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Abstract

Since the rise of cryptocurrencies, more research has focused on explaining cryptocurrency

returns. A part of the research on stock returns is replicated on cryptocurrencies, like

the factor models. The three-factor model that includes a market, size and momentum

factor has been proven to have explanatory power on cryptocurrency returns. This research

extends the three-factor model to increase the explanatory power by adding seven factors

that individually have a significant effect on cryptocurrencies. Furthermore, it identifies

which of the ten factors contribute the most to the model’s performance. I use a data

set of 2024 cryptocurrencies from 2014 until now. The ten-factor model outperforms the

cryptocurrency version of the CAPM and the three-factor model. Furthermore, it can explain

the cross-section of cryptocurrency for most periods when looking at a window of one year.

Moreover, the factors that significantly contribute to the model are a volume and price factor,

besides the factors from the three-factor model. The results of this paper can be useful for

institutional investors that use cryptocurrencies in their trading strategies.

The views stated in this thesis are those of the author and not necessarily those of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Since the white paper by Nakamoto (2008), which established the model for a blockchain, thou-

sands of cryptocurrencies have been developed, and billions of euros have been invested in

these cryptocurrencies, especially by young people. Almost 50% of all cryptocurrency investors

are between 25 and 34 years old (Jain et al., 2019). Lately, not only individuals are trading

cryptocurrencies, but also institutional investors, e.g. hedge funds and investment banks, have

started trading in cryptocurrencies (Steer, 2022). This raises the question whether there are

ways to explain or forecast the returns of cryptocurrencies so that it is also profitable for these

more prominent investors to put money in cryptocurrencies. An obvious way to do this is to

study the existing methods that try to explain the returns of stocks.

Many studies have already researched asset pricing models, for example, factor models.

The first model introduced by Sharpe (1964) and Lintner (1965) is the Capital Asset Pricing

Model (CAPM). This model only includes one factor, which is the excess market return. The

interpretation of the CAPM is straightforward, but it cannot explain all variations in stock

returns. That is why there has been a lot of research to find other factors. As a result, the

so-called ’factor-zoo’ came into existence. This is a pool of hundreds of potential factors that

drive stock returns, as described by Harvey et al. (2016) and Hou et al. (2020).

However, many of these factors cannot be constructed for the cryptocurrency market, since

cryptocurrencies do not have financial and accounting data. Three factors that can be con-

structed for cryptocurrencies and have been investigated extensively are: the market, size and

momentum factor. There is broad consensus about the effect of the market and size factor, but

not all papers agree on the effect of the momentum factor. This may be due to the different

periods they researched or because they used a different set of cryptocurrencies. Shahzad et al.

(2021) and Shen et al. (2020) found that the one-week momentum factor generates significantly

negative returns in the short term, which means that there is a reversal of payoffs. My paper

also includes the size and reversal effect as factors in the factor model, plus the market factor,

which is the excess market return. I add seven extra factors to increase the explanatory power

of the model. These factors are proposed by Liu et al. (2022), who investigate the effect of 25

factors 1. They find that seven other factors besides market capitalization and one-week mo-

mentum are significant. These factors are: price, maximum price, two-, three-, and four-week

1A list of these factors can be found in Appendix A
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momentum, dollar volume and standard deviation of dollar volume. Together with the three

earlier mentioned factors, these seven factors produce the ten-factor model.

However, these ten factors may not all be relevant when they are included in the model simul-

taneously. Therefore, I apply forward and backward selection to select the significant variables

from the ten-factor model that contribute to the model’s performance. To overcome the multi-

collinearity that results from highly correlated factors, I perform Principal Component Analysis

(PCA) that constructs components that maximize the variance and that are uncorrelated. To

counter overfitting, I reduce the number of factors by selecting the components that explain a

large part of the variance. Furthermore, I use the Lasso by Tibshirani (1996) as a robustness

check for the factor selection methods. To analyze the performance of the ten-factor model over

time, I perform a rolling window regression.

My paper investigates five models: three-factor, ten-factor, PCA, forward selection and

backward selection. These five models are evaluated based on their explanatory power, using

the (adjusted) R2 and the GRS test by Gibbons et al. (1989).

This paper contributes to the existing literature by extending the three-factor model with

seven potentially significant factors. The goal of adding these seven extra factors is to test

whether they can explain the cross-section of cryptocurrency returns. Furthermore, I search for

the factors that have the most explanatory power. My research is performed on a database that

includes 2024 cryptocurrencies from the beginning of 2014 until now.

I find that the reversal effect is present in my data set, so the returns of the cryptocurrencies

tend to go back to the trend. This effect is larger for cryptocurrencies with a small market

capitalization. The forward and backward selection methods both include a price factor and

the standard deviation of the volume as relevant and significant factors. Lasso confirms this for

the standard deviation factor. Furthermore, all models cannot fully explain the cryptocurrency

returns over the whole period. However, a rolling window regression reveals that the ten-factor

model can explain the returns in most periods.

The remaining of my paper is structured as follows. Section 2 goes more in-depth into the

existing literature. Section 3 then describes the data used in this paper and how these data are

transformed. After that, Section 4 explains the methods used. Section 5 shows and discusses

the results. Finally, Section 6 draws conclusions and discusses the research.
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2 Theory

As already mentioned, I start with a model that includes a market, size and momentum factor.

The most well-known paper that investigates the effect of the market and size factor is by

Fama and French (1993). They showed that excess market return, size of stocks and the book-

to-market ratio are three risk factors that explain a part of the average stock returns. For

cryptocurrencies there also is broad consensus about the effect of the market and size factor,

e.g. Shahzad et al. (2021), Shen et al. (2020), Liu et al. (2020). They concluded that the market

and size factor have significant explanatory power on the cryptocurrency returns. Furthermore,

they found a negative relation between the returns and size, which means that cryptocurrencies

with a small market capitalization tend to outperform those with a large market capitalization.

Momentum as a risk factor was first proposed by Jegadeesh and Titman (1993). It captures

the effect that stocks tend to maintain price trends. This effect has been researched for many

applications, e.g. in the equity markets (Rouwenhorst, 1998), commodities (Miffre and Rallis,

2007) and foreign exchange markets (Menkhoff et al., 2012). In all these applications, there is a

significant positive momentum effect. Carhart (1997) adds the momentum factor to the three-

factor model of Fama and French (1993) and also found significant positive effect. However, it

is not clear what the effect of momentum is on cryptocurrencies. Tzouvanas et al. (2020) and

Liu et al. (2020) found a positive effect of momentum on returns. However, other studies found

contradicting results. Grobys and Sapkota (2019) found no evidence of significant momentum

pay-offs but found that the effect is the other way around. Instead of the price maintaining its

trend, it tends to go back. Shen et al. (2020) found the same result and called it the reversal

factor, which means that the returns tend to reverse instead of maintaining their trend. These

contradicting results show that further research is necessary to be able to conclude what the

effect of momentum is on cryptocurrencies. Nonetheless, it could be that the momentum effect

is time-varying or depends on the set of cryptocurrencies on which it is tested.

Recently, several other studies proposed new factors and models to explain cryptocurrency

returns. For example, Shahzad et al. (2021) added the contagion risk factor to the size and

momentum factor and found that this outperforms the three-factor model. Zhang and Li (2020)

tested the effect of idiosyncratic volatility on cryptocurrency returns and found that they are

positively related. Jia et al. (2021) added another two factors to the volatility factor, namely

skewness and kurtosis. They also found a strong positive relation between volatility and cryp-
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tocurrency returns and between kurtosis and returns, and a negative relation between skewness

and returns. Schwenkler and Zheng (2020) proposed a model that looked at the co-movement

of cryptocurrencies and saw that returns can be predicted by looking at this co-movement. Be-

sides research in modelling the returns, there has also been research in using cryptocurrencies

in portfolios of conventional financial assets. Petukhina et al. (2020) showed that, depending

on the investor’s objectives, cryptocurrencies can improve the risk-return trade-off of portfolios.

This means that cryptocurrencies can be a useful asset when diversifying portfolios.

The contribution of my paper to the abovementioned literature is that I add other significant

factors to the three-factor model to increase the model’s explanatory power. These new factors

were investigated by Liu et al. (2022). They looked at many established factors in the cross-

section of stock returns, which are compiled by Feng et al. (2020) and Chen and Zimmermann

(2020). Liu et al. (2022) constructed the cryptocurrency versions of the factors for which it

is possible to do so, resulting in 25 factors that could be used to explain the returns. The

paper found that 9 of these 25 factors have significant explanatory power. These are: market

capitalization, price, maximum price, one-, two-, three-, and four-week momentum, volume, and

standard deviation of volume. The study also concluded that the size and momentum factor are

important in capturing cross-sectional cryptocurrency returns. However, it did not investigate

whether adding factors to the three-factor model increases the performance. That is why I

investigate the possibility of a model that outperforms the three-factor model in explaining the

cross-section of cryptocurrency returns. Moreover, I also investigate which of these ten factors

contribute the most to the model’s performance.

3 Data

This section first describes in Section 3.1 the cryptocurrencies used in my research. Section 3.2

determines the formation and holing period needed for the reversal factor. Thereafter, Section

3.3 shows how the factors are constructed and reports their descriptive statistics. Lastly, Section

3.4 describes the returns to be explained by the factors.

3.1 Data description

Several websites provide cryptocurrency data, e.g. CoinAPI, Cryptocompare, Coinmarketcap

and Coingecko. I use the free API of Coingecko, a website that aggregates information from
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many exchanges and of most cryptocurrencies. Chuen et al. (2017), Lyandres et al. (2019)

and Schwenkler and Zheng (2020) also used this API for their papers. Coingecko provides

data on the price, market capitalization, trading volume and quantity in circulation for over

13,000 cryptocurrencies. I need the price, market capitalization and trading volume of the

cryptocurrencies to construct the factors. I use the daily prices to construct weekly returns.

The data starts on April 28th 2013 and is available until the present 2.

I select the cryptocurrencies that had their Initial Coin Offering (ICO) before March 31st

2019, such that I have enough data for each cryptocurrency. Another way to ensure I have

enough data is by starting my research on April 3rd 2014. This results in a total of 2033

available cryptocurrencies over the whole period. These also include nine stablecoins, which

are cryptocurrencies that are linked to a specific currency. That means they are supposed to

remain around the same price level, so I exclude the stablecoins. A list of the stablecoins is

included in Appendix B. Another criterion I implement is that I exclude pump-and-dump coins.

Pump-and-dump coins generate really high returns in a short period because people manipulate

the price, but shortly after that, the price collapses. I maintain this criterion by limiting the

maximum return in a week to 200% and a minimum return of -200% 3. So, I do not use the

cryptocurrencies that exceed these returns in my research.

The number of active cryptocurrencies at a particular moment changes over time. Table 1

shows the distribution of the number of cryptocurrencies over the different years. It reports the

mean of the number of cryptocurrencies during a specific year, which has grown monotonically

from 2014 until 2019. However, after 2019, the number of cryptocurrencies decreases slightly.

That is because the cryptocurrencies are selected based on their ICO being before 2019. After

the beginning of 2019, some cryptocurrencies ceased to exist, so the number of cryptocurrencies

decreased. Table 1 also shows the mean of the market capitalization and volume during the

years. Both the market capitalization and volume have increased a lot since 2014. The mean of

the market capitalization has grown from 128.78 to 1006.73 million dollars. The mean volume

has grown from 895.25 to 41,106.67 thousand dollars.

2The data is accessed on June 12th 2022
3The results for the formation and holding period are robust to the less strict criterion of 300% and -300%
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Table 1: Summary statistics

Year Nr. of Coins Market Cap (mil.) Volume (thous.)

2014 70.53 128.78 895.25

2015 118.74 37.59 2331.55

2016 138.38 76.36 14599.29

2017 226.82 468.38 12994.65

2018 923.82 3824.41 18213.15

2019 1540.22 133.79 26881.96

2020 1486.25 202.77 45295.88

2021 1500.60 1048.91 90517.13

2022 2881.58 1006.73 43106.67

This table shows the mean of the number of coins, market capitalization and volume by year.

3.2 Formation and holding period

For the reversal factor, I need the length of the formation and holding period. The formation

period is when the winners and losers are identified, and the holding period is how long there

will be a position in these stocks. The winners are defined as the cryptocurrencies in the decile

with the highest returns, and the losers are defined as the cryptocurrencies in the decile with

the lowest returns. The formation and holding period are determined by constructing so-called

J-K portfolios, in which the formation period is J weeks and the holding period is K weeks, as

inspired by Jegadeesh and Titman (1993). For the formation and holding period, I consider a

horizon of 1, 2, 3 and 4 weeks, which leads to 16 strategies in total. These strategies are used to

construct three types of equally-weighted portfolios: buy, sell and buy-sell. The buy portfolio

consists of the winners, the sell portfolio consists of the losers, and the buy-sell portfolio buys

the winners and sells the losers and is a zero-cost portfolio.

Appendix C reports the mean returns from the 16 J-K strategies in combination with the

three portfolios. All buy portfolios generate negative returns, with most of the returns being

significant at a 1% level. Furthermore, all sell portfolios generate significant positive average

returns at a significance level of 1%. Together, this results in only negative returns for the buy-

sell portfolios at a significance level of 1%. Therefore, there is indeed a reversal effect, as in the
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paper of Shen et al. (2020). The 1-1 strategy, combined with the buy-sell portfolio, generates the

most negative mean return (-0.154) and has the highest absolute t-statistic (21.373). Therefore,

the best J-K strategy is the 1-1 strategy, so I use this for constructing the factors.

3.3 Factors

This section starts with a description of the factor construction in Section 3.3.1. Then in Section

3.3.2 I discuss the descriptive statistics of the factors. Lastly, I show the results of the PCA in

Section 3.3.3

3.3.1 Construction of factors

For the market factor I need the market return, which is the excess market return. I compute

the value-weighted market returns as:

MKTt =
n∑

i=1

retit ∗
capit

totalCapt
, (1)

where MKTt is the market return in week t, n is the total number of cryptocurrencies, retit is

the return of cryptocurrency i in week t, capit is the market capitalization of cryptocurrency i

in week t and totalCapt is the total market capitalization in week t, so totalCapt =
∑n

i=1 capit.

The market factor is computed as:

RMRF = MKT −Rf, (2)

where Rf is the risk-free rate 4.

Secondly, for the size (SMB) factor, I sort the cryptocurrencies based on their market capi-

talization weekly. Following Fama and French (2012), the large-cap currencies are the currencies

with the top 90% market capitalization, and the small-cap currencies are the currencies with

the bottom 10% market capitalization. This results in two portfolios: the small-cap portfolio

(S) and the large-cap portfolio (B).

Thirdly, I use the selected 1-1 strategy for the reversal (DMU) factor. The cryptocurrencies

will be sorted based on their one-week prior returns. Again following Fama and French (2012),

the breakpoints are the 30th and 70th percentiles, resulting in three portfolios: high prior returns

(U), medium prior returns (M) and low prior returns (D)

4This is the one-month Treasury bill rate, downloaded from https://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/data_library.html
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The intersection of these two size portfolios and the three prior return portfolios results in

six portfolios: SU, SM, SD, BU, BM, and BD. I compute the SMB factor as the difference

between the equally weighted mean of the small-cap portfolios and the equally weighted mean

of the large-cap portfolios:

SMB = 1/3(SU + SM + SD)− 1/3(BU +BM +BD). (3)

I compute the DMU factor as the difference between the equally weighted mean of the low

prior return portfolios and the equally weighted mean of the high prior return portfolios:

DMU = 1/2(SD +BD)− 1/2(SU +BU). (4)

The definitions of the seven factors proposed by Liu et al. (2022) are reported in 2. These

seven factors are: PRC, MAXPRC, MOM2, MOM3, MOM4, VOL and STDVOL.

Table 2: Factor definitions

Factor Definition

PRC The last day price in the portfolio formation period

MAXPRC The maximum price of the portfolio formation period

MOM2 The two-week momentum

MOM3 The three-week momentum

MOM4 The four-week momentum

VOL The average daily volume in the portfolio formation period

STDVOL The standard deviation of volume in the portfolio formation period

Each week, I sort the cryptocurrencies into quintiles based on the abovementioned factors.

The seven factors are constructed as the returns in the following week of the fifth quintile minus

the returns of the first quintile.

3.3.2 Descriptive statistics of the factors

The descriptive statistics of all ten factors and their correlations are included in Appendix

D. The absolute average return on all factors is higher than on RMRF. The fact that some

average returns of the seven extra factors are negative means that the first quintile produces

higher returns than the fifth quintile. So, to get positive returns, the fifth quintile should be
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subtracted from the first quintile. However, this does not change the explanatory power of

a factor. Furthermore, all factors have a leptokurtic distribution. The absolute skewness for

all factors except for RMRF is between 0.2 and 0.9. As expected, some correlations are very

high. This holds for the correlations between the momentum factors, the correlation between

the price factors and the correlation between the volume factors. As a result, there is a lot of

multicollinearity 5.

When there is multicollinearity, the coefficient estimates are not stable. Unstable coefficients

means that the t-statistics and p-values may not be correct and that the stepwise regression

results may be incorrect. The correlation between factors can be removed by performing PCA,

since the components of the PCA are always uncorrelated. However, PCA also is not the perfect

method, since the components are harder to interpret than the original factors.

3.3.3 Principal Component Analysis

To remove the multicollinearity, I perform PCA on the ten factors. I construct ten components

that are linear combinations of the ten existing factors that maximize the variability of these

linear combinations. I centre and scale the factors such that they are zero-centred and have unit

variance before the analysis takes place. To reduce the number of factors and thus reduce the

problem of overfitting, I select the factors with enough explanatory power and therefore have a

high eigenvalue. My criterion for this is that the principal component should explain at least

5% of the variance, so it should have an eigenvalue larger than 0.5. This results in four principal

components that explain around 86% of the total variance of the ten factors. A scree plot that

contains the eigenvalues of all principal components can be found in Appendix F.

Table 3 shows the principal component (PC) coefficients. The first PC reflects the difference

between the size and momentum factors and the other factors and explains 33% of the variance.

This means that a third can be explained by one component that includes parts of all factors,

so all factors are indeed important, as Liu et al. (2022) showed. The second PC mainly is

the difference between the three longer momentum factors and DMU and explains 30% of the

variance. This shows that almost another third of the variance can be explained by momentum

factors, which is logical since there are four momentum factors. The third PC mostly measures

the difference between the market and price factors and explains 15% of the variance. Lastly,

5The proof of multicollinearity is in Appendix E
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the fourth PC reflects mainly the market factor and explains 8% of the variance, showing that

the market factor is indeed important.

Table 3: Principal components

Factor PC1 PC2 PC3 PC4

RMRF 0.127 0.033 -0.490 0.859

SMB -0.359 0.255 0.187 0.189

DMU 0.249 0.380 0.096 0.054

PRC 0.370 -0.180 0.508 0.233

MAXPRC 0.380 -0.143 0.516 0.245

MOM2 -0.256 -0.441 0.021 0.105

MOM3 -0.271 -0.442 0.042 0.087

MOM4 -0.236 -0.438 0.095 0.104

VOL 0.400 -0.281 -0.296 -0.198

STDVOL 0.397 -0.275 -0.304 -0.200

3.4 Returns to be explained

I use the mean returns on 5 × 5 size-momentum portfolios as the returns to be explained. These

are the means of the weekly returns of these 25 value-weight portfolios. I construct the portfolios

by sorting the cryptocurrencies into quintiles based on their size and momentum, as in Fama

and French (2012). Table 4 reports the mean returns of the 25 portfolios, plus the difference

between the loser and winner portfolios, and the difference between the small-cap and large-cap

portfolios. It again indicates the presence of the reversal effect since four out of the five returns

in the last column are significantly positive. That means that the loser portfolios outperform

the winner portfolios. The last column also shows that the reversal effect is stronger for the

small-cap portfolio than for the large-cap portfolio. Furthermore, the table supports the results

already found for the size factor, since three of the five returns in the last row are significantly

positive. The size effect increases from the winner to the loser portfolio.
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Table 4: Mean returns on the 5 × 5 size-momentum portfolios

Size quintiles Prior returns quintiles

Up 2 3 4 Down Down-Up

Big 0.027 0.018 0.011 -0.001 0.000 -0.035 (-3.158)***

2 -0.005 0.011 0.008 0.007 0.017 0.019 (2.219)**

3 -0.002 0.015 0.006 0.016 0.040 0.042 (4.214)***

4 -0.026 0.015 0.018 0.020 0.060 0.088 (10.530)***

Small -0.022 0.023 0.041 0.055 0.120 0.142 (12.717)***

Small-Big -0.050 (-4.148)*** 0.004 (0.484) 0.028 (2.905)*** 0.056 (5.898)*** 0.123 (12.048)***

Significance at the 1% or 5% level is denoted by *** or **, respectively.

4 Methodology

This section starts with an explanation of the forward and backward selection in Section 4.1.

Secondly, Section 4.2 explains the models I investigate. Thirdly, the statistics used for model

comparison are discussed in Section 4.3. Lastly, Section 4.4 explains the robustness checks.

4.1 Forward and backward selection

I perform forward and backwards selection to find the factors that have the most explanatory

power. These two methods select the significant factors that increase the model’s performance.

I measure the performance by testing whether the intercepts of the regressions described in

Section 4.2 are jointly equal to zero. If the model’s factors completely explain the portfolio’s

average return, then the intercept is zero. That means the model performs well if the intercepts

of the 25 regressions are jointly not significantly different from zero. I test this using the test

statistic of the GRS test (further explanation of the GRS test is in Section 4.3). I choose the

model with the lowest test statistic when comparing two models.

For forward selection, the procedure is as follows. I start with a regression that only contains

the intercept. For every factor, I test the significance of that factor in 25 portfolios. If the factor

is significant for at least half of the portfolios, it is a candidate to be added to the model. Then

the GRS test statistic is computed for all the candidates. I add the candidate factor with the

lowest test statistic to the model. The procedure repeats itself for the remaining factors, only

this time, the new factor is already added to the model. The procedure stops when there are no

significant factors left. This method gives the forward selection model.
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The backward selection procedure is almost the same as the forward selection procedure,

except that this method starts with a regression that contains all factors. This time the factors

that are insignificant in at least half of the portfolios are candidates to be removed from the

model. Again the GRS test statistic is computed for all candidates, and I remove the factor

that decreases the test statistic the most when excluded. The procedure repeats itself for the

remaining factors, only this time, the removed factor will be excluded from the model. The

procedure stops when there are no insignificant factors left. This method gives the backward

selection model.

It should be noted that the results from forward and backward selection are not very reliable,

certainly not when there is multicollinearity. When performing forward and backward selection,

the standard errors are biased toward zero and thus the p-values as well, as noted by Harrell

(2010). This holds especially for the backward selection method. The backward selection starts

with all factors included, so there is a lot of multicollinearity because of the high correlations6.

That means that the p-values can be misleading and thus that irrelevant factors are selected.

This also holds for the forward selection method when a candidate is highly correlated to a

factor that is already included in the model, then the p-values can also be misleading. The

Lasso explained in Section 4.4 can be an alternative to these two stepwise regression methods.

4.2 Models

There are in total five models that I test. I compare the five models to the C-CAPM, which is

the cryptocurrency version of the CAPM. All models with the factors it includes are reported

in Table 5.

Table 5: Model overview

Model Factors

C-CAPM RMRF

Three-factor RMRF, SMB, DMU

Ten-factor RMRF, SMB, DMU, PRC, MAXPRC, MOM2, MOM3, MOM4, VOL, STDVOL

PCA Four linear combinations of the ten factors

Forward selection The factors selected using forward selection

Backward selection The factors selected using backward selection

6As proven in Appendix E
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The general regression for the six models is as follows:

rit −Rft = αi + β′
if t + εit, (5)

where rit is a weekly return on one of the 5 × 5 size-momentum portfolios, Rft is the risk-free

rate and ft is a vector that contains the factors of the model that is tested. So, for each model,

I perform 25 regressions that will be analyzed based on average and joint statistics.

4.3 Model performance

I compare the six models based on the average absolute intercept, average R2, average adjusted

R2, average standard error of the intercepts and GRS p-value (as inspired by Shen et al. (2020)).

The average absolute intercept indicates whether the model fully explains the cross-section of

cryptocurrencies returns. A lower average absolute intercept indicates better performance. The

R2 shows the model’s explanatory power, and the adjusted R2 corrects for the difference in

the number of factors. Lastly, the GRS p-value quantifies whether the intercepts are jointly

significantly different from zero or not.

The GRS test is founded by Gibbons et al. (1989) and tests whether the intercepts in equation

(5) are jointly equal to zero. That is:

H0 : αi = 0, ∀i = 1, ..., N, (6)

where αi is the intercept and N is the number of portfolios. To compute the GRS test statistic,

I define:

Ω̂ = T−1
T∑
t=1

f tf
′
t, (7)

and

Σ̂ = (T − L− 1)−1
T∑
t=1

ε̂tε̂
′
t, (8)

where ε̂t = (ε̂1t, ..., ε̂Nt)
′ with ε̂it as the OLS estimate of εit from equation (5), and L is the

number of factors of the model. The equation of the GRS test statistic is as follows:

T (T −N − L)

N(T − L− 1)
(1 + f̄ ′Ω̂−1f̄)−1α̂′Σ̂−1α̂, (9)

where α̂ is the OLS estimate of α = (α1, ..., αN )′ and f̄ = T−1
∑T

t=1 f t. The test statistic

follows a F (N,T −N − L) distribution under the H0. The test assumes that εt = (ε1t, ..., εNt)
′

has a joint normal distribution with mean zero and nonsingular variance-covariance matrix Σ
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and is i.i.d. over t. However, simulation evidence by MacKinlay (1986) suggests that the F test

is fairly robust to a misspecification of the error terms.

4.4 Robustness checks

As a robustness check for the model performance, I look at the average absolute intercept, R2

and the GRS p-value of the C-CAPM, three-factor and ten-factor model over time. This shows

whether one model is always better than the other or that it is only in specific periods. Hence, I

perform rolling regressions weekly with a window length of 52 weeks (as inspired by Shen et al.

(2020)).

Furthermore, as a robustness check for the factor selection methods, I use the Lasso (least

absolute shrinkage and selection operator) by Tibshirani (1996). Lasso is a variable selection

and a regularization technique. Regularization is a technique that makes small changes to

the learning algorithm to reduce overfitting. Lasso uses shrinkage, meaning that regression

coefficients are shrunk toward a central point. The Lasso procedure can shrink coefficients of

the variables with a minor contribution toward zero, such that it selects the relevant variables.

It does so by penalizing the regression model with a penalty term called the L1-norm in the

following regression:
n∑

i=1

(yi −
∑
j

xijβj)
2 + λ

p∑
j=1

|βj |, (10)

where λ
∑p

j=1 |βj | is the L1-norm and λ denotes the amount of shrinkage. λ = 0 means that the

penalty effect has no effect and that the regression is just the regular least squares regression.

When λ increases, the coefficients will shrink toward zero. I choose λ by using ten-fold cross-

validation. Cross-validation is a method that uses different parts of the data for testing and

training, in different iterations. It trains on all but the kth part, and then validates on the kth

part, where k = 1, ..., 10. This procedure then tries to find the best λ.

Lasso is useful for my research since there is a lot of multicollinearity, and regularization and

factor reduction techniques, like Lasso, can help correct for this Schreiber-Gregory (2018). I use

the Lasso on 5 of the 25 size-momentum portfolios, which are: big-up, big-down, 3-3, small-up

and small-down.
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5 Results

Section 5.1 first describes the results of the stepwise regression methods. Thereafter, Section

5.2 compares the six models that have been introduced. Lastly, Section 5.3 shows the results of

the robustness checks.

5.1 Forward and backward selection

The forward and backward selection methods result in two different models. The forward selec-

tion method adds the following factors in the following order: MOM4, PRC, SMB, STDVOL,

RMRF and DMU. So, this model includes the same factors as the three-factor model and adds

MOM4, PRC and STDVOL. The backward selection model removes the following factors in

the following order: MOM3, PRC, VOL, MOM2, SMB and MOM4. As a result, this model

includes RMRF, DMU, MAXPRC and STDVOL. So, the backward selection model does not

include the SMB factor, which is included in the three-factor model. It also finds a price factor

and the standard deviation of the volume as factors that have significant explanatory power on

the returns, like the forward selection method.

5.2 Model comparison

Table 6: Summary statistics for the regressions

|α| R2 Adj. R2 s(α) GRS p-value

C-CAPM 0.018 0.371 0.370 0.006 < 0.001

Three 0.020 0.417 0.412 0.008 < 0.001

Ten 0.017 0.456 0.443 0.009 < 0.001

PCA 0.018 0.426 0.421 0.009 < 0.001

Forward 0.016 0.446 0.438 0.009 < 0.001

Backward 0.020 0.438 0.432 0.008 < 0.001

.

The statistics of the regressions to compare the six models are in Table 6. It includes the average

absolute intercepts, average R2, average adjusted R2, average standard error of the intercepts

and GRS p-value. Appendix G reports the intercepts of all regressions with their t-statistic.

Table 6 shows that all models outperform the C-CAPM in terms of the (adjusted) R2. However,
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all models cannot completely explain the cross-section of cryptocurrency returns, since the p-

values of the GRS test are significant on the 1% level. So, the models are incomplete descriptions

of the cryptocurrency returns. The model that has the most explanatory power is the ten-factor

model, since it has the highest (adjusted) R2.

5.3 Robustness checks

Figure 1: Rolling graph of absolute intercepts

Figure 2: Rolling graph of R2
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Figure 3: Rolling graph of GRS p-value

The results of the robustness check that uses a rolling window are in Figures 1, 2 and 3. Figure

1 shows that the average absolute intercept is not in all regressions lower for one model. For

77% of the periods, the average absolute intercept of CAPM is lower than that of the ten-factor

model, especially around 2019 it is lower. Around 2022 is the average absolute intercept of the

three-factor model higher than of the other two models. For the other periods, it is similar for

all three models, so no model clearly outperforms the others in terms of the average absolute

intercept. However, Figures 2 and 3 show that the ten-factor model is better. Its average R2 is

always larger than the average R2 of C-CAPM and the three-factor model 7. That means the

ten-factor model’s explanatory power is higher in all periods. Figure 3 shows the p-values of the

GRS tests. In most periods, the p-value of the ten-factor model is much higher than the p-value

of C-CAPM and the three-factor model. Furthermore, in 71% of the periods, it is higher than

0.05, meaning that the intercepts are not jointly significantly different from zero. Hence, the

model can often explain the cross-section of cryptocurrency returns when looking at a window

of one year. The three-factor model can explain the cross-section of cryptocurrency returns in

28% of the periods.

Table 7 reports the results of the Lasso on the five size-momentum portfolios. It shows that

RMRF is selected for all five portfolios and has a high coefficient compared to the other factors.

MAXPRC, MOM2 and MOM3 are only selected for one of the five portfolios and have small

coefficients, so they are irrelevant. MOM2 and MOM3 are also not selected by the stepwise

methods, and MAXPRC is selected only by backward selection, so they find somewhat the same

7This result is the same for the adjusted R2
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results.

SMB has large positive coefficients for small-up and small-down, which is as expected, since

it measures the returns of the small-caps minus the returns of the large-caps. However, SMB

has a small negative coefficient for big-up, and for big-down it is not included in the model. So,

for these two portfolios, SMB is not very relevant. Of the two stepwise regression methods, only

forward selection finds SMB as a significant factor, so also not a very clear result for SMB.

DMU has large negative coefficients for the up portfolios and large positive returns for the

down portfolios, again as expected, since DMU measures the returns of the losers minus the

returns of the winners. Both stepwise methods also find DMU as a significant factor.

PRC has a large negative coefficient for big-down and small coefficients for big-down and

small-up. The forward selection method also finds PRC as a significant factor contributing to

the model.

MOM4 has three small coefficients, and one large positive coefficient for small-up, which

shows that small-up has some longer momentum effects. The forward selection also finds MOM4

as a significant factor. So, MOM4 has some explanatory power, even when DMU is included.

VOL and STDVOL have relatively high positive coefficients for big-up and big-down. VOL

also has a high negative coefficient for small-up. This shows that the volume factors are also

relevant, as the stepwise selection methods also show.

Table 7: Lasso regression

Size quintile Big Big 3 Small Small

Momentum quintile Up Down 3 Up Down

RMRF 0.976 0.701 0.825 0.842 0.883

SMB -0.051 - - 0.278 0.176

DMU -0.281 0.238 - -0.244 0.500

PRC - 0.093 - -0.084 -0.241

MAXPRC - 0.001 - - -

MOM2 - - - - -0.109

MOM3 - - - 0.138 -

MOM4 0.090 - -0.004 0.209 -0.044

VOL - 0.135 0.059 -0.252 -0.011

STDVOL 0.325 0.246 0.013 -0.086 -
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6 Conclusion and discussion

This research tried to find a model that can better explain the cross-section of cryptocurrency

returns and the factors contributing to this. For this, I used the three-factor model by Shen

et al. (2020) as the base model. This model includes a market, size and reversal factor. First, I

proved that the reversal effect is present in my data set and that it is the strongest for small-cap

cryptocurrencies. It generates the highest return when the formation and holding period are

both one week. I extended the three-factor model with seven factors proposed by Liu et al.

(2022). This forms the ten-factor model, which outperforms the other models in terms of the

(adjusted) R2. I expected that it would have the highest R2 since it includes the most factors,

but corrected for the number of factors, it still has the most explanatory power. However,

it cannot fully explain the cryptocurrency returns when considering the period from 2014 until

now. Nonetheless, when looking at a window of one year, the ten-factor model is in most periods

able to almost completely explain the cross-section of cryptocurrency returns. This is not what

I expected, since the ten-factor model cannot explain the returns for the whole period.

I performed forward and backward selection on the ten factors to find the most relevant

factors with relatively the most explanatory power. The forward selection model includes the

same factors as the three-factor model, and also the four-week momentum, price and standard

deviation of the volume factor. The backward selection method also selects a price factor and the

standard deviation of the volume factor as significant factors, besides the market and reversal

factor. As a result, both methods found that price and volume factors significantly contribute to

the model. The Lasso procedure also found that the four-week momentum has some explanatory

power when included together with the reversal factor. Furthermore, it also showed that the

volume and price factors are relevant. I expected that the market size and reversal factor are

important, as, for example, Shen et al. (2020) and Liu et al. (2020) showed. However, I did not

expect that the four-week momentum would still add explanatory power and that the price and

volume factors are still important.

To quantify the performance of the models, I used the GRS test. This test tests whether a

set of factors can explain the returns of several portfolios. So, besides looking at the average

absolute intercepts of the different models, like Shen et al. (2020) did, I analyzed the intercepts

by testing whether they are jointly different from zero. This method can prove that a model

can fully explain the cross-section of cryptocurrency returns, instead of indicating it.
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The forward and backward selection methods that try to find the most important factors

are not the best methods for this purpose. The resulting p-values can be misleading, so these

two methods’ conclusions are unreliable. This is especially the case with the high correlations

and thus multicollinearity in my factors. That is why the Lasso procedure can help, because it

deals better with multicollinearity than the stepwise selection methods and functions as a factor

selection method. Furthermore, it reduces the problem of overfitting, such that the results are

more applicable to other data sets. Since these three different methods conclude mostly the

same things, the results are more reliable than if I only used one of these three methods.

The Principal Component Analysis (PCA) was less effective than I thought it would be. The

PCA was useful for removing the multicollinearity, but the components are hard to interpret.

This is especially a problem for one of the purposes that I used PCA for: factor selection. I

thought there would be a more apparent distinction between the components so that I could

identify important factors.

This research illustrates that the ten-factor model can explain the cryptocurrency returns

in some periods, but that raises the question of the performance of the factors over time. It

could be that, for example, the reversal effect changes over time or that its explanatory power is

time-varying. Related to this is the question whether the predictability of the ten-factor model

can be explained by, for example, the volatility of the returns. These two questions could be

addressed in further research.

The research of this paper can be extended by including more cryptocurrencies. In total,

there are over 13.000 cryptocurrencies available, so 11.000 more than that are included in my

research. These mainly include coins with a small market capitalization, since they had their

Initial Coin Offering (ICO) after 2019. These small currencies could change the results regard-

ing the effects on the small-cap portfolios. Moreover, the returns after an ICO can also be

investigated. It could be that there is a pattern in the returns in the period after an ICO.

Another interesting topic to use my research on, is looking at trading strategies using the

factors that have a significant effect. This paper focuses only on the explanatory power of the

factors. However, investigating whether these factors are useful for trading strategies is also

relevant. The fact that factors perform well in-sample in explaining returns does not mean that

they are also good at predicting returns. If the returns of cryptocurrencies can be predicted

better, trading strategies that involve cryptocurrencies can be used by institutional investors.
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Appendix A All 25 factors

• Market capitalization

• Price

• Maximum price

• Number of weeks listen

• One-week momentum

• Two-week momentum

• Three-week momentum

• Four-week momentum

• Eight-week momentum

• Sixteen-week momentum

• Fifty-week momentum

• Hundred-week momentum

• Volume

• Volume times price

• Volume times price scaled by market capitalization

• The regression coefficient βi in ri −Rf = αi + βiMKT + εi

• Beta squared

• Idiosyncratic volatility

• Standard deviation of daily returns

• Skewness of daily returns

• Kurtosis of daily returns

• Maximum daily return

• Improvement of R2 in ri−Rf = αi+βi,MKTMKT+βi,MKT−1MKT−1+βi,MKT−2MKT−2+

εi, compared to using only current coin market excess returns

• Standard deviation of volume

• Average absolute daily return divided by volume

Appendix B Stablecoins

• Thether

• USD Coin

• TrueUSD
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• Pax Dollar

• Gemini Dollar

• Stasis Euro

• sUSD

• BitCNY

• Stably USD

Appendix C Mean returns J-K portfolios

Table 8: Mean returns on the J-K portfolios

J K = 1 2 3 4

1 Buy -0.033*** -0.036*** -0.043*** -0.052***

(-5.150) (-4.155) (-3.998) (-4.299)

1 Sell 0.121*** 0.106*** 0.101*** 0.088***

(17.194) (11.747) (9.185) (7.287)

1 Buy-Sell -0.154*** -0.143*** -0.143*** -0.140***

(-21.373) (-16.763) (-16.029) (-15.571)

2 Buy -0.021*** -0.023** -0.025** -0.036***

(-3.091) (-2.456) (-2.283) (-2.897)

2 Sell 0.109*** 0.111*** 0.101*** 0.094***

(14.925) (12.105) (9.218) (7.700)

2 Buy-Sell -0.130*** -0.133*** -0.126*** -0.130***

(-16.549) (-14.924) (-14.724) (-13.498)

3 Buy -0.012* -0.013 -0.023** -0.035***

(-1.872) (-1.494) (-2.129) (-2.901)

3 Sell 0.099*** 0.100*** 0.092*** 0.079***

(13.797) (10.971) (8.292) (6.856)

3 Buy-Sell -0.111*** -0.113*** -0.114*** -0.114***

(-15.797) (-14.253) (-13.630) (-13.125)

4 Buy -0.008 -0.011 -0.015 -0.023*

(-1.206) (-1.219) (-1.315) (-1.776)

4 Sell 0.100*** 0.102*** 0.092*** 0.082***

(14.464) (11.190) (8.362) (6.946)

4 Buy-Sell -0.107*** -0.133*** -0.107*** -0.104***

(-15.557) (-14.557) (-12.477) (-10.688)

The t-statistics are reported in parentheses. Significance at the 1%, 5% or 10% level is denoted by ***,

** or *, respectively.
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Appendix D Descriptive statistics and correlations of factors

Table 9: Descriptive statistics

Mean St. Dev. Skewness Kurtsosis

RMRF 0.000 0.104 0.058 4.736

SMB 0.063 0.137 0.322 5.456

DMU 0.061 0.083 0.751 13.718

PRC -0.028 0.086 -0.667 6.709

MAXPRC -0.027 0.086 -0.793 7.059

MOM2 -0.089 0.112 -0.864 15.464

MOM3 -0.081 0.102 0.925 5.705

MOM4 -0.082 0.095 0.843 5.883

VOL -0.027 0.102 -0.235 5.717

STDVOL -0.029 0.103 -0.269 5.985

Table 10: Correlations

RMRF SMB DMU PRC MAXPRC MOM2 MOM3 MOM4 VOL STDVOL

RMRF 1.000

SMB -0.137 1.000

DMU 0.088 0.066 1.000

PRC -0.071 -0.419 0.007 1.000

MAXPRC -0.061 -0.404 0.051 0.970 1.000

MOM2 -0.090 -0.072 -0.731 0.038 0.001 1.000

MOM3 -0.133 0.013 -0.612 -0.055 -0.104 0.763 1.000

MOM4 -0.144 -0.031 -0.537 0.011 -0.035 0.711 0.819 1.000

VOL 0.208 -0.687 -0.038 0.392 0.366 -0.007 0.003 0.006 1.000

STDVOL 0.211 -0.679 -0.044 0.387 0.363 0.002 0.000 0.011 0.959 1.000

Appendix E Proof of multicollinearity

Multicollinearity can be measured using the Variance Inflation Factor (VIF). The VIF estimates

how much the variance of a regression coefficient is inflated due to multicollinearity. A large
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VIF on a factor indicates high multicollinearity. The VIF is computed as follows:

V IFj =
1

1−R2
j

, (11)

where R2
j is the R

2 obtained by regressing the jth factor on the other factors. The VIF values for

the regression with the big-up portfolio as the dependent variable are below in Table 11. A VIF

of one means no multicollinearity and a VIF higher than 10 indicates serious multicollinearity.

The table shows that there is almost no multicollinearity in the three-factor, forward selection

and backward selection models. However, there is serious multicollinearity in the ten-factor

model. The multicollinearity is not a very big problem for the momentum factors, despite the

high correlations.

Table 11: VIF values

Factor Three-factor Ten-factor Forward Backward

RMRF 1.022 1.094 1.090 1.072

SMB 1.027 2.010 1.929

DMU 1.011 1.981 1.421 1.014

PRC 18.727 1.294

MAXPRC 18.462 1.185

MOM2 3.011

MOM3 4.120

MOM4 3.219 1.401

VOL 13.852

STDVOL 15.529 1.978 1.232
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Appendix F PCA

Figure 4: Scree plot

Appendix G Intercepts regressions

The tables below show the 25 intercepts of the six models and their t-statistics.

Table 12: Intercepts from C-CAPM

α t(α)

Up 2 3 4 Down Up 2 3 4 Down

Big 0.014 0.005 -0.003 -0.014 -0.015 1.812 1.149 -0.724 -3.335 -1.895

2 -0.018 -0.002 -0.005 -0.007 0.000 -2.581 -0.389 -1.123 -1.572 0.059

3 -0.016 0.001 -0.008 0.003 0.026 -1.890 0.208 -1.489 0.538 3.868

4 -0.040 0.001 0.004 0.007 0.046 -5.811 0.189 0.658 1.177 7.356

Small -0.036 0.009 0.027 0.040 0.106 -3.967 1.281 2.899 4.836 14.079
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Table 13: Intercepts from three-factor model

α t(α)

Up 2 3 4 Down Up 2 3 4 Down

Big 0.052 0.015 -0.003 -0.023 -0.051 5.206 2.556 -0.671 -4.044 -4.846

2 0.025 0.013 -0.007 -0.008 -0.027 2.792 1.977 -1.181 -1.296 -3.723

3 0.028 0.017 -0.005 -0.008 -0.002 2.728 2.274 -0.792 -1.172 -0.283

4 -0.023 0.018 -0.006 -0.009 0.013 -2.599 2.325 -0.673 -1.256 1.633

Small -0.039 0.006 0.026 0.014 0.052 -3.609 0.624 2.098 1.270 5.830

Table 14: Intercepts from ten-factor model

α t(α)

Up 2 3 4 Down Up 2 3 4 Down

Big 0.061 0.008 -0.008 -0.023 -0.020 5.307 1.254 -1.376 -3.426 -1.759

2 0.026 0.007 -0.017 -0.012 -0.033 2.755 0.953 -2.343 -1.792 -4.229

3 0.018 0.006 -0.006 -0.012 0.004 1.578 0.687 -0.785 -1.612 0.411

4 -0.024 0.009 -0.014 -0.014 0.001 -2.365 1.061 -1.471 -1.741 0.139

Small -0.019 -0.006 0.023 0.019 0.043 -1.490 -0.516 1.698 1.523 4.111

Table 15: Intercepts from forward selection model

α t(α)

Up 2 3 4 Down Up 2 3 4 Down

Big 0.061 0.012 -0.005 -0.024 -0.019 5.377 1.802 -0.995 -3.657 -1.798

2 0.024 0.009 -0.015 -0.011 -0.031 2.572 1.228 -2.195 -1.658 -4.028

3 0.015 0.008 -0.007 -0.012 0.001 1.279 0.962 -0.973 -1.579 0.136

4 -0.025 0.008 -0.012 -0.011 0.002 -2.496 0.889 -1.292 -1.342 0.239

Small -0.019 -0.003 0.020 0.017 0.040 -1.581 -0.306 1.497 1.404 3.967
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Table 16: Intercepts from backward selection model

α t(α)

Up 2 3 4 Down Up 2 3 4 Down

Big 0.047 0.012 -0.011 -0.023 -0.054 4.809 2.037 -2.396 -4.103 -5.317

2 0.028 0.013 -0.010 -0.006 -0.027 3.241 2.156 -1.633 -0.938 -3.759

3 -0.025 0.014 -0.009 -0.013 0.001 2.552 1.875 -1.337 -2.041 0.132

4 -0.025 0.011 -0.01 -0.014 0.004 -2.907 1.408 -1.293 -1.959 0.593

Small -0.031 0.004 0.025 0.018 0.055 -2.859 0.396 1.986 1.717 6.116

Table 17: Intercepts from PCA model

α t(α)

Up 2 3 4 Down Up 2 3 4 Down

Big 0.054 0.007 -0.007 -0.020 -0.033 4.864 1.125 -1.358 -3.179 -2.668

2 0.029 0.014 -0.014 -0.005 -0.024 2.997 2.097 -2.118 -0.845 -3.025

3 0.025 0.007 -0.009 -0.007 0.010 2.236 0.851 -1.271 -0.928 1.086

4 -0.023 0.005 -0.011 -0.015 0.007 -2.333 0.587 -1.245 -1.913 0.815

Small -0.021 -0.010 0.020 0.019 0.045 -1.814 -0.952 1.483 1.622 4.536

Appendix H Script description

- The ”getData.R” document retrieves the data from the internet

- The ”setData.R” document sets the data such that it can be used in the programming and

sets some parameters. It also makes a table of the descriptive statistics of the data

- The ”J-K portfolios.R” document computes everything for the process of determining the best

J-K strategy

- The ”factorModels.R” document computes all the factors, does the 5 × 5 portfolio calculations,

does the forward and backward selection methods, computes all the necessary regressions and

performs the robustness checks

- The ”workspace.RData” document is the workspace that can be loaded into R that contains

the data of the cryptocurrencies
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