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Abstract

We focus on methods for finding multiple solutions that are optimal and near-optimal

for Mixed Integer Programming (MIP) problems. Finding multiple solutions for this type

of problem is relevant for decision makers who might need dissimilar solutions that provide

optimal and near-optimal objectives, because MIP is often used to formulate real-world

problems. We compare the one-tree and the sequential algorithm based on the time they need

to find a predetermined amount of solutions and the diversity between these found solutions.

We define four diversity measures, namely a binary Hamming, an integer Hamming, a general

Hamming, and a variance-based diversity. We find that our sequential algorithm is always

faster than our one-tree algorithm. Besides this we find that none of the diversity measures

show a preference for one of the algorithms.
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1 Introduction

Mixed integer programming (MIP) formulations are used for a variety of different problems.

Some problems that can be formulated using MIP are knapsack, traveling salesman, bin packing,

and plant location problems. All of these are common problems that need to be solved on a

regular basis. In this paper we focus on the problem of finding multiple solutions for MIP

problems, which can be both optimal and near-optimal. We expand on a paper by Danna,

Fenelon, Gu, & Wunderling (2007), and use two of the algorithms they defined. They use a

diversity measure based on binary variables to compare their algorithms, we extend on this by

defining diversity measures that also include integer and continuous variables.

Researchers who develop meta-heuristics have stated their need for diverse solutions. Some

of these meta-heuristics include genetic algorithms and memetic algorithms, where the first are

algorithms based on natural selection and the second are evolutionary algorithms that use local

search rather than global search (Dutta & Mahanand, 2022). Research into finding multiple

solutions is therefore relevant for improving the performance of these metaheuristics. Besides,

MIP is used more often to solve sub-problems within a branch-and-bound algorithm. An example

is using an MIP formulation with an objective to maximize the cut violation to help define the

cuts (Danna et al., 2007; Greistorfer et al., 2008).

There is also a more practical relevance to finding multiple solutions for MIP problems.

Many problems are approximations of real world situations, which can change quickly. Therefore

a solution that is found for the original problem can be infeasible due to changes in the real

situation. Besides, some aspects of the problem may be difficult to add into an MIP formulation.

It can then be practical for decision makers to choose between solutions that are dissimilar, but

still provide optimal or near-optimal objectives (Danna et al., 2007; Greistorfer et al., 2008).

To find good methods for generating multiple solutions for MIP problems we analyse two

algorithms. The first is the one-tree algorithm as introduced by Danna et al. (2007), the second is

a sequential algorithm as defined by Greistorfer et al. (2008). We compare these algorithms based

on two aspects, the running time of the algorithm when generating a predetermined amount of

solutions, and the diversity between these generated solutions. We use the algorithms to solve

a selection of problems gathered from the MIPLIB libraries: MIPLIB3.0 (Bixby et al., 1998),

MIPLIB2003 (Achterberg et al., 2006), and MIPLIB2017 (Gleixner et al., 2021). Most of these

problems are also used by Danna et al. (2007).

Our comparison of the algorithms gives us the following main findings. First, our sequential

algorithm is on average 500 times faster than our one-tree algorithm. When comparing our

running times with those found by Danna et al. (2007), we find that our one-tree algorithm is
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on average 2000 times slower than theirs, and our sequential algorithm is on average 8 times

faster than theirs. Lastly, none of the diversity measures show a clear preference between the

two algorithms.

This paper adds to the existing literature on finding multiple solutions for MIP problems

in multiple ways. First of all, we perform another comparison between the one-tree algorithm

and the sequential algorithm. With this comparison we show that the way an algorithm is

implemented strongly affects the performance of the algorithm. Besides this, we also introduce

various diversity measures that can be used to compare the performance of algorithms that find

multiple solutions for MIP problems.

The remainder of the paper is structured as follows. First, we give a literature review in

Section 2. Next, we define the methodology we use to analyse our problem in Section 3. After

this, we give a description of the used data and show the results in Section 4. Lastly, we give a

conclusion, discuss our findings and provide further research suggestions in Section 5.

2 Literature review

Various methods for finding multiple solutions for Mixed Integer Programming (MIP) problems

have been published. An MIP problem is defined as an optimization problem with a linear

objective and linear constraints where at least one variable is integer (Wolsey, 2020; Bixby et

al., 2000).

MIP models are often described as being versatile (Danna et al., 2005; Rothberg, 2007).

Some examples of problems that can be modelled using MIP include single commodity single

echelon problems, inventory-routing problems, and combinatorial optimization problems such as

knapsack and traveling salesman problems (Ghiani et al., 2013; Berthold, 2006). In many cases

these problems are solved using heuristics, an example of this is presented by Fasano (2008).

Here they use heuristics to solve non-standard 3D-packing problems which include additional

conditions such as balancing and tetris-like items. Another example is by Ambrosino, Paolucci,

& Sciomachen (2015), they use an MIP-based heuristic to solve a multi port stowage planning

problem. They determine how to stow a set of containers of different types onto a container

ship, where the entire route of the ship is taken into consideration.

Some researchers have focused on generating multiple solutions for various problems. Lee,

Phalakornkule, Domach, & Grossmann (2000), for example, look into generating all different

solutions that provide the optimum value in certain linear programming models for metabolic

networks, which are biochemical networks that contain a collection of connected reactions. They

use a recursive method to find these solutions. Greistorfer et al. (2008) investigate finding
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multiple solutions for MIP problems. They compare simultaneous and sequential generation

for finding two solutions and conclude that sequential generation often takes less computation

whilst producing solutions with at least the same quality as those produced with simultaneous

generation.

When generating multiple solutions it is important to define the diversity between these

solutions. This metric shows how the found solutions differ from each other based on the

difference in variable values. Danna et al. (2007) define the diversity between solutions based

on the Hamming distance between binary variables. This distance is defined as the amount of

“bits” that are different between the solutions. In this case it is equal to the amount of binary

variables that take on a different value in the solutions. Danna & Woodruff (2009) first define a

diversity measure based on the scaled Hamming distance between binary variables. They define

a second diversity measure based on the variances of all variables and lastly a diversity measure

based on the variances of the variables that is scaled with the mean.

Contrary to these definitions, Glover et al. (2000) state that the Hamming distance is not

an appropriate measure for diversity, because it is only based on binary variables and thus does

not take regular integer or continuous variables into account. Besides this, they also state that

the Euclidean distance is not appropriate because it is not scale invariant, which means that

the results can be affected by the scales of the variables. Both of these distances also have

the shortcoming of not taking correlations into account. Glover et al. (2000) conclude that the

Mahalanobis distance would be the most representative measure because it is scale invariant

and it can take correlations between the variables into account. Even so, they state that this

diversity measure can be difficult to calculate.

3 Methodology

In this paper we analyse two algorithms, the one-tree algorithm and a sequential algorithm.

Since both algorithms are based on the branch-and-bound algorithm, we first describe this.

Next, we describe the one-tree and sequential algorithm and how we compare the performance

of these algorithms. The problem on which we compare the algorithms is the MIP(p, q) problem.

This is defined as finding p solutions for an MIP problem that are within q% of the optimum.

When solving this problem it is not guaranteed that p solutions can be found, if that is the case

we work with the amount of solutions that were found.
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3.1 Branch-and-bound algorithm

The most-used algorithm to solve MIP problems is branch-and-bound. This algorithm enumer-

ates over the possible solutions by creating a tree of subproblems. First, we create the root node,

which is equal to the linear programming (LP) relaxation of the original problem, and solve this

problem to optimality. The LP relaxation is obtained by relaxing the integrality constraints, it

is thus a less restricted version of the original problem since all variables that were integer in

the original problem can now take on continuous values. Next, we enumerate over all nodes in

the tree where there are three possibilities in each node. First, if the found solution is greater

than the best solution that was found at that point, we fathom the node. Second, if the found

solution is smaller than the best solution at that point and the solution satisfies the integrality

constraints, we set that solution as the new best solution and fathom the node. For all other

solutions we split the node into two child nodes, fathom the current node, and explore these

created child nodes (Wolsey, 2020; Bixby et al., 2000; Danna et al., 2005, 2007).

To split the problem, we take an integer variable that is fractional in value in the current

solution and impose constraints to restrict this variable around its current value. Thus, if we

have a variable xj that is fractional in this solution with value x∗j , we split the problem by

creating two sub-problems. The first has the restriction xj ≤
⌊
x∗j

⌋
added to the problem, the

second has xj ≥
⌈
x∗j

⌉
added to the problem. Then in each node we solve the LP relaxation of

that node to optimality (Danna et al., 2005; Wolsey, 2020; Berthold, 2006; Bixby et al., 2000).

3.2 One-tree algorithm

The first algorithm is the one-tree algorithm as introduced by Danna et al. (2007), which contains

two phases as described in Algorithm 1 and Algorithm 2. The main idea of this algorithm is to

first explore and create the regular branch-and-bound tree, which is done in phase I. Instead of

fathoming nodes as in branch-and-bound we store all explored nodes such that these can be used

in phase II. Then in phase II the stored nodes from phase I are explored again such that we can

collect multiple solutions. This is done by iterating over the nodes and solving the LP relaxation

of the problem in this node to optimality. If the solution is outside q% of the optimum the node

is fathomed, otherwise we do two things. First, we check if it is feasible and not yet present in

the solution set. If that is the case we add the solution to this set. After this we branch on a

variable that is not restricted by its bounds within this node. These phases are summarized in

Algorithm 1 and Algorithm 2.
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Algorithm 1 Outline of one-tree algorithm: Phase I

1: Create a set of open nodes and add the root node to this set: Nopen ← {rootnode}.
2: Create an empty set for the stored nodes: Nstored ← ∅.
3: Set the objective value of the incumbent to infinity: z∗ ← +∞.

4: while Nopen ̸= ∅ do
5: Select a node n from Nopen.

6: Solve the LP relaxation at node n.

7: if no optimal solution is found then

8: Fathom the node: Nopen ← Nopen \ n.
9: Continue to the next iteration.

10: end if

11: Store the solution of this relaxation as x(n) with objective value z(n).

12: if z(n) ≥ z∗ then

13: Fathom the current node: Nopen ← Nopen \ {n}.
14: Add the current node to the set of stored nodes: Nstored ← Nstored ∪ {n}.
15: else

16: if x(n) is integer valued then

17: x(n) becomes the new incumbent: x∗ ← x(n); z∗ ← z(n).

18: Fathom the current node: Nopen ← Nopen \ {n}.
19: Add the current node to the set of stored nodes: Nstored ← Nstored ∪ {n}.
20: else

21: Choose branching variable i that is fractional in the current solution.

22: Build child nodes n1 = n ∩ {xi ≤ ⌊xi(n)⌋} and n2 = n ∩ {xi ≥ ⌊xi(n)⌋+ 1}.
23: Fathom the current node: Nopen ← Nopen \ {n}.
24: Add the child nodes to the set of open nodes: Nopen ← Nopen ∪ {n1, n2}.
25: end if

26: end if

27: end while

3.3 Sequential algorithm

The second algorithm is the sequential algorithm, for which an outline is given in Algorithm 3.

The idea of this algorithm is to generate multiple feasible solutions for the problem in a sequential

manner. Greistorfer et al. (2008) define a sequential algorithm with the following steps. First,

we find the optimal solution x∗ by solving the original problem using regular branch-and-bound.

Next, we restrict the objective value to ensure that all next solutions are within q% of the

optimal value. After this, we continue finding solutions until we have p different solutions. In

each iteration we add a constraint to exclude the previous solution. This process is summarized

in Algorithm 3.
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Algorithm 2 Outline of one-tree algorithm: Phase II

1: Used the stored nodes from phase I as the open nodes for phase II: Nopen ← Nstored.

2: Reuse incumbent, x∗ with z∗ from phase I.

3: Create a set of solutions and add the incumbent from phase I to this set: S ← {x∗}.
4: while Nopen ̸= ∅ and |S| < p do

5: Select a node n from Nopen.

6: Solve the LP relaxation at node n.

7: if no optimal solution is found then

8: Fathom the node: Nopen ← Nopen \ n.
9: Continue to next iteration.

10: end if

11: Store the solution of this relaxation as x(n) with objective value z(n).

12: if z(n) > z∗ + q|z∗|/100 then

13: Fathom the current node: Nopen ← Nopen \ {n}.
14: else

15: if x(n) is integer valued then

16: if x(n) /∈ S then

17: Add x(n) to the set of solutions: S ← S ∪ {x(n)}.
18: end if

19: end if

20: Choose branching variable i that is not fixed by its bounds in the current node: lbi(n) < ubi(n).

21: Build child nodes n1 = n ∩ {xi ≤ ⌊xi(n)⌋} and n2 = n ∩ {xi ≥ ⌊xi(n)⌋+ 1}.
22: Fathom the current node: Nopen ← Nopen \ {n}.
23: Add child nodes to the set of open nodes: Nopen ← Nopen ∪ {n1, n2}.
24: end if

25: end while

Algorithm 3 Outline of the sequential algorithm for MIP(p, q).

1: Solve the problem with standard branch-and-bound.

2: Store the found optimal solution as x∗ with objective value z∗.

3: Create a set of solutions and add the found solution to this set: S ← {x∗}.
4: Define the set of binary variables: B.

5: Add constraint on objective value to ensure that all solutions are within q% of the optimum: X ←
X ∩ {cTx ≤ z∗ + q|z∗|/100}

6: while |S| < p do

7: Add constraint to exclude the previous solution: X ← X∩{
∑

i∈B:si=0 xi+
∑

i∈B:si=1(1−xi) ≥ 1}.
8: Solve the new problem with standard branch-and-bound.

9: Store the found optimal solution as x∗.

10: Add the new solution to the set of solutions: S ← S ∪ {x∗}.
11: end while

3.4 Performance measures

We compare the algorithms based on two aspects. The first is the running time of the algorithm

when solving MIP(p, q), and the second is the diversity between the generated solutions for
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MIP(p, q). To formulate the different diversity measures we use the following set definitions:

S The set of all found solutions.

B The set of all binary variables.

I The set of all integer variables.

V The set of all variables.

We define the diversity as

D(S) =
1

|S|2
∑

s,s′∈S
d(s, s′), (1)

which is the average pairwise distance. In this formulation we can adjust d(s, s′) to change the

distance measure between two solutions s and s′.

Danna et al. (2007) define a binary Hamming diversity. This is thus based on the Hamming

distance on the set of binary variables, which gives the definition

d(s, s′) =
1

|B|
∑
i∈B
|si − s′i|, (2)

where si is the value of variable i in solution s. The larger the value of the diversity the more

diverse the found solutions are. Danna et al. (2007) prove that D(S) ≤ 1
2 for all solution sets

S. Thus, we look for a diversity as close as possible to 0.5.

We expand on the paper by Danna et al. (2007) by formulating a diversity measure that also

includes integer variables compared to just the binary variables. We define an integer Hamming

distance as follows,

d(s, s′) =
1

|I|
∑
i∈I


1, if |si − s′i| > 0

0, otherwise.

(3)

This defines the distance between two solutions for all integer variables. We count the amount of

times that a variable takes on a different value in two solutions where each difference has weight

one. The formulation simplifies to (2) in case it is a pure binary problem. For this definition it

also holds that we look for the algorithm that has the highest value for this metric.

We also formulate two different diversity measures based on all types of variables. The first

is similar to the previous two measures and is a general Hamming diversity, which is defined as

d(s, s′) =
1

|V |
∑
i∈V


1, if |si − s′i| ≥ 1

0, otherwise.

(4)

This is equal to the differences between the solutions for all variables. We count two variables to
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be different if their values differ by at least 1. If two integer or binary variables are different this

difference is always at least equal to 1, thus we also use this same threshold for the continuous

variables. In this definition we use the same weight for all variables. This definition simplifies

to (3) in case the problem does not contain continuous variables, and to (2) in case the problem

is pure binary. For this measure we also look for the highest value.

Lastly, we have a variance-based diversity measure for all types of variables based on a

definition by Danna & Woodruff (2009). Here the diversity is defined as

D(S) =
1

|V |
∑
i∈V

σ2
i (S) (5)

σ2
i (S) =

1

|S|
∑
s∈S

(
si −

1

|S|
∑
s′∈S

s′i

)2

. (6)

This measure takes the average of the variance of the variables over the solutions. The variance

of a variable i over the solution set is defined in (6). The main disadvantage of this measure

is that all variances may be in a different scale, but they are all given the same weight in this

definition. If the variance for a variable is larger, it means that the variable differs strongly in

value over the solution set. Consequently, for this last diversity measure we also look for larger

values.

4 Results

We compare our algorithms for the MIP(p, q) problem, and we compare them with the results

found by Danna et al. (2007). To perform this last comparison we use the same parameters as

Danna et al. (2007), which are p = 10 and q = 1. All results are obtained using CPLEX 20.1.0

in Java on a computer with an i7 core and 16 GB memory. There is a time limit of 15 minutes

on each of the algorithms to ensure that the chosen problems can be run within a reasonable

amount of time. We first give a description of the problems on which we test the algorithms.

Next, we present our findings for each of the metrics on which we compare the algorithms.

For some problems the algorithm gives a heap space error instead of producing results, this is

indicated with ∼.

4.1 Problem set

This paper focuses on recreating some of the results found by Danna et al. (2007) and expanding

on their ideas. They test their algorithms on 57 different problems. We also test our algorithms

on these problems. These problems come from two MIPLIB libraries, namely from MIPLIB3.0
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(Bixby et al., 1998) and MIPLIB2003 (Achterberg et al., 2006). They only test their algorithms

on problems that can be solved to optimality within half an hour. The newest MIPLIB library is

MIPLIB2017 (Gleixner et al., 2021), which has three categories. All the problems we use come

from the category easy, which means that the problems can be solved to optimality in less than

one hour with standard methods. We also add some problems to our analysis from this library

that were not yet used by Danna et al. (2007).

Each of the problems contains a MIP formulation, which can contain integer, binary, and

continuous variables in various combinations. The total set of problems is shown in Appendix

A. Of the 57 problems there are 19 pure binary problems, 3 problems with binary and integer

variables, 22 problems with binary and continuous variables, 1 problem with integer and con-

tinuous variables, and 12 problems with all types of variables. On average a problem contains

3663 variables. The amount of variables a problem contains ranges from 18 (flugpl) to 87482

(nw04 ). The amount of constraints a problem has ranges from 6 (mod008 ) to 10460 (mzzv42z ),

where a problem contains on average 852 constraints.

4.2 Time to solve MIP(p,q)

We first compare the algorithms based on how much time they need to solve MIP(p,q). The

running time in seconds for each of the problems per algorithm is shown in Table 1. We consider

two times to be equal if the absolute difference is less than 3.601 seconds, this value is justified

in Section B.1.

4.2.1 Comparison one-tree algorithm with sequential algorithm

The one-tree algorithm is unable to finish phase I within 15 minutes for most of the problems,

however the sequential algorithm is always able to finish within this time. The bold values in

Table 1 indicate which algorithm is faster, which is in all cases the sequential algorithm. For

some problems the one-tree algorithm is unable to provide results due to heap space problems.

These problems are bell5, flugpl, gt2, lseu, mas76, mod008 and pk1.

The sequential algorithm is on average nearly 500 times faster than the one-tree algorithm,

which is in this case equal to a difference of on average 800 seconds. This is however an

underestimation of the actual value since the one-tree algorithm was often cutoff due to the

time limit and in these cases a time of 900 seconds was used in the calculation of the average.

This shows that in our case the sequential algorithm performs better than the one-tree algorithm

based on the time it needs to solve MIP(10,1). Danna et al. (2007) find the opposite, as their

case the one-tree algorithm is faster than their sequential algorithm.
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4.2.2 Comparison with Danna et al. (2007)

If we compare the times for each of the algorithms with the times that were found by Danna

et al. (2007), as also shown in Table 1, we see a lot of differences. First, our one-tree algorithm

is slower than theirs for all problems, with a difference of nearly 800 seconds on average. We

can also state that their algorithm is at least 2000 times faster than ours. Both of these values

are again underestimations due to the time cutoffs for our algorithm. The main explanation

for these differences is the way the algorithm is implemented in Java. The algorithm can, for

example, be implemented with regular loops, recursion, or callbacks. While we use regular loops

to implement the algorithm, it may be the case that Danna et al. (2007) used one of the other

methods which was more effective.

For the sequential algorithm we find that our algorithm mostly provides better times than

theirs. Our algorithm is on average 8 times faster, which is in this case 300 seconds faster. Our

algorithm is faster for 34 problems. If we only look at these problems, we find that they are on

average 660 seconds faster. There are two problems for which our algorithm is slower, namely

air03 and mitre. For these problems our algorithm is 40 and 10 seconds slower respectively.

Lastly, for the 21 other problems our algorithm differs at most 3.601 seconds from the results

from Danna et al. (2007).

We thus find that in most cases our sequential algorithm performs faster than the sequential

algorithm as implemented by Danna et al. (2007). Besides, for the problems where our algorithm

is faster the difference is much more significant than the difference when our algorithm is slower.

One explanation for finding these faster times is based on the difference in the used version of

CPLEX. In our case we use version 20.1.0, and Danna et al. (2007) used version 10.1. The newer

version that we use is more effective and faster than the previous version. Another explanation

is that we use a computer that is in some aspects more efficient than the one used by Danna et

al. (2007).

4.3 Number of found solutions

Next, we look at the amount of solutions each algorithm was able to find within the set time

limit. Table 2 shows how many solutions each algorithm is able to find for each of the problems.

Since the one-tree algorithm is often unable to finish phase I within the time limit we see that

for these problems the algorithm is unable to find any solutions.

The one-tree algorithm is able to finish phase I for eight problems. For five of these problems

the algorithm is able to find 10 solutions. For the problems air03, enigma and khb05250 it finds

4, 1 and 5 solutions respectively. The inability to find 10 solutions can be explained by the speed
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Table 1: Time in seconds to solve MIP(10,1).

One-tree Sequential

Problems Phase I Phase II Total
Danna et
al. (2007)

10teams >900 >900 30.114 -
aflow30a >900 >900 40.689 -
air03 44.291 855.762 >900 64.273 +
air04 >900 >900 122.208 -
air05 >900 >900 102.141 -
app3 329.973 408.238 738.211 5.948
arki001 >900 >900 58.944 -
bell3a >900 >900 0.270 -
bell5 ∼ ∼ ∼ 1.077 =
blend2 >900 >900 3.376 -
cap6000 >900 >900 15.087 =
dcmulti >900 >900 2.417 -
disctom >900 >900 18.249 -
dsbmip >900 >900 2.869 =
egout >900 >900 0.113 =
enigma 36.002 863.984 >900 0.381 =
fiber >900 >900 2.864 -
fixnet6 >900 >900 2.090 -
flugpl ∼ ∼ ∼ 0.091 -
gen >900 >900 0.914 =
gesa2 >900 >900 3.252 =
gesa2 o >900 >900 5.478 -
gesa3 >900 >900 26.259 -
gesa3 o >900 >900 6.563 -
gt2 ∼ ∼ ∼ 0.630 =
khb05250 156.158 743.844 >900 3.229 =
l152lav >900 >900 16.209 =
lseu ∼ ∼ ∼ 2.110 =
mas76 ∼ ∼ ∼ 433.444 -
misc03 8.788 0.141 8.929 1.483 -
misc06 68.865 16.472 85.337 2.870 =
misc07 >900 >900 57.851 -
mitre >900 >900 24.483 +
mod008 ∼ ∼ ∼ 1.721 =
mod010 >900 >900 3.662 =
mod011 >900 >900 848.052 -
modglob >900 >900 6.110 =
mzzv11 >900 >900 299.610 -
mzzv42z >900 >900 244.303 -
nw04 >900 >900 630.813 -
p0033 9.119 0.461 9.580 0.516 =
p0201 >900 >900 1.468 -
p0282 >900 >900 1.239 =
p0548 >900 >900 0.883 =
p2756 >900 >900 3.785 =
pk1 ∼ ∼ ∼ 55.529 -
pp08aCUTS >900 >900 8.260 -
pp08a >900 >900 9.581 -
qiu >900 >900 185.245 -
qnet1 >900 >900 4.632 -
qnet1 o >900 >900 3.674 -
rgn >900 >900 1.321 -
rout >900 >900 154.426 -
set1ch >900 >900 8.742 =
stein27 26.823 0.076 26.899 1.160 -
stein45 >900 >900 41.059 -
vpm1 >900 >900 0.847 =
vpm2 >900 >900 6.170 -

+: Our algorithm is slower. =: The difference is at most 3.601. -: Our
algorithm is faster. ∼: Heap space error.

Table 2: Number of solutions found
within 15 minutes when solving
MIP(10,1).

Problems One-tree Sequential

10teams 0 10
aflow30a 0 10
air03 4 10
air04 0 10
air05 0 10
app3 10 10
arki001 0 10
bell3a 0 1
bell5 ∼ 10
blend2 0 10
cap6000 0 10
dcmulti 0 10
disctom 0 10
dsbmip 0 10
egout 0 1
enigma 1 2
fiber 0 10
fixnet6 0 10
flugpl ∼ 1
gen 0 10
gesa2 0 10
gesa2 o 0 10
gesa3 0 10
gesa3 o 0 10
gt2 ∼ 10
khb05250 5 10
l152lav 0 10
lseu ∼ 5
mas76 ∼ 10
misc03 10 10
misc06 10 10
misc07 0 10
mitre 0 10
mod008 ∼ 10
mod010 0 10
mod011 0 10
modglob 0 10
mzzv11 0 10
mzzv42z 0 10
nw04 0 10
p0033 10 10
p0201 0 10
p0282 0 10
p0548 0 10
p2756 0 10
pk1 ∼ 1
pp08aCUTS 0 10
pp08a 0 10
qiu 0 10
qnet1 0 10
qnet1 o 0 10
rgn 0 10
rout 0 10
set1ch 0 10
stein27 10 10
stein45 0 10
vpm1 0 10
vpm2 0 10

∼: Heap space error.

13



of the algorithm, which is quite slow as described in Section 4.2. For each of these problems the

algorithm was cut off in phase II due to the time limit. The sequential algorithm is unable to

find 10 solutions for six of the problems. These are bell3a, egout, enigma, flugpl, lseu and pk1.

For the problems lseu and pk1 we find the same amount of solutions as Danna et al. (2007),

namely 5 and 1 respectively. This is also the proven maximum amount of solutions that can be

found for MIP(10,1) (Danna et al., 2007).

For the four other problems, bell3a, egout, enigma and flugpl, our findings are particularly

interesting. For bell3a and flugpl we find one solution. Danna et al. (2007) also find one solution

with the sequential algorithm for these problems. However, they prove that there exist more

solutions within 1% of the optimum. For flugpl it could be the case that the algorithm as

implemented by Danna et al. (2007) would be able to find more solutions if given more time

since it was cut off due to time restrictions.

These differences can be explained by the termination criteria of the sequential algorithm.

This algorithm has three termination criteria: if it has passed the time limit of 900 seconds; if

it has found 10 solutions; or if the problem is infeasible. For these problems it is thus the case

that the problem is determined to be infeasible, this can happen due to the way the algorithm

adds the restriction to exclude previous solutions. These restrictions are based on the binary

variables, however the other solutions could have the same values for all binary variables, but

differ for the other types of variables. In this case the sequential algorithm would not be able

to find the other solutions. The bell3a problem contains, besides binary variables, integer and

continuous variables. The flugpl problem contains only integer and continuous variables, which

means that for this problem we would not be able to exclude solutions in general.

We find 1 solution for egout and 2 for enigma. Danna et al. (2007) find 2 and 3 solutions for

these problems respectively, and also prove that those are the maximum amount of solutions that

can be found within 1% of the optimum. We thus find one solution less with our implementation

of the sequential algorithm. This means that for these problems the algorithm terminates too

early. For egout we can offer the same explanation as for bell3a and flugpl because this problem

also contains continuous variables as well as binary variables. However, enigma only contains

binary variables and we would thus expect the algorithm to be able to find all solutions.

4.4 Performance comparison

Next, we compare the diversities that are found when solving MIP(10,1). The results for the

different diversity measures are shown in Table 3. For the problems for which the algorithms

were unable to find a solution we do not show the diversity, since the diversity is then not
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defined. In case the algorithm finds one solution the diversity is always zero. For each problem

where we have a diversity for both algorithms we show the best, and thus highest, value in bold.

For the binary Hamming diversity we also add columns to compare our results with the findings

from Danna et al. (2007). For these columns we define two diversities to be the same if the

difference is at most 0.003 (Section B.2).

4.4.1 Binary Hamming diversity

The first diversity measure is the binary Hamming diversity, as defined by (2) in Section 3.4.

The results for this diversity are shown in the first two columns of Table 3. We first compare

this measure between the two algorithms and see that for four problems the one-tree algorithm

performs better and for three problems the sequential algorithm performs better. Because the

algorithms have a different approach to finding the solutions, and thus find solutions in a different

order, it is possible that this measure differs between the two algorithms. Based on this measure

we do not find a preference for one of the algorithms.

Next, we compare our findings for this diversity with the findings from Danna et al. (2007),

as also shown in Table 3. For the one-tree algorithm the diversity is equal for the problems

air03, misc03 and misc06. For khb05250 and stein27 our diversity is on average 0.075 larger.

And lastly for p0033 our diversity is 0.060 smaller. For the sequential algorithm this measure is

equal for 37 of the problems. For six problems our findings are slightly larger than those found

by Danna et al. (2007), as these are on average 0.022 larger. For 14 problems our findings are

smaller. These are on average 0.023 smaller than the diversities found by Danna et al. (2007).

The differences in the values of the binary Hamming diversity for our results and the findings

by Danna et al. (2007) can be explained by the possible set of solutions. For most problems

there are multiple options available for the solutions that provide the same objective value. It is

possible that CPLEX now iterates over the possible solutions in a different order and therefore

finds different solutions that are within 1% of the optimal objective value. If the algorithms

find a different set of solutions the diversity measure will then also take on a different value.

However, these differences are mostly quite small.

4.4.2 Integer Hamming diversity

The second diversity measure is the integer Hamming diversity as defined by (3) in Section 3.4.

The results for this measure are shown in the third and fourth column of Table 3. We see that

the one-tree algorithm performs better for three problems, and the sequential performs better

for four problems. These differences can be explained by the same reasons as in Section 4.4.1.
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Table 3: Diversities for MIP(10,1) with comparison to the results from Danna et al. (2007) for the binary
Hamming diversity.

Binary Hamming Integer Hamming General Hamming Variance-based
Problems One-tree Sequential One-tree Sequential One-tree Sequential One-tree Sequential

10teams 0.038 = 0.038 0.033 0.017
aflow30a 0.036 = 0.044 0.043 5.719
air03 0.001 = 0.001 = 0.001 0.001 0.001 0.001 0.000 0.000
air04 0.001 = 0.001 0.001 0.000
air05 0.001 = 0.001 0.001 0.000
app3 0.026 0.018 0.026 0.018 0.015 0.001 2601.337 0.000
arki001 0.022 - 0.032 0.026 2.299
bell3a 0.000 = 0.000 0.000 0.000
bell5 ∼ 0.067 + ∼ 0.047 ∼ 0.060 ∼ 5.645
blend2 0.010 = 0.009 0.015 275.836
cap6000 0.001 = 0.001 0.001 0.000
dcmulti 0.026 = 0.026 0.063 12.061
disctom 0.361 - 0.361 0.361 0.181
dsbmip 0.141 - 0.146 0.094 9374244.759
egout 0.000 - 0.000 0.000 0.000
enigma 0.000 - 0.020 - 0.000 0.020 0.000 0.020 0.000 0.010
fiber 0.004 = 0.004 0.006 0.714
fixnet6 0.028 = 0.045 0.049 86.932
flugpl ∼ 0.000 = ∼ 0.000 ∼ 0.000 ∼ 0.000
gen 0.039 = 0.055 0.030 2.312
gesa2 0.008 = 0.007 0.006 0.018
gesa2 o 0.005 = 0.009 0.006 0.018
gesa3 0.009 = 0.042 0.009 1.077
gesa3 o 0.005 = 0.011 0.009 1.235
gt2 ∼ 0.075 = ∼ 0.093 ∼ 0.093 ∼ 0.189
khb05250 0.080 + 0.137 = 0.080 0.137 0.033 0.042 21333.208 35382.647
l152lav 0.003 = 0.003 0.003 0.002
lseu ∼ 0.110 = ∼ 0.110 ∼ 0.110 ∼ 0.055
mas76 ∼ 0.070 + ∼ 0.070 ∼ 0.075 ∼ 31.287
misc03 0.072 = 0.076 = 0.072 0.076 0.071 0.075 0.036 0.038
misc06 0.031 = 0.025 = 0.031 0.043 0.019 0.008 11.445 0.460
misc07 0.059 = 0.059 0.059 0.030
mitre 0.003 = 0.004 0.003 0.002
mod008 ∼ 0.012 = ∼ 0.012 ∼ 0.012 ∼ 0.006
mod010 0.005 = 0.005 0.005 0.003
mod011 0.039 + 0.039 0.018 191227.675
modglob 0.023 = 0.028 0.019 11129.413
mzzv11 0.005 - 0.006 0.006 0.006
mzzv42z 0.008 - 0.008 0.008 0.007
nw04 0.000 = 0.000 0.000 0.000
p0033 0.218 - 0.158 + 0.218 0.206 0.218 0.150 0.109 0.079
p0201 0.135 - 0.135 0.135 0.068
p0282 0.006 = 0.006 0.006 0.003
p0548 0.010 - 0.012 0.010 0.005
p2756 0.004 - 0.005 0.004 0.002
pk1 ∼ 0.000 = ∼ 0.000 ∼ 0.000 ∼ 0.000
pp08aCUTS 0.127 + 0.207 0.179 709.104
pp08a 0.100 = 0.120 0.157 506.463
qiu 0.292 - 0.305 0.133 2.316
qnet1 0.003 = 0.003 0.003 0.001
qnet1 o 0.003 = 0.003 0.002 0.001
rgn 0.063 = 0.122 0.100 0.190
rout 0.073 - 0.091 0.062 0.130
set1ch 0.020 = 0.072 0.029 263.677
stein27 0.271 + 0.439 + 0.271 0.439 0.271 0.439 0.136 0.219
stein45 0.356 - 0.356 0.356 0.178
vpm1 0.048 = 0.072 0.036 26.738
vpm2 0.049 - 0.055 0.043 26.927

+: We find a larger value. =: The difference is at most 0.003. -: We find a smaller value. ∼: Heap space error.
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4.4.3 General Hamming diversity

The third diversity measure is the general Hamming diversity as defined in (4) in Section 3.4.

These values are shown in the fifth and sixth columns of Table 3. According to this measure

the one-tree algorithm performs better for four problems, and the sequential algorithm performs

better for three problems, the same results as we found for the binary Hamming diversity. For

this measure we also find small differences between the two algorithms due to their different

approaches and thus different order of finding the solutions.

For all pure binary problems we expect to find the same values for the binary, integer, and

general Hamming diversity. The one-tree algorithm provides results within 15 minutes for three

pure binary problems, namely air03, p0033 and stein27. The one-tree algorithm finds the same

values for the three Hamming diversity measure for all three problems.

However, when using the sequential algorithm we find different values for the four problems

mitre, p0033, p0548 and p2756. For p0033 we find that all three values are different, and for

the other three problems we find that the integer Hamming diversity is 0.001 or 0.002 larger

than the other diversities. The smaller differences between the values can be due to numerical

inaccuracies. The larger differences may be caused by the way the variables are defined in the

problem, since the measures are implemented based on these definitions.

4.4.4 Variance-based diversity

The last diversity measure we look at is the variance-based diversity as defined by (5) and (6)

in Section 3.4. The results for this measure are shown in the seventh and eighth column of

Table 3. For this measure we find the same results as for the binary and general Hamming

diversity. Namely, the one-tree algorithm performs best for four of the problems, and the

sequential algorithm for three of the problems.

When we look at this diversity measure we can see that these values differ strongly in scale

for each of the problems. This makes it more difficult to compare the difference in performance

in each of the algorithms. For most problems we do see that the values for the two algorithms

are within the same scale. This is not the case for the problems app3 and misc06. This can be

caused by the strong differences in the solutions that were found. In the sequential algorithm we

add a restriction to exclude the previously found combination of binary variables. This algorithm

will thus look for solutions that differ in these variables. The one-tree algorithm iterates over

the nodes from the branch-and-bound tree and may thus find solutions that differ more in the

integer and continuous variables, which tend to be on a larger scale than the binary ones.
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5 Conclusion

In this paper we compared two algorithms for finding multiple solutions for mixed integer pro-

gramming (MIP) problems. We compared the one-tree and the sequential algorithm based on

how much time they need to find a predetermined amount of solutions and the diversity between

these solutions.

First of all, we find that for our implementations the sequential algorithm is always faster,

on average 500 times, than the one-tree algorithm. This is contradictory to the expected results

based on the findings by Danna et al. (2007), who find that the one-tree algorithm is often faster

than the sequential algorithm. This difference can be explained by the comparison of the run

times of the algorithms to the run times found by Danna et al. (2007). Our one-tree algorithm is

on average 2000 times slower than theirs, whilst our sequential algorithm is on average 8 times

faster than theirs. Secondly, we find that based on various diversity measures we cannot indicate

a clear preference for one of the algorithms.

Thus, when comparing these two algorithms to determine which is better for finding multiple

solutions for MIP problems we conclude that the sequential algorithm is preferred. The algorithm

performs similarly based on the diversity measures, but it is much faster in achieving this.

Consequently, the sequential algorithm can already be used in practice to find multiple solutions.

Based on our findings we recommend some aspects that require further research. In this paper

we used specific methods to implement the algorithms. When implementing the algorithms in

a different manner one may find very different results. We have shown this with the differences

in running times compared to Danna et al. (2007). Thus, looking into the effects of the various

implementations on the performance of the algorithms would be a relevant extension.

Besides this, we find that our diversity measures do not show a lot of difference in the

performance between the algorithms. It would thus be practical to look into various aspects

of the diversity measures. Firstly, there should be more research into diversity measures and

whether these can find a proper difference between the algorithms. Secondly, it would also

be interesting to look at a diversity measure that takes all types of variables into account but

is also properly scaled to ensure that all variables have the same effect on the value. Third,

another practical direction for future research would be into more non-linear diversity measures.

Lastly, it would be relevant to look more deeply into whether certain algorithms work better for

certain problems, and thus in what sense the problem structure influences the performance of

the algorithm.
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Appendix A List of used problems
Table 4: An overview of the problems, with information on the variables and the constraints of each of
the problems.

Problem #Variables
#Binary
Variables

#Integer Variables
(not binary)

#Continuous
Variables

#Constraints

10teams 2025 1800 0 225 230
aflow30a 842 421 0 421 479
air03 10757 10757 0 0 124
air04 8904 8904 0 0 823
air05 7195 7195 0 0 426
app3 3080 100 0 2980 766
arki001 1388 442 96 850 1048
bell3a 133 39 32 62 123
bell5 104 30 28 46 91
blend2 353 239 25 89 274
cap6000 6000 6000 0 0 2176
dcmulti 548 75 0 473 290
disctom 10000 10000 0 0 399
dsbmip 1886 192 0 1694 1182
egout 141 55 0 86 98
enigma 100 100 0 0 21
fiber 1298 1254 0 44 363
fixnet6 878 378 0 500 478
flugpl 18 0 11 7 18
gen 870 144 6 720 780
gesa2 1224 240 168 816 1392
gesa2 o 1224 384 336 504 1248
gesa3 1152 216 168 768 1368
gesa3 o 1152 336 336 480 1224
gt2 188 24 164 0 29
khb05250 1350 24 0 1326 101
l152lav 1989 1989 0 0 97
lseu 89 89 0 0 28
mas76 151 150 0 1 12
misc03 160 159 0 1 96
misc06 1808 112 0 1696 820
misc07 270 259 0 11 212
mitre 10724 10724 0 0 2054
mod008 319 319 0 0 6
mod010 2655 2655 0 0 146
mod011 10958 96 0 10862 4480
modglob 422 98 0 324 291
mzzv11 10240 9989 251 0 9499
mzzv42z 11717 11482 235 0 10460
nw04 87482 87482 0 0 36
p0033 33 33 0 0 16
p0201 201 201 0 0 133
p0282 282 282 0 0 241
p0548 548 548 0 0 176
p2756 2756 2756 0 0 755
pk1 86 55 0 31 45
pp08aCUTS 240 64 0 176 246
pp08a 240 64 0 176 136
qiu 840 48 0 792 1192
qnet1 1541 1288 129 124 503
gnet1 o 1541 1288 129 124 456
rgn 180 100 0 80 24
rout 556 300 15 241 291
set1ch 712 240 0 472 492
stein27 27 27 0 0 118
stein45 45 45 0 0 331
vpm1 378 168 0 210 234
vpm2 378 168 0 210 234
Average 3662 3149 37 476 852
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Appendix B Comparing performance measures

B.1 Time

We compare the running times we find for the algorithms with the running times Danna et

al. (2007) found for those same algorithms. In Table 5 we see that the range for the absolute

difference in time is [0.001, 3599.909]. A histogram for the distribution within this range is

shown in Figure 1. Due to the large spread of this value we want 99.9% of the interval to be

considered different, and the other 0.1% can be considered equal. This gives the interval [0.001,

3.601] within which we state that the difference is negligible and we thus count the times as

equal, otherwise we see them as different.

Table 5: Descriptive statistics on the absolute differences for the time and diversity measure.

Mean St.Dev. Min. Max.

Absolute Time Difference 371.576 847.782 0.001 3599.909
Absolute Diversity Difference 0.011 0.021 0.000 0.092
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10
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Figure 1: A histogram of the distribution of the absolute diversity differences.

B.2 Diversity

We compare the integer Hamming diversity results with the diversity measure results found by

Danna et al. (2007). When we look at the range of the absolute differences of our values with

theirs we see that this is in the range [0.000, 0.092], this is shown in Table 5. A histogram of

the distribution of the absolute differences is shown in Figure 2. We define the difference such

that values that are in the first 3% of the interval are considered equal, and the values in the

other 97% of the interval are considered different. This then gives us the range of [0.000, 0.003]
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for which we state that we can neglect the difference and see the values as equal.
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Figure 2: A histogram of the distribution of the absolute time differencs.

Appendix C Code description

For our research we programmed three different classes in Java. The first class is SequentialAl-

gorithm, this class performs the sequential algorithm on a specific problem and produces the

values for the four diversity measures. This class thus consists of five different methods. One

that runs the algorithm and one for each of the diversity measures.

The second class is OneTreeAlgorithm7, this class performs the one-tree algorithm on a

specific problem. It also determines the values for the four diversity measures. The OneTreeAl-

gorithm7 class consists of ten methods. The first method runs the actual algorithm. After this,

we have a method that determines the LP relaxation of a problem, and a method that copies

a cplex object. Next, we have a method that checks whether a certain solution is integer, a

method that finds an integer variable that is fractional in the current solution, and a method

that finds a variable that is not restricted by its bounds in the current problem. Lastly, we have

one method for each of the diversity measures.

Since the one-tree algorithm is based on the branch-and-bound method we also define a

class Node2. This last class defines the nodes within the branch-and-bound tree and is used by

OneTreeAlgorithm7.

The methods for finding the diversity measure are defined for the following diversity mea-

sures: a binary Hamming diversity, an integer Hamming diversity, a general Hamming diversity,

and a variance-based diversity.
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