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Abstract

In the past couple of years, machine learning algorithms have been increasingly
used for the purposes of macroeconomic forecasts. In contrast to the OLS based
methods of the past, both linear transformations and combinations of predictors can
affect the predictions made by some of these algorithms. It is thus of importance to
forecasters to use transformations which increase the accuracy of their forecasts. To
this end we introduce two transformations to the world of machine learning based
macroeconomic forecasting, WMARX and EMARX, and compare them against the
original MARX transformation used in Coulombe et al. (2021), using both Elastic
Net and Random Forest for WMARX and only Random Forest for EMARX. We find
that both WMARX and EMARX improve on the original MARX for the Random
Forest forecasts, while little to no gains are made for Elastic Net.

∗The views stated in this thesis are those of the author and not necessarily those of the supervisor,
second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

In the past, macroeconomic predictions were often done using low-dimensional linear
regressions, which meant there was a relatively limited amount of transformations to
consider for forecasters. With the advent of machine learning (ML) however, this is no
longer the case. With ML, different linear transformations and combinations of the covari-
ates X can affect predictions. Using different transformations to increase the predictive
capabilities of your algorithm has thus become of increasing importance to forecasters.

The value of increased accuracy for macroeconomic forecasts can not be understated.
Whether it is a central bank deciding on new monetary policy, a government deciding how
to divide the state budgets, an investor deciding which assets to buy, or an average citizen
deciding how to spend their money, they all consider the future state of the economy when
making their decisions.

In this paper, we introduce two data transformations based on the Moving Average Ro-
tation of X (MARX) proposed in Coulombe et al. (2021) to the macroeconomic forecasting
literature: the Weighted Moving Average Rotation of X (WMARX) and the Exponen-
tial Moving Average Rotation of X (EMARX). We explore the differences between the
choice of moving average by looking at the different regularizations these transformations
imply. For the original MARX, which we call the Simple Moving Average Rotation of X
(SMARX) to avoid confusion, Coulombe et al. (2021) find that in a penalized model with
lags of covariates, SMARX’s regularization shrinks the coefficients βp to their lag βp−1,
where βp is the coefficient of pth lag of a variable. This means they expect a simple linear
combinations of lags to hold more predictive power than a single one of them. Using a
similar method for the other MARX transformations, we show that the EMARX trans-
formation implies an AR(1) process on its coefficients βp by shrinking them to an inflated
value of their lag βp−1. this can be seen as a compromise between SMARX, which implies
a Random Walk on its coefficients, and the usual regularization of shrinking to 0. Doing
the same for WMARX, we show that the regularization shrinks the differences βp − βp−1

to their lag βp−1 − βp−2: a local-level model.
Although MARX transformations are new to the field of macroeconomic forecasting,

similar data smoothing methods using moving averages have been used to success in other
forecasting applications, such as for sales in Winters (1960) and Riyadi et al. (2019), as
well as for finance in Shih and Tsokos (2008) and Lucas and Zhang (2016). Bringing these
transformations in the macroeconomic field, we test them using Elastic Net (EN) for a
linear ML algorithm and Random Forest (RF) for a non-linear one. We use RF for all
three MARX transformations, while using EN for SMARX and WMARX only. 1

We find that both WMARX and EMARX improve forecasts over SMARX using Ran-

1Although testing EMARX using EN would also be of interest, the additional hyperparameter intro-
duced in EMARX increases the computational time considerably. This is less true for RF, as we do not
optimize other hyperparameters for this method.
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dom Forests, while little to no improvements are made using WMARX for the Elastic Net.
Comparing WMARX and EMARX against each other, we find that they both perform
about equally. As EMARX has an additional hyperparameter to optimize, significantly
increasing the computation time, we conclude that WMARX is usually the better MARX
transformation of the three.

The rest of this paper is structured as follows: We first give the an overview of the
existing literature in Section 2. We then provide a short summary of our data in Section
3. In Section 4 we go over our methodology, such as the different transformations and
ML methods, as well as how we compare our models. After this we present our results in
Section 5. Lastly, we give our conclusions in Section 6.

2 Theory

With the advent of large data sets, machine learning algorithms have increasingly gained in
popularity in macroeconomic forecasting research. Coulombe et al. (2021) show that ML
methods have the ability for significantly improved forecast in comparison to traditional
OLS based methods for a multitude of macroeconomic variables. Similar results are
obtained in Kim and Swanson (2018), who look at a similar set of variables, and Medeiros
et al. (2019) who focus in on US inflation. Coulombe et al. (2020) show that this is in
large part due to non-linearities better capturing periods of economic uncertainty.

As suggested by Kuhn and Johnson (2019), this shift to ML methods has created
a need for good feature engineering to improve performance: whereas linear transfor-
mations/combinations of the covariates X do not affect forecasts in traditional linear
regressions, this is not the case for methods which use shrinkage or non-linearities, two of
the main draws of ML algorithms. To this end, Coulombe et al. (2021) compare different
data transformations using multiple ML methods and find that the Moving Average Ro-
tation of X (MARX) transformation developed in Coulombe (2020) contributes to better
forecasts when combined with non-linear tree-based methods for real activity series and
with penalized regression for CPI and PPI. However, they only consider the MARX trans-
formation using the Simple Moving Average (SMA). As there are many different kinds of
moving averages used in forecasting, this raises the question: Can the forecasting accuracy
of MARX transformations be improved further by using different moving averages?

The first moving average we propose is the weighted moving average (WMA). Although
research on the use of WMA for forecasting macroeconomic variables is scarce, it is used
in other fields, such as in financial markets by Shih and Tsokos (2008) and sales forecasts
by Riyadi et al. (2019). As the most common use of the WMA is to obtain one-step-ahead
forecasts (Perry (2010)) we expect use of the WMA in the MARX transformation could
improve forecasts for short horizons especially.

The second moving average we consider is the exponential moving average (EMA), also
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referred to as the exponentially weighted moving average (EWMA). In contrast to the
WMA, the use of the EMA has a wide body of literature in forecasting, with the classic
paper of Holt (2004) providing an overview of different methods for forecasting using it.
Similarly to the WMA, the EMA has been used in the forecasts of sales by Winters (1960)
and in financial markets by Lucas and Zhang (2016) and Yu (2002). Forecasts using the
EMA also performed marginally better than the SMA in Johnston et al. (1999). We thus
conclude that use of the EMA has the potential to improve our macroeconomic forecasts.

Although this use of moving averages is new in ML based macroeconomic forecasting,
their use in data smoothing is well established, already being used by the National Bu-
reau of Economic Research (NBER) back in Macaulay (1931) and are still used to find
trends in volatile time series (Hyndman (2011)). What makes MARX transformations
different from these other moving average approaches is the regularization they imply on
the coefficients βp in a penalized regression model where βp is the coefficient of the pth lag
of a covariate, which we investigate in Section 4.

3 Data

In line with the macroeconomic forecasting literature, we use the FRED-MD dataset pro-
vided and by McCracken and Ng (2016). To compare our results with those obtained in
Coulombe et al. (2021), we use a subset of the same target variables over the same time
period from January 1960 to December 2017, with the Pseudo-Out-Of-Sample (POOS)
data starting at January 1980 and using an expanding window starting from January
1960. Variables for which there are missing values in this time period are dropped, leav-
ing us with 122 variables. Of these 122 variables five are used as our targets: industrial
production index (INDPRO), all employees: nonfarm total (EMP), civilian unemploy-
ment rate (UNRATE), real personal income excl. current transfers (INCOME) and the
production price index (PPI). Of these variables, all but UNRATE are average growth
rates, while UNRATE is the average difference. Specifically, these targets are calculated

as
∑h

h′=1

∆YT+h′

h
, where ∆YT+h′ =

YT+h′−YT+h′−1

YT+h′−1
for all variables except UNRATE, where

∆YT+h′ = YT+h′ − YT+h′−1, with Yt being the level of the variable at time t.

4 Methodology

4.1 MARX using the Simple Moving Average

To explain the changes we make to the MARX transformation to obtain different moving
averages, we first summarize the procedure of Coulombe et al. (2021) to obtain the stan-
dard MARX from a generic regularized ARDL model with K variables. Although a Fused
Ridge regression is used for this exposition, Coulombe et al. (2021) argue to extend these
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ideas to cases where there is no specified norm on β. Similarly for the non-linear case,
Hastie et al. (2004) argue that model averaging performs shrinkage similar to a Ridge
regression.

We thus start from the Fused Ridge, which is written as

min
β

(y −Xβ)′(y −Xβ) + λβ′D′Dβ (1)

where y ∈ RT ,X ∈ RT×KP ,β ∈ RKP , λ is a scalar and D is a first difference operator for
each variable, obtained by taking the Kronecker product of the first difference operator
and the identity matrix of size K. Next, we reparameterize βk = Cθk where C is a lower
triangle matrix of ones and θk = [uk β0,k]. In the case of P=4 this would mean:

β0,k

β1,k

β2,k

β3,k

 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1



β0,k

u1,k

u2,k

u3,k

 (2)

Putting this in matrix notation for all K parameters, we have β = Cθ, where C ≡ Ik⊗C.
By also defining Z ≡ XC and using the fact that D = C−1, we can rewrite Equation 1
as

min
θ

(y −Zθ)′(y −Zθ) + λθ′θ (3)

With how C is defined in this process, Z is a matrix which sums up the columns of
Xt,k over p, or Zt,k,p =

∑P
p′=1 Xt,k,p′ . Again in the case of P=4, the first 4 elements of row

t of this matrix would be[
xt−3,k + xt−2,k + xt−1,k + xt,k xt−2,k + xt−1,k + xt,k xt−1,k + xt,k xt,k

]
which are the Simple Moving Averages of X multiplied by its corresponding lag p, a simple
linear transformation which has no effects on predictions (As methods for which the size
of β matters are always normalized).

As we can see in Equation 3, the penalization is equivalent to Ridge for the transformed
data Z, and now that we have established how MARX works and how it uses the SMA,
we show how we can alter C such that other moving averages emerge, for which we then
investigate what these different transformations imply for their equivalent regularizations.

4.2 MARX using the Weighted Moving Average

In addition to the SMA case of MARX, which we refer to as the Simple Moving Average
Rotation of X (SMARX) from now on, we propose using two other common moving
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averages to obtain different transformations, the first of which is the Weighted Moving
Average Rotation of X (WMARX). First we show how we alter the matrix C to obtain
WMARX, after which we inspect how this changes the penalization and what this implies
for the regularization.

To obtain WMARX, we follow the suggestion of Coulombe (2020) and simply square
the original C matrix of SMARX. In the case of P = 4, this becomes

CWMARX = C2
SMARX =


1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1


Using this CWMARX instead of CMARX means the columns of Z become[

xt−3,k + 2xt−2,k + 3xt−1,k + 4xt,k xt−2,k + 2xt−1,k + 3xt,k xt−1,k + 2xt,k xt,k

]
which are the Weighted Moving Averages of X (Banton (2022)), but linearly scaled similar
to the SMARX case2.

Redefining D = C−1
WMARX , λβ

′D′Dβ now performs a different regularization, as the
coefficients now follow a local-level model: it tries to shrink the second difference to 0
instead of the first difference in the SMARX case. Intuitively, this was to be expected, as
the original C for SMARX is the inverse of first difference operator, using the square of
this C should lead to a second difference operator. In the case of P = 5 for example, this
penalization becomes

Dβ =


β0

β1 − 2β0

β2 − 2β1 + β0

β3 − 2β2 + β1

β4 − 2β3 + β2

 =


β0

β1 − 2β0

(β2 − β1)− (β1 − β0)
(β3 − β2)− (β2 − β1)
(β4 − β3)− (β3 − β2)


By shrinking the second differences to 0, the regularization implies that the increased

(or decreased) importance of coefficients across lags is expected to be constant. In other
words, if the covariate of βp is more important for predicting yt than the one of βp−1,
then the covariate of βp−1 should be more important than the one of βp−2 and vice versa.
This regularization can be seen as a less restrictive version of SMARX: shrinking first
differences to 0 would also shrink second differences to 0. Thus WMARX can perform the
same shrinkage as SMARX, but also adds the possibility of further away lags becoming
progressively less (or, theoretically, more) important.

2Although the scalar in the WMARX case is the somewhat more complicated p(p+ 1)/2, it is still a
simple linear transformation, which doesn’t affect predictions
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4.3 MARX using the Exponential Moving Average

To obtain EMARX, we once again make changes C, such that non-zero part of every
column becomes a geometric sequence starting from 1 and with factor (1−γ). In the case
of P = 4, this becomes

CEMARX =


(1− γ)3 0 0 0
(1− γ)2 (1− γ)2 0 0
(1− γ) (1− γ) (1− γ) 0

1 1 1 1


where γ is a hyperparameter tuned by the ML algorithm, on which we elaborate further
in Section 4.4.

Again redefining D such that D = C−1
EMARX , λβ

′D′Dβ now shrinks βp −
1

1− γ
βp−1

to 0. In the case of P = 4, this becomes

Dβ =



1

(1− γ)3
β0

1

(1− γ)2
(β1 −

1

1− γ
β0)

1

(1− γ)
(β2 −

1

1− γ
β1)

β3 −
1

1− γ
β2


In Coulombe et al. (2021), the importance of shrinking βp to βp−1 is explained as the
intuition that it is more likely a combination of lags effects yt than only the most recent
lag, which means they expect the coefficients of the lags to be close to another. Shrinking

βp to its inflated lag
1

1− γ
βp−1 can thus be considered as a compromise between the two,

where we expect all lags to be relevant, but with the most importance to the most recent
ones.

Having compared both the WMARX and EMARX regularizations to the SMARX
one, we can see that they both try to improve on SMARX in the same way by putting
progressively more emphasis on closer lags, instead of shrinking them all to be of equal
importance, both achieving this goal in a different way. To investigate which of these two
better achieve this goal, if at all, we first have to go over the different models we use them
in.

4.4 Forecasting models

In order to compare the effects of our proposed transformations to the original SMARX,
we consider three different models. First off, we use the standard Factor Model (FM)
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of Stock and Watson (2002) as the benchmark model, where the factors are obtained
using PCA. We then consider both a linear and a non-linear model to test the MARX
transformations. For this purpose, we use the models which performed best with MARX
for our target variables in Coulombe et al. (2021). For predicting PPI, they found the
best results using a penalized linear regression, for which we use the Elastic Net (EN).
Next, they found that Random Forests (RF) outperformed Boosted Trees (BT) in most
cases, so we use RF for our analysis. Due to computing limitations, we only use RF for
the EMARX transformation, while we use both EN and RF for SMARX and WMARX.
Hyperparameters for all models are reestimated every 2 years.

In the case of the FM, we use the BIC-criterion to optimize the amount of lags of
the target Py, the amount of lags of the factors Pf and the amount of factors k from
(Py, Pf , k) = (0, 0, 0) to (12, 12, 8) (with the contemporaneous values always included).
For EN we fix (Py, Pf , k) at (12, 12, 8) and use 5-fold Cross Validation (CV) to optimize
the hyperparameters (α, λ) using a grid search, where we use 10 equally spaced values
from [0.1, 1] for α. To obtain the values of λ, we first calculate the maximum λmax with
α = 1 for which not all β’s get shrunk to 0. We then use this λmax in the grid search with
10 equally log-spaced values from [0.01λmax, λmax]. For RF we once again fix (Py, Pf , k)
at (12, 12, 8) and fix the number of trees at 2003, which means we don’t perform any
hyperparameter optimization for the SMARX and WMARX case. For the EMARX case,
we use a grid search for 9 equally spaced values from [0.1, 0.9].

For both EN and RF, we build multiple feature matrices Z from a combination of
transformations proposed by Coulombe et al. (2021), as well as the contemporaneous value
of the target yt and its Py = 12 lags, which are always included. The transformations we
consider are

1. The 122 variables from McCracken and Ng (2016) made stationary Xt and 12 of its
lags.

2. The non-stationary levels of the 122 variables from McCracken and Ng (2016) Ht

and 12 of its lags.

3. k = 8 factors Ft and Pf = 12 of its lags, obtained from applying PCA on Xt

4. MARX transformations applied on both yt and its Py = 12 lags, and Xt and its 12
lags.

for which we compare 6 different combinations for each model and each version of MARX:
(F, MARX), (F, X, MARX), (F, X, MARX, H), (MARX), (X, MARX), and (X, MARX,
H).

3We also fix the so called mtry parameter (which decides how many regressors to change every split)
at the square root of the number of explanatory variables, the minimum number of nodes at 5 and always
use the variance for the split rule, which are all default values of the ranger package in R.
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To summarize: We consider the FM as a benchmark model, EN and RF with 6
combinations of transformed variables F, X and H with both SMARX and WMARX, and
only RF with these combinations for EMARX for a total of 31 models.

4.5 Comparing Models

To compare our forecasting models, we first obtain direct forecasts ŷt+h =
1

h

∑h
h′=1 ∆Yt+h′

for each time t at horizons h with h = 1, 3, 6 and 12 months for the entire POOS period.
We then continue by calculating the Root Mean Squared Error (RMSE) for each variable
v, at horizon h, using model m using the following function:

RMSEv,h,m =

√
1

#OOS

∑
t∈OOS

(yvt − ŷv,h,mt−h )2 (4)

Once we have obtained all RMSE’s, we compare the best specification of both EN
and RF separately against the benchmark FM for each MARX transformation. For the
WMARX and EMARX models, we also compare their best specification against the best
SMARX specification. All these comparisons are again made for all 5 targets for all 4
horizons.

5 Results

5.1 SMARX

In Table 1 we present the RMSE from our FM specification, which are similar to the ones
found in Coulombe et al. (2021), albeit slightly higher (especially for EMP). This is likely
due to a small differences in model specifications, but these results are mostly in line with
our expectations nonetheless.

h INDPRO EMP UNRATE INCOME PPI
1 0.00644 0.00139 0.164 0.00660 0.00566
3 0.00486 0.00127 0.109 0.00356 0.00429
6 0.00456 0.00135 0.0888 0.00257 0.00356
12 0.00407 0.00179 0.0881 0.00223 0.00299

Table 1: This table presents RMSE’s for our 5 target variables and 4 horizons for the
Factor Model
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In Table 2 and 3 we present the best specification for EN and RF respectively, using the
SMARX transformation. Here we can see that both models perform significantly better
than the FM for almost all targets and horizons, with EN having the only exception with
PPI at the 12 month horizon. Comparing the results of the tables, we also see that the
two ML methods perform about equal, as EN has the better RMSE for 11 out of 20 target
horizon pairs. However, for the pairs where RF is the better specification, it improves
more in comparison to the FM than in the reverse case, with the average improvement
over FM for the EN and RF models being 0.875 and 0.858 respectively.

Our results conflict somewhat with the results of Coulombe et al. (2021), who found
that RF was superior in the majority of cases. These differences are likely explained
by two differences in our approaches: We only consider the direct estimation approach,
which compared to the path average approach performed worse for most of the variables
we consider. Secondly, we had to restrict our hyperparameters more due to computation
restraints. As these differences are constant for all specifications, they should not affect
the comparisons between different MARX transformations.

h INDPRO EMP UNRATE INCOME PPI
1 SMARX SMARX F, X, SMARX X, SMARX, H SMARX

(0.924) (0.843) (0.887) (0.961) (0.942)
3 X, SMARX, H X, SMARX, H X, SMARX X, SMARX F, X, SMARX

(0.828) (0.696) (0.778) (0.911) (0.900)
6 X, SMARX X, SMARX F, X, SMARX X, SMARX X, SMARX

(0.876) (0.742) (0.870) (0.853) (0.973)
12 X, SMARX F, X, SMARX F, X, SMARX F, X, SMARX F, X, SMARX

(0.900) (0.672) (0.946) (0.851) (1.145)

Table 2: This table presents the best specification for the Elastic Net in the SMARX case
for our 5 targets and 4 horizons. Fraction of the RMSE of the benchmark FM are given
in parentheses.
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h INDPRO EMP UNRATE INCOME PPI
1 SMARX SMARX X, SMARX SMARX F, SMARX

(0.904) (0.832) (0.910) (0.953) (0.959)
3 F, SMARX SMARX SMARX F, X, SMARX SMARX

(0.874) (0.724) (0.783) (0.901) (0.940)
6 X, SMARX, H F, SMARX SMARX F, SMARX X, SMARX

(0.880) (0.774) (0.872) (0.865) (0.904)
12 X, SMARX, H X, SMARX, H F, X, SMARX F, SMARX F, X, SMARX

(0.816) (0.670) (0.827) (0.855) (0.923)

Table 3: This table presents the best specification for the Random Forest in the SMARX
case for our 5 targets and 4 horizons. Fraction of the RMSE of the benchmark FM are
given in parentheses.

5.2 WMARX

Table 4 and 5 show the best specifications of the EN and RF methods respectively for
the WMARX models. Once again both models beat out the FM benchmark significantly
for almost all target horizon pairs. When comparing the two tables however, there is a
significant difference: RF beats out EN in 15 of the 20 pairs this time around. To explain
this, we now compare the difference between WMARX and SMARX for both methods.

h INDPRO EMP UNRATE INCOME PPI
1 WMARX WMARX F, X, WMARX WMARX WMARX

(0.919) (0.850) (0.886) (0.968) (0.942)
3 X, WMARX, H X, WMARX, H X, WMARX X, WMARX F, X, WMARX

(0.842) (0.697) (0.785) (0.900) (0.892)
6 X, WMARX F, X, WMARX X, WMARX X, WMARX X, WMARX

(0.836) (0.729) (0.851) (0.868) (0.970)
12 X, WMARX F, X, WMARX X, WMARX F, X, WMARX F, X, WMARX

(0.873) (0.672) (0.901) (0.886) (1.139)

Table 4: This table presents the best specification for the Elastic Net in the WMARX
case for our 5 targets and 4 horizons. Fraction of the RMSE of the benchmark FM are
given in parentheses.
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h INDPRO EMP UNRATE INCOME PPI
1 F, WMARX WMARX WMARX WMARX F, X, WMARX

(0.897) (0.834) (0.898) (0.916) (0.949)
3 F, WMARX WMARX F, WMARX X, WMARX F, X, WMARX

(0.837) (0.683) (0.759) (0.893) (0.924)
6 X, WMARX, H F, WMARX WMARX F, WMARX X, WMARX

(0.875) (0.724) (0.857) (0.861) (0.893)
12 F, X, WMARX, H F, WMARX X, WMARX WMARX X, WMARX

(0.822) (0.664) (0.824) (0.841) (0.920)

Table 5: This table presents the best specification for the Random Forest in the WMARX
case for our 5 targets and 4 horizons. Fraction of the RMSE of the benchmark FM are
given in parentheses.

Table 6 compares the best EN WMARX specification against the best SMARX one
for each target horizon pair by presenting the fraction of their RMSE’s: the RMSE for
the best WMARX specification divided by the RMSE for the best SMARX specification.
This comparison shows quite clear results: although there are some large improvements
in INDPRO and UNRATE for the 6 and 12 month horizons, the difference is negligible
for most target horizon pairs. On the other hand, Table 7 tells a different story for RF.
Using WMARX instead of SMARX improves the forecasts for 18 of the 20 target variable
pairs, with large improvements for the 1, 3 and 6 month horizons. As outlined in Section
2, the WMA is commonly used in favor of the SMA for short-horizon forecast in other
forecasting settings. These large improvements for the short horizons thus falls in line
with our expectations.

h INDPRO EMP UNRATE INCOME PPI
1 0.994 1.007 0.999 1.007 1.000
3 1.017 1.000 1.008 0.988 0.991
6 0.953 0.983 0.978 1.018 0.996
12 0.969 1.000 0.952 1.040 0.992

Table 6: This table presents the fraction of the RMSE from the best WMARX specifica-
tions of EN to the ones for SMARX for our 5 targets and 4 horizons.
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h INDPRO EMP UNRATE INCOME PPI
1 0.992 1.001 0.987 0.961 0.990
3 0.958 0.944 0.969 0.990 0.983
6 0.995 0.936 0.983 0.996 0.988
12 1.008 0.990 0.997 0.984 0.996

Table 7: This table presents the fraction of the RMSE from the best WMARX specifica-
tions of RF to the ones for SMARX for our 5 targets and 4 horizons.

5.3 EMARX

Looking at the results of Table 8, we again see similar results: the RF using EMARX
significantly improves on the FM as well. Moving on to comparing comparing the EMARX
specifications to the SMARX ones in Table 9, the results are largely the same as the
WMARX case: The EMARX improves on the SMARX in 19 of the 20 target horizon
pairs, with the most gains being made for the 1 and 3 month horizons.

Although the EMARX makes sizable improvements to the SMARX, these improve-
ments are very similar to ones discussed for the WMARX. To further illustrate this, we
compare the EMARX to the WMARX in Table 10 in the same way as we compared it to
the SMARX in Table 9. Here we can see that the difference between the two transforma-
tions is rarely more than 1%, with the only exceptions being INDPRO and INCOME at
the 1 month horizon. As the EMARX barely improves on the WMARX, while requiring
significantly more computing time due to the additional hyperparameter, it seems that
the WMARX is the preferred transformation for forecasting.

h INDPRO EMP UNRATE INCOME PPI
1 F, EMARX F, EMARX F, EMARX EMARX EMARX

(0.881) (0.829) (0.891) (0.895) (0.943)
3 EMARX F, EMARX F, EMARX EMARX X, EMARX

(0.846) (0.679) (0.765) (0.889) (0.933)
6 X, EMARX, H F, EMARX F, X, EMARX X, EMARX X, EMARX

(0.879) (0.730) (0.862) (0.862) (0.895)
12 F, X, EMARX, H EMARX F, X, EMARX F, EMARX X, EMARX

(0.818) (0.663) (0.824) (0.844) (0.917)

Table 8: This table presents the best specification for the Random Forest in the EMARX
case for our 5 targets and 4 horizons. Fraction of the RMSE of the benchmark FM are
given in parentheses.
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h INDPRO EMP UNRATE INCOME PPI
1 0.974 0.995 0.979 0.939 0.984
3 0.968 0.938 0.977 0.986 0.992
6 0.999 0.943 0.989 0.997 0.990
12 1.003 0.989 0.997 0.987 0.993

Table 9: This table presents the fraction of the RMSE from the best EMARX specifica-
tions of RF to the ones for SMARX for our 5 targets and 4 horizons.

h INDPRO EMP UNRATE INCOME PPI
1 0.982 0.994 0.991 0.978 0.994
3 1.010 0.993 1.008 0.996 1.010
6 1.005 1.008 1.005 1.001 1.002
12 0.994 0.998 1.000 1.003 0.997

Table 10: This table presents the fraction of the RMSE from the best EMARX specifica-
tions of RF to the ones for WMARX for our 5 targets and 4 horizons.

6 Conclusion

In this paper, we use the Moving Average Rotation of X (MARX) from Coulombe et al.
(2021) as a basis to introduce two new transformation: the Weighted Moving Average
of X (WMARX) and the Exponential Moving Average of X (EMARX). We compare
these two transformations with the original MARX, which we rename the Simple Moving
Average Rotation of X (SMARX) to avoid confusion, by forecasting macroeconomic data
from McCracken and Ng (2016) using Elastic Net (EN) as a linear machine learning
(ML) algorithm for WMARX and Random Forests (RF) as a non-linear one for both
WMARX and EMARX. We find that both WMARX and EMARX improve forecasts
for the RF compared to SMARX for almost all targets and horizons, and little to no
improvement for WMARX using EN. WMARX and EMARX provide about equal benefits
to the forecasts even though EMARX takes significantly more computation due to the
additional hyperparameter to optimize. We thus conclude that WMARX is usually the
better MARX transformation, as it improves on the forecasts of SMARX as much as
EMARX while taking no additional computing time compared to SMARX.

As ML algorithms require significant computation time, we had to limit the grid search
for the EN hyperparameters as well as the EMARX one. Using a fine grid could result
in EN benefiting more from the other MARX transformations. Similarly, EMARX could
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outperform WMARX if using a finer grid for its hyperparameter optimization. We leave
both possibilities as avenues for new research. For similar reasons we did not use EN for
our EMARX transformation, which could also be investigated further.

There are also many moving averages we did not consider in this paper which could
prove superior to the ones we used. Mulloy (1994) introduces the double and triple Expo-
nential Moving Averages (EMA), two variations on the EMA with the goal of removing
the inherent lag of moving averages. There is also the Linearly Weighted Moving Average
from Mitchell (2019), which tries to achieve the same thing. One could also consider using
multiple MARX transformations to increase accuracy, such as the Guppy Multiple Mov-
ing Average designed by Guppy (2005) to anticipate breaks in a trend, although the use
of multiple moving averages would raise the dimension considerably. When investigating
a new MARX transformation, one only needs to define the appropriate C matrix as we
do for WMARX and EMARX in Section 4. With the large amount of different moving
averages used in wide array of forecasting applications, there still is a vast landscape of
potential new forecasting research to explore.
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A Abbreviations

ML Machine Learning
MARX Moving Average Rotation of X

SMARX Simple Moving Average Rotation of X (the original MARX)
WMARX Weighted Moving Average Rotation of X
EMARX Exponential Moving Average Rotation of X

SMA Simple Moving Average
WMA Weighted Moving Average
EMA Exponential Moving Average
FM Factor Model
EN Elastic Net
RF Random Forest

POOS Pseudo-Out-Of-Sample
INDPRO industrial production index

EMP all employees: nonfarm total
UNRATE civilian unemployment rate
INCOME real personal income excl. current transfers

PPI production price index
RMSE Root Mean Squared Error

Table 11: All abbreviations which are used in this paper.
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