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Abstract

Drones have become a very popular topic in logistics because of their potential to sig-

nificantly reduce the cost and time of making last-mile deliveries. There are various studies

which investigate the use of these flying vehicles in order to transport parcels, food or other

goods from a warehouse to customers. One of these papers introduces the Vehicle Routing

Problem with Drones, where each truck in a fleet of driver-operated vehicles is equipped

with a drone. Since the drone is able to serve some of the customers on the route, the corre-

sponding truck can save both travel time and travel costs. In this research, we investigate the

effect on the total costs when drones are allowed to deliver multiple packages within one trip,

resulting in the Vehicle Routing Problem with Multi-Visit Drones. An ALNS metaheuristic

is carried out in order to explore how beneficial such an adaption to the drones could be.

The perfomance of the ALNS metaheuristic is first tested by applying the algorithm to the

Vehicle Routing Problem with Drones and comparing the results with existing literature.

Our main findings indicate that letting drones carry several commodities at the same time

will save the most costs in situations where not too many customers have to be served.
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1 Introduction

Drones, also called Unmanned Aerial Vehicles (UAVs), are among the most strongly discussed

emerging technologies nowadays. In the period 2009-2015 most drones were being operated by

the government, while businesses came in second with using about 22% of all registered drones

(Choi-Fitzpatrick et al., 2016). In the meantime, it is safe to say that the business utilization of

drones have outpaced governmental use, where the logistics industry is currently the prime user

of the flying vehicles (“The Future of Drones in Transportation and Logistics”, 2022). Various

companies are studying how much cost, energy and time can be saved by delivering parcels,

food, medical supplies and other goods with the use of drones (French, 2015).

Drone delivery started to get a great deal of attention when Jeff Bezos, the CEO of Amazon,

revealed that the company was exploring the idea of using autonomous drones to deliver small

packages to their customers (Rose, 2013). A year later, DHL launched a similar project for

a drone delivery service (Hern, 2014). This service exploits quadcopters to transport small

commodities, which includes medications and other urgent goods, to a small island a few miles

from the German coast. Last year, Walmart started delivering various products with the use of

drones to customers that live within 1.5 miles from two of their stores (Lee, 2022). A few months

later, Wing, Google’s sister company, started offering deliveries by drones in different suburbs

of Dallas (Lee, 2022). In this project, the drones start their routes in two Walgreens parking

lots and transfer goods varying from health products to groceries like ice cream to customers

close by. While the services of Wing and Walmart are still limited, drone delivery is not only in

the research-and-development phase anymore.

Delivering commodities by means of drones has its limits due to the restricted distance, flight

endurance and capacity of the flying vehicles. Nevertheless, in cooperation with driver-operated

trucks, drones can reduce operational costs, delivery times and environmental impact. When

drones transport small packages and therefore assist drivers in making deliveries, more customers

could be served in a certain time frame without driving extra miles (Trop, 2016).

The problem of distributing commodities is in the literature usually formulated as the Vehicle

Routing Problem (VRP). With this mathematical model, routes starting and ending at a common

depot are constructed for a fleet of vehicles to traverse, in order to satisfy all customer demand

while minimizing the travel costs. When considering drones as an additional delivery option,

it has been proposed to supply driver-operated trucks with a drone. This drone is then able

to service some of the customers on the route, using it corresponding truck to launch. As the
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drone is being used, the truck continues with its tour and recovers the drone at a later point.

This drone addition problem is modelled as the Vehicle Routing Problem with Drones (VRP-D).

Applegate et al. (2011) are the first to study the collaboration of the truck and the drone and

make use of the Traveling Salesman Problem (TSP), a variant of the VRP with only one truck.

Sacramento et al. (2019) investigated a variant of the VRP-D where each driver-operated

truck is equipped with a single drone. This problem generalizes the classical VRP, which means

that it is NP-hard to solve. They use an Adaptive Large Neighborhood Search (ALNS) meta-

heuristic to solve this multi-truck problem and investigate how much costs can be saved compared

to the case where only trucks are used.

As mentioned before, a drone has several limitations, one of them being the fact that it

usually can only carry a single package. The drone therefore has to return to their corresponding

truck as soon as it has served one customer. However, it could be that the drone is not at its

maximum capacity and that is still has battery power left, such that the flying vehicle can be

used more efficiently. Since more distance could be covered within the same trip, we investigate

the possibility that a drone can transport multiple packages simultaneously. In this way, several

customers can be served by a drone in the same drone operation. We introduce this problem

as the Vehicle Routing Problem with Multi-Visit Drones (VRP-MVD). We use a variant of the

ALNS metaheuristic in Sacramento et al. (2019) to solve this problem. The performance of this

metaheuristic is first tested by applying the algorithm to both the VRP-D and the VRP and

comparing the results with the objectives found in Sacramento et al. (2019).

By allowing drones to deliver multiple packages in one run, more customers can be served by

a drone instead of a truck, saving travel time and expenses. Nevertheless, the drone will need

some adjustments before it is able to carry several commodities at the same time, which costs

money. The central question of this paper is therefore: When is making adjustments to a drone

in order for it to carry multiple packages simultaneously beneficial? Next to this, we answer the

follow up question: Under what circumstances are the adjustments to the drone useful?, where

the number of customers and the distance between them are considered.

The remainder of this thesis is structured as follows. In Section 2 an overview of literature is

presented that is relevant to the VRP-D, the VRP-MVD and the Large Neighborhood Search.

In Section 3, both the VRP-D and the VRP-MVD are discussed extensively. The ALNS meta-

heuristic for both models is described step for step in Section 4. In Section 5, we discuss the

results of applying the metaheuristic and give an answer to our research question. Lastly, a

conclusion is provided in Section 6, together with suggestions for further research.
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2 Literature Review

In this section we present some relevant literature for our research. First, we discuss previously

conducted studies that concern the VRP with the inclusion of drones that can deliver either a

single or multiple packages in one trip. The VPP is a combinatorial optimization problem which

asks “What is the optimal set of routes for a fleet of vehicles to traverse in order to deliver

packages to a given set of customers?” This optimal set of routes can either be determined by

the minimal travel time that the vehicles need to serve all customers or the lowest costs that are

required to achieve this goal. Next to this, we show the usefulness of an ALNS metaheuristic by

means of considering its success in earlier research.

2.1 Drone delivery

Murray & Chu (2015) investigated two new optimization problems related to delivering small

packages by drones. In their paper, mixed integer programming formulations are given for these

problems, and different heuristics are suggested. Special attention is paid to a unique variant of

the classical TSP, the Flying Sidekick Traveling Salesman Problem (FSTSP), in which a drone

works in collaboration with a delivery truck in order to transport packages. The objective of

this problem is to minimize the time that it takes to serve all customers and to return both

vehicles to the depot. The second problem that is considered is the Parallel Drone Scheduling

Traveling Salesman Problem (PDSTSP), which is appropriate for scenarios in which a significant

part of the customers is close to the distribution centre. In this problem, multiple drones are

used to deliver goods to these customers nearby, while a single truck operates independently on

the other customers. Murray & Chu (2015) show that the use of drones for last-mile delivery is

expected to faster distribute orders at a lower cost and also reduce environmental impact.

Another last-mile delivery concept in which a truck works together with a drone is discussed

in Agatz et al. (2018). In this paper, a new variant of the traveling salesman problem, the

Traveling Salesman Problem with Drone (TSP-D), is modelled as an integer problem. This

problem is very similar to the FSTSP, except that it assumes that the drone is faster than the

truck by a factor α. Furthermore, in contrast with the FSTSP, the truck may now wait for the

drone in the same position as it was launched. Several route-first, cluster-second heuristics based

on local search and dynamic programming are proposed to solve the problem. After applying

these heuristics to various instances with different characteristics and sizes, it is concluded that

including drones can generate substantial savings compared to truck-only delivery.
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A new variant of the TSP-D is considered in Ha et al. (2018). Whereas the objective of

Agatz et al. (2018) was to minimize the total service time, the aim of this paper is to minimize

operational costs including total transportation cost and a penalty for wasted time as a result of

vehicles that have to wait for each other. The launch and recovery of a drone are restricted to

different locations, similar as in Murray & Chu (2015). A mathematical model for this problem

is formulated and two algorithms are proposed for obtaining the solution. The first algorithm,

known as TSP-LS, converts an optimal TSP solution to a feasible TSP-D solution with the

use of local searches. The second algorithm, a Greedy Randomized Adaptive Search Procedure

(GRASP), is derived from a new split procedure that optimally splits a TSP tour into a TSP-D

solution. After this solution is generated, it is improved by local search operators. The results

show that GRASP performs better than TSP-LS in terms of the quality of the solution under

an acceptable running time.

Although the existing literature related to drone delivery is mostly focused on using drones

exclusively or together with a single truck, Wang et al. (2017) investigate the use of a fleet of

trucks in cooperation with a series of drones. In their paper, they introduce the Vehicle Routing

Problem with Drones (VRP-D). The objective is to minimize the completion time of the routes

and the drones can be dispatched from and picked up at the distribution centre or at any of the

customers. The maximum savings that can be obtained from the use of drones are studied. The

results depend on the number of drones per truck and the speed of the drones in comparison to

the speed of the truck.

While most of the literature concerns combined truck-drone delivery where drones are as-

sumed to deliver a single package per trip, Luo et al. (2021) considers using trucks in combination

with multiple drones that can serve several customers in one operation. The paper investigates

the multi-visit traveling salesman problem with multiple drones (MTSP-MD), where the ob-

jective is to minimize the travel time that is needed to serve all customers. Luo et al. (2021)

make the assumption that the energy consumption of the drone depends on the total weight of

packages carried by the flying vehicle, which declines after every delivery during the flight. The

problem is formulated as a mixed-integer linear program (MILP) model and is solved with the

use of a multi-start tabu search algorithm. It is shown that using multiple drones with multiple

visits leads to a significant cost reduction.

A similar problem was studied in Poikonen & Golden (2020). In this paper, the k-Multi-visit

Drone Routing Problem (k-MVDRP) is considered, which concerns a collaboration between a

single truck and k drones. Each drone is able to launch from the truck with one or more packages
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to serve customers. Again, a specification of a drone energy drain function is accounted for,

factoring in the weight of each package. A heuristic algorithm was used to obtain results, which

showed that the objective, the minimum route completion time, is highly sensitive to drone

speed and the number of drones.

2.2 Large neighborhood search

Ropke & Pisinger (2006) explore the pickup and delivery problem with time windows, which

serves a variety of transportation requests with a restricted number of vehicles. The problem

is to construct routes that visit all customers in a way that corresponding pickup and delivery

locations are placed on the same route and that the pickup is completed before the delivery.

The proposed heuristic for this problem is based on an extension of the Large Neighborhood

Search heuristic presented in Shaw (1997). It consists of different competing sub heuristics

which are used with a recurrence based on their previous performance. This general idea is

called an Adaptive Large Neighborhood Search (ALNS). The heuristic is tested and provides an

improvement to the best known solutions from the literature for more than half of the problems.

Ropke & Pisinger (2006) show with computational experiments that it is favourable to use a

number of competing sub heuristics instead of just one.

A different application of an ALNS heuristic can be found in Azi et al. (2014), in which a

vehicle routing problem with multiple routes is investigated. In this problem, the routing of

a fleet of vehicles is determined, where every vehicle is able to perform multiple routes in a

day. This could be relevant when for example perishable goods are transferred. The objective

is to first maximize the number of customers that are served and then to minimize the total

distance traveled. The problem is solved by using an ALNS heuristic. The several destruction

and reconstruction operators make use of the hierarchical nature of the problem by working

either at the customer, route or workday level. Computational results show the advantages of

this multi-level approach.

In their paper, Sacramento et al. (2019) use an ALNS metaheuristic in order to solve the

VRP-D, in which each driver-operated truck is equipped with a drone that assists them in

delivery packages. For small instances, they compare the results obtained by their metaheuristic

with the optimal objectives found by the mathematical model in order to test the performance

of the algorithm. Sacramento et al. (2019) ran their heuristic 10 times for each of the instances

and in every run, the algorithm was able to reach the optimal solution, showing the effectiveness

of the metaheuristic.
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3 Problem Description

In this section, we give a detailed explanation of the VRP-MVD, where its objective and con-

straints are central. The VRP-MVD is a combinatorial optimization problem which is used to

determine the optimal set of routes for an unlimited homogeneous fleet of vehicles, each of them

equipped with a single drone, to deliver packages to a given set of customer C. The drones that

are used to assist the trucks in serving customers are capable of carrying multiple packages at

the same time. Each customer i ∈ C has to be served exactly once, by either a driver-operated

delivery truck or the drone that belongs to that truck. All the trucks must depart from and

return to the depot, but the drones may depart or return independently from their correspond-

ing truck to this distribution centre. During a truck route, the drone can be dispatched from

the truck to deliver packages several times. The truck then continues with its route and is only

allowed to pick up the drone at a location different from its launch position. Not every package

can be delivered by a drone, because the drones have a limited capacity QD. The total weight

of the packages that a drone is carrying at the beginning of its operation is therefore restricted

to this capacity. Another restriction on the drone is the maximum flying endurance e, which

means that launching, traveling to all customers within the operation, serving these customers

and recovering to the truck must all be done before the battery runs out. At all time that a

drone is not delivering a package, it is transported by the truck in order to save battery power.

The restricted capacity Q of the trucks also have to be taken into account, such that total

weight of the packages and drone equipment does not exceed this capacity. Another requirement

is the maximum duration of a route, Tmax, which corresponds to the work hours of a truck

driver. While respecting these capacity and time constraints and meeting customers’ demand,

the objective is to minimize the total cost of the operation. These costs only consist of an

estimation of the fuel consumption incurred by the vehicles when traversing the routes, because

the drivers’ salary is considered as a fixed cost (Sacramento et al., 2019). Due to the lack of

actual data, it is assumed that the travel costs of a drone are independent of the load.

Because of the restricted weight that a drone can transport, the given set of customers, C, is

split into a subset of customers that may be served by a drone and a subset of customers whose

demand, qi, can only be satisfied by a truck. Next, a set P of possible three-node sorties (i, j, k)

is defined from where a drone can deliver a package. The first node, i, represents the launch

position, the second node, j, represents the customer that is served by the drone, and the third

node, k, represents the recovery position. The customer that is visited by the drone has to be
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in the subset of customers whose demand can be carried by a drone (qi ≤ QD). It must also be

taken into account that the sum of the launch time, the recovery time, the total travel time and

the service time does not exceed the flight endurance of the drone.

The distance dij between locations i and j is calculated as the Euclidean distance between

their coordinates. With the use of the truck speed vT and the drone speed vD, we can derive the

travel times by means of τT,Dij = dij/v
T,D. We assume that the speed of a drone is independent

of the load it is carrying. Thus, the drone is not getting faster when some of the packages are

already delivered. The costs for the trucks are calculated as cTij = fp · fc · dij , where fp is the

fuel price and fc the fuel consumption. Using a drone instead of a truck is considerably cheaper,

so the drone cost is equal to a factor 0 < α < 1 of the trucks cost, cDij = α · cTij .

When a drone is only allowed to serve one customer each time it launches, such that it has

to return to their truck directly after delivering a package, the problem results in the VRP-D.

4 Methodology

In this section, we first discuss the ALNS metaheuristic that Sacramento et al. (2019) uses to

solve the VRP-D. In the second part of this section, we adjust this metaheuristic in order to

solve the case where a drone is allowed to deliver multiple packages within one operation.

4.1 Vehicle Routing Problem with Drones

We now consider the ALNS metaheuristic of Sacramento et al. (2019) to solve the VRP-D. Large

Neighborhood Search (LNS) constantly improves an initial solution by destroying and repairing

the current solution over and over again. Ropke & Pisinger (2006) extended LNS by using an

ALNS framework which introduces multiple destroy and repair methods that are chosen based

on their performance throughout the search. In this framework, destroy methods are used to tear

down part of the current solution, while repair methods restore this partial solution. Destroy

methods usually contain some randomness in order to eliminate different parts of the solution

and therefore vary the search for new solutions. Also the repair methods can be stochastic

to refrain from constructing the same solution. The metaheuristic is highly dependent of the

degree of destruction. If a too small part of the solution is eliminated, the method can experience

difficulty escaping local minima. However, if the destroy method removes too much from the

solution, it can be difficult for the repair method to find a good solution.
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Ω− and Ω+ are defined as the sets of destroy and repair methods, respectively. In every

iteration, a destroy method and a repair method are chosen from these sets in order to alter the

current solution. This selection is done statistically, established on the assigned weights of the

different methods and the use of the roulette wheel selection principle (Sacramento et al., 2019).

These weights are thus initialized with equal probability and are changed repeatedly by using

a reaction factor ρ ∈ [0, 1] and the score Ψ of the corresponding method. The different scores

can be found in Table 1. Let wij be defined as the weight of method i in iteration j, then the

weights are updated as

wi,j+1 = ρwij +Ψ(1− ρ). (1)

Table 1: Scores of a method.

Parameter Ψ Description

σ1 The new solution resulted in a new global best solution
σ2 The new solution was accepted with a lower cost than the current solution
σ3 The new solution was accepted with a higher cost than the current solution
σ4 The new solution was rejected

As we do not want to move randomly through the solution space, it is required to oversee and

accept the solutions that are constructed iteratively. For this reason, the ALNS metaheuristic is

extended with an acceptance criteria taken from Simulated Annealing (Sacramento et al., 2019).

A temperature parameter T is used to control the acceptance probability. If a new solution st has

an improved objective value with respect to the current solution s, then st is always accepted.

If a destroy/repair method results in a higher objective, then st is accepted with probability

exp

(
f(s)− f(st)

T

)
, (2)

where f(s) is defined as the objective value of s. Following Sacramento et al. (2019), we set

the temperature T at a start value Tst and let it decrease linearly towards zero. As a stopping

criterion for the algorithm we use time, which means that we want T to hit zero when a certain

time has passed. For this reason, we control T using the elapsed time, which is measured with

CPU time. We define telap as the elapsed time since the start of the algorithm and tmax as the

time limit, such that the temperature is updated with the use of

T = Tst

(
1− telap

tmax

)
. (3)
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The algorithm stops as soon as telap ≥ tmax. The pseudo-code for the algorithm is given in

Algorithm 1. It is different from other ALNS metaheuristics in the sense that it restores the

best solution so far if a defined number of iterations has passed without any improvement.

Algorithm 1: Pseudo-code for the ALNS algorithm

Input: Initial temperature: Tst,
Max iterations without improvement: noImpvMax,
Time limit: tmax

1 s← InitialSolution() ;
2 s∗ ← s ;
3 noImpv ← 0 ;
4 while telap < tmax do
5 Choose a destroy method d() ∈ Ω− and a repair method r() ∈ Ω+ ;
6 st ← r(d(s)) ;
7 T = Tst(1− telap/tmax) ;

8 if Random(0, 1) < exp
(
f(s)−f(st)

T

)
then

9 s← st ;

10 if f(s) < f(s∗) then
11 s∗ ← s ;
12 noImpv ← 0 ;

13 else
14 noImpv ← noImpv + 1 ;
15 if noImpv ≥ noImpvMax then
16 s← s∗ ;
17 noImpv ← 0 ;

18 Update scores of Ω− and Ω+ based on acceptance criteria

19 return s∗ ;

4.1.1 Initial solution

The creation of the initial solution is based on heuristics and consists of four steps (Sacramento

et al., 2019). First, we use a construction algorithm that only regards service by trucks. Then,

a local search algorithm is used, again only considering trucks for servicing customers. After

this, we apply a drone addition algorithm. Finally, another local search heuristic is used, but

this time considering both trucks and drones. The construction algorithm in the first step is

chosen as the Nearest Neighbor Algorithm (Sacramento et al., 2019). The route is thus build

by searching for the nearest neighbor to the last visited customer as long as the capacity and

time constraints are still satisfied. As soon as one of these restrictions is exceeded, a new route

is constructed and this process continues until all customers have been served. In the second

step we improve the solution obtained from this Nearest Neighbor Algorithm with the use of

an improvement heuristic through relocation moves (Fosin et al., 2014). In this heuristic, a

customer is removed from the solution and is then inserted back in the best possible position.

11



The process is repeated until no more improvements can be made. In the last step we include

drone delivery by letting some customers be served by a drone instead of a truck. First, we define

a set C ′ as the subset of all customers that can be visited by a drone in the current solution.

Next, for each customer i ∈ C ′, the customer is removed from this route and all feasible sorties

where this removed customer is served by a drone are considered. However, we only remove a

possible drone customer from the routes when it is not a launch or recovery position for another

drone operation. The best possible sortie is found by means of the function FindSortie(c, s, η),

which is shown in Algorithm 2. The method continues until all customers in C ′ are checked,

after which the sortie incurring the biggest saving is added to the solution. This part of the

method is repeated until no more savings can be obtained.

Algorithm 2: FindSortie(c,s,η) function for finding the best sortie for customer c
in the partial solution s with respect to a threshold cost η.

Input: Partial solution: s,
Customer to insert as drone-customer: c,
Threshold cost: η

1 BestSortie = ∅ ;
2 for Each Route in s do
3 if Capacity(Route) + qc < Q then
4 for Pair Positions (i,k) in Route where i < k do
5 Construct p = (i, c, k) with launch i, customer c and recovery k ;
6 Check feasibility for sortie p ;
7 if SL+ SR+ τDic + τDck + SeDc < e AND f(s) + CostSortie(p) < η then
8 BestSortie← p ;
9 Update η ;

10 return BestSortie ;

Just like Sacramento et al. (2019), we attempt to improve the initial solution even further by

using a local search algorithm with a string relocation neighborhood. The algorithm selects a

string of customers and checks whether the costs can be decreased by inserting these customers

in the same order somewhere else in the solution. The string can be relocated in the same route,

in which case the operation is called a 2-opt move, but it can also be inserted into another route,

defining a string relocation move. The string of customers to relocate can be of any length, but

the start and end locations can not be customers that are visited while a drone is conducting a

sortie. This heuristic is able to help decrease the objective, as it may eliminate crosses between

visits, which cannot be achieved by the single relocation moves we have used before.
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4.1.2 Destroy methods

The ALNS metaheuristic of Sacramento et al. (2019) removes a part of the current solution in

every iteration. The number of customers β to eliminate is determined by the parameters δ,

clow and clim by means of the formula

β = min(max(clow, δ ∗ |C|), clim). (4)

Here, δ is defined as the ratio of customers to remove, and clow and clim are the minimum

and maximum number of customers to remove, respectively. In every iteration of the ALNS

metaheuristic, the parameter clow is selected as a random number between 1 and 3, and the

parameter clim is equal to 40. We describe the two different destroy methods that are used

in Sacramento et al. (2019), from which one is randomly chosen in each iteration with equal

probability. These probabilities stay the same during the entire algorithm, which means that

the adaptive part of ALNS is only applied to the repair methods.

The first destroy method, the random destroy method, eliminates β random customers

from the solution. If a removed customer is a launch of recovery position for a drone operation,

the corresponding drone customer is also removed. It can happen that the removal of one

truck customer leads to the elimination of two drone customers, because a launch and recovery

operation can take place at the same customer. Therefore, the method is able to remove more

customers than specified by β.

In the second destroy method, the cluster destroy method, the elimination of customers is

performed in an area around a random seed customer. First, a random customer c1 is chosen and

removed from the current solution. The next customer to be removed is determined randomly

from a subset of the two customers that are closest to the focal customer c1. This process

is repeated until β customers have been eliminated. Similar to the previous destroy method,

when a removed customer corresponds to a launch of recovery position, the associated drone

customer(s) will be removed as well.

4.1.3 Repair methods

After a subset of customers, D, has been removed with the use of a destroy method, the ALNS

algorithm reconstructs the partial solution by reinserting these deleted customers. The selected

methods repair the solution by including the removed customers one-by-one is a way that seems

most favorable. The repair methods make sure that no infeasible routes are created. If an
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insertion of a customer is not feasible in the current partial solution, the customer is set aside

for a later moment or a new route is constructed. The possibility to open such a new route

guarantees that the repair methods always find a feasible solution, because it is always possible

to serve just one customer on a truck route. With the selection of the repair methods, we

arrive at the adaptive part of the metaheuristic. Sacramento et al. (2019) introduce four repair

methods and the algorithm selects one of them according to their weights, which are updated

iteratively, based on their historic performance.

The first repair method, the greedy truck-first sortie-second repair method, consists

of two steps and is shown in Algorithm 3. In step one, all customers from D are inserted into

the partial solution as truck visits. Step two swaps the service of some customers such that

they are visited by a drone instead of a truck. First, the function RandomCustomer(D) chooses

a random customer from D, after which the function TruckBestInsertion(c,s) inserts this

customer in the least costly way in the partial solution s. To ensure that only feasible solutions

are considered, the function checks if the endurance time of a sortie is not exceeded, as the

truck-insertion can be carried out within a sortie. Lines 6-17 concern the second step of the

repair method. Again, a random customer is chosen from all customers in the current solution,

and we check whether this is a truck-only customer (no launch or recovery operations take

place) and if the demand of this customer can be carried by a drone. If both conditions hold,

we attempt to find an appropriate way of delivering their package with a drone by means of the

function FindSortie(c,s,η), as defined in Algorithm 2. Only in the case where this switch

from truck-customer to drone-customer leads to a lower cost, the switch takes place.

The second repair method, the nearby-area truck-first sortie-second repair method, is

very similar to the previous method. However, the search for new solutions in the neighborhood

is no longer carried out by the Best Insertion algorithm. The removed customers are placed

in the routes as truck visits in a feasible position that is randomly chosen from a set of close

by positions to the customer. This nearby area consists of all positions where at least one

neighbor is located within a 5-mile range. In the second step, the selection of a random customer

and the identification of all possible sorties happens in the same way as before. Nonetheless,

instead of choosing the sortie with the least cost increase, we now select a random sortie that

does not expand the cost of the partial solution with more than 10% in comparison with the

solution before the removal. Therefore, this method is seen as weaker than the previous repair

method. However, this method can have advantages for small instances, because it gives a

greater variability when seeking for sorties.
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Algorithm 3: Greedy truck-first sortie-second repair method.

Input: Partial solution: s,
Set of free customers: D

1 while D ̸= ∅ do
2 c← RandomCustomer(D) ;
3 D = D\{c} ;
4 TruckBestInsertion(c, s) ;

5 C = AllCustomers(s) ;
6 while C ̸= ∅ do
7 c← RandomCustomer(C) ;
8 C = C\{c} ;
9 if qc ≤ QD AND c ̸= launch and/or recovery position then

10 s′ ← s ;
11 η = f(s′) ;
12 s← s\{c} ;
13 p← FindSortie(c, s, η) ;
14 if p ̸= ∅ then
15 s← s ∪ {p} ;
16 else
17 s← s′ ;

18 return s ;

The third repair method, the closest insertion repair method, tries to include the re-

moved customers by using trucks as well as drones. The method attempts to insert a free

customer c into one route only, r, namely the one on which the customer closest to c is visited.

Every feasible truck and drone insertion of c into this route is considered, and the one that

results in the least cost increase is performed. If there is no possibility to include customer c

into route r, then c is added to a set of leftover customers DN . When all removed customers are

considered, the repair method calls the greedy truck-first sortie-second repair method to insert

these leftover customers.

The fourth and final repair method is the heavy insertion repair method. This method

first removes all customers from D that have a demand that can only be satisfied by a truck

and adds these customers to a new set DT . Then, a random truck-customer c from DT is

placed in the current partial solution s by means of the Best Insertion Algorithm, which we

also use in Algorithm 3. This process is repeated until all customers in DT are inserted. Next,

the customers that are allowed to be visited by a drone are inserted with the use of the close

insertion repair method described above. This means that this repair method may also use the

greedy truck-first sortie-second repair method.
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4.2 Vehicle Routing Problem with Multi-Visit Drones

We now consider the case in which a drone can serve multiple customers before returning to

its corresponding truck. We solve this new problem with an adjusted version of the ALNS

metaheuristic that we defined in Algorithm 1.

4.2.1 Initial solution

We create an initial solution based on the same heuristics that we used for the VRP-D with

a single delivery per drone operation. Just as before, we use the Nearest Neighbor Algorithm

to construct the first solution and improve these routes by means of single relocation moves.

However, the inclusion of drone visits is executed differently, as a potential drone customers is

now not only allowed to be inserted between two customers served by a truck, but also between

a truck customer and a drone customer, or even between two drone customers. The feasibility

check in Line 6 in Algorithm 2 is therefore more extensive. When the considered insertion is

between two truck visits, we have to check whether the customer to be inserted has a capacity

below QD and if the drone can travel from the truck to the customer and back before its battery

runs out. Otherwise, we first have to track down how much weight is already carried by the

drone and if the package of the customer to insert can be added to this without exceeding the

drone capacity. Then, the travel time of the current route of the drone needs to be computed,

after which we can check if adding another drone customer is reachable with respect to the

battery endurance. With this adjustment in finding potential sorties, we repeatedly insert the

best possible sortie until no improvements can be made. As a last step, we again try to improve

the obtained solution with the use of 2-opt and string relocation moves.

4.2.2 Destroy methods

The design of the destroy methods is the same for the VRP-MVD as for the VRP-D. However,

the removal of corresponding drone customers does need to change. Before, when removing a

truck customer, we sometimes needed to remove one or two drone customers as well if that

customer corresponded to a launch and/or recovery position. But now, there can be multiple

drone visits in a row, which all have the same launch and recovery position. This means that

if a customer in one of these two positions is removed, all these drone customers have to be

eliminated too. In comparison to the previous destroy methods, these methods can be seen

as stronger because more customers may be removed, such that the solution is destroyed in a

greater way.
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4.2.3 Repair methods

The truck insertions that are considered in the repair methods do not need to be changed. These

insertions are allowed to be performed within a sortie, and although these sorties may now be

constructed differently, the check whether the endurance time of such a sortie is still respected

after the insertion stays the same. However, the insertion of possible drone customers have to

be altered in a same way as we did for the initial solution. The greedy truck-first sortie-second

repair method already takes this into account as it directly calls the FindSortie(c,s,η) in Line

13 in Algorithm 3.

5 Results

In this section, we discuss how we set up our experiments and show the results we have obtained

by implementing them in Java. Next to this, we mention our main findings and give an answer

to the central question of this paper.

5.1 Parameter values

Different parameters concerning the characteristics and operation times of both the drone and

the truck are used in the VRP-D as well as in the VRP-MVD. We make use of the same values

as Sacramento et al. (2019), which they have found in the literature or in prototype models

of different companies. These parameter values are summarized in Table 2. As the trucks

are equipped with drones material, such as the drone itself, batteries and tools, the maximum

capacity for packages is reduced in comparison to when a truck operates on its own.

Table 2: Parameter values.

Parameter Notation Value

Launch time drone SL 1 min
Recovery time drone SR 1 min
Service time drone SS 1 min

Truck speed vT 35 mph
Drone speed vD 50 mph
Endurance e 30 min

Truck capacity with drones Q 1300 kg
Truck capacity without drones Q∗ 1400 kg

Drone capacity QD 5 kg
Fuel price fp 1.13 AC/l

Fuel consumption fc 0.07 l/km
Drone factor cost α 10%

Maximum route duration Tmax 8h
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5.2 Test instances

We make use of the instances that are generated by Sacramento et al. (2019) in order to test the

performance of the algorithm. They generated these data sets in the following way. The central

depot from which all trucks must depart from and return to is always located at coordinate

(0,0). The customers to be served are generated in a grid of dimensions 2d × 2d around this

depot such that their coordinates follow a uniform distribution U(−d, d). As these coordinates

are in miles, we first multiply every coordinate with the constant 1.61 in order to convert it to

kilometers. The instances that they have created are named n.m.t., where n is the number of

customers in the instance, m the dimension of the grid and t the generic name of the scenario.

The instances we use contain between 6 and 200 customers and have grid sizes varying from 5 ×

5 to 40 × 40 (Sacramento et al., 2019). All instances can be found at Zenodo1. The demand of

a customer is generated according to a uniform distribution, depending on whether its package

can be delivered by a drone or not. Let c be a customer and 0 ≤ p < 1 a random number

associated with this customer, then their demand in kilograms is given by

q(c, p) =


qc ∈ U(0, 2.27), if p < 0.86

qc ∈ U(2.27, 68), otherwise.

(5)

5.3 Experiments

Next to the values for the model-parameters, we need values for the algorithm-parameters in

order to study the performance of the ALNS metaheuristic. These were found by Sacramento et

al. (2019) and are set as follows: initial temperature factor T ∗
ST = 0.004, degree of destruction

δ = 0.15, and non-improvement parameter noImprovMax = 1000. If the algorithm is not

able to find better solutions in the given number of iterations, it continues its search with the

best known solution. The remaining algorithm-parameters, concerning the adaptive part of the

metaheuristic, are the reaction factor ρ = 0.9 and the scores of the methods σ1 = 33, σ2 =

9, σ3 = 13, σ4 = 0 (Sacramento et al., 2019). Just as in Sacramento et al. (2019), the initial

temperature TST is determined by multiplying T ∗
ST by the value of the initial solution, such that

the algorithm is able to adjust the temperature according to the instance size. For instances

with less then 20 customers, the initial temperature is increased by 10% in order to avoid too

small temperatures.

1https://doi.org/10.5281/zenodo.2572764
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5.4 Vehicle Routing Problem with Drones

In order to test the performance of the metaheuristic, we want to compare the results of our

implementation with the objectives that Sacramento et al. (2019) found. For this purpose, we use

all of the 112 instances generated by Sacramento et al. (2019), consisting of 6 to 200 customers

located in areas from 5 × 5 miles to 40 × 40 miles. The solutions for the metaheuristic are

obtained by applying the algorithm 10 times to each instance with an execution time of tmax = 5

minutes (Sacramento et al., 2019). Of these 10 runs, we keep the best objective found, zALNS ,

the average objective, µALNS , and the corresponding standard deviation, σALNS . For the truck-

only case, we set the drone capacity equal QD = 0 and the truck capacity to Q∗ = 1400, apply

the ALNS metaheuristic 10 times and keep again the best objective, zV RP . For comparison, we

highlight the same two different KPIs from these experiments as Sacramento et al. (2019). The

first KPI is the saving obtained by delivering packages using both trucks and drones compared

to the case where only trucks are used (SVRP). Next to this, we express the saving acquired by

the ALNS metaheuristic over the initial solution where both trucks and drones are considered

(SI). For this, we define zin as the objective found by the heuristic for the initial solution. The

KPIs are thus calculated with the following formulas:

SVRP = 1− zALNS

zV RP
and SI = 1− zALNS

zin
. (6)

Table 3 in Appendix A shows the aforementioned objectives and these two KPIs for all

112 instances, together with the number of customers with a capacity that can be carried by

a drone, |C ′|, the average number of drone customers in the solutions, #C ′, and the average

number of routes, #V . For ease of comparison, we calculated the difference between our best

found objective and the lowest total cost that Sacramento et al. (2019) obtained as a percentage

of their solution for every instance. These percentages are shown in Figure 1. It can be seen that

for 18.8% of the instances we were able to find the same best objective by means of the ALNS

metaheuristic as Sacramento et al. (2019) within 10 runs. For 42.8% of the instances, our best

found objective was within a 5% difference and in 17.0% of the situations we found a best total

cost that was between 5% and 10% higher. This last case occurred mostly for instances with a

great number of customers (≥ 50) which are located relatively far from each other. However,

for 12 instances (10.7%), we were able to find an even cheaper set of routes than discovered by

Sacramento et al. (2019). Surprisingly, this also often seems to be the case for situations with a

lot of customers. There are also a few instances for which we were not able to come close to the
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best found solution of Sacramento et al. (2019). In most of these cases, the ALNS metaheuristic

was not capable to improve the initial solution (much).

Our implementation of the metaheuristic shows not much difficulty in finding the same best

solution as Sacramento et al. (2019) for instances with a small number of customers that are

located close to each other. Figure 1 shows that, for the rest of the instances, the percentage

difference between our best found objective and the one of Sacramento et al. (2019) is steady

with respect to the number of customers. Whether there are 50 or 200 customers, the differences

between objectives for the various instances are distributed quite similar over the range between

0% and 10%.

Figure 1: Comparison between the best objective value for every instance.

Additionally, we compare the objectives we have found for the initial solutions to the ones

that Sacramento et al. (2019) discovered. We calculate again the difference in percentage for

every instance, which can be found in Figure 2a. The total costs of the initial solution that we

obtained by using our implementation of the metaheuristic was the same as in Sacramento et

al. (2019) for 22.3% of the instances. All of these instances had less than 50 customers. We

found an better initial solution in 11.6% of the cases and for the situations with 50 or more

customers, we almost always obtained a total cost that was higher than that of Sacramento et

al. (2019). These solutions were mostly between 0% and 10% more expensive. There seems to be
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a correlation between the difference in initial solution and the difference in best objective value.

The more the total costs of our initial solution differ from those of Sacramento et al. (2019), the

more difficulty the algorithm experiences in coming close to their best objective value.

Lastly, we compare the objectives of the truck-only case, for which the percentage difference

for all instances are shown in Figure 2b. For almost all instances with less than 50 customers, we

were able to find the same best solution as Sacramento et al. (2019). However, for the greatest

part of the instances, the objective was higher, with a maximum of 11.1%. There were also cases

where we were able to find a better objective. From the figure, it can be seen that, in general,

the difference between total costs becomes greater when the number of customers increases. So,

for situations with a large number of customers, the algorithm struggles more to come close to

the lowest total costs that Sacramento et al. (2019) found for the truck-only case.

(a) Comparison between the objective of the
initial solution for every instance.

(b) Comparison between the objective of the
truck-only case for every instance.

Figure 2: Comparison between our results and those of Sacramento et al. (2019)

5.5 Vehicle Routing Problem with Multi-Visit Drones

In order to investigate the difference between the total costs for the VRP-MVD and the VRP-D,

we apply the adjusted metaheuristic for the VRP-MVD in the same way. For each instance,

we run the algorithm 10 times and extract the best objective value, the average objective and

the standard deviation. Next to this, we again notate the average number of customers and

the average number of routes for that scenario. Just like before, we want to obtain the saving

acquired by the ALNS metaheuristic over the initial solution (SI). So, for every instance, the

objective found for generating initial solutions is documented. All these data can be found in

Table 4 in Appendix B.

We want to know what happens with the objective if we allow a drone to deliver multiple
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packages in one trip compared to when it has to return to their truck directly after serving one

customer. For this purpose, we compute the percentage decrease in total costs for the VRP-

MVD with respect to the VRP-D for all instances, which is displayed in Figure 3. From this

figure, we can see that for almost all situations with less than 100 customers, the total costs have

decreased. For instances where customers lie close to each other the savings are a lot higher than

for instances where the customers are located in a greater range. The figure shows a declining

trend, which means that allowing a drone to carry multiple packages becomes less attractive

when the number of customers increases. For instances with 100 or more customers, there are

still cases where savings up to 20% are achieved, but for more than half of the situations the

algorithm was not able to find a better solution than for the VRP-D case. In theory, it is therefore

better to take the solution for the VRP-D case in those cases, but because the algorithm also

finds a different initial solution, it is not always able to obtain this solution within 5 minutes.

When there are only a few customers (≤ 20) that need to be served, which are located

relatively close to each other (≤ 10 × 10), the average saving that can be obtained is equal

to 30%. Therefore, it is beneficial to adapt the drone in order for it to be capable of carrying

multiple commodities, when the corresponding costs are not more than 30% of the total costs

when a drone is only able to serve one customer each trip. For situations with a small number

of customers (≤ 20) that lie relatively far from each other (20 × 20), the costs for adapting the

drone should not be more than 9% for it to be advantageous. For 50 customers, these threshold

savings are about 14% for small ranges (≤ 20) and 4% when customers are located further from

each other. When situations with more than 50 customers are considered, there are only savings

to be obtained in some of the cases, which means that it is not clear whether the adaption to

the drone will be beneficial or a waste of money.

To conclude in which situations the adjustments to a drone are useful, we show the increase

in the average number of drone customers in the solutions for each instance in Figure 4. It can

be seen that the number of customers that is served with a drone instead of a truck is much

higher for the VRP-MVD than for the VRP-D when we are considering 50 or less customers.

In most of the cases, the number of drone customers increases between 20% and 60% when

a drone is allowed to serve several customers in one trip. Especially for instances with just a

few customers (≤ 12), the number of customers served by a drone increases much more when

customers are located close to each other. Just like before with the objective, there seems

to be a decreasing trend in the number of drone customers. Most of the time, there is still an

increase in drone customers, but this increase becomes less when more customers are considered.
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Figure 3: Comparison between the best objective value of the VRP-MVD and the VRP-D.

When we compare Figure 4 with Figure 3, it is noticeable that for the instances with 100 or

150 customers, the number of drone customers increases often when allowing a drone to deliver

multiple packages in one operation, while the total costs do not decrease. For situations with

200 customers, the number of customers served by a drone instead of a truck is mostly less than

for the VRP-D case.

Another interesting feature to look at is the average number of customers that is served by

a drone within one drone trip. Therefore, we displayed this number for every instance in Figure

5. It is clear to see that the figure shows a decreasing trend, just like we saw in Figure 3 and

Figure 4. For the situations with less than 100 customers, the number of drone customers per

trip is considerably increased in comparison to the case where a drone is only allowed to serve

one customer at a time. There is a noticeable difference when we consider the range in which

the customers are located. For instances where customers lie close together, more customers

are served within one operation compared to the instances where customers are more widely

spread. For the cases with 100 customers or more, the number of customers visited per drone

trip decreases fast. In these situations, a drone is only able to visit one or two customers in one

time. Figure 5 shows that in almost all situations, the algorithm makes use of the fact that a

drone is able to carry multiple packages at the same time. Taking this observation into account
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Figure 4: Comparison between number of drone customers for every instance.

when comparing to the other figures, we see that although the drone delivers multiple packages

within one trip, the total number of drone customers does not always increase, meaning that

the number of drone trips is decreased. This could be an explanation for the fact that the total

costs are not decreased all the time when considering drones that can carry multiple packages

simultaneously.

6 Conclusion

The focus of our research consisted of the following central question: When is making adjust-

ments to a drone in order for it to carry multiple packages simultaneous beneficial? In order to

answer this question, we applied an adapted version of the ALNS metaheuristic of Sacramento

et al. (2019) to the VRP-MVD. However, to test the performance of our implementation of this

metaheuristic, we first applied the algorithm to the VRP-D and compared our results to those

of Sacramento et al. (2019). We documented the best objective we have found for 112 instances,

and compared these to the lowest total costs that Sacramento et al. (2019) discovered. We

obtained the same best solution in about 20% of the cases, and for most of the other situations,

the routes we have found were less than 10% more expensive. In some cases, we were even able

to find a lower cost. For the truck-only case, the difference between our objective and the one
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Figure 5: Average number of drone customers within one drone trip.

of Sacramento et al. (2019) was less than 5% in more than 85% of the cases.

After confirming the performance of the metaheuristic, we ran the algorithm on the VRP-

MVD. The most important thing that we have discovered is that the total costs of the routes

after making the adjustments to the drones definitely decreases when considering less than 100

customers. The percentage decrease differs for the several scenarios, which means that it depends

on the situation for which the drones are used whether the adaption is advantageous. When

100 or more customers need to be served, allowing the drone to deliver more than one package

within a trip is only cost-effective in some of the cases.

When looking at the number of drone customers in the solutions of the VRP-MVD compared

to the solutions of the VRP-D, we conclude that allowing drones to carry multiple packages at

the same time is only useful when not too many customers have to be served (< 200). The

results show that the increase in number of packages delivered by a drone instead of a truck

decreases with the number of customers. Therefore, the adaption to the drones makes more of a

difference is scenarios where not a lot of customers are considered. The number of drone visits

within one trip are however almost always greater than one when considering the VRP-MVD.

This means that although the number of of drone customers per trip increases, the total number

of customers served by a drone does not grow in all cases.
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There are a lot of extensions and variants of the VRP-D and the VRP-MVD that can be

studied in future work. One interesting adjustment would be the number of drones that a truck

is equipped with. When increasing this number of drones, a lot more customers could be served

by means of a drone instead of a truck, which can have a significantly effect on the total costs.

Another intriguing aspect for further research is the consideration that the load that the drone

is carrying affects its speed and battery duration. For the VRP-MVD, this would include a

function that takes into account the different weight of the load during the drone trip, such that

the drone can move faster and save some battery after one of the packages is delivered. Lastly, it

would be interesting to investigate a different variant of the problem with respect to the launch

and recovery positions of the drones. One could research what will happen if a truck is allowed

to wait for a drone in the same place that is has launched. In this way, the drone can carry out

several trips from this location, while the truck is waiting and thus saving travel costs. Another

way to decrease the total cost is to consider the customer locations and the collection of launch

and recovery positions as two separate sets. By doing so, the drone is able to launch and recover

while the truck is carrying out its route, such that is can save battery by travelling with the

truck for a longer period of time.
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Fosin, J., Carić, T., & Ivanjko, E. (2014). Vehicle Routing Optimization Using Multiple Local

Search Improvements. Automatika.

French, S. (2015). Drone delivery is already here — and it works. MarketWatch.

The Future of Drones in Transportation and Logistics. (2022). American Journal of Transporta-

tion.
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A Performance of the metaheuristic for the VRP-D

Table 3: Performance of the metaheuristic for the VRP-D model.

Scenario |C ′| zALNS µALNS σALNS #C ′ #V zin SI(%) zV RP SV RP (%)

6.5.1 5 1.105 1.105 0.000 3 1 1.340 17.58 1.744 36.68
6.5.2 6 0.842 0.842 0.000 3 1 1.057 20.33 1.417 40.56
6.5.3 5 1.211 1.211 0.000 3 1 1.303 7.00 1.782 32.01
6.5.4 5 0.946 0.946 0.000 3 1 0.982 3.69 1.816 47.92
6.10.1 5 2.529 2.529 0.000 3 1 2.880 12.18 3.026 16.43
6.10.2 6 1.738 1.738 0.000 3 1 1.771 1.88 3.266 46.78
6.10.3 6 1.326 1.352 0.032 3.8 1.8 1.903 30.36 3.184 58.37
6.10.4 6 1.443 1.443 0.000 3 1 1.658 12.94 2.654 45.63
6.20.1 6 3.146 3.175 0.060 4 2 3.670 14.30 5.819 45.94
6.20.2 5 4.371 4.370 0.000 3 1 5.561 21.41 5.951 26.56
6.20.3 6 4.884 4.884 0.000 3 1 5.052 3.31 7.487 34.79
6.20.4 6 4.548 4.548 0.000 3 1 4.548 0.00 7.253 37.30
10.5.1 5 1.664 1.664 0.000 4 1 1.664 0.00 2.004 17.00
10.5.2 9 1.452 1.452 0.000 5 1 1.515 4.18 1.765 17.72
10.5.3 8 1.475 1.516 0.051 5 1 1.863 20.86 2.108 30.04
10.5.4 9 1.285 1.285 0.000 5 1 1.997 35.66 2.152 40.29
10.10.1 8 2.326 2.364 0.046 5 1 2.674 12.99 4.378 46.86
10.10.2 8 3.159 3.207 0.067 4.9 1 3.509 9.98 3.853 18.02
10.10.3 7 2.555 2.739 0.358 5.1 1.4 3.546 27.93 3.942 35.17
10.10.4 9 2.539 2.539 0.000 5 1 2.871 11.56 3.671 30.82
10.20.1 7 4.535 4.535 0.000 4 1 5.276 14.05 7.100 36.13
10.20.2 8 6.177 6.177 0.000 5 1 6.784 8.95 8.186 24.54
10.20.3 9 4.546 4.546 0.000 5 1 5.165 11.99 7.159 36.49
10.20.4 7 6.172 6.233 0.040 4.7 1 6.742 8.44 7.659 19.41
12.5.1 9 1.374 1.374 0.000 6 1 1.530 10.21 1.777 22.68
12.5.2 12 1.069 1.069 0.000 6 1 1.783 40.03 2.085 48.72
12.5.3 10 1.448 1.448 0.000 6 1 1.629 11.15 2.326 37.76
12.5.4 10 1.581 1.606 0.024 6 1 1.756 9.99 2.193 27.91
12.10.1 10 2.764 2.764 0.000 6 1 3.771 26.69 4.175 66.21
12.10.2 10 2.689 2.808 0.053 6 1 3.658 26.47 4.001 32.79
12.10.3 9 2.882 2.882 0.000 6 1 3.692 21.96 3.895 26.03
12.10.4 10 2.314 2.314 0.000 6 1 3.171 27.03 4.440 47.88
12.20.1 11 5.778 5.854 0.166 6.8 1.8 7.019 17.68 9.692 40.39
12.20.2 10 8.273 8.273 0.000 3 1 8.273 0.00 9.919 18.82
12.20.3 9 4.167 4.340 0.143 4.8 1.6 5.616 25.80 6.653 37.37
12.20.4 11 6.543 6.659 0.094 6 1 7.715 15.19 8.172 19.94
20.5.1 15 1.793 1.795 0.000 9.8 1 2.035 11.85 2.553 29.76
20.5.2 14 1.822 1.822 0.000 8 1 1.904 4.33 2.598 29.86
20.5.3 19 1.487 1.487 0.000 10 1 1.903 21.83 2.110 29.51
20.5.4 18 1.379 1.457 0.055 9.8 1 1.818 24.15 2.164 36.29
20.10.1 17 3.401 3.401 0.000 9 1 3.894 12.66 5.273 35.51
20.10.2 19 3.089 3.089 0.000 10 1 4.586 32.64 5.253 41.19
20.10.3 19 3.703 3.737 0.047 10 1 5.001 25.96 5.218 29.03
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Table 3 – continued from previous page

Scenario |C ′| zALNS µALNS σALNS #C ′ #V zin SI(%) zV RP SV RP (%)

20.10.4 15 3.197 3.344 0.153 9.9 1 4.365 26.76 5.699 43.91
20.20.1 19 7.381 7.789 0.392 9.7 1 8.791 16.04 9.918 25.58
20.20.2 16 7.571 8.301 0.558 8.2 1.1 9.055 16.39 9.959 23.98
20.20.3 18 7.541 7.729 0.175 10 1 9.213 18.15 10.846 30.47
20.20.4 17 7.045 7.283 0.174 9.4 1.1 8.715 19.17 10.719 34.28
50.10.1 37 5.880 6.054 0.121 16.5 1 6.162 4.57 6.961 15.52
50.10.2 41 5.745 6.132 0.142 22.3 1 6.473 11.24 7.747 25.84
50.10.3 44 6.227 7.321 0.421 15.6 1 7.527 17.27 8.093 23.05
50.10.4 44 5.673 5.946 0.235 24.9 1 6.871 17.44 7.791 27.18
50.20.1 41 10.855 11.255 0.362 23.1 1 13.818 21.45 14.467 24.97
50.20.2 44 10.056 10.531 0.300 24.4 1 13.251 24.11 14.595 31.10
50.20.3 44 10.845 11.423 0.371 24.4 1 16.022 32.31 16.156 32.87
50.20.4 46 10.976 11.291 0.171 24.5 1 12.999 15.57 14.768 25.68
50.30.1 40 16.617 16.704 0.056 23.8 1 19.874 16.39 23.299 28.68
50.30.2 39 16.084 18.317 0.955 21.8 1 21.633 25.65 21.318 24.55
50.30.3 43 17.142 17.471 0.248 23.8 1 21.936 21.85 25.290 32.22
50.30.4 40 18.819 20.430 1.298 20.4 1 22.929 17.92 24.806 24.13
50.40.1 46 22.504 24.488 1.276 22.4 1 25.956 13.30 29.772 24.41
50.40.2 41 21.438 22.745 0.516 22 1.1 27.282 21.42 28.404 24.52
50.40.3 42 23.250 24.468 0.945 23.5 1 28.428 18.22 30.147 22.88
50.40.4 41 23.103 26.194 1.930 19.8 1 28.760 19.67 29.173 20.81
100.10.1 89 6.902 8.083 0.945 40.2 1 9.104 24.19 10.236 32.57
100.10.2 89 7.539 9.206 1.033 39.1 1 10.322 26.96 10.388 27.42
100.10.3 91 7.545 8.261 0.485 34.8 1 8.799 14.26 10.125 25.49
100.10.4 82 7.389 9.137 0.859 27.2 1 9.797 24.57 9.811 24.68
100.20.1 90 14.680 17.707 1.222 33.5 1 18.760 21.75 18.685 21.43
100.20.2 89 14.554 16.404 1.130 33 1 17.263 15.69 20.113 27.64
100.20.3 87 13.655 17.798 1.438 33.3 1 18.604 26.60 19.767 30.92
100.20.4 89 17.715 18.605 0.415 32.3 1 19.001 6.77 20.744 14.60
100.30.1 84 24.204 29.190 2.615 30.7 1 31.597 23.40 31.896 24.11
100.30.2 87 21.747 26.773 2.608 41.2 1.4 29.916 27.31 29.593 26.51
100.30.3 91 26.061 27.934 1.287 39.9 1 30.823 15.45 31.516 17.31
100.30.4 88 23.171 26.204 1.617 29.9 1 27.349 15.28 28.366 18.31
100.40.1 85 27.897 38.292 5.231 34.3 1.9 41.452 32.70 42.107 33.75
100.40.2 85 31.274 38.819 6.504 29.3 2 43.626 28.31 42.157 25.82
100.40.3 89 31.468 38.451 3.674 34.6 1.9 41.216 23.65 41.417 24.02
100.40.4 87 31.546 37.664 3.605 43.2 1.6 41.745 24.43 42.899 26.46
150.10.1 125 8.782 11.743 1.322 50.1 1 12.586 30.22 12.702 30.86
150.10.2 126 10.748 11.552 0.348 48.3 1 11.879 9.52 12.449 13.66
150.10.3 141 9.141 12.143 1.122 47.3 1 13.072 30.07 12.995 29.66
150.10.4 120 10.014 11.822 0.983 41 1 12.747 21.44 12.126 17.42
150.20.1 131 18.488 20.401 1.421 49.6 1 21.790 15.15 24.238 23.72
150.20.2 131 17.907 22.716 2.372 47.4 1 24.539 27.03 25.500 29.78
150.20.3 128 17.250 21.068 2.582 52.7 1 23.960 28.00 24.174 28.64
150.20.4 130 17.417 23.245 3.373 45.8 1 25.844 32.61 24.371 28.53
150.30.1 130 26.334 31.879 2.771 49.4 1 33.563 21.54 36.728 28.30
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Table 3 – continued from previous page

Scenario |C ′| zALNS µALNS σALNS #C ′ #V zin SI(%) zV RP SV RP (%)

150.30.2 125 26.179 34.555 4.927 45.8 1.8 38.557 32.10 36.319 27.92
150.30.3 130 27.539 33.327 3.645 49.5 2 35.948 23.39 36.374 24.29
150.30.4 125 28.564 33.528 2.063 39 2 34.652 17.57 38.421 25.66
150.40.1 137 42.374 43.322 0.538 44.1 2 43.953 3.59 49.023 13.56
150.40.2 124 50.505 52.253 0.648 35.2 2 52.689 4.14 53.564 5.71
150.40.3 125 38.545 43.396 2.754 50 2 46.491 17.09 51.242 24.78
150.40.4 129 35.569 45.856 3.946 48 2 48.668 26.91 48.551 26.74
200.10.1 173 10.223 12.236 0.763 62.7 1 12.680 19.38 13.840 26.13
200.10.2 173 10.134 12.821 1.188 64.8 1 13.568 25.31 14.578 30.48
200.10.3 177 10.187 13.036 0.999 62.5 1 13.537 24.75 13.907 26.75
200.10.4 176 11.050 12.847 0.927 66.5 1 13.846 20.19 15.236 27.48
200.20.1 178 21.738 25.684 1.991 64.9 1 26.855 19.05 29.785 27.02
200.20.2 168 22.654 26.329 2.347 62.1 2 28.510 20.54 27.926 18.88
200.20.3 176 21.491 25.110 1.843 59.4 1 26.556 19.07 27.108 20.72
200.20.4 172 21.634 25.182 1.415 57.1 1 26.088 17.07 26.675 18.90
200.30.1 171 31.472 37.362 2.621 60.8 2 39.471 20.26 40.857 22.97
200.30.2 176 32.970 37.018 2.889 62.8 2 39.730 17.01 41.744 21.02
200.30.3 171 32.955 40.382 2.529 56.4 2 41.680 20.93 41.836 21.23
200.30.4 172 36.083 39.986 1.667 63.3 2 41.221 12.46 42.244 14.58
200.40.1 172 42.426 50.289 7.338 64.2 2 57.647 26.40 56.278 24.61
200.40.2 178 42.773 48.054 5.418 67.3 2 56.316 24.05 56.101 23.76
200.40.3 165 43.870 53.564 6.301 62.9 2 59.729 26.55 61.641 28.83
200.40.4 178 42.571 48.694 4.261 70.1 2 53.444 20.34 54.638 22.09
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B Performance of the metaheuristic for the VRP-MVD

Table 4: Performance of the metaheuristic for the VRP-MVD model.

Scenario |C ′| zALNS µALNS σALNS #C ′ #V zin SI(%)

6.5.1 5 1.009 1.015 0.011 3.8 1 1.332 24.25
6.5.2 6 0.616 0.671 0.056 5 1 1.044 40.95
6.5.3 5 0.836 0.850 0.023 5 1 1.137 26.47
6.5.4 5 0.790 0.801 0.021 4.8 1 0.953 17.10
6.10.1 5 1.653 1.653 0.000 4 1 2.758 40.07
6.10.2 6 0.942 0.942 0.000 5 1 1.209 22.10
6.10.3 6 0.565 0.689 0.249 4.8 1 1.873 69.84
6.10.4 6 0.837 1.012 0.186 4.9 1 1.642 49.02
6.20.1 6 3.052 3.115 0.156 3.8 1.7 3.670 16.84
6.20.2 5 4.384 5.279 0.304 3.6 1.5 5.506 20.37
6.20.3 6 4.927 4.972 0.057 3 1 5.052 2.47
6.20.4 6 4.548 4.548 0.000 3 1 4.548 0.00
10.5.1 5 1.593 1.635 0.014 3.9 1 1.646 3.20
10.5.2 9 0.785 0.896 0.224 8.1 1 1.505 47.87
10.5.3 8 1.104 1.137 0.047 7 1 1.863 40.74
10.5.4 9 0.836 1.067 0.283 7.9 1 1.832 54.35
10.10.1 8 1.621 1.695 0.157 7 1 2.674 39.39
10.10.2 8 1.977 2.735 0.263 5.9 1 3.485 43.29
10.10.3 7 1.861 2.404 0.575 6 1.2 3.534 47.33
10.10.4 9 1.766 1.828 0.169 8.8 1 2.871 38.49
10.20.1 7 4.345 4.482 0.115 5.6 1.6 5.276 17.66
10.20.2 8 5.483 5.802 0.292 6.1 1.5 6.784 19.18
10.20.3 9 3.065 3.773 0.626 7.2 1 5.165 40.67
10.20.4 7 5.606 6.225 0.293 4.5 1.3 6.707 16.41
12.5.1 9 1.028 1.082 0.150 8.3 1 1.530 32.79
12.5.2 12 0.418 0.522 0.125 10 1 1.551 73.03
12.5.3 10 0.855 1.282 0.142 9.1 1 1.629 47.52
12.5.4 10 1.123 1.184 0.134 9.1 1 1.709 34.30
12.10.1 10 0.984 2.238 0.475 9 1.2 3.723 73.58
12.10.2 10 1.677 2.216 0.184 7.8 1 3.658 54.16
12.10.3 9 2.593 2.676 0.116 7.1 1 3.711 30.14
12.10.4 10 1.908 2.018 0.183 8.5 1 3.167 39.74
12.20.1 11 4.335 4.829 0.165 7.1 1 6.958 37.69
12.20.2 10 8.142 8.142 0.000 7 1 8.262 1.45
12.20.3 9 3.538 3.921 0.305 7.3 1.2 5.616 37.01
12.20.4 11 6.029 6.394 0.241 6.5 1.3 7.715 21.85
20.5.1 15 1.528 1.600 0.109 13.3 1 2.015 24.14
20.5.2 14 1.748 1.813 0.062 9.5 1 1.888 7.40
20.5.3 19 0.871 1.103 0.310 14.9 1 1.887 53.82
20.5.4 18 0.912 0.994 0.113 15.9 1 1.724 47.11
20.10.1 17 2.353 2.748 0.408 13.9 1 3.778 37.73
20.10.2 19 1.991 2.497 0.561 14 1 4.536 56.10
20.10.3 19 2.333 2.934 0.491 15.2 1 4.453 47.61

(continued on next page)

32



Table 4 – continued from previous page

Scenario |C ′| zALNS µALNS σALNS #C ′ #V zin SI(%)

20.10.4 15 2.488 2.557 0.056 13.9 1 4.365 43.00
20.20.1 19 5.629 6.559 0.640 12.2 1 8.732 35.53
20.20.2 16 5.785 7.314 0.689 12.7 1.5 8.978 35.57
20.20.3 18 5.809 6.481 0.815 12.9 1.1 8.245 29.55
20.20.4 17 6.018 6.977 0.534 12 1.1 8.604 30.05
50.10.1 37 5.892 6.022 0.065 17.6 1 6.054 2.68
50.10.2 41 5.703 5.780 0.059 31.1 1 6.395 10.83
50.10.3 44 4.505 5.207 0.812 34.2 1 7.436 39.41
50.10.4 44 4.517 4.869 0.426 35.1 1 6.751 33.08
50.20.1 41 8.639 10.383 0.770 29 1 13.745 37.15
50.20.2 44 9.454 10.280 0.945 31.2 1 12.582 24.86
50.20.3 44 9.171 10.679 0.911 27.1 1 15.703 41.60
50.20.4 46 8.868 9.529 0.994 34.3 1 12.839 30.93
50.30.1 40 14.991 15.606 0.417 30.9 1 19.644 23.69
50.30.2 39 15.589 17.601 1.004 26.9 1 21.571 27.73
50.30.3 43 15.646 17.304 0.718 31.1 1 21.096 25.83
50.30.4 40 18.820 20.113 0.774 28 1 22.909 17.85
50.40.1 46 22.543 22.946 0.328 28 1 24.804 9.12
50.40.2 41 20.838 21.916 0.649 28.2 1.3 27.170 23.31
50.40.3 42 21.806 23.181 1.103 29.4 1.1 28.305 22.96
50.40.4 41 23.610 26.201 1.476 26.4 1.3 28.636 17.55
100.10.1 89 8.546 8.735 0.106 36.6 1 8.822 3.13
100.10.2 89 7.253 9.169 1.254 39.2 1 10.185 28.78
100.10.3 91 8.480 8.605 0.043 32.3 1 8.624 1.67
100.10.4 82 9.711 9.758 0.020 24 1 9.768 0.58
100.20.1 90 14.018 18.055 1.357 30.2 1 18.571 24.52
100.20.2 89 16.662 16.662 0.000 40 1 16.662 0.00
100.20.3 87 16.893 17.533 0.384 30.6 1 17.911 5.68
100.20.4 89 18.265 18.536 0.100 34.8 1 18.582 1.71
100.30.1 84 22.207 25.637 2.383 48.6 1 30.996 28.36
100.30.2 87 21.384 22.176 1.203 66.6 1 29.105 26.53
100.30.3 91 22.949 24.167 1.123 65.8 1 30.482 24.71
100.30.4 88 23.039 25.728 1.434 32.9 1 26.747 13.87
100.40.1 85 28.243 32.557 3.925 63.5 1.5 40.911 30.96
100.40.2 85 33.226 40.443 2.502 28.7 2 41.754 20.42
100.40.3 89 29.899 33.142 3.347 55.5 1.4 40.734 26.60
100.40.4 87 31.221 34.158 2.327 66.3 1.7 39.528 21.02
150.10.1 125 10.099 12.020 0.642 49.5 1 12.257 17.60
150.10.2 126 8.616 10.817 1.332 54.1 1 11.687 26.28
150.10.3 141 9.544 11.932 0.820 54.3 1 12.284 22.31
150.10.4 120 9.302 11.952 1.130 38.6 1 12.602 26.18
150.20.1 131 18.561 21.079 0.882 47.3 1 21.505 13.69
150.20.2 131 17.922 23.017 2.098 50.2 1 24.114 25.68
150.20.3 128 22.925 22.925 0.000 57 1 22.925 0.00
150.20.4 130 18.159 23.272 2.966 50 1 25.414 28.54
150.30.1 130 31.047 32.156 0.541 45.2 1.4 32.664 4.95
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Table 4 – continued from previous page

Scenario |C ′| zALNS µALNS σALNS #C ′ #V zin SI(%)

150.30.2 125 28.880 36.908 2.701 43.4 2 38.002 24.00
150.30.3 130 27.102 32.749 2.755 46.7 2 34.441 21.31
150.30.4 125 27.819 33.020 2.413 46.9 2 34.263 18.81
150.40.1 137 43.086 43.086 0.000 45 2 43.086 0.00
150.40.2 124 38.749 47.638 5.368 62.5 2 51.763 25.14
150.40.3 125 43.113 44.488 0.725 45 2 45.124 4.46
150.40.4 129 36.769 46.619 3.283 48 2 47.717 22.94
200.10.1 173 12.521 12.521 0.000 66 1 12.521 0.00
200.10.2 173 13.008 13.239 0.140 60.8 1 13.360 2.64
200.10.3 177 12.419 12.848 0.322 46.3 1 13.191 5.85
200.10.4 176 11.227 13.285 1.001 65.5 1 13.827 18.80
200.20.1 178 25.551 25.858 0.183 69.8 1 26.033 1.85
200.20.2 168 22.527 26.787 1.510 52 2 27.822 19.03
200.20.3 176 21.525 25.480 1.929 57.1 1 26.448 18.61
200.20.4 172 23.976 24.686 0.568 62 1 25.228 4.96
200.30.1 171 38.017 38.892 0.292 56.9 2 38.989 2.49
200.30.2 176 39.168 39.168 0.000 65 2 39.168 0.00
200.30.3 171 40.554 40.933 0.184 58.2 2 41.076 1.27
200.30.4 172 33.230 39.461 2.119 62.1 2 40.431 17.81
200.40.1 172 44.472 54.863 5.218 58.7 2.6 57.852 23.13
200.40.2 178 44.902 52.962 3.348 59.9 2 54.967 16.94
200.40.3 165 45.333 56.336 5.359 57.9 2 59.059 23.24
200.40.4 178 50.135 51.348 0.585 67.5 2 51.793 3.20

34



C Description of programming files

To obtain these results, we have implemented the ALNS metaheuristic in Java for both the VRP-
D and the VRP-MVD. In total, their are 8 files used for this purpose. The first 4 files are used for
the VRP-D and the last 4 are used for the VRP-MVD. First, we created “Thesis initial solution”,
in which we wrote methods for the nearest neighborhood algorithm, the improvement with
the use of relocation moves, the FindSortie method, the inclusion of drone service and the
heuristic that uses 2-opt and string relocation moves. Next, we have “Thesis destroy methods”,
where both the random destroy method and the cluster destroy method are implemented. The
four different repair methods are written in “Thesis repair methods” and all of them use a
destroy method from “Thesis destroy methods” as input. “Thesis ALNS algorithm” uses all
three aforementioned classes in order to implement and run the ALNS metaheuristic 10 times
for a given instance. For the VRP-MVD, we use the same methods as for VRP-D, except now
they are adjusted such that a drone is allowed to deliver multiple packages within one trip.
The classes used for this are called “Extension initial solution”, “Extension destroy methods”,
“Extension repair methods” and “Extension ALNS algorithm”.
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