluster destroy methods are explained. Next, in section 4.4 three repair methods

are discussed. At the end of this section, we will discuss a recourse policy to optimize the route further after

a failure has occurred, see Section 4.5.

4.1 Adaptive large neighbourhood search

In an ALNS algorithm destroy and repair methods are iteratively and statistically chosen to improve the

current solution. Destroy methods destroy part of the current solution, while repair methods rebuild the

partial solution to a new feasible solution. At every iteration a destroy and repair method is statistically

selected based on their relative performance, i.e., methods that improved the current solution more often will

have a higher probability to be selected again.

Table 2: Scores for destroy and repair methods

Ψ Description
σ1 The new solution resulted in a new global best minimum
σ2 The new solution was accepted with a cost lower than the current solution
σ3 The new solution was accepted with a cost higher than the current solution
σ4 The new solution was rejected

We define Ω− and Ω+ as the set of respectively the destroy and repair methods. At each iteration a repair and

destroy method is chosen probabilistically based on their respective weights. Normally, the weights of both

the repair methods and desroy methods are updated based on their relative performance. In this algorithm,

however, only the repair methods’ weights are updated according to their performance. Let wij be the weight

of method i after iteration j. Initially, the weights are initialized with equal probability. The weight of repair

method i used in iteration j is then updated by their score Ψ, defined in Table 2, relative to the current

8

solution and reaction factor ρ ∈ {0, 1} according to the following formula (Sacramento et al., 2019):

wi,j+1 = ρwij +Ψ(1− ρ)

Note that if a method is not used in iteration j its weight remains the same for the next iteration. A destroy,

repair method i will then be selected in iteration j with a probability equal to
wi,j∑

k∈Ω wk,j
, where Ω equals

Ω−,Ω+ respectively. To prevent solutions are randomly updated, new solutions have to be accepted based on

an acceptance criterion. In this case a solution st with a better objective value than the current solution s

will always be accepted. However, new solutions with an objective value larger than the current solution are

only accepted with the following probability (Sacramento et al., 2019):

e
f(s)−f(st)

T

Here f(s) denotes the objective value of solution s and T denotes a temperature parameter that is used

to decrease the acceptance probability over time. We initialize T = Tst and then decrease T linearly over

time, converging to zero at tmax, the time the algorithm is terminated. This ensures that at the start of the

algorithm a wider range of possible solutions are accepted, while at the end worse solutions are only accepted

with a small probability. The temperature parameter is then updated with the following formula (Sacramento

et al., 2019):

T = Tst

(
1− telap

tmax

)

Here telap is the elapsed time of the ALNS algorithm. The algorithm is terminated as soon as telap ≥ tmax.

Lastly, different from other ALNS algorithms, this algorithm resets the current solution to the best solution

found thus far if there has not been made an improvement on the best solution after a certain number of

iterations (Sacramento et al., 2019). The pseudocode of the ALNS algorithm is given in Algorithm 1.

4.2 Initial solution

To use the ALNS algorithm we first have to find an initial solution. The initial solution will be constructed

by using heuristics with the following three steps. Firstly, a Nearest Neighbour heuristic will be used for

the trucks to make sure all customers are visited. A truck route is initialized and iteratively the customer

closest to the last position in the current route is added to the truck’s route until either, the capacity or time

constraint of the truck becomes restrictive, or all customers have been served. In case of the former, a new

truck will be added to the solution and the same procedure is repeated until all customers are served.

In the second step, the current VRP solution is improved by an iterated local search algorithm (ILS). At

9

Algorithm 1: Pseudo-Code for the ALNS algorithm

input : Initial Temperature: Tst,
Max iterations without improvement: noImpvMax,
Time limit: tmax

s← InitialSolution();
s∗ ← s;
noImpv ← 0;

while telap < tmax do
Select a destroy method d() and a repair method r() from Ω− and Ω+;
st ← r(d(s)) ;

T = Tst(1− telap/tmax) ;

if Random(0,1) < exp(f(s)−f(st)
T

) then
s← st

if f(s) < f(s∗) then
s∗ ← s;
noImpv ← 0;

else
noImpv ← noImpv + 1;
if noImpv > noImpvMax then

s← s∗;
noImpv ← 0;

Update scores of Ω− and Ω+ based on acceptance criteria

return s∗;

every iteration, this ILS considers all the intra- and inter-route two-opt moves of the current solution and

implements the two-opt move with the largest cost saving. This is repeated for a total of one thousand

iterations.

Thirdly, the drones are added to the current solution by the following procedure. First, the set D of possible

drone customers on the route of a truck is identified. Secondly, for all customers c ∈ D, iteratively the

customer gets removed from the truck route and is possibly added as a drone customer to a route. The set of

all possible sorties Pc for customer c is identified and Algorithm 2, adapted from Sacramento et al. (2019),

finds the best feasible sortie. A feasible sortie can of course not coincide with other sorties and has to respect

both the individual and average service requirement. This sortie is then added to the solution if the total

costs of the route including the sortie are smaller than the threshold η. The threshold is initialized by the

total costs of the route before customer c was removed from the route and is updated, every time a better

sortie is found, by the current total costs. If it is no longer feasible to let a customer in D be visited by the

drone, the customer is added again to the truck route by the BestTruckInsertion(c, s) method. This is

repeated until all customers in D have been considered.

4.3 Destroy methods

Two different destroy methods will be used to destroy part of the current solution. A destroy method will

at least remove β customers from the current solution. Let δ represent the fraction of the total customers

that is preferably removed, and let clow, clim present a lower and upper bound for β respectively. Then β is

10

Algorithm 2: FindSortie(c, s, η) function that finds the best sortie for customer c in the partial
solution s with respect to a threshold cost η

input :Partial Solution: s,
customer to insert as drone-customer: c,
threshold cost: η

BestSortie = ∅;
for Each Route in s do

if # drone sorties of route + 1 ≤ MaxDroneSorties then
if Capacity(Route) + qc < Q then

for Pair Positions(i, k) in Route where i < k do
Construct sortie p = (i, c, k) with launch-position i, delivery-position c and recovery-position k;
Check feasibility for sortie p;
if averageServiceLevel(s ∪ p) < γ then

if sL + sR + τD
ic + τD

ck + SeDc < e AND f(s) + CostSortie(p) < η then
BestSortie← p;
Update η;

return BestSortie;

determined by the following formula (Sacramento et al., 2019):

β = min(max(clow, δ|C|), clim) (6)

In most cases δ determines the number of customers to be removed. However, for very large or small instances

the lower and upper bound ensure that the values of β remain sensible. We set the parameter clow to a

random integer between 1 and 3, and the upperbound clim to 40.

The two destroy methods described below will be consistently chosen with equal probability. Therefore, the

adaptive part of the ALNS algorithm will only be used for the repair methods.

4.3.1 Random destroy

The first destroy method, adapted from Sacramento et al. (2019), will remove customers randomly from

the current solution until at least β customers are removed. If a removed node represented a launch or

recovery node for the drone, the drone customer will also be removed. Thus, it is possible that more than

β customers are removed. However, at most β + 2 customers can be removed since a node can only be a

launch position for one sortie and a recovery position for one sortie. Lastly, if at the end of the algorithm the

average service requirement is not satisfied anymore, iteratively a random drone customer is selected and

changed into a truck customer. The drone sortie is removed from the route and the customer is inserted

by the BestTruckInsertion(c, s) method that inserts customer c into solution s by a truck visit with the

lowest additional costs. As a service requirement was not present in Sacramento et al. (2019), this last part

has been added to the original algorithm to ensure a feasible solution.

11

Algorithm 3: Cluster Removal of Customers

input :Current Solution: s,
number of customers to remove: β

c1 ← RandomCustomer(s) ;
remove c1 from s;
removed← c1 ;
while removed < β do

c← RandomCloseCustomer(c1, s) ;
if c is Launch and/or Recovery Position then

remove drone customers associated with c from s
remove c from s ;
update removed ;

while averageServiceProbability(s) > γ do
Select random drone customer c;
Remove customer c and sortie, and insert the customer by BestTruckInsertion(c, s)

return s;

4.3.2 Cluster destroy

The cluster destroy method, adapted from Sacramento et al. (2019), removes customers in a cluster around a

randomly chosen focal point. Let customer c1 be the randomly chosen focal point, then, the next customer

to be removed is randomly chosen from the subset of the two closest customers to c1. This randomness

is added to the selection procedure to avoid that the same partial solution will be reached again. This is

repeated until at least β customers are removed, see Algorithm 3. Again, if the average service requirement γ

is not satisfied after removing β customers, random drone customers are changed into truck customers by the

BestTruckInsertion(c, s) method until this requirement is satisfied.

4.4 Repair methods

After a solution has been destroyed, repair methods are used to rebuild the partial solution. Let the set X

denote the set of customers that have been removed, then the repair methods add these customers iteratively

to truck routes. Repair methods ensure that customers are feasibly added. If customers can not feasibly be

inserted into existing routes a new truck route is added, such that a repair method is always able to create a

feasible solution. We will present three repair methods that were adapted from Sacramento et al. (2019) to fit

our problem.

4.4.1 Greedy truck-first sortie-second repair method

The first repair method to be discussed, is the greedy truck-first sortie-second heuristic, which consists of two

steps. A random customer from the set X is first added to a truck route with the BestTruckInsertion(c, s)

function. This function finds the cheapest insertion for the customer into a truck route. This is repeated until

all customers from X are added to a truck route.

In the second phase, a random customer is selected from the set C. If this customer is currently served by

a truck the FindSortie(c, s, η) function is used to find the best feasible sortie for that customer. Only if

the total costs are decreased by serving that customer by a drone, the drone sortie is added to the route.

12

Algorithm 4: Greedy truck-first sortie-second repair method

input :Partial Solution: s,
set of removed customers: X

while X ̸= ∅ do
c← RandomCustomer(X);
X = X \ {c} ;
BestTruckInsertions(c, s);

C = AllCustomers(s);
while C ̸= ∅ do

c← RandomCustomer(C) ;
C = C \ {c} ;
if qc ≤ QD AND Type(c) = Truck then

s′ ← s ;
η = f(s′) ;
s← s \ {c} ;
p← FindSortie(c, s, η);
if p ̸= ∅ then

s← s ∪ {p}
else

s← s′;

return s;

Otherwise, the route is not changed and the procedure repeats until all customers have been considered.

4.4.2 Nearby-area truck-first sortie-second repair method

A variation on the previous heuristic is the nearby-area truck-first sortie-second repair method, which was

adapted from Sacramento et al. (2019). This method works similarly but, instead of inserting a customer into

the route with lowest cost, the customer is inserted after a random position within a five mile radius. While

Sacramento et al. (2019) did not specify how to insert a customer c, if the set of nodes within a five mile

radius is empty, we will insert those customers by the BestTruckInsertion(c, s) method. In the second

phase of the algorithm, iteratively a random truck-customer from the set C is selected and all possible sorties

are identified. In this algorithm the truck customer is inserted by a random sortie that is selected out of the

set of feasible sorties that does not increase the cost of the partial solution with more than ten percent. Due

to the fact that this method does not necessarily selects the lowest cost insertions, it can be seen as a weaker

version of the previous algorithm. However, it does find a wider range of solutions, which can help escaping

local minima.

4.4.3 Closest insertion repair method

The third repair method, adapted from Sacramento et al. (2019), tries to insert customers in the largest cost

saving way considering both truck and drone visits. First, the route that lies closest to a randomly selected

customer from X is identified. Then the AttemptBestInsertion(c, s) function is used to insert the customer

into that route. This function finds the largest cost saving insertion into that specific route considering both

truck and drone insertions. If the function is unable to feasibly add the customer into the route, the customer

is added to the set XN . When all customers from X have been considered, the customers in set XN that

13

could not be feasibly added, are added by the greedy truck-first sortie-second algorithm defined earlier, see

Algorithm 4.

Algorithm 5: Closest insertion repair method

input :Partial solution: s,
set of removed costomers: X

XN = ∅;
while X ̸= ∅ do

c← RandomCustomer(X);
X = X \ {c};
c′ ← NearestCustomer(c, s);
r ← RouteOf(c′);
if AttemptBestInsertion(c, s) = false then

XN = XN ∪ {c};

if XN ̸= ∅ then
s← RepairTruckFirstSortieSecond(XN , s) (Algortihm 4);

return s;

4.5 Recourse policy

So far we have considered that the truck takes over the planned drone customers with a route adjustment

after a failure occurs. As discussed in Section 3.1, this would be done in the following way for the all still to be

completed drone sorties s = (i, j, k): as soon as the truck has visited the customer at the launch position i, it

will visit the customer at node j itself, since the drone can not be launched anymore. Thereafter it visits the

customer at node i+ 1, which is the node planned after node i in its initial route. The truck then continues

its initial route until it reaches a new launch position i of a scheduled sortie and the procedure is repeated.

This route adjustment, however, could be far from optimal but is very simple to implement for a truck driver.

For this reason, this will be considered the simple recourse policy. In this section we describe a more advanced

recourse policy that reoptimizes the route with a cheapest insertion algorithm, whenever a failure occurs.

When a drone crashes, the truck has to take over the planned drone customers from that point. We assume

that the truck will notice the drone failure at the recovery position k of the drone sortie that has failed.

Therefore, from that point onwards the problem reduces to a TSP, where the start and end node of the

route are not equal. To reoptimize this route, we will use a variation on the well-known cheapest insertion

algorithm, described by for example Rosenkrantz, Stearns, and Lewis (1977). We start with the route from

k to the depot and first insert all the drone customers by the cheapest insertion algorithm in the current

route. Let Cl denote all customers present in the route after k, which are all customers still to be visited

after the drone failure. Next, the route is improved by removing and reinserting a customer j ∈ Cl by the

findCheapestInsertion(R, j) function. This function considers all insertions between the start node k

and the depot 0, and inserts customer j with the cheapest cost. This is repeated for all customers until no

improvements can be made, see Algorithm 6.

Since the cost savings of the advanced recourse policy depend on the sortie at which a failure occurs. We

14

Algorithm 6: Route improvement algorithm for the recourse policy

input :Remainder of the route R after recovery position k of the failed drone sortie,
Set S of the remainder of sorties still to be visited

for Every sortie s = (i, j, k) ∈ S do
Insert customer j into route R to findCheapestInsertion(R, j);

smallestCost = totalCost(R);

Determine the set of customers Cl in the route after k;
while currentCost < smallestCost do

smallestCost = currentCost;

for Every customer j ∈ Cl do
Insert customer j in route R to findCheapestInsertion(R, j);

currentCost = totalCost(R);

return new route R;

will calculate for several solutions the cost savings Ss at each sortie s of the advanced recourse policy in

comparison to the simple recourse policy discussed earlier. These savings will be used to assess the performance

of our recourse policy. Remember that the probability that a failure occurs at the i-th sortie is equal to

P(Fi) = (1− p)pi−1. We can calculate the expected cost savings TSr of each route r ∈ R, denoting the event

of a failure at sortie s as Fs, with the following formula:

E[TSr] =

nr∑
i

(Si · P(Fi)) =

nr∑
i

(Si · (1− p)pi−1)

Note that Si = 0 if there is no failure at sortie i and that nr is the total amount of sorties in route r. Then

the probability that a failure occurs in a route is equal to one minus the probability that no failures occur in

the route: P(Fr) = 1− pnr . The cost savings given that a failure Fr has occurred in route r can be calculated

with the following formula:

E[TSr|Fr] =

nr∑
i

(Si · P (Fi|Fr)) =

nr∑
i

(
Si ·

(1− p)pi−1

1− pnr

)
(7)

Let R denote the set of all routes in a solution. The total expected cost savings of the routes combined can

be calculated with the following formula:

E[
∑
r∈R

TSr] =
∑
r∈R

E[TSr]

Let now denote F the event of at least one failure in all combined routes of the solution and let F ∁
r

the event of not having a failure at route r. The probability to not have any failures in R is given by

P(F ∁
R) =

∏
r∈R P(Fr) =

∏
r∈R pnr . We partition the event F in the disjoint events Fr and F ∁

r , so that we

can calculate the total expected cost savings of solution conditional on that a failure has occurred with the

15

following formula:

E[
∑
r∈R

TSr|F] =
∑
r∈R

E[TSr|F] =
∑
r∈R

(
E[TSr|F ∩ Fr] · P(Fr|F) + E[TSr|F ∩ F ∁

r] · P(F ∁
r |F)

)
=

∑
r∈R

(
E[TSr|Fr] ·

P(Fr)

P(F)

)
=
∑
r∈R

(
E[TSr|Fr] ·

(1− pnr)

1−
∏

u∈R pnu

)

Again note that E[TSr|F ∁
r] = 0 because total savings of route r are equal to zero if there is no failure in

route r. Both the expected savings and expected savings conditional on a failure will be used to assess the

effectiveness of the advanced recourse policy. Additionally, we will calculate the expected route costs RC of a

solution given a failure. We define RC as the total incurred costs of the combined routes minus the fixed

failure costs of a sortie Fs. As a result, RC represents only the traveling costs of a solution. Let RCr be the

route costs of route r, then E[RCr|F] can be calculated using Equation (7), by replacing TSr by RCr and Ss

by the costs of a route when sortie s fails. Then the expected route costs of a solution given a failure can be

calculated with the following formula:

E[
∑
r∈R

RCr|F] =
∑
r∈R

E[RCr|F] =
∑
r∈R

(
E[RCr|F ∩ Fr] · P(Fr|F) + E[RCr|F ∩ F ∁

r] · P(F ∁
r |F)

)
=

∑
r∈R

(
E[RCr|Fr] ·

P(Fr)

P(F)
+ E[RCr|F ∁

r] ·
P(F ∁

r) · P(FR\r)

P(F)

)
=

∑
r∈R

(
E[RCr|Fr] ·

(1− pnr)

1−
∏

u∈R pnu
+ E[RCr|F ∁

r] ·
pnr (1−

∏
t∈R\r p

nt)

1−
∏

u∈R pnu

)

Note that in this case, if there is no failure at route r, there are still travel costs in route r and therefore,

the second term does not disappear. These expected route costs given a failure will be used to assess the

effectiveness of the advanced recourse policy by inspecting the expected savings given a failure relative to the

expected route costs given a failure.

5 Experimental results

In this section, we will present the results of our VRPSDD. First, we will discuss the instances used for our

methods in Section 5.1. We will then start comparing our results, when there is a guaranteed successful

delivery, i.e., p = 1, with those of Sacramento et al. (2019) in Section 5.2. Next, we will discuss the effect

of the failure probability p̄ = 1 − p on the profitability of drones in Section 5.3. First, we will discuss the

instances used for the VRPSDD, Section 5.3.1, then we will present and discuss the results of the VRPSDD,

Section 5.3.2, and lastly, we will assess the performance of our solutions when the probability used in the

model does not equal the true failure probability, Section 5.3.3. In the last results subsection, Section 5.4,

we discuss the performance of the advanced recourse policy. All of the results are obtained by an Intel(R)

16

Core(TM) i5-8265U processor.

5.1 Instances

We will use the instances generated by Sacramento et al. (2019) for a good comparison of our results. They

initialized a number of customers n on a grid with a length and width of 2g. for every customer they generated

a random x and y coordinate between ±g. The depot is always set in the middle of the grid at coordinate

(0, 0).

Secondly, they initialized the demand qi of customer i in the following way. With a probability equal to 0.86

a customer is initialized with a demand from the uniform distribution between 0 and 2.27 kg. Otherwise,

the demand is initialized from the uniform distribution between 2.27 and 68 kg. This is because Amazon

claims that 86% of their package deliveries weigh less than 2.27 kg (Allain, 2013) and UPS reports that the

maximum allowed weight of a package on a truck is 68 kg (UPS, 2017). All instances have a code n.g.i where

n represents the amount of customers, g the grid dimension and i the number of the instance with that grid

and customer combination. All used instances can be found in Table 3.

5.2 Performance ALNS algorithm

We first assess the performance of our implementation of the ALNS algorithm. To do so we will compare our

results with p = 1 to the results of Sacramento et al. (2019). Since no failure probability was included in

Sacramento et al. (2019), we set the success probability to one to allow for a fair comparison.

To accurately compare our results, we set the parameters of the ALNS algorithm equal to the values of

Sacramento et al. (2019). After a parameter tuning experiment described in Sacramento (2017), they

determined the following values to be effective: initial temperature factor T ∗
st = 0.004, factor of destruction

δ = 0.15 and non-improvement parameter noImpvMax = 1000 iterations. The initial temperature Tst is set

to the objective value of the initial solution times T ∗
st. This ensures that the initial temperature adjusts to the

size of the instance.

The remaining parameters of the adaptive part of the algorithm ρ and the scores (σ1, σ2, σ3, σ4) are set to 0.9

and {33, 9, 13, 0} respectively and we initialize the weights wi of every repair method i to 9. Lastly, we run

the ALNS algorithm for a maximum of 5 minutes and therefore, set tmax to 5 minutes. The results of our

implementation can be found in Table 3. Each instance will be run ten times for different seeds.

Before comparing the results of both implementations of the ALNS algorithm, let us discuss the small

differences in implementation. First of all, Sacramento et al.’s (2019) implementation assumes the truck has

to arrive at the recovery position before the drone. While in our implementation the drone can land on a

platform at the customer and wait for the truck to arrive. This allows the truck to visit more customers

before it has to pick up the drone. The following constraint has, thus, been relaxed. Let tTi,k denote the total

17

travel time of the truck route from i to k, including travel time and service time in between nodes, then every

drone sortie (i, j, k) in the route has to satisfy the following constraint:

tTi,k ≤ e (8)

Secondly, while our implementation has three different repair methods, Sacramento et al. (2019) utilize a

fourth repair method called heavy insertion. Heavy insertion first inserts all customers with a demand greater

than the drone capacity with the best truck insertion method described in Section 4.4.1 and then inserts the

rest of the customers with the closest insertion algorithm, see Algorithm 5.

Thirdly, Sacramento et al. (2019) improve the initial VRP solution by an ILS algorithm with three methods.

These methods include an intra- or inter-route two-opt, relocation, or exchange move. We, on the other hand,

only use a two-opt move. Additionally, they improve their initial VRP-D solution, by a string relocation

algorithm, while our initial solution is immediately used in the ALNS algorithm.

Lastly, there are some small differences in the parameters of the ALNS algorithm. Sacramento et al. (2019)

increase the initial temperature Tst for small instances, which they did not define, by ten percent to allow for

a larger variety of solutions. Also, the values of the initial weights for the methods of the ALNS algorithm

were unspecified. This, however, will likely not have a large effect, if the amount of iterations is large enough,

as then the weights can adapt.

Let us now compare the results of Table 3 of both implementations. First of all, we see that both implementa-

tions are able to find the same objective value for small instances, |C| < 20, except for instances 12.5.2 and

12.20.4, which both have a higher value for our implementation. However, for larger instances, the differences

in the smallest objective value are larger and in most cases, our smallest objective value is higher.

Table 3: Comparison of the performance of the ALNS algorithm

Instance z∗ µ Difference σ Iterations zinitial

6.5.1 1.0982 1.0982 1.0982 1.0982 0.00 0.000 0.000 10739814 41959813 1.3822 1.3368
6.5.2 0.8422 0.8422 0.8422 0.8422 0.00 0.000 0.000 9235810 42802018 1.0571 1.1084
6.5.3 1.2114 1.2114 1.2114 1.2114 0.00 0.000 0.000 9506438 44620683 1.3026 1.3372
6.5.4 0.9460 0.9460 0.9460 0.9460 0.00 0.000 0.000 12726278 44129451 1.0198 1.0198
6.10.1 2.4061 2.4061 2.4184 2.4061 0.51 0.039 0.000 12295129 38949492 2.8796 2.8796
6.10.2 1.6793 1.6793 1.6793 1.6793 0.00 0.000 0.000 12937848 37191908 2.6913 1.7702
6.10.3 1.3255 1.3255 1.3255 1.3255 0.00 0.000 0.000 14066338 38426647 1.9033 1.9033
6.10.4 1.4431 1.4431 1.4431 1.4431 0.00 0.000 0.000 12263820 40046320 2.5417 1.7345
6.20.1 2.6776 2.6776 2.6776 2.6776 0.00 0.000 0.000 12823071 39483597 4.4296 3.6704
6.20.2 4.3196 4.3196 4.3196 4.3196 0.00 0.000 0.000 10982472 42665143 5.4408 5.5610
6.20.3 3.8248 3.8248 3.8248 3.8248 0.00 0.000 0.000 11335483 43387965 5.6434 5.0516
6.20.4 3.6787 3.6787 3.6787 3.6787 0.00 0.000 0.000 12209879 38621176 5.6617 4.5477
10.5.1 1.6556 1.6556 1.6556 1.6556 0.00 0.000 0.000 4062999 25746784 1.6638 1.6638
10.5.2 1.4519 1.4519 1.4519 1.4519 0.00 0.000 0.000 5793572 26450623 1.5151 1.5151
10.5.3 1.4736 1.4736 1.4736 1.4736 0.00 0.000 0.000 5808815 27265176 1.8619 1.8619
10.5.4 1.2849 1.2849 1.2849 1.2849 0.00 0.000 0.000 4508835 25627890 1.8450 1.8032
10.10.1 2.3265 2.3265 2.3347 2.3265 0.35 0.011 0.000 5728418 28019615 3.3204 2.6737
10.10.2 3.1586 3.1586 3.1586 3.1586 0.00 0.000 0.000 5924160 26639115 3.7888 3.5087
10.10.3 2.5527 2.5527 2.5527 2.5527 0.00 0.000 0.000 3357279 29000966 3.5457 3.5457

18

10.10.4 2.5393 2.5393 2.5393 2.5393 0.00 0.000 0.000 2924422 26113164 3.2579 2.8711
10.20.1 4.4524 4.4524 4.4524 4.4524 0.00 0.000 0.000 5826215 26201747 4.5351 4.5351
10.20.2 6.1678 6.1678 6.1678 6.1678 0.00 0.000 0.000 7379404 26938008 7.0386 6.7845
10.20.3 4.5463 4.5463 4.5463 4.5463 0.00 0.000 0.000 7190908 27736599 5.8839 5.1654
10.20.4 6.1536 6.1536 6.1601 6.1536 0.11 0.009 0.000 7469917 28239850 6.8651 6.7417
12.5.1 1.3738 1.3738 1.3738 1.3738 0.00 0.000 0.000 5606612 22287186 1.5301 1.5301
12.5.2 1.0690 1.0590 1.0798 1.0590 1.97 0.020 0.000 5852701 22431403 1.8254 1.7826
12.5.3 1.4477 1.4477 1.4477 1.4477 0.00 0.000 0.000 5600286 23479327 1.6556 1.6293
12.5.4 1.5810 1.5810 1.5810 1.5810 0.00 0.000 0.000 5605303 23118928 1.8868 1.7541
12.10.1 2.6810 2.6810 2.6810 2.6810 0.00 0.000 0.000 6814475 23554627 3.7695 3.7708
12.10.2 2.6842 2.6842 2.6842 2.6842 0.00 0.000 0.000 5083628 21947382 3.3080 3.3080
12.10.3 2.8805 2.8805 2.8805 2.8805 0.00 0.000 0.000 4891834 21958882 3.7680 3.6837
12.10.4 2.3142 2.3142 2.3142 2.3142 0.00 0.000 0.000 5546401 22823268 4.3579 3.1713
12.20.1 5.7776 5.7776 5.7986 5.7776 0.36 0.022 0.000 6792508 22746779 7.7530 7.0187
12.20.2 8.2725 8.2725 8.2725 8.2725 0.00 0.000 0.000 3311492 20178441 8.9144 8.2733
12.20.3 4.1669 4.1669 4.1669 4.1669 0.00 0.000 0.000 4335987 21708160 4.3857 5.4396
12.20.4 6.4099 6.0886 6.4099 6.0886 5.28 0.000 0.000 5231333 24023052 7.7145 7.7145
20.5.1 1.7935 1.7935 1.7935 1.7935 0.00 0.000 0.000 1704737 11301575 2.1394 2.0346
20.5.2 1.9540 1.9540 1.9540 1.9540 0.00 0.000 0.000 1667146 10631574 2.2816 2.0477
20.5.3 1.4866 1.4866 1.4866 1.4866 0.00 0.000 0.000 1946247 11114470 1.9227 1.9191
20.5.4 1.3789 1.3789 1.3789 1.3789 0.00 0.000 0.000 2171819 12616178 1.8572 1.8444
20.10.1 3.2525 3.2525 3.4044 3.2525 4.67 0.131 0.000 1781196 13287214 4.4137 3.9230
20.10.2 3.0894 3.0894 3.0894 3.0894 0.00 0.000 0.000 2041085 12565887 4.6780 4.7589
20.10.3 3.7023 3.7023 3.7023 3.7258 -0.63 0.000 0.050 1996986 11718401 4.6208 4.6310
20.10.4 3.1966 3.3089 3.1966 3.3137 -3.53 0.000 0.015 2153710 12508345 4.6358 4.3647
20.20.1 7.3445 7.3445 7.3445 7.3512 -0.09 0.000 0.021 862654 11638755 8.5470 8.0480
20.20.2 7.9220 7.5489 7.9291 7.5489 5.04 0.006 0.000 1780965 11942478 8.8392 8.5893
20.20.3 7.5968 7.4610 7.5968 7.4746 1.63 0.000 0.043 2011912 10418184 10.0839 8.5274
20.20.4 7.0133 7.0133 7.0133 7.0133 0.00 0.000 0.000 1609199 11091582 10.3536 8.6699
50.10.1 5.8613 5.8613 5.8615 5.8613 0.00 0.001 0.000 82945 1110439 7.3846 6.2551
50.10.2 5.5849 5.5849 5.5855 5.6210 -0.63 0.001 0.076 105767 1351994 6.7108 6.4094
50.10.3 5.5939 5.4224 5.6085 5.4255 3.37 0.015 0.001 121030 1453177 6.9004 7.1079
50.10.4 5.1411 5.2083 5.3586 5.3526 0.11 0.113 0.109 103371 1762387 6.6976 6.8049
50.20.1 10.4390 10.4553 10.4567 10.4564 0.00 0.009 0.001 99472 1313010 12.6861 13.2090
50.20.2 10.0561 10.0561 10.0601 10.0561 0.04 0.006 0.000 109380 1396076 12.2855 12.6846
50.20.3 10.5018 10.5425 10.5282 10.6570 -1.21 0.021 0.060 108180 1337178 14.0583 14.3447
50.20.4 10.6642 10.6642 10.8033 11.0008 -1.80 0.218 0.187 94844 1299549 12.7175 12.7835
50.30.1 15.7714 15.8179 16.1633 15.8179 2.18 0.380 0.000 99198 1509428 20.1345 19.8709
50.30.2 15.3549 15.0148 15.3588 15.4636 -0.68 0.007 0.473 105189 1427745 18.7605 20.0485
50.30.3 16.3874 16.7690 16.3928 16.7713 -2.26 0.002 0.003 115615 1340989 20.4367 21.1009
50.30.4 18.8994 18.2875 18.9022 18.2875 3.36 0.005 0.000 81872 1138204 22.2569 22.0994
50.40.1 20.1210 20.3751 20.1367 21.1771 -4.91 0.025 0.551 86087 1230243 24.8783 25.1103
50.40.2 20.6253 20.6262 20.6253 20.6262 0.00 0.000 0.000 91673 1277543 22.7771 23.1038
50.40.3 23.1217 22.6452 23.1391 22.7053 1.91 0.026 0.190 80220 1132225 29.4871 27.0804
50.40.4 22.6857 22.3371 22.6990 22.7891 -0.40 0.017 0.195 78042 1222262 25.4232 28.0744
100.10.1 6.9951 6.8574 7.0907 6.8902 2.91 0.070 0.027 9717 202026 8.6596 8.9208
100.10.2 7.7357 7.5851 7.8463 7.6781 2.19 0.086 0.081 8552 165091 9.4893 9.2321
100.10.3 7.3089 7.1835 7.4950 7.3055 2.59 0.079 0.092 9183 184846 9.4422 8.8057
100.10.4 7.4428 7.4568 7.4689 7.5459 -1.02 0.021 0.064 7178 165521 8.4320 8.9807
100.20.1 13.9022 13.6067 14.0588 13.7946 1.92 0.203 0.114 4822 123349 17.0567 16.3388
100.20.2 14.4535 14.1340 14.5394 14.5375 0.01 0.047 0.145 4784 144852 18.3780 17.1472
100.20.3 14.3902 13.7099 14.5326 13.7672 5.56 0.072 0.065 4801 169247 17.3086 17.4572
100.20.4 14.4173 13.8494 14.5326 14.1976 2.36 0.058 0.245 24536 158025 19.2880 18.5038
100.30.1 22.6443 22.5882 22.6922 23.6364 -3.99 0.030 0.546 43055 288148 27.1382 28.1576
100.30.2 22.5750 22.3143 22.6717 22.3846 1.28 0.102 0.102 41149 373621 25.9523 26.1837
100.30.3 23.7731 23.7195 24.0282 23.9094 0.50 0.102 0.114 21365 327256 28.5819 28.9919
100.30.4 23.3552 22.3701 23.5186 22.6585 3.80 0.130 0.149 30540 436002 27.5232 26.6007
100.40.1 29.1029 29.1397 29.4098 30.1807 -2.55 0.379 1.109 37298 517089 42.5995 37.9838
100.40.2 29.6915 30.9900 31.7017 31.2092 1.58 0.724 0.177 33154 413419 39.6568 39.4368
100.40.3 28.6277 29.0248 30.1031 29.6653 1.48 0.688 0.309 27243 448001 37.4194 37.5153
100.40.4 29.9389 28.9735 30.0684 29.2049 2.96 0.068 0.160 32030 420258 37.1351 37.1676
150.10.1 10.0642 8.7903 10.2281 8.9351 14.47 0.151 0.057 732 57857 11.5928 11.5984
150.10.2 8.8374 8.2591 9.0005 8.4160 6.94 0.110 0.113 905 53929 10.0959 10.7638
150.10.3 10.8713 8.4960 11.3192 9.0207 25.48 0.241 0.215 281 47887 11.6823 12.0059
150.10.4 9.7879 8.8373 10.0067 9.0398 10.70 0.113 0.129 760 47692 11.1653 11.2467

19

150.20.1 18.2182 17.3194 18.3254 17.5964 4.14 0.068 0.372 6310 65612 22.0390 21.4186
150.20.2 18.1021 16.6341 18.3218 17.4507 4.99 0.095 0.610 5893 134443 21.7041 23.7137
150.20.3 18.2992 17.4058 18.4847 18.3447 0.76 0.162 0.512 9188 108024 22.3543 23.4890
150.20.4 17.7624 16.8752 18.0900 17.4774 3.51 0.177 0.389 9065 137596 22.8426 23.6055
150.30.1 26.4783 25.9854 27.5699 26.5488 3.85 0.439 0.333 4460 126169 33.0837 31.6512
150.30.2 27.4671 26.2055 27.7652 26.7411 3.83 0.209 0.258 4667 129856 32.5653 33.7452
150.30.3 26.4816 25.3164 27.0563 26.1137 3.61 0.324 0.456 4614 133104 33.1217 33.0490
150.30.4 27.6283 26.1027 28.0634 27.2923 2.83 0.266 0.900 4621 128121 33.3930 32.4017
150.40.1 39.5856 34.0121 41.1699 35.4534 16.12 1.269 1.059 2107 125867 45.0352 46.7403
150.40.2 38.4930 36.5616 38.8538 38.2965 1.46 0.312 0.682 15880 162347 47.6441 47.7825
150.40.3 39.6415 36.6574 40.0308 38.2955 4.53 0.229 0.896 4441 162242 48.7182 48.1543
150.40.4 38.6243 35.0156 40.3236 36.0662 11.80 0.943 1.054 5016 157272 46.3604 46.5532
200.10.1 10.3993 10.0945 10.6550 10.4050 2.40 0.194 0.163 1970 24243 12.2130 12.5477
200.10.2 10.3971 10.4226 10.5110 10.6149 -0.98 0.082 0.105 1141 24546 11.7903 13.5972
200.10.3 10.6835 9.7990 10.8623 9.9235 9.46 0.142 0.057 1496 75474 13.0375 12.8025
200.10.4 11.2794 10.3553 11.5699 10.6400 8.74 0.242 0.202 474 41039 13.0216 13.2637
200.20.1 22.1915 21.2151 22.9432 21.4601 6.91 0.322 0.259 910 55098 26.1477 26.5177
200.20.2 22.3884 21.4585 22.6663 22.0461 2.81 0.261 0.627 1673 46692 27.0371 26.9291
200.20.3 21.1136 20.8522 21.5369 21.0604 2.26 0.297 0.131 1514 49846 24.6286 24.9398
200.20.4 20.8433 19.2350 22.2340 20.1804 10.18 0.842 0.436 534 52022 24.7949 25.6556
200.30.1 32.5144 30.3602 32.9217 31.7826 3.58 0.380 0.764 1534 82206 37.7211 37.8968
200.30.2 33.1647 32.8128 33.4313 33.2164 0.65 0.260 0.307 4098 33975 36.6478 38.3242
200.30.3 33.4331 32.2535 33.9373 32.7373 3.67 0.413 0.358 1940 29877 39.5920 40.0349
200.30.4 33.7482 32.0931 34.0936 32.7638 4.06 0.228 0.450 3406 59025 38.9176 40.5048
200.40.1 43.0172 41.4980 43.9489 42.3048 3.89 0.886 0.556 3766 95321 52.8401 57.0652
200.40.2 45.3591 43.2502 45.9687 44.2211 3.95 0.498 0.476 3523 93067 53.0603 55.1417
200.40.3 45.3140 43.3375 46.3483 44.2613 4.72 0.891 0.642 1982 100623 53.4029 54.0758
200.40.4 45.6621 42.0579 47.5789 43.3370 9.79 1.195 0.850 1831 98119 52.4187 53.3860
Note. the left column shows the values given by our implementation, the right column those found in Sacramento et al. (2019), z∗

represents the lowest found objective value, µ represents the mean objective value, Difference shows the difference between the mean

objective values in (%), σ shows the standard deviation, Iterations the average amount of iterations and zinitial the initial objective

value.

More interesting are the mean objective values of both implementations. Again, we see zero to few differences

with small instances and the largest difference in the implementations is found in instance 12.20.4, where our

implementation has 5.28% higher mean objective value. For the larger instances, we see a gradual increase in

the difference in objective value as the amount of customers rises. The largest difference we find for instance

150.10.3, where our implementation has 25.48% higher objective value. However, we also find fifteen mean

objective values lower than Sacramento et al. (2019). For instance 50.40.1, for example, we find a mean

objective value that is 4.91% lower.

The standard deviations of both implementations, although not similar for the instances, show similar

values. The standard deviations logically increase with grid size and the number of customers. For both

implementations, all standard deviations are smaller than one, except for instance 200.40.4 and 150.40.4 of

respectively our and Sacramento et al.’s (2019) implementation. This indicates that for different random

values the ALNS algorithm can find consistently similar values.

Our implementation does have a considerably lower amount of iterations, which gets progressively worse for

larger instances. For smaller instances, Sacramento et al. (2019)’s implementation has around four times

more iterations, while for larger instances the difference can be more than 10.000 times, such as for instance

150.10.3. Interestingly though, the amount of iterations for a given number of customers seems to decrease

20

with grid size for our implementation. This might be because the number of feasible sorties decreases with an

increase in grid size since fewer sorties still satisfy the endurance constraint (1).

Lastly, we compare the initial solutions of both implementations. Although our implementation uses fewer

methods to improve the initial solution, the values are quite comparable. We find both better and worse

initial solutions.

While it might seem counter-intuitive that our implementation finds better mean objective values with

fewer iterations, this can be explained by the difference in formulation. As explained earlier, we relaxed the

assumption that trucks need to arrive before drones at the recovery position (8). As a result, there are more

feasible sorties, which can explain the better objective values. This relaxation can also explain the paradoxical

result that our implementation finds better initial solutions with fewer improvement methods.

It is, however, hard to say how large the effect of relaxing this assumption is on the mean objective values

since there is an opposing effect that increases the objective values. Our optimal objective values should be

relatively worse because we have fewer iterations for every instance, which decreases the chance of improving

the solution. This also explains why many of our mean objective values are larger for larger instances. While

for the smaller instances, where we can perform more iterations and need relatively fewer iterations to get

good results, we find similar mean objective values. Additionally, we have not implemented the heavy insertion

repair method, which according to Sacramento et al. (2019) is quite successful in improving the current

solution. As a consequence, we have probably found worse objective values.

Still, it seems that the effect of relaxing assumption (8) is rather small since we find a similar result for most

of the smaller instances, where we have sufficient iterations. The explanation why relaxing this assumption

has quite a small impact is intuitive. It is, namely, in most cases beneficial for the truck driver to as quickly

retrieve the drone as possible since it can then launch the drone again, which saves costs. As a result, the

truck driver already arrives before the drone at the recovery location in most cases.

We identified two reasons why our implementation has a significantly lower amount of iterations. First of all,

our implementation is likely to have been less efficiently programmed and, as a result, the ALNS algorithm

can perform fewer iterations in the same time frame. Secondly, we believe the ALNS algorithm’s running time

depends strongly on the amount of feasible sorties, since the ALNS algorithm has to perform a lot of feasibility

checks and calculate the new total costs for every feasible sortie. Due to the relaxation of Assumption (8), the

set of feasible sorties has increased and therefore, the running time of the ALNS algorithm has increased.

5.3 Effect of the failure probability on profitability of drones

In this subsection we will discuss and assess the effect of the failure probability on the profitability of drones.

We will start by describing the test instances. Then, we will provide our results of the ALNS algorithm for

the VRPSDD. Lastly, we will discuss the performance of our solutions when the failure probability used in

21

the model does not equal the true failure probability.

5.3.1 Test instances

Actual data on the prevalence of autonomous drone accidents is still lacking since autonomous drones are not

widely used yet. Additionally, The probability p̄ = 1− p of a drone accident is likely to change with time, as

more advanced technology will reduce the likelihood of an accident. On the other hand, drone traffic will

likely increase, which would also increase the average probability of drone accidents due to collisions. For

this reason, the odds of having a drone accident will be set to a range of values from one in a thousand to

one in a million, and zero, (p̄ ∈ {0.001, 0.0001, 0.00001, 0.000001, 0}). For airplanes the rate of accidents is

approximately one in 1.2 million (Ropeik & Gray, 2002) and we expect drones to have a similar or larger

failure rate.

The smaller instances do not seem realistic in practice, due to the fact that very few customers are served and

mainly one truck is used. Therefore, we will only consider the instances with 150 or 200 customers. Since our

implementation has few iterations for these instances, we increase the maximum running time of the algorithm

to one hour. We will use only one seed for every instance, since the difference in objective values for different

seeds was quite small, if enough iterations were performed. To be able to compare the values between different

grid sizes, we take the mean of all four different instances with the same grid size and number of customers.

5.3.2 Results

In Table 4 we find the average results of the VRPSDD. First of all, we see that the number of drones used

increases as p̄ decreases, as we would expect. Moreover, we find that it is not profitable to use drones at all

for p̄ = 0.001. For a rate of failure of one in hundred thousand, i.e., p̄ = 0.0001, we find that it is optimal to

use only very few drones. We then find a sharp increase in the number of drone sorties used for p̄ = 0.00001.

The critical value of the failure probability for the profitability of using drones seems to be between one in ten

thousand and one in hundred thousand

Due to the fact that drones are not used for values of p̄ = 0.001 the average service level, which is equal to

one minus the average rate of failure, does not come near the average service requirement limit of 0.999. As a

result, this constraint is never restrictive. The same holds for the individual service requirement of 0.99. The

maximum amount of drone sorties due to this requirement for respectively p̄ = 0.001, 0.0001 are approximately

ten and a hundred. As we can see, the number of actual drone sorties used is not near this amount. The

reason why both constraints are not restrictive is because of the high expected sortie costs. The drone sorties

become unprofitable for larger failure probabilities, where the service requirements might become restrictive,

since the expected sortie costs increase because there is a higher probability to incur the relatively large failure

costs. For larger success probabilities usage of drones becomes profitable but then the service requirements

will not be restrictive anymore. The service constraints are, thus, already satisfied by minimizing the costs.

22

Table 4: Results of the VRPSDD

p̄ 150.1 150.2 150.3 150.4 200.1 200.2 200.3 200.4

0.001 12.2834 24.4742 35.9306 50.7879 14.1891 28.1889 42.8582 57.9038
0.0001 12.2543 24.0621 34.1998 47.1133 14.137 28.015 41.6127 55.3359

z̄ 0.00001 10.4480 19.2245 28.3749 39.6452 11.8588 22.6375 34.4411 45.4581
0.000001 9.5981 18.2724 27.2779 38.4296 10.6428 21.5161 33.0462 44.4336
0 9.6973 18.1164 27.0979 38.9560 10.3541 21.3242 33.0088 44.7081

0.001 0 0 0 0 0 0 0 0
0.0001 0.25 8.25 16.5 25.5 0.75 4.25 11.75 29.5

#D 0.00001 45.25 57.75 57.75 55.5 71.75 75 77 83
0.000001 54 64 63.25 60.25 82.25 82.75 84.5 82
0 52.5 65 63 58.5 86.25 83 84 81.25

|CD| N.A. 128 130.25 127.5 128.75 174.75 173.5 172.5 173.25

0.001 1 2 2 2.5 2 2 3 3
0.0001 1 2 2 2.5 2 2 3 3

#T 0.00001 1 2 2 2.75 2 2 3 3
0.000001 1 2 2 2.5 2 2 3 3
0 1 2 2 2.75 2 2 3 3

0.001 0 0 0 0 0 0 0 0
0.0001 1.67E-07 1.55E-05 6.35E-05 0.000109 0 3.63E-06 1.77E-05 9.05E-05

ARF 0.00001 7.03E-05 5.94E-05 5.86E-05 4.49E-05 6.94E-05 7.26E-05 5.41E-05 6.01E-05
0.000001 9.95E-06 7.39E-06 7.00E-06 5.44E-06 9.53E-06 8.78E-06 6.54E-06 5.85E-06
0 0 0 0 0 0 0 0 0

0.001 341.75 1535.5 1853.75 3634 218 375 882 781
0.0001 480.75 5187.25 8285 20746 281 675 3415 4073

#Iterations 0.00001 5016 51421 42124 77658.5 11492 12640 29134 26985
0.000001 5957 51294.5 38165 76302.75 17767 17228 38176 30476
0 4436.75 50551.75 55682 86187.25 20413 16897 31728 25965

Note. z̄ is the mean objective value in €, #D represents the amount of drone sorties used in the solution, |CD| is the total amount of

customers with demand smaller than QD, #T the amounts of trucks, ARF is the average rate of failure, i.e., the average chance for a
customer to not receive a package and #Iterations the average amount of iterations .

Interestingly, we still find a very low amount of iterations for the ALNS algorithm with a higher probability

of failure. For example, instance 200.10 with p = 0.001 has only 296 iterations on average. While instances

with a smaller failure probability can have around thirty thousand iterations. This is likely due to the fact

that our algorithm’s running times are mainly determined by the set of feasible sorties. In these cases, drones

are not used and therefore, the set of feasible sorties is very large since new sorties can not coincide anymore

with sorties already present in the route because there are none. For every possible drone sortie the total

costs of the route need to be determined and, as a result, the running time of an iteration increases. This is

not an unsurprising result since the problem reduces to a capacitated VRP if drone sorties are unprofitable,

for which this ALNS algorithm was not designed to be efficient.

If we compare the number of drone sorties for different grid sizes, we find that for larger grid sizes drones

are more profitable. This might seem counter-intuitive since the sortie costs SC increase for larger distances

because of the second term in the fixed costs Fs for sortie s, see Equation (3), where we assumed that in the

future a truck has to travel from the depot to the customer to deliver the lost package. However, the cost

savings also increase for larger distances, as drones are cheaper per mile. Additionally, the fixed repair costs

F account for the largest part of the SC and these are constant at 2000 euros. Therefore, large distances

23

decrease the repair costs per mile and make drones more profitable.

Also from a time-saving perspective can drones have a larger impact on larger grids as then the time saved

per mile increases, since the launch and recovery time are constant. These time savings can prevent another

truck is needed to serve the leftover customers, which can save costs. For these instances, however, this does

not seem to be relevant as the number of trucks for different p’s does not change. It is, however, important to

note that we only have four samples for each grid and therefore, we are not able to give conclusive answers on

the effect of grid size, as these might be caused by random differences.

5.3.3 Solution performance under uncertainty

In practice it might be hard to correctly estimate the true value of the failure probability p̄. Additionally, it is

interesting to see if the lower objective values discussed previously, are due to better-found solutions by the

algorithm or because of the lower failure probability p̄. Therefore, we will now consider the objective values of

our solutions when the true value of p̄ does not equal the value of the estimated parameter used in the model

˜̄p.

Note that if the ALNS algorithm was able to find better solutions for different ˜̄p, then for each column in

Table 5 the value on the diagonal, when ˜̄p = p̄, should be the minimum of that column. We find that the

objective values for p̄, ˜̄p ∈ (0.00001, 0.000001, 0) are quite similar and that for some cases the diagonal value

does not represent the minimum of those columns. This is, for example, the case for instance 200.10, where

both ˜̄p = 0.00001 and ˜̄p = 0 are able to find on average a better solution for p̄ = 0.000001 then ˜̄p = 0.000001.

This means that the ALNS algorithm does not necessarily find better solutions for smaller failure probabilities,

i.e., p̄ ≤ 0.00001

The reason why the algorithm does not always find the minimum objective value for ˜̄p = p̄ ≤ 0.00001 is hard

to pinpoint. The most logical explanation is that for ˜̄p ≤ 0.00001 the expected costs of failure become smaller

than the cost savings of using a sortie and therefore, for ˜̄p ≤ 0.00001 the objective values for the same true p̄

are not notably different. Due to randomness then, a solution with ˜̄p ̸= p̄ can possibly find a better objective

value.

Another explanation could be the amount of iterations. However, for the instances, where ˜̄p = 0.000001

has the most iterations (200.20, 200.30, 200.40, see Table 5.3.2), we do not the find the best solutions for

˜̄p = 0.000001. Thus, in this case the amount of iterations is not the determining factor for finding better

solutions.

Comparing the objective values for p̄ ≥ 0.00001 we do find the minimum objective value when ˜̄p = p̄. So for a

failure probability p̄ ∈ (0.001, 0.0001, 0.00001) the algorithm does find better solutions when the model value

equals the actual value and therefore, we do find that the profitability of drone sorties does substantially differ

for those values. Also note that for all instances the objective value of ˜̄p = 0.001 is the same for all p̄, because

24

Table 5: Solution performance for ˜̄p ̸= p̄

(a) 150.10

˜̄p
p̄

0.001 0.0001 0.00001 0.000001 0

0.001 12.283 12.283 12.283 12.283 12.283
0.0001 12.705 12.254 12.209 12.205 12.204
0.00001 98.259 18.592 10.448 9.632 9.541
0.000001 114.915 20.287 10.572 9.598 9.490
0 112.268 20.194 10.749 9.803 9.697

(b) 150.20

˜̄p
p̄

0.001 0.0001 0.00001 0.000001 0

0.001 24.474 24.474 24.474 24.474 24.474
0.0001 38.906 24.062 22.575 22.426 22.410
0.00001 132.304 29.638 19.225 18.182 18.066
0.000001 144.508 30.967 19.428 18.272 18.144
0 146.456 31.141 19.421 18.247 18.116

(c) 150.30

˜̄p
p̄

0.001 0.0001 0.00001 0.000001 0

0.001 35.931 35.931 35.931 35.931 35.931
0.0001 63.822 34.200 31.224 30.926 30.893
0.00001 141.596 38.800 28.375 27.331 27.215
0.000001 152.273 39.839 28.421 27.278 27.151
0 151.717 39.734 28.363 27.224 27.098

(d) 150.40

˜̄p
p̄

0.001 0.0001 0.00001 0.000001 0

0.001 50.788 50.788 50.788 50.788 50.788
0.0001 92.910 47.113 42.509 42.048 41.997
0.00001 148.875 49.675 39.645 38.641 38.530
0.000001 157.932 50.406 39.520 38.430 38.308
0 155.130 50.701 40.132 39.074 38.956

(e) 200.10

˜̄p
p̄

0.001 0.0001 0.00001 0.000001 0

0.001 14.189 14.189 14.189 14.189 14.189
0.0001 14.137 14.137 14.137 14.137 14.137
0.00001 147.106 24.365 11.859 10.606 10.467
0.000001 171.715 26.925 12.126 10.643 10.478
0 178.885 27.551 12.077 10.526 10.354

(f) 200.20

˜̄p
p̄

0.001 0.0001 0.00001 0.000001 0

0.001 28.189 28.189 28.189 28.189 28.189
0.0001 35.669 28.015 27.249 27.172 27.164
0.00001 168.920 36.157 22.638 21.283 21.133
0.000001 184.137 37.926 23.011 21.516 21.350
0 184.604 37.952 22.990 21.491 21.324

(g) 200.30

˜̄p
p̄

0.001 0.0001 0.00001 0.000001 0

0.001 42.858 42.858 42.858 42.858 42.858
0.0001 62.758 41.613 39.494 39.282 39.258
0.00001 185.505 48.336 34.441 33.050 32.895
0.000001 200.189 49.826 34.574 33.046 32.876
0 199.337 49.855 34.696 33.178 33.009

(h) 200.40

˜̄p
p̄

0.001 0.0001 0.00001 0.000001 0

0.001 57.904 57.904 57.904 57.904 57.904
0.0001 108.343 55.336 50.008 49.475 49.416
0.00001 208.439 60.455 45.458 43.956 43.790
0.000001 206.982 60.735 45.917 44.434 44.269
0 205.949 61.023 46.342 44.871 44.708

Note. ˜̄p represents the failure probability used in the model, p̄ represents the true failure probability, values shown are the average costs
of a solution for the true failure probability p̄

drones are unprofitable for ˜̄p = 0.001 and, as a result, the objective value does not depend on p̄.

5.4 Recourse policy

We will now discuss the performance of the advanced recourse policy relative to the simple recourse policy,

both described in Section 4.5. Since for p̄ = 0.001 no drones are used and for p̄ = 0 there are no failed

deliveries, our recourse policy is only relevant for p̄ ∈ (0.0001, 0.00001, 0.000001). The expected savings and

expected savings given that a failure has occurred of the advanced recourse policy can be found below in

Table 6.

First of all, we find that for most instances the recourse policy has the largest expected savings when

p̄ = 0.00001. Only for the largest grid, g = 40, the advanced recourse policy has the largest expected savings

for p̄ = 0.0001. On the other hand, given that a failure has occurred the advanced recourse policy is the most

25

effective for a failure probability equal to 0.000001.

Table 6: Performance of the advanced recourse policy

(a) 150.10

p̄ E[S] E[C] E[S|F] E[RC|F]

0.0001 3.37E-08 12.254 0.001 12.128
0.00001 9.14E-04 10.448 2.007 13.174
0.000001 1.15E-04 9.598 2.133 13.219

(b) 150.20

p̄ E[S] E[C] E[S|F] E[RC|F]

0.0001 1.16E-04 28.015 0.118 22.970
0.00001 1.64E-03 22.638 2.800 22.801
0.000001 1.81E-04 21.516 2.805 22.895

(c) 150.30

p̄ E[S] E[C] E[S|F] E[RC|F]

0.0001 9.63E-04 34.200 0.573 32.929
0.00001 1.90E-03 28.375 3.277 33.029
0.000001 2.28E-04 27.278 3.600 33.285

(d) 150.40

p̄ E[S] E[C] E[S|F] E[RC|F]

0.0001 2.67E-03 47.113 0.964 44.992
0.00001 1.81E-03 39.645 3.238 44.818
0.000001 1.93E-04 38.430 3.171 44.697

(e) 200.10

p̄ E[S] E[C] E[S|F] E[RC|F]

0.0001 0 14.137 N.A. N.A.
0.00001 9.26E-04 11.859 1.335 12.983
0.000001 1.55E-04 10.643 1.869 13.517

(f) 200.20

p̄ E[S] E[C] E[S|F] E[RC|F]

0.0001 8.67E-06 28.015 0.016 27.289
0.00001 2.14E-03 22.638 2.854 26.023
0.000001 2.80E-04 21.516 3.403 26.670

(g) 200.30

p̄ E[S] E[C] E[S|F] E[RC|F]

0.0001 1.92E-04 41.613 0.158 39.953
0.00001 2.16E-03 34.441 2.801 37.796
0.000001 3.23E-04 33.046 3.802 38.680

(h) 200.40

p̄ E[S] E[C] E[S|F] E[RC|F]

0.0001 4.77E-03 55.336 1.634 52.646
0.00001 3.22E-03 45.458 3.884 50.278
0.000001 3.33E-04 44.434 4.042 50.892

Note. E[S] represent the expected savings of the advanced recourse policy, E[C] the expected costs of the simple recourse policy, E[S|F]
the expected savings given that a failure has occurred of the advanced recourse policy and E[RC|F] the expected route costs of the
simple recourse policy given that a failure has occurred

This is of course directly related to the number of drones used in those solutions. For a smaller failure

probability, more drones are used and, as a result, there are more route adjustment costs in the simple

recourse policy. The advanced recourse policy minimizes these route adjustment costs by reoptimizing the

route. Therefore, given that a failure has occurred the largest cost savings are obtained for smaller failure

probabilities. However, the expected cost savings for smaller p̄ decline at some point, since the probability of

having a failure decreases, while the number of drones used remains about the same. This is what we find for

p̄ = 0.00001 and already for p̄ = 0.0001 for the largest grid.

Logically we find that for larger grids the cost savings increase. However, the cost savings seem to increase

less than proportionate to the expected route costs given a failure. For smaller grids, these expected cost

savings given a failure are, for example, around ten percent or more relative to the expected route costs given

a failure has occurred for p̄ = 0.00001. While for the largest grid, g = 40, these same cost savings are only

around 7.5% of the expected route costs given failure. This is interesting as we do see that the expected route

costs given a failure are proportionate to grid size. Therefore, it seems that the advanced recourse policy is

relatively less effective for larger grids.

In general we find that the expected savings of the advanced recourse policy are very low. They are in the

order of 10−3, 10−4 euro for p = 0.00001, 0.000001 respectively. However, for large-scale logistics companies

with frequent deliveries, this recourse policy might still save significant costs. Moreover, the algorithm of

26

the advanced recourse policy runs within a second and is relatively easy to implement, making it a practical

method to reduce costs.

6 Conclusion

In this paper we assessed the effect of the probability of successful drone delivery on the profitability of

drones. First, we assessed the performance of our ALNS algorithm in comparison to Sacramento et al.’s (2019)

implementation. We found that our implementation performed similarly for small instances, despite having

fewer repair methods and fewer initial improvement methods. For most larger instances, on the other hand,

our implementation relatively underperformed. This is likely due to the fact that we have a significantly lower

amount of iterations for larger instances and, as a consequence, our implementation finds worse solutions in the

same running time. The difference in running times is likely to be the result of a less efficient implementation

of the algorithm.

Still, we are also able to find a few better solutions, which are due to the fact that we have relaxed the truck

endurance assumption, which assumes that the total travel and service time of a truck between the launch

and recovery location of a drone has to be smaller than the endurance of a drone. We assumed that drones

could land at the recovery position and can wait at the truck there. We conclude, however, that letting drones

land at the recovery position does not save a lot of costs, since it is more profitable for trucks to quickly

recover drones so that the drone can visit new customers.

Secondly, we assessed the effect of drone failure probability p̄ on the profitability of drones. We found that

drones are only profitable for a p̄ ≤ 0.0001. So drone failures should occur with a rate of less than one in ten

thousand visits to be profitable. Otherwise, the expected value of incurring repair and adjustment costs is too

high for drones to be profitable.

Additionally, we found that drones become more profitable if customers are spread between larger distances.

Since the probability of failure is constant over distance, the expected fixed repair costs, that contribute the

most to the costs of a drone, remain constant over distance, while the expected cost savings of drones increase

per mile. This makes drones more profitable for routes that need to cover larger distances.

We also noticed that the ALNS algorithm is very inefficient for probabilities of failure p̄ ≥ 0.001 since in that

case drones are unprofitable and the problem reduces to a capacitated VRP. The ALNS algorithm was not

designed for this problem and therefore, other optimizing methods would be more appropriate.

Next, we checked how our found solutions performed when the failure probability used by the ALNS

algorithm does not equal the actual failure probability. We found that for the model’s failure probability

˜̄p ∈ (0.00001, 0.000001, 0) there were no substantial differences in costs when they had the same actual failure

probability. Therefore, we can conclude that the ALNS algorithm is not necessarily able to find better solutions

for those probabilities. This is likely caused by the fact that for those probabilities the expected cost savings

27

are always larger than the expected failure costs of a drone sortie, which means that drone visits have the

same relative profitability compared to truck visits for these probabilities. As a result, the ALNS algorithm

does not find solutions with significantly different objective values for the same actual failure probability.

For ˜̄p ∈ (0.001, 0.0001, 0.00001) we did find large cost differences when the solutions had the same actual

failure probability. This is logical since there were also large differences in drone profitability for those failure

probabilities. As a result, the ALNS algorithm did find solutions with considerably different costs for those

instances.

Lastly, we discussed the performance of our advanced recourse policy relative to the simple recourse policy.

We found that the expected savings of the policy were in the order of 10−3 euro for a failure probability equal

to one in hundred thousand. These small expected savings were the result of a small failure probability. The

expected savings given a failure, however, could account for approximately ten percent of the expected route

costs given a failure. Which showed that the advanced recourse policy is effective in minimizing the travel

costs given a failure has occurred.

While the expected savings from the advanced recourse policy seem small, large logistics companies with

frequent delivery could still save significant costs by implementing the advanced recourse policy. Especially,

since the cheapest insertion algorithm is relatively easy to implement and reoptimizes the route almost

instantly.

A limitation of this paper was the sample size of instances used for a certain grid size and number of customers.

Only four instances were generated and used, which is too few to give reliable results. Therefore, the results

given in this paper are vulnerable to randomness. Additionally, no statistical tests have been performed to

test if the differences in the results were statically significant. Therefore, no statistically significant differences

can be reported in this paper, which is necessary to give reliable conclusions. Even though, many of the

results in this paper contained notable and consistent differences, statistical tests should have been performed.

In this paper, we assumed a constant failure probability for each drone visit, independent of distance or

time traveled, because we expect most drone accidents to occur shortly after taking off and shortly before

landing. However, it might also be realistic to assume that a drone failure is dependent on the distance

traveled. Therefore, for future research it is interesting to test how a probability that does depend on the

number of miles traveled affects the profitability of drones. For example, assuming a constant failure rate

per mile traveled or even more interestingly a non-homogeneous failure rate to account for a higher failure

probability at the start and end of the delivery.

Lastly, it might be interesting to let the failure probability be dependent on the number of drones in the

airspace to see what the effect of air traffic is on the profitability of drones. Air traffic is going to increase due

to drone delivery, which could have a negative external effect on the profitability of additional drones in the

air space.

28

Since this is the first paper that incorporates stochastic drone delivery into a problem formulation with drones,

it might be interesting to also incorporate stochastic drone delivery into formulations other than the VRP-D.

For example, the formulation provided by Kitjacharoenchai et al. (2019), considers a fleet of drones flying

independently from the trucks. In that formulation, including a failure probability might have less effect as

trucks could potentially send out another drone to serve the remainder of drone customers.

Another possibility for future research is to see the effect of different cost functions. In this paper, for example,

we set the repair costs to fifty percent of total production costs, which resulted in quite a large amount. As a

result, the other failure costs became negligible. Adjusting the amount of repair costs might give interesting

new results as the other costs become relevant again.

Additionally, we have not yet used any costs related to the loss of the package. These costs could be included

in the fixed costs of a failure, but could also be made dependent on the demand of a customer in kilo. Even

more interesting, would be to include a new parameter that models the value of each package demanded by a

customer, to see if it is even profitable and efficient for drones to deliver higher-value packages.

29

References

Alamouri, A., Lampert, A., & Gerke, M. (2021). An exploratory investigation of uas regulations

in europe and the impact on effective use and economic potential. Drones, 5 (3), 63. doi:

https://doi.org/10.3390/drones5030063

Allain, R. (2013). Physics of the amazon octocopter drone. Retrieved from https://www.wired.com/2013/

12/physics-of-the-amazon-prime-air-drone/

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2011). The traveling salesman problem : a

computational study. Princeton University Press. doi: https://doi.org/10.1515/9781400841103

Bertsimas, D. (1988). Probabilistic combinatorial optimization problems (Unpublished doctoral dissertation).

Massachusetts Institute of Technology.

Boeing. (2021). Statistical summary of commercial jet airplane accidents (Tech. Rep.). Arlington, United

States.

Dell’Amico, M., Montemanni, R., & Novellani, S. (2021). Drone-assisted deliveries: New formulations for the

flying sidekick traveling salesman problem. Optimization Letters, 15 (5), 1617–1648.

DHL. (2016). Successful trial integration of dhl parcelcopter into logistics chain. Retrieved

from https://www.dpdhl.com/en/media-relations/press-releases/2016/successful-trial

-integration-dhl-parcelcopter-logistics-chain.html

Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational

Research, 88 (1), 3–12.

Goodchild, A., & Toy, J. (2018). Delivery by drone: An evaluation of unmanned aerial vehicle technology in

reducing co2 emissions in the delivery service industry. Transportation Research Part D: Transport and

Environment , 61 , 58–67. doi: https://doi.org/10.1016/j.trd.2017.02.017

Karak, A., & Abdelghany, K. (2019). The hybrid vehicle-drone routing problem for pick-up and delivery

services. Transportation Research Part C: Emerging Technologies, 102 , 427–449.

Keane, J. (2022). Drone delivery player manna eyes european launches next year. Retrieved from

https://www.forbes.com/sites/jonathankeane/2022/04/26/drone-delivery-player-manna

-eyes-european-launches-next-year/?sh=3915dc443238

Keeney, T. (2021). Drone delivery: How can amazon charge $1 for drone delivery? Retrieved from

https://ark-invest.com/articles/analyst-research/drone-delivery-amazon/

Kellermann, R., Biehle, T., & Fischer, L. (2020). Drones for parcel and passenger transportation: A literature

review. Transportation Research Interdisciplinary Perspectives, 4 , 100088.

Kersley, A. (2021). The slow collapse of amazon’s drone delivery dream. Retrieved from https://www.wired

.co.uk/article/amazon-drone-delivery-prime-air

Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J. M., & Brunese, P. A.

(2019). Multiple traveling salesman problem with drones: Mathematical model and heuristic approach.

Computers & Industrial Engineering , 129 , 14–30.

30

https://doi.org/https://doi.org/10.3390/drones5030063
https://www.wired.com/2013/12/physics-of-the-amazon-prime-air-drone/
https://www.wired.com/2013/12/physics-of-the-amazon-prime-air-drone/
https://doi.org/https://doi.org/10.1515/9781400841103
https://www.dpdhl.com/en/media-relations/press-releases/2016/successful-trial-integration-dhl-parcelcopter-logistics-chain.html
https://www.dpdhl.com/en/media-relations/press-releases/2016/successful-trial-integration-dhl-parcelcopter-logistics-chain.html
https://doi.org/https://doi.org/10.1016/j.trd.2017.02.017
https://www.forbes.com/sites/jonathankeane/2022/04/26/drone-delivery-player-manna-eyes-european-launches-next-year/?sh=3915dc443238
https://www.forbes.com/sites/jonathankeane/2022/04/26/drone-delivery-player-manna-eyes-european-launches-next-year/?sh=3915dc443238
https://ark-invest.com/articles/analyst-research/drone-delivery-amazon/
https://www.wired.co.uk/article/amazon-drone-delivery-prime-air
https://www.wired.co.uk/article/amazon-drone-delivery-prime-air

Koetier, J. (2021). Drone delivery is live today, and it’s 90% cheaper than car-based ser-

vices. Retrieved from https://www.forbes.com/sites/johnkoetsier/2021/08/18/drone-delivery

-is-live-today-and-its-90-cheaper-than-car-based-services/?sh=61b30c164d02

Miranda, V. R., Rezende, A., Rocha, T. L., Azpúrua, H., Pimenta, L. C., & Freitas, G. M. (2022). Autonomous

navigation system for a delivery drone. Journal of Control, Automation and Electrical Systems, 33 (1),

141–155.

Murray, C., & Chu, A. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted

parcel delivery. Transportation Research Part C: Emerging Technologies, 54 , 86–109.

Pisinger, D., & Ropke, S. (2019). Large neighborhood search. In Handbook of metaheuristics (pp. 99–127).

Springer.

Rao, B., Gopi, A. G., & Maione, R. (2016). The societal impact of commercial drones. Technology in society ,

45 , 83–90.

Ropeik, D., & Gray, G. M. (2002). Risk: A practical guide for deciding what’s really safe and what’s dangerous

in the world around you. Houghton Mifflin Harcourt.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and delivery

problem with time windows. Transportation science, 40 (4), 455–472.

Rose, C. (2013). Amazon’s jeff bezos looks to the future. CBS News. Retrieved from https://www.cbsnews

.com/news/amazons-jeff-bezos-looks-to-the-future/

Rosenkrantz, D. J., Stearns, R. E., & Lewis, P. M., II. (1977). An analysis of several heuristics for the

traveling salesman problem. SIAM journal on computing , 6 (3), 563–581.

Sacramento, D. (2017). Heuristics for solving the drone-vehicle routing problem. Technical University of

Denmark.

Sacramento, D., Pisinger, D., & Ropke, S. (2019). An adaptive large neighborhood search metaheuristic for

the vehicle routing problem with drones. Transportation Research Part C: Emerging Technologies, 102 ,

289–315. doi: https://doi.org/10.1016/j.trc.2019.02.018

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems.

In Principles and practice of constraint programming (pp. 417–431). Springer.

Smith, K. W. (2015). Drone technology: Benefits, risks, and legal considerations. Seattle J. Envtl. L., 5:1 ,

291–302.

Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of uav

regulations. Remote sensing , 9 (5), 459. doi: https://doi.org/10.3390/rs9050459

UPS. (2017). What are the weight and size limits for shipping using ups. Retrieved from https://

www.ups.com/pr/en/help-center/sri/sze2.page

Welch, A. (2015). A cost-benefit analysis of amazon prime air (Unpublished doctoral dissertation). University

of Tennessee at Chattanooga.

31

https://www.forbes.com/sites/johnkoetsier/2021/08/18/drone-delivery-is-live-today-and-its-90-cheaper-than-car-based-services/?sh=61b30c164d02
https://www.forbes.com/sites/johnkoetsier/2021/08/18/drone-delivery-is-live-today-and-its-90-cheaper-than-car-based-services/?sh=61b30c164d02
https://www.cbsnews.com/news/amazons-jeff-bezos-looks-to-the-future/
https://www.cbsnews.com/news/amazons-jeff-bezos-looks-to-the-future/
https://doi.org/https://doi.org/10.1016/j.trc.2019.02.018
https://doi.org/https://doi.org/10.3390/rs9050459
https://www.ups.com/pr/en/help-center/sri/sze2.page
https://www.ups.com/pr/en/help-center/sri/sze2.page

A Appendix

A.1 Explanation of the programming files

In this section we will explain how to execute the programming files in the folder ”Code and instances.zip” to

obtain the results in this thesis.

First of all, the folder instances contains the instances necessary to run the code. Make sure to specify the

directory of these instances in the main files to run the code. Similarly the folder solutions contains the

solutions obtained by our VRPSDD, which are necessary to run the recourse policy and the uncertainty

analysis.

Run Main.java to obtain the replications results of the VRP-D. Make sure to specify in the for loops which

instances you want to run, i.e., the combination of customers, grid, instance and seed. Also specify a directory

to a csv file, where you want to write your results to. Main.java will then run the ALNS algorithm for the

VRP-D programmed in the ALNS.java file. ALNS.java contains all methods and algorithms necessary to run

the ALNS algorithm. Additionally, it contains the parameters of the VRP-D.

In ExtensionMain.java run the runP() method to obtain the results of the VRPSDD. Again make sure to

specify which instances you want to run and the directory of the file for the results to be written to. The

ExtensionMain.java will then run the ALNS algorithm for the VRPSDD specified in ALNSE.java. ALNSE.java

contains all methods and algorithms for the VRPSDD. Additionally it contains the uncertainty analysis

method and recourse policy methods. You need to run the runUncertainty() method to run the uncertainty

analysis and you need to run the runRP() method to run the recourse policy.

The Solution.java file models a solution object that can be used for either the VRP-D or VRPSDD. The

solution object contains a list of truck routes. Additionally, the file contains methods to change the solution.

The TruckRoute.java file models a truck route object in the VRP-D or VRPSDD and includes methods to

change or get information from the truck route.

The Customer.java file models a customer with its location and demand.

Lastly, the Sortie.java file models a drones sortie with its launch, customer and recovery node. Also, it contains

methods to alter the drone sortie.

32

	Introduction
	Literature review
	Vehicle routing problem with stochastic drone delivery
	Problem description
	Parameters

	Methodology
	Adaptive large neighbourhood search
	Initial solution
	Destroy methods
	Random destroy
	Cluster destroy

	Repair methods
	Greedy truck-first sortie-second repair method
	Nearby-area truck-first sortie-second repair method
	Closest insertion repair method

	Recourse policy

	Experimental results
	Instances
	Performance ALNS algorithm
	Effect of the failure probability on profitability of drones
	Test instances
	Results
	Solution performance under uncertainty

	Recourse policy

	Conclusion
	References
	Appendix
	Explanation of the programming files

