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Abstract

For insurers, extremes in medical claim data are important to predict. In this paper, we try to predict
extreme quantiles of large medical claim data and try to investigate their determinants. Gnecco et al. [2022]
provides the extremal random forest (ERF) method to predict extreme quantiles by means of random forests.
We evaluate the performance of this ERF method compared to the generalized random forests (GRF) method
proposed by Athey et al. [2019] and the unconditional generalized Pareto distribution (GPD) method (Tajvidi
[2003]). To perform a model comparison by means of predictor performance and robustness, we perform a
simulation study. Furthermore, the methods are applied to a medical large claim data set containing over 95,000
health claims of $25,000 and above and an U.S. wage data set. We find that the ERF method outperforms the
other methods for the U.S. wage data set. However, for the medical large claim data, ERF does not outperform

the GRF and unconditional GPD method.

The views stated in this thesis are those of the author and not necessarily those of the superviser, second assessor,
Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

For health insurers, it is of importance to estimate the likelihood of medical claims. The number of claims
and the height of the reimbursement of these claims determines their total reimbursement expenditures
(Casto and Forrestal [2013]). Especially, large medical claims are of great importance due to their impact
on the buffer for the insurer. Insurers can use predictive information on large claims to ensure they have

enough in cash and do not have to make unwanted changes in their portfolio.

Therefore, we make use of quantiles. Quantiles are cut points dividing observations in a sample into
continuous intervals with equal probabilities. According to Yagiong [2018], the focus of risk management
in insurance companies should be in health insurance. This is due to the relative large impact extreme
claims in health insurance have compared to extreme claims in life and accident insurance. Therefore,

our goal is to predict extreme quantiles of medical claims and investigate their determinants.

To make predictions, external information can be used in a conditional quantile regression. This is a
linear model in which the quantile of the response variable is estimated based on external information.
Chernozhukov [2005] develops a theory of quantile regression in the tails. Specifically, the large sample
properties of extremal (extreme order and intermediate order) quantile regression estimators for the linear

quantile regression model are obtained.

All possible explanatory variables are in the predictor space. When there are multiple explanatory
variables in the predictor space, a high dimension is present. To cope with the high dimension of the
predictor space, several methods have been proposed based on random forests originally developed by
Breiman [2001]. Meinshausen [2006] showed that random forests provide information about the full con-
ditional distribution of the response variable, not only about the conditional mean. Later, Athey et al.
[2019] proposed an algorithm to grow generalized random forests (GRF), which were able to make quan-
tile prediction for more complex quantile surfaces in larger dimensions. These methods work well for
estimation of quantiles inside the data range, so for intermediate quantile levels. However, these methods

do not work well for extreme quantile levels in the right tail.

In the field of economics, Gnecco et al. [2022] performed an empirical study on extreme quantile predic-
tion for U.S. wage data. They introduced a new extremal random forest (ERF) algorithm that combines
both the advantages of accurate tail extrapolation at extreme levels with a flexible regression method
that scales well with predictor dimension. To obtain accurate tail extrapolation, we make use of the
generalized Pareto distribution (GPD). The GPD is an often used distribution to model exceedances over
a high threshold (Tajvidi [2003]). It is specified by two parameters: a scale and shape parameter. This
ERF algorithm makes use of forest-based weights to localize the estimation of the the scale and weight

parameters.



In summary, we investigate performance of the ERF method when applied to medical claim data. Our
main focus is in the determinants of large claims. We evaluate the performance of the ERF method on
large claims data. Thus, our research question is: ‘How is the performance of the ERF method compared
to other quantile regression methods for medical large claim data?’ Furthermore, the ERF method will
be applied to 1980 U.S. wage data and its performance will be compared against other methods. We find
that the ERF method outperforms both the classical GRF method as the unconditional GPD method
for the U.S. wage data. While, for the medical claim data ERF does not outperform the GRF and
unconditional GPD method. So, the combination of accurate tail extrapolation with a flexible regression
method that scales well with predictor dimension performs best against more ‘classical’ methods for the

U.S. wage data but not for the medical claim data.

The paper proceeds as follows. Section 2 covers the literature on this topic. Section 3 provides the
data diagnostics. In Section 4, we elaborate on the methods used. The simulation study will be discussed
in Section 5 followed by the application results of U.S. wage data and medical claim data in section 6.

Finally, our results and study will be concluded and discussed in Section 7.

2 Literature Review

Extremes in insurance claims cause fat tails, therefore classic density functions do not fit all the data.
Therefore, Uwingabire [2018] modelled extreme health insurance claims using generalized Pareto distri-
bution. Another approach to deal with these extreme observations is to solely focus on these extreme
observations (Balasooriya and Low [2008]). Consequently, they used a highly flexible distribution to cope
for extremes, the generalized lambda distribution. Another model used by Balasooriya and Low [2008] is
the semiparametric transformed kernel density estimation. They found that both approaches performed
well compared to the generalized Pareto distribution. Cebridn et al. [2003] proposed a statistical modeling
strategy based on extreme value theory with main focus on large claims, as in our research. Their pro-
posed strategy is compared to several standard distributions as the gamma, lognormal, and log-gamma

distribution.

Gnecco et al. [2022] propose the ERF method which relies on approximation by the GPD to extrap-
olate exceedances over a certain threshold. They show by means of simulations that their ERF method
performs better than classical quantile methods and existing regression approaches based on extreme
value theory. Our paper gives new insights in the application of the ERF method proposed by Gnecco
et al. [2022]. They showed that the ERF method is a compatible method for extreme quantile wage
estimation with high dimension predictor space. We investigate if this ERF method works well for lower
dimension space when applied to medical claim data. Our focus is mainly on health economics and will

be relevant to insurance companies and governments.



3 Data

We perform two different applications, both with a different data set. First, we compare the performance
of ERF, GRF and unconditional GPD on 1980 U.S. wage data from Angrist et al. [2009]. This data
consist of 65,023 black and white men in the age 40-49, with an education level between 5 and 20 years.
The numeric covariates ‘Age’, ‘Experience’ and ‘Education’ and the binary covariate ‘Black’ to indicate
whether the person is black are used. Summary statistics of the weekly wage, calculated as the annual
wage divided by the number of weeks worked in the previous year are presented in Table 1. For our
health claim analysis we will use the 1992 Medical Insurance Large Claims Database from the Society
of Actuaries (SOA).! This database includes over 95,000 claims of $25,000 and above, representing over
$5 billion in total charges. The covariates include ‘Gender’, representing whether someone is a male or
female and the numeric covariate ‘Age’. Some descriptive statistics for the total of the claims in $ are

represented in Table 2. This data consist of 49,242 men (51.6%) and 46,189 women (48.4%).

Mean 600.31 Mean 58,791
Minimum 0.16 Minimum 25,000
Mazimum 80,161.61 Mazimum 7,104,081
Median 634.17 Median 40,105
1% Quantile 469.40 15t Quantile 30,498
3% Quantile 852.58 3% Quantile 61,014

Table 1: Summary statistics for weekly wages (in $).  Table 2: Summary statistics for claims (in $).

4 Methodology

In our research, we are interested in estimating high conditional quantiles of a response variable Y € R
across values of the predictor variables X € RP with a high dimension p. In order to model the distribution

of the tails, the following GPD function from Pickands [1975] is used,

o)\ -VE@
G(z0(x)=1- (1 + %z) , z2>0, (1)
+

where o(z) is the scale parameter and £(z) is the shape parameter. Combining Equation (1) and Bayes’
theorem, Gnecco et al. [2022] obtained the GPD approximation for small probability of Y exceeding a
high threshold y. This approximation is given in Equation (2).

PY>y)=PY >u)PY >y|Y>u=PY >u{l-Gly—u;o(x)éx))}, (2)

where v is an intermediate threshold, for which holds u < y.

Gnecco et al. [2022] denotes Q,(7) as the conditional quantile at level 7 € (0,1) of Y, given X = x.

Ihttps://www.soa.org/resources/experience-studies/2000-2004/91-92-group-medical-claims/
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As our interest is in estimating extreme quantile levels, we focus on 7 close to one. Following from
Balkema and de Haan [1974] and Pickands [1975] the conditional quantile of Y, given X = « for extremal

quantile levels can be approximated by

N o(x) 1—7\ @
Ql(T)NQl(TO)""@ [(1—7‘0) _1] ’ (3)

where @, (70) is an intermediate quantile at 7p, for which hold 79 < 7. Equation (3) is obtained by

combining Equation (1) and (2).

Equation (3) consists of two parts to be estimated, the intermediate level quantile conditional on X = x
given by Q. (70). The second part of interest on the right hand side determines extrapolated data ap-
proximated by the generalized Pareto distribution (GPD). This requires estimations for the conditional

scale o(z) > 0 and shape parameter £(x) € R.

Following the ERF algorithm from Gnecco et al. [2022], we first estimate Q. (7o), the similarity weights
function wy,(z,y) is estimated by GRF from Athey et al. [2019]. Secondly, the intermediate quantile
function Q. (79) is estimated, for which hold 7 > 79 where 79 and 7 are the intermediate and extreme

quantile levels, respectively. QI(T()) is fitted by a classical quantile regression technique.

For the second part of the ERF algorithm, one uses the exceedances to predict the extreme quantile
Q. (7). As in Gnecco et al. [2022], we minimize the weighted (negative) log-likelihood in Equation (4) to
obtain the estimator of the conditional GPD parameter 8(z) = (o(z), &(x)).

L,(6;z) = an (x, X)) by (Z;)1{Z; >0}, xz€x. (4)
i=1
In this equation Z; are the exceedances in the training data defined as Z; := (Y; —QX,L. (T0))4,i=1,...,n.

As in Gnecco et al. [2022] we use GRF with quantile loss to fit Q, (7o) due to its convenience for high-
dimensional quantile regression problems and only little tuning is needed. Moreover, £y(Z;) is the negative

log-likelihood contribution of the ith exceedance Z; which is defined in Equation (5) if Z; > 0.

Ly (Z;) =logo + (1 + 2) log <1 + sz) , 0€(0,00) xR, (5)

if Z; <0, £y (Z;) is equal to zero.
Subsequently, the obtained parameters and variables are substituted in Equation (3) resulting in the
estimated extreme quantile Q,(7). As can be conducted from the algorithm in Gnecco et al. [2022], only

in the fitting part, random forest is used.

Tuning parameters such as the minimum node size and the number of predictors selected at each split



are of great importance within the ERF algorithm. We tune these hyperparameters by the following
cross-validation scheme provided by Gnecco et al. [2022]. First, we partition {1,...,n} into M equally
sized folds of the training data. Thus Ny, ..., N will be the random partitioning. Hereafter, we estimate
the GPD parameter vector OA(Xi; a;). Where a; € {au,...,a } is a sequence of tuning parameters that

we fit on the training set (X;,Y;). Finally, we calculate the cross-validation error by

M
CV() =D D liixiay) (Zi)1{Z; > 0} (6)
m=11€N,,
The value of a for which CV(«;) is minimized, will be the optimal tuning parameter. Following Gnecco
et al. [2022] the minimum node size x plays the most critical role for ERF. This is due to its property
to control the model complexity of the individual trees in the forest. As a consequence, k controls the

complexity of the similarity weights w,, (x,y) too.

As a result of Equation (3), tail behaviour of Y at extreme quantile levels is determined by the shape
¢ of the GPD. Since estimation of the shape parameter is difficult, following Hastie et al. [2009] showed
that using penalization it is possible to lower an estimator’s variance at the expense of increased bias.
Several penalization schemes are proposed (Smith and Naylor [1987], de Zea Bermudez and Turkman
[2003]) based on i.i.d. data. While our interest is in penalizing the shape function £(x) across the predic-
tor space. Gnecco et al. [2022] proposed to penalize the weighted GPD (4) with the squared difference

between the estimates of £(x) and the constant shape parameter £y, resulting in

é(m) = argmin #Ln(ﬁ; x)+ A€ - 50)2 , (7)
(0.6)=ce (1 — 7o)

where & is obtained by minimizing Equation (4) for equal weights and ) is a tuning parameter. In the

next section we perform a simulation study including cross-validation and penalization results.

5 Simulation Study

We run a simulation study to compare the performance of ERF to other quantile regression methods.
Competing methods of interest will be the generalized random forest (GRF) by Athey et al. [2019] and

as a baseline, the unconditional GPD model is considered.

5.1 Simulation Setup

We use the same setup as in Gnecco et al. [2022]. For the simulation study we simulate n independent
copies of a random vector (X,Y), (X1,Y71),...,(X,,Y,) which are the training observations. Let X € RP
be a uniform distribution on the cube [—1,1]? for dimension p. The response variable Y| X = x follows

a Student’s t-distribution with 4 degrees of freedom and scale s(z) = 1 + 1{x; > 0}. The goal of this



simulation study is to investigate the effect of different quantile levels (for a fixed dimension) on the
prediction performance for the competing methods. Furthermore, we investigate differences in prediction

performance between competing methods for increasing dimensions (for a fixed extreme quantile level).

The second experiment is to investigate robustness of the quantile regression methods. For a large,
given dimension p, we simulate data with shape parameters £ = 0,1/4,1/3. For the case £ = 0, a Gaus-
sian distribution is chosen. For £ = 1/4,1/3 a Student’s ¢t-distribution is chosen with respectively 4 and

3 degrees of freedom.

5.2 Performance Measure

As in Gnecco et al. [2022] we evaluate the performance of the method on a test data set, generated with a
Halton sequence (Halton [1964]) on the cube [0, 1]?. The test data set consists of m = 1000 observations.

We then compute the integrated sequence error (ISE) on the test data following Equation (8).

m

1SE = 23 (Qn ) = @) (5

where Q.. (7) is the fitted quantile regression function, and Q,, (7) is the true quantile function. Repeating
the simulation, fitting and calculation of (8) 50 times and averaging results in the mean integrated squared

error (MISE). Performance of the three methods will be measured by the MISE.

5.3 Hyperparameter Tuning

In Figure 1, the square root of MISE is showed for different minimum node sizes x on three different

quantile levels 7. We set n = 2000, p = 40 and 75 = 0.8. We make use of 5-fold cross-validation.

©=0.99 ©=0.995 ©=0.9995

1.05

1.00

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
K

Figure 1: Square root MISE of ERF for various minimum node sizes £ and quantile levels 7 over 50
simulations. The square root MISE of the cross-validated ERF is represented by the dashed line.

As can be observed in Figure 1 the dashed line is close to the minimum square root MISE, meaning the

proposed cross-validation of ERF works well.



5.4 Penalized Log-Likelihood

In Figure 2, square root of MISE of ERF is shown over 50 simulations for different quantile levels

7 =0.99,0.995,0.9995 and different levels of A € {0,...,0.1}.
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Figure 2: Solid line represents square root of MISE of ERF for different penalty values A and quantile
levels 7 over 50 simulations. The dashed line represents square root MISE of cross-validated ERF.

We observe that the dashed line is not near the minimum square root MISE. Though, for higher values
of 7 the dashed line gets closer to the minimum suggesting the proposed cross-validation scheme works

works well.

5.5 Model Comparison by Predictor Performance

This simulation study consists of two parts. First, we are interested in the effects of different quantile
levels (for a fixed dimension) on the prediction performance for the competing methods. The second
part of this simulation study focuses on differences in prediction performance for increasing dimensions
between competing methods. In this part, the quantile level is fixed. The competing methods in these
studies are the ERF, GRF and unconditional GPD. We use the same setup as in Gnecco et al. [2022]. In
the left panel of Figure 3 we fix the dimension p = 10 and compare the prediction performance between
the different methods for different quantile levels 7. For intermediate quantile level 7 = 0.8, similar pre-
diction performances are measured between the different methods. Especially, all three methods have the
same performance for the intermediate quantile because they use the same GRF based estimator when
7 = 0.8. Though, as quantile level 7 increases, the square root MISE of the three methods differ from

each other. The ERF method outperforms both GRF and Unconditional GPD, especially for 7 close to 1.

In the right panel of Figure 3, for increasing dimensions p of the predictor space, square root MISE
can be found. The quantile level is fixed 7 = 0.9995. Unconditional GPD and ERF look relatively
robust against growing dimensions. For the Unconditional GPD, this can be explained by the fact that

this model does not use the predictor values. While, GRF has some spikes and therefore seems less



robust against additional noise variables. ERF performs well for large dimensional predictor spaces and

is resistant to additional noise variables, making it a robust model.

p=10 1 =0.9995
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Figure 3: Left panel: Square root of MISE of three models against the quantile level 7 for p = 10. Right
panel: Square root of MISE of three models against the model dimension p for 7 = 0.9995.

5.6 Model Comparison by Robustness

This experiment is to investigate the robustness of quantile regression methods against noise distributions
with varying tail heaviness. For a large, given dimension p, we simulate data with shape parameters
& =0,1/4,1/3. For the case & = 0, a Gaussian distribution is chosen. For & = 1/4,1/3 a Student’s
t-distribution is chosen with respectively 4 and 3 degrees of freedom. Boxplots of the square root ISE
for different shape parameters £ € {0,0.25,0.33} for 7 = 0.9995 are shown in Figure 4. The means are
illustrated by triangles. We observe that ERF outperforms unconditional GPD and GRF, even in the

Gaussian (§ = 0) case.

10
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Figure 4: For 50 simulations, boxplots of the square root ISE for different values of £ at 7 = 0.9995.
Mean values are represented by triangles.
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6 Application

We apply the ERF method to two different data sets. First, we investigate U.S. wage data whereafter
we will apply the ERF method to medical claim data to compare the performance of ERF against GRF
and the unconditional GPD method.

6.1 Analysis of U.S. Wage Structure

For the 1980 U.S. wage data, the response variable Y is the weekly wage, and the predictor vector consists
of age and years of education and the binary variable whether a person is black or not. There are added
10 dimensions which are uniformly distributed on the interval [—1,1]. This makes the total predictor
space dimension p = 13. As in Gnecco et al. [2022] we perform a 5-fold cross-validation, three times to
tune the minimum node size x € {5,40,100} and we set the penalty A = 0.01. The intermediate quantile
is predicted using GRF with 79 = 0.8 and data is split in half where the first sample is used for a data
exploratory analysis and the second half will be used for fitting and evaluation of the methods. From the
first sample, a 10% random subset is made which will be fitted by ERF. This predicts 7(z) = (6(z), £(z))

on the remaining 90% observations of the first sample.

The estimated GPD parameters as a function of the years of education are shown in Figure 5. It can
be observed that the scale parameter 6 (z) is positively correlated to the years of education, while the
shape parameter é (z) is negatively correlated to the years of education. Moreover, we see a shift around
15 to 16 years of education, this can be explained by the completion of a Bachelor’s study. For both

parameters, it is relatively homogeneous between the black and white group. For the scale parameter

£ () we see a stable correlation against the years of education, whereas for the scale parameter 6(x) some

11



kind of exponential growth can be observed between 5 and 15 years of education.
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Figure 5: Estimated GPD parameters as a function of years of education.

The methods are compared against each other in Figure 6 for quantile levels 7 = 0.9 and 7 = 0.995. It
can be seen that the shape of ERF and unconditional GPD method is about equal for the different levels
of 7, though the unconditional GPD has a flatter pattern for higher 7. This is due to the unconditional
GPD property that it cannot produce different scale parameters, whereas Figure 5 confirms that it is
mandatory for this data set. When looking at GRF, the shape for 7 approximately equal to 1 is very
different from 7 = 0.9 confirming GRF is a good method for intermediate quantile approximation but

not for extrapolation.
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Figure 6: Predicted quantiles for ERF, GRF and the unconditional method for U.S. wage data. In the
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To confirm our analysis, we perform quantitative performance measures to compare ERF to the other

methods. We use the prediction metric proposed by Wang and Li [2013],

>l {Yz < QX,(T)} —nT

nt(l—r71)

Ra(Q-(7)) = (9)
In Equation (9) n is the number of observations tested and Q.(r) is the conditional quantile estimated
on the training data set. The second half of the total sample set is partitioned into ten random folds.
The different methods are fitted for each fold on the observations not used yet after which the absolute
value of Equation (9) is taken. The performance of the three methods is shown in Figure 7. The 95%
confidence interval is shaded grey. It is observed that ERF outperforms both GRF and the unconditional

method, especially for 7 closer to 1.

ERF GRF Unconditional GPD

@
o 4
i R
== | -
—— $
0 __________________________________________
0.9 099 0.995 09 099 0.995 0.9 099 0.995

T

Figure 7: Absolute value of the loss (9) on the original response of the U.S. wage data. The shaded area
represents the 95% interval of the absolute value of a standard normal distribution.

6.2 Analysis of Medical Claim Data

For our medical claim data, we performed the same steps as the U.S. wage data. The only difference
is that we have not added 10 random predictors which would make the data set higher dimensional.
Therefore, the response variable Y is the claim size, and the predictor vector consists of the numerical
variable age and the binary variable whether a person is male or female. In Figure 8, the estimated
GPD parameters as a function of the patient’s age are shown. We observe a slightly negative correlation
for the scale parameter and a positive correlation for the shape parameter. The majority observations
are homogeneous between the female and male group, except for some extreme outliers for males in the
scale parameter (left) graph. In this graph, the male group is formed as a saddle where the female group
is more equal between different ages. The male group has a higher scale parameter for low and high
ages compared to the female group. For the shape parameter, we observe a more homogeneous pattern
between the female and male group. Moreover, a shift starting at age 75 for the shape parameter is

observed, suggesting heavy tails for higher ages, especially for females.

13
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Figure 8: Estimated GPD parameters as a function of age.

Figure 9 shows the predicted quantiles for the three methods. It can be observed that the GRF gets ‘out
of pattern’ for 7 = 0.995 compared to 7 = 0.9. This is exactly the reason we use GRF for the intermediate
quantile and a method different from GRF for the extrapolation part. The unconditional method gets
almost flat results for 7 close to 1. This is due to the fact that following Figure 8 we expect a different
scale parameter due to the shift around the age of 75. Though, the unconditional method cannot produce
different scale parameters of the GPD. One cannot observe much difference in ERF between 7 = 0.9 and

7 = 0.995 suggesting the variability is modelled well.

ERF GRF Unconditional GPD
e
250000
]
200000 | ;
L
) ) o o
@] o
150000 (€3 - ||® 58 L . e
&3 ey’ d s 2
100000 %o & S
—~~ [ ] @O
-
<g o o
8e+05
7e+05 ° o
6e+05 g@. e o
e .
BA LT
5e+05 ®e o o
.@ ﬁ 8 PS P .. eYe)
4e+05 2 L §
o® o
3e+05 w

Figure 9: Predicted quantiles for ERF, GRF and the unconditional method for medical claim data. In
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The quantitative performance of the three methods for medical claim data is shown in Figure 10. For
7 =10.9 and 7 = 0.99 we observe no big differences in performance between the three methods. ERF and
GREF are fully in the 95% interval, but when 7 gets larger and closer to 1 (7 = 0.995) ERF is outperformed
by both GRF and the unconditional method. As intermediate quantile method for ERF, we make use
of GRF. Therefore, differences between ERF and GRF will occur within the extrapolation part. From
this figure it turns out that the extrapolation of ERF for this data set is not as good as GRF nor the
unconditional GPD method. Moreover, it is observed that for 7 = 0.995 the unconditional GPD method
performs better than the ERF method. This might doubt the explanatory value of the covariates in the

data set.

ERF GRF Unconditional GPD

0.9 0.99 0.995 0.9 0.99 0.995 0.9 0.99 0.995
T

Figure 10: Absolute value of the loss (9) on the original response of the medical claim data. The shaded
area represents the 95% interval of the absolute value of a standard normal distribution.

7 Conclusion and Discussion

In this thesis we studied the performance of the ERF method compared to the more classical GRF and
unconditional GPD method for medical large claim data. The ERF method is proposed by Gnecco et al.
[2022] and is proven to be beneficial for high dimensional data sets when estimating extreme quantiles.
A high dimensional simulation study showed that ERF outperforms both the GRF and unconditional
GPD method in terms of robustness and prediction performance. Besides the simulation study and the
research of medical large claim data, we studied the performance of the ERF method for U.S. wage data.
For the U.S. wage data it is studied what the influence of education, age, experience and whether someone

is black or white is on the weekly wage.

The high dimension U.S. wage data showed good performance results for the ERF method. Whereas the
GRF method has a bad performance for high quantiles. As well as for the unconditional GPD method
which performs bad for high quantiles. It is shown that a jump in wage is present after 15-16 years of

education, which is approximately equal to graduating a Bachelor’s degree.

When investigating the medical large claim data, it is observed that performance of GRF and uncon-
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ditional GPD method is better than the ERF method. One reason for this might be the not so high
dimension of the predictor space for this data set. Contrary to both the simulation study as the U.S.
wage application the predictor space dimension of the medical claim data is much lower. This could be
a reason for the reduced performance of ERF but this has to be investigated further. An explanation for
the reduced performance compared to the unconditional method could be the relevance of the covariates.
It would be insightful to further investigate whether the covariates age and sex are relevant to estimating

extreme quantiles for medical claim data.

Overall, this research evaluates the performance of the ERF method for estimating extreme quantiles
for different data sets. By means of a simulation study it is shown that ERF outperforms the more
classical GRF and unconditional GPD method. While for the U.S. wage and medical large claim data
set we observe different performances of the ERF method compared to the other methods. We believe it

is insightful to further investigate the relevance of the covariates within the medical large claim data.
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