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Abstract

We test the new Principal Component Analysis methodology of Lettau & Pelger (2020a) that is used for

estimating latent asset pricing factors that fit the time series and cross-sectional returns. The estimator is

named the Risk-Premium PCA (RP-PCA) and adds an extra penalty term on the cross-sectional pricing

errors of the returns. We extend the empirical literature of Lettau & Pelger by comparing RP-PCA

and PCA to various portfolios adjusted for Fama-Frech and macroeconomic factor risk. We find results

that show that, on average, RP-PCA outperforms PCA in having higher Sharpe ratios and lower cross-

sectional pricing errors. This outperformance becomes more evident when the effect of strong systematic

risk factors are removed from the portfolios beforehand. In addition, the results showed that adding

macroeconomic factors to the Fama-French three factor model led to higher Sharpe ratios and lower

cross-sectional pricing errors. However, it also became clear that the original Fama-French factors are

more important collectively than the added macroeconomic factors for gold, oil, GDP growth and USD.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University

Rotterdam
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1 Introduction

Financial research indicates that the cross-sectional variance of financial assets can be explained through a

variety of systematic risk factors, such as the well-known beta of the Capital Asset Pricing Model (CAPM;

Treynor, 1962). The search for these risk factors has provided us with over 300 different indicators that

explain the cross section of expected stock returns (Harvey et al., 2016). Navigating through this "factor

zoo" raises the question as to which factors are most critical in explaining the expected returns. So what

kind of factors determine the asset prices and could play a role in building a model that can help explain

returns in the best and robust manner?

In 1952, Markowitz kicked off the theoretical discussions through his work on Modrern Portfolio Theroy.

Sharpe (1964), Lintner (1965) and Mossin (1966) then moved on to create - on the foundation laid out by

Markowitz - the first and most fundamental version of the general equilibrium model, the CAPM. The CAPM

is valid under certain assumptions and uses the market beta, also called the market risk premium, as its key

and sole risk factor. Although the CAPM is still widely used as an asset pricing model, researchers have

found empirical results that seemed to indicate that the anomalies found were too frequent and persistent

to confirm that CAPM was indeed the whole story, notwithstanding the fact that any empirical test would

always bump into the issues related to the way in which the market portfolio is measured/defined (Gibbons,

1982; Coggin & Hunter, 1985). Therefore, people started searching for improvements and/or alternatives.

In 1976, Ross developed the Arbitrage Pricing Theory (APT) which predicts a relation between the cross-

sectional expected returns and the exposure to a set of systematic risk factors. Unlike the CAPM, the APT

is not an equilibrium model and therefore does not identify systematic factors, nor does it assume that there

should be only one of them. Thus, to implement APT, it was expected and shown that multiple risk factors

would play a structural role in explaining asset returns.

In 1993, Eugene Fama and Kenneth French came up with two new factors next to the CAPM beta,

SMB and HML. Stateted differently, other than Ross with his APT they did not totally distance themselves

from CAPM, but instead focused on creating an improved version of it that would better stand the empirical

tests. By combining the SMB and HML factors with the beta of the original CAPM, the famous Fama-French

three-factor model was constructed. In recent decades, the three-factor model has been considered the most

important model for explaining stock returns. Unfortunately, the three-factor model is not able to explain

all of the cross-sectional variation of the returns (Griffin, 2000) and therefore the search for other systematic

factors and/or improved model structures has continued.

To identify these systematic factors in large cross-sectional datasets, Lettau & Pelger (2020a) came up

with a new method to identify these risk factors by using a generalization of the well-known Principal

Component Analysis (PCA), called Risk-Premium PCA (RP-PCA). RP-PCA works in such a way that it

resolves cross-sectional pricing errors by adding an additional penalty term to the standard objective function

of PCA. This additional penalty term ensures that the PCA now takes into account information of the first

and second moments of the data. Another paper of Lettau & Pelger (2020b) found that RP-PCA is superior
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to traditional PCA in several respects and is asymptotically more efficient. In particular, it became clear

that RP-PCA outperforms PCA in the case of having ’weak factors’ in the data, factors that only affect a

subset of the total assets. Our work will be closely related to the paper of Lettau & Pelger (2020b) in that we

will not only look for new variabes over-and-above what is included in Fama-French, but we will also check

for model improvements by going from PCA to RP-PCA.

Since the method used in Letta & Pelger (2020a, 2020b) is relatively new, we extend their empirical

applications by testing whether RP-PCA still outperforms PCA in a different setting with the same portfolios

of stocks. Namely, Lettau & Pelger’s articles showed that RP-PCA performs especially well when the latent

factors in the portfolio returns are weak. To verify this relationship, we empirically tested this on a dataset,

where the effects of ’strong’ factors, such as the Fama-French factors, were removed from the returns in

advance. This was done by regressing the portfolio returns on a number of ’proven’ and ’unproven’ systematic

risk factors. By doing so, we removed the systematic risk embodied in these factors from the returns, and

therefore should obtain returns that are composed of less cross-sectional variation.

The ’proven’ systematic risk factors in this paper are the Fama-French factors, whose influence on the ex-

planation of stock returns has been demonstrated time and time again. For the ’unproven’ systematic factors,

we wanted to add to the existing literature of the ’factor zoo’ (Harvey et al., 2016) by examining whether

macroeconomic factors could also play a role in explaining returns over-and-above the role these factors may

have played already indirectly via the Fama-French factors. It is well known that macroeconomic variables

can have a substantial impact on the stock market (Humpe & Macmillan, 2009; Sirucek, 2012). If only

already, because the daily financial news, and the buying and selling behavior of market participants are to

a large extent based on their evaluation of the market climate. With these market climate evaluations often

being based to quite some extent on top-down considerations in which macroeconomic news plays a key role.

It would therefore not be illogical when we end up seeing this effect during more extreme periods of climate

change or shocks. A great example of this is the oil crisis of November 1973, which had a very negative

influence on the stock returns. Therefore, the objective is to create a more sophisticated model that better

predicts the performance of the stock market by adding macroeconomic factors to the original Fama-French

three-factor model. The macroeconomic factors that have been created are an Oil factor, a Gold factor, a

GDP factor and an USD factor. They have been constructed/proxied on the basis of ETFs, such that the

factors are tradeable and more easily accessible to all investors. With these macroeconomic and Fama-French

factors, different portfolios have been constructed and adjusted for the systematic risk associated with these

factors.

The objective of this paper was therefore twofold, (i) to verify the dominance of RP-PCA over PCA

using a transformed dataset and (ii) to investigate whether the inclusion of macroeconomic factors, next

to Fama-Frech factors, can better explain the cross-sectional variation in returns. Applying RP-PCA to

the portfolios, the ’replication’ portfolios and our constructed adjusted portfolios, yielded results consistent

with the conclusions made by Lettau & Pelger (2020b). For the replication portfolios, we observed similar
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results, showing that RP-PCA consistently outperforms PCA based on higher Sharpe Ratios and lower

cross-sectional pricing errors, while the unexplained idiosyncratic variation is of similar magnitude. Also for

our adjusted portfolios, we found that, on average, RP-PCA outperforms PCA, both in-sample and out-of-

sample. Moreover, we observed that removing the systematic risk factors from the portfolios in advance,

led to even larger difference between the RP-PCA and PCA methods. This confirms the hypothesis that

the outperformance of RP-PCA becomes especially evident when we remove the obvious, stronger factors

from the data, leaving only the ’weaker’ factors behind. Moreover, the results showed that the addition of

macroeconomic factors to the three-factor model led, on average, to higher maximal Sharpe Ratios and lower

idiosyncratic pricing errors for both in-sample and out-of-sample.

The rest of the paper is structured as follows. In Section 2 we provide a literature review on RP-PCA

and the relationship between the factors and stock returns. Section 3 shows us the data that is used for the

empirical applications. Section 4 elaborates on the methodology of the RP-PCA and the construction of the

macroeconomic factors. Section 5 shows us the empirical results and Section 6 concludes.

2 Literature review

2.1 Background on RP-PCA

In recent years, there has been extensive research on approximate factor models in the field of finance (e.g.

Bai & Ng, 2008; Ludvigson and Ng, 2009). Typically, Principal Component Analysis (PCA) finds hidden

factors in the data that capture most of the time-series variation in the data. What often happens with PCA

is that it performs poorly in the case of weak factors (Onatski, 2012). Factors can be weak when they have

relatively little explanatory power over the idiosyncratic noise. In some cases, economic theory can impose

a structure on the first moments of the dataset. Ensuring that this information is taken into account can

significantly improve the estimation of the factors, especially when these factors have little explanatory power

for the variance.

Therefore, Lettau and Pelger (2020a) came up with a new improved version of the traditional Principal

Component Analysis that also takes into account information in the first moments. They did this by using

the arbitrage pricing theory (APT) of Ross (1976) which states that exposure to systematic risk factors

should explain cross-sectional expected returns. Traditionally, PCA constructs factors that are unable to

account for the cross-sectional explanatory power of average returns, but is instead only able to capture the

time-series covariation. For that reason, Lettau and Pelger (2020a) came up with the new estimator Risk-

Premium Principal Component Analysis (RP-PCA) that adds an extra penalty component that accounts

for pricing errors in the mean returns. And as has been proven by Lettau & Pelger (2020b), adding this

additional information to the object of interest helps to significantly improve the estimation of the factors.

The outperformance of RP-PCA over PCA is most evident when the methods need to identify weak factors.

Strong factors are those that affect all underlying assets, such as the well-known Fama-French factors. Weak
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factors are more difficult to find because they affect only a subset of the assets. Anomaly-based factors or

asset-pricing factors often fall into this category. RP-PCA is able to detect these weak factors with associated

high Sharpe Ratios, while PCA fails to do so.

This paper adds to the existing econometric literature on estimating factors from large cross-sectional data

sets. For example, Bai (2003) treated a large static dimensional factor model and Forni et al. (2000) created

a new dynamic PCA method. These papers all created methods under the assumption of a strong factor

structure. Onatski (2012) showed that using PCA for large factor models can produce rather cumbersome

results when weak factors are involved.

2.2 Fama-french factors

Many researchers have spent time on the traditional Capital Asset Pricing Model (CAPM) to help improve

the literature on explaining cross-sectional stock returns. The CAPM is the traditional asset pricing model

and uses only one factor, the market risk premium, to help explain stock returns. Although the original

CAPM is an exceptional model, any empirical test will one or the other way have to be transposed by

dropping the expectations (E) sign and going instead for a test in which realized empirical variables are used

as the basis. The risk premium can be defined as the difference between the expected market return and the

risk-free rate.

Rit −Rft = αit + β1 (RMt −Rft)

Papers such as Basu (1977) and Banz (1981) found empirical return patterns that were not consistent

with the returns patterns expected by the CAPM. In 1992 and 1993, Fama and French came up with

two groundbreaking papers that showed that size and value, measured by market capitalization and book-

to-market ratio respectively, were two very important strong factors that helped explain the cross-sectional

returns of stocks much better than the standard 1-factor CAPM. With that, they extended the traditional

CAPM by adding size risk and value risk factors to the model. This model is the well-known three factor

model that explains stock returns by the market risk premium, the small minus big (SMB) factor and the

high minus low (HML) factor.

Rit −Rft = αit + β1 (RMt −Rft) + β2SMBt + β3HMLt + ϵit

Here the Rit, Rft and RMt represent the returns of portfolio i, the returns of the riskfree rate and the returns

of the total market portfolio m, respectively.

The SMB factor is a variable for the tendency of small-cap companies to outperform large-cap companies

in the long run. The HML factor consists of firms with the ’highest’ book-to-market ratio minus those with

the ’lowest’ book-to-market ratio. Generally, stocks with a high book-to-market ratio are considered value

stocks, while stocks with low book-to-market ratio stocks are considered growth stocks. The HML represents

a factor that reflects the trend of value stocks to outperform growth stocks over a longer time period. The
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factors are considered to be strong factors due to them playing a large role in affecting the US stock markets.

(Fama & French, 1995; Lambert & Hübner, 2014). The α in the CAPM and the three-factor model represents

the excess or abnormal return. If the model were fully capable of explaining the stock returns, the estimated

alpha should be significantly close to zero. Hence, the α, combined with the ϵ, is the part of the model that

is not explained by the incorporated risk factors.

2.3 Oil

As Adelman (1993) has stated, the effects of fluctuations in the oil prices on OECD countries should not be

downplayed. These fluctuations in oil prices are so significant that economic growth forecasts are often made

under the assumption that there are no oil shocks in the world. For this reason, the relationship between

crude oil prices and stock returns has been extensively studied in the past (e.g. Apergis & Miller, 2009;

Narayan & Sharma, 2011; Scholtens & Yurtsever, 2012)

Although it is widely believed that changes in the price of crude oil have an effect on the stock market,

there is still no consensus on what the relationship between oil prices and stock returns is. And that is not

per se a big surprise, knowing that some countries are net oil importers and other net exporters. With oil

companies normally being relatively big firms on their local stock markets, this could boil down to a situation

in which oil price increases are good news for oil exporting countries and their stock markets and bad news

for the net importers, and vice versa. But the return effect is of course not the full story. It is also perfectly

possible that the nervousness in the oil markets translates into volatile pricing that - via the infusion of this

volatility and nervousness into stock markets - does also have an important indirect effect irrespective of the

direction of expected oil price changes.

Kling (1985) found evidence that increases in the price of crude oil would lead to declines in the stock

markets, while Chen et al. (1986) later argued that fluctuations in the oil prices do not significantly affect

asset prices at all. A study by Huang et al. (1996) focused on the relationships between changes in future

oil prices and stock returns. Using a vector autoregression model, they concluded that oil returns of futures

only affected the returns of certain individual oil companies in a negative way, while this effect did not occur

for broader indexes of stocks such as the S&P 500. On the other hand, Jones and Kaul (1996) used quality

data to examine the effect of oil shocks on the international stock markets. Unlike Huang et al., they did

find a significant negative relationship between fluctuations in the oil prices and the aggregate stock markets

of Canada and the US, and less so for Japan and the UK.

Sadorsky (1999) also investigated the relationship between crude oil returns and real stock returns (i.e.

with the incorporation of inflation-adjustment), specifically for the US. He concluded that both changes in

the oil price and oil price volatility played a role in affecting stock returns. In addition to establishing this

relationship, he found evidence that the dynamics of crude oil prices changed over time. Killian & Park

(2009) found that demand shocks to oil prices led to increases in stock returns, while oil supply shocks had

no significant effect.
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Hence, it seems that oil prices have an effect on stock returns, but an unambiguous relationship has yet to

be found. And it might be the case that such a strong relationship can never be expected without knowing

if a country of analysis is a net producer or consumer of oil. In our study we use a US data set, with the US

being a net exporter of fossil fuels.

2.4 Gold

Gold is a versatile metal because it can be used as a medium of exchange, a unit of value and also act like a

source of wealth. (Goodman, 1956). Traditionally, gold was often seen as a good indicator of future inflation

and is therefore often used as a hedge against inflation and as a safe alternative to the stock market. Baur

& Lucey (2010) argued that an asset can be regarded as a hedge when there is no correlation or a negative

correlation with another asset in times of turbulent markets. They found that gold can be used as a hedge for

the stock market and can be a save haven in times of large fluctuations and market nervousness. In addition,

there have been several other researchers who have tried to investigate whether gold can be used as a hedge

for the stock market. (e.g. Baur & McDernott, 2010; Chkili et al., 2014).

There have also been studies that attempted to infer diversification opportunities between the gold and

stock markets. Another study by Kumar (2014) examined the return and volatility spillovers between gold

and the Indian stock market. He was able to conclude that adding gold in a portfolio led to a better diversified

portfolio with higher risk-adjusted returns. And Arouri et al. (2015) found results between gold prices and

the Chinese stock market that show significant returns and volatility spillovers between the two. Moreover,

they argue that the risk of portfolios composed solely of stocks is reduced by the addition of gold due to the

hedging against ’equity market risk’ in bearish periods.

Therefore, the general belief is that the gold price and stock returns have an inverse relationship which

becomes particularly evident in the event of a severe decline in the stock market.

2.5 GDP

Often the stock market is seen as a sentiment indicator that can influence the GDP. When equity markets

move down or up, often the sentiment in the economy does too. And the opposite is also seemingly logical:

when the economy is growing, business and consumers normally spend more. And spending more does also

translate into buying more products and services provided by the stock-market-listed companies. Therefore,

people often think that GDP growth is also good for the stock markets and its stock holders. However, a

study by Ritter (2005) showed that during the period 1900-2002, there was actually a negative correlation

between per capita GDP growth and real stock returns. Another study by by Dimson et al. also showed

the relation between GDP per capita and real stock returns for 16 different countries. Over a period from

1900-2000, he found a negative and seemingly unrelated relationship between GDP growth and real stock

returns.

Another study, conducted by Siegel, (1998) also asserted the existence of a negative correlation between
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per capita GDP growth and real stock returns. This relationship between GDP growth and stock returns,

according to Siegel, is probably due to the fact that high growth had already been incorporated into the

stock prices. Investors all the the time analyze trends in the past and translate that into expectations for

the future. So whenever the expectation is that the economy is going to improve, more buyers than sellers

will enter the market and prices tend to go up. The opposite happens when market participants believe that

GDP is expected to go down.

Nonetheless, economic theory and standard economic growth models such as Solow’s (1956) growth model

predict a positive relationship between economic growth and stock returns in the long run. Unfortunately,

there is inconsistency between the theory and the empirical results that have been obtained. Although there

have been papers that have also found a positive correlation between GDP and and stock returns (e.g. Fama,

1990;, Lovatt & Parkih, 2000; GallegatI, 2008), these relate to a much shorter sample period than in the

aforementioned cases.

According to Madsen et al. (2013), this ambiguous relationship between GDP growth and stock returns

is due to underlying output volatility caused by shocks in the productivity. In other words, Madsen et al.

argue that it has to do with the predictability of GDP growth and thus largely depends on the persistence of

these shocks. Using a dataset of 20 OECD countries, they found that with persistent output volatility, the

relationship between GDP growth and stock returns is positive, thus supporting the theory.

2.6 USD

The value of the US dollar (USD) has tended to go up an down a lot in recent decades. Stock returns could

be positively or negatively affected by these fluctuations in the value of the USD. Because on the one hand,

a depreciation of the USD leads to an increase in exports and an improved competitive position in the world.

This while one could also argue that the domestic price levels will go up and the costs of imports will increase

due to the depreciation. The first line of thought is expected to lead to an increase in stock returns, while the

second line of thought should lead to a decrease in stock returns. Therefore, it is necessary to test empirically

how changes in the value of the USD affect the stock market.

A study by Solnik (1987) shows that there is a weak positive correlation between changes in the exchange

rates and stock returns. This is while Soenen & Hennigar (1988) showed that there was a significant negative

correlation between fluctuations in the value of the USD and the US stock market. Goodwin et al. (1992)

confirmed this relation by showing that equity markets are negatively affected by changes in the value of the

dollar. In contrast, Aggarwal (1981) found exactly the opposite of Goodwin et al., namely that the USD has

a significant positive effect on the returns of US stocks.

On the other hand, studies have also been published showing that stock prices adjust quickly to changes

in the USD (Franck & Young, 1972). Similarly, a study by Bahmani-Oskooee & Sohrabian (1992) found no

long-run relationship between the effective exchange rate of the USD and the composite stock price of the

S&P 500.
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3 Data

For the empirical application three different cases will be done. First, we will make use of double-sorted

portfolios from the website of Professor Kenneth French. The double-sorted set of 5x5 quintile portfolios

are categorized based on size and book-to-market, accruals, investment, profitability, momentum, short-term

reversal, volatility and idiosyncratic volatility. For the second case we will be making use of a large cross-

section of single sorted decile portfolios. These portfolios are based on anomaly characteristics and can be

obtained from the website of Serhiy Kozak. The single-sorted decile portfolios we use are constructed on the

basis of 37 characteristics that were selected in the paper of Kozak, Nagel and Santosh (2020). For both

cases we will be making use of a monthly dataset covering the period from November 1963 till December

2017, which provides us with 650 observations.

For the third case we will be constructing our own dataset by transforming the double-sorted portfolios of

Kenneth French. This time we make use of daily data, which is available for the 5x5 portfolios based on size

and book-to-market, investment, operating profitability, short-term reversal and momentum. To transform

this dataset we make use of the three factors from the Fama-French model (available on the website of Kenneth

French). As indicated earlier, for the macroeconomic factors we will make use of tradeable securities and

have therefore opted to go with relevant ETFs. For the oil and gold factors we will be making use of daily

data from the United States Oil Fund, LP (USO) ETF and the SPDR Gold Shares (GLD) ETF. For the USD

exchange rate we make use of the Invesco DB US Dollar Index Bullish Fund (UUP) ETF. An appropriate

ETF for the US GDP is unfortunately not readily available. We will therefore use as a proxy an ETF focused

on the index of industrial production (Fulop & Gyomai, 2012), where we will use the Industrial Select Sector

SPDR Fund (XLI) ETF. The data range for these daily datasets is from 22 February 2007 till 29 April 2022.

4 Methodology

4.1 PCA

In our research, we assume that we are working with portfolios consisting of excess returns that follow an

approximate factor model. The model for the returns of N test assets over a time series of T observations,

looks as follows:

Xnt = FtΛ
⊤
n + ent n = 1, . . . , N, t = 1, . . . , T (1)

⇐⇒ X︸︷︷︸
T×N

= F︸︷︷︸
T×K

Λ⊤︸︷︷︸
K×N

+ e︸︷︷︸
T×N

, (2)

In this model, the Xnt represent the excess returns of the assets n. The rationale is that the K factors

represent the systematic component of the excess returns, FtΛ
⊤
n , and a nonsystematic component ent. The

Ft represent the latent factors and the Λ⊤
n represent the betas whose values are unknown and thus need to be
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estimated. We assume that the we have uncorrelated factors and residuals, yielding the following covariance

matrix for the excess returns:

ΣX = Var(X) = ΛVar(F)Λ⊤ +Var(e) (3)

To estimate the unknown factors F and their betas λ, we use PCA. Here we should note that information

from the second moment is used by the estimated PCA factors, while information from the first moments

is ignored. The idea of PCA is to identify several hidden patterns, the principal components, that seek to

maximize the variability in the data while remaining uncorrelated. The standard way to perform factor

analysis is to use PCA on the sample covariance matrix of X:

1

T
X⊤X−XX

⊤
(4)

PCA then proceeds to acquire N orthogonal factors by utilizing the eigendecomposition of ΣX . These

orthogonal factors are then ranked by their eigenvalues, which means that they are ranked on the basis of

their variance. Next, the K factors with the largest corresponding eigenvalues will be selected as the ’true’

factors in equation 2. The loadings Λ̂PCA can then be estimated from a K x N eigenvector matrix. The

factors F can then be obtained by performing a regression on equation 2 using the estimated ΛPCA. This

yields the following estimator for the orthogonal factors F

F̂PCA = XΛ̂PCA

(
Λ̂⊤
PCAΛ̂PCA

)−1

(5)

The above procedure can be described as Stock and Watson (2002) have done, who minimize the following

function:

F̂PCA, Λ̂PCA = argmin
Λ,F

1

NT

N∑
n=1

T∑
t=1

((
Xnt −Xn

)
−

(
Ft − F

)
Λ⊤
n

)2
(6)

Through this fucntion, one can derive that the means of the assets depend on the loadings and factors.

The goal of Lettau & Pelger (2020a) was to modify this function in such a way that it does take information

of the first moments of the test assets X into account.

4.2 Arbitrage Pricing Theory

In 1976, Stephen Ross came up with the arbitrage pricing theory (APT) which tells us that the expected

cross-section of excess returns can be explained by a number of systematic risk factors times a corresponding

risk premium of these factors. As mentioned earlier, in this study the test assets X and the factors F consist

of excess returns for which the APT assumes the following relationship:

E [Xn] = ΛnE[F] (7)

To ensure that this implied relationship of APT holds, it involves minimizing the cross-sectional pricing
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error between the excess returns and the systematic factors and loadings.

min
Λ,F

1

N

N∑
n=1

(
Xn − FΛ⊤

n

)2 (8)

Lettau and Pelger (2020a) incorporated this APT function by including an extra penalty function, which

mimimizes the cross-sectional pricing errors in the original PCA function in equation 6. This gave us the

following updated objective function for PCA:

F̂RP, Λ̂RP = argmin
Λ,F

1

NT

N∑
n=1

T∑
t=1

(
Xnt − FtΛ

⊤
n

)2
︸ ︷︷ ︸

unexplained TS variation

+γ
1

N

N∑
n=1

(
Xn − FΛ⊤

n

)2
︸ ︷︷ ︸

XS pricing error

, (9)

Here the γ indicates the weight of this APT mean restriction. Called the risk-premium PCA (RP-PCA),

this new method minimizes the weighted average of the unexplained time series variation while simultaneously

minimizing the cross-sectional pricing errors. Intuitively, one can see that the RP-PCA is a special case of

PCA where one applies PCA to a different covariance matrix as in equation 4, but rather one that overweights

the means:

ΣRP =
1

T
X⊤X+ γXX

⊤
(10)

Here it is important to note that if one sets γ = -1, one ends up with the covariance matrix of equation 4 which

again leads to the standard PCA method. Similar to PCA, the eigenvectors of the K greatest eigenvalues are

proportional to the factor loadings of RP-PCA. The difference is that the eigenvalues of RP-PCA are more

akin to a general concept of ’signal strength’ of a given factor, while the eigenvalues of PCA are identical to

the factor variances.

4.3 RP-PCA as OLS estimator

The RP-PCA loadings Λ̂ relate to the betas when one uses ordinary least squares (OLS). Using the RP-PCA

loadings, the factors F̂ can be estimated by performing a time-series regression of the excess returns on the

factors:

Xnt = F̂t B
⊤
n + ent (11)

Equation 2 does not include an intercept and therefore the error term will not necessarily have a mean equal

to zero. To remedy this, one can include an intercept and assess the time-series regression by the size of the

pricing errors αn:

Xnt = αn + F̂t B
⊤
n + ent (12)

Equation 11 is the same as the first term in the objective function of equation 9, while the second term

describes the difference between X̄ and E[F̂t]B̂
⊤
n . If γ = 0, it is obvious that the RP-PCA estimator Λ̂n is

equal to the OLS estimator of B̂n. We can rewrite the time-series regression of equation 11 as follows such

10



that, independent of γ, we have that equation 9 is equal to the OLS objective function and thus Λ̂ = B̂ :

Xnt = F̂t B
⊤
n + ent (13)

Where γ̃ =
√
γ + 1− 1 and F̃nt = F̂t + γ̃Ft, X̃nt = Xnt + γ̃X̄nt. We will use equation 12 so that we can

also grasp the implications of the pricing of a factor model.

In a nutshell, RP-PCA is performed by applying PCA to equation 10 to obtain the loadings Λ̂. With

the loadings, the factors are constructed: F̂ = XΛ̂
(
Λ̂⊤Λ̂

)−1

. With the constructed factors F̂ , equation 12 is

estimated by OLS to obtain α̂, B̂ and ê. After the regression, the performance of the model will be evaluated

using three different criteria, that will be calculated for both in-sample and out-of-sample. For the in-sample

case we have the maximal Sharpe Ratio that can be calculated by the tangency portfolio of the mean-variance

frontier that is spanned by the factors, b̂MV = Σ−1
F µF . If Σ−1

F is a diagonal matrix, the Sharpe Ratio can be

calculated as follows

b̂MV =
E[b⊤F̂t]

σ(b⊤F̂t)
(14)

Which implies the following SDF

Mt = 1− b̂⊤MV

(
F̂t − E

[
F̂t

])
(15)

In addition to the Sharpe Ratio, we evaluate the model by calculating the root-mean-squared pricing error

RMSα =

√
α̂⊤α̂/N and the unexplained idiosyncratic time variance σ̄2

e = 1
N

∑N
n=1 Var (ên) /

1
N

∑N
n=1 Var (Xn)

by making use of the α̂ and ϵ̂ obtained by OLS on equation 12.

The calculation of the three different criteria for the out-of-sample case works somewhat differently. First,

the loadings are estimated by using pre-specified ’rolling windows’. Then the factors F̂t+1 are predicted using

the excess returns at t+1 and the information from the estimated loadings up to time t. The b will again be

computed via b̂MV = Σ−1
F µF for each estimation window, after which the out-of-sample return b⊤F̂t+1 will be

calculated. After covering the entire sample, the OOS Sharpe Ratio can be calculated via b̂MV = E[b⊤F̂t+1]

σ(b⊤F̂t+1)
.

Moreover, the Bn can be computed for each estimation window, such that we can calculate the OOS pricing

errors α̂n,t+1 = Xn,t+1 − Ft+1B
⊤
n . Then the OOS pricing errors can be calculated via RMSα =

√
ᾱ⊤ᾱ/N

where ᾱn = 1
T

∑T
t=1 α̂n,t+1. The OOS calculation of the idiosyncratic variance will be done as follows

σ̄2
e = 1

N

∑N
n=1 Var (α̂n) /

1
N

∑N
n=1 Var (Xn).

4.4 Transforming the datasets

The macroeconomic factors that we use are Oil, Gold, US GDP and the USD exchange rate. To construct

these macroeconomic factors, we have selected appropriate ETFs for all the corresponding macroeconomic

variables. The data consists of daily closing prices and therefore the daily prices are transformed into log

returns:

rmacroj ,t = ln

(
Pt

Pt−1

)
(16)

11



The portfolios that will be transformed are the double-sorted portfolios. Of all these portfolios, the excess

returns are calculated by subtracting the risk-free rate from the original returns. Then the following three

regressions are performed on all 5x5 portfolios i using the Fama-French and macroeconomic factors:

(Rit −Rft) = α1it + β11(Rmt −Rft) + β12SMBt + β13HMLt + ϵ1it (17)

(Rit −Rft) = α2it + β21OIL+ β22GLD + β23USD + β24GDP + ϵ2it (18)

(Rit−Rft) = α3it+β31(Rmt−Rft)+β32SMBt+β33HMLt+β34OIL+β35GLD+β36USD+β37GDP +ϵ3it

(19)

Using these regressions, we adjust the portfolio returns for the risk of the Fama-French factors and the

macroeconomic risk indicators by moving the estimated variables to the left side of the equation. Therefore,

the only things in the portfolios that will remain unexplained are the abnormal returns α̂ and the residual

returns ϵ̂. Thus the updated portfolios will contain the excess returns adjusted for the factors:

(Rit −Rft)− β̂11(Rmt −Rft)− β̂12SMBt − β̂13HMLt = α̂1it + ϵ̂1it (20)

(Rit −Rft)− β̂21OIL− β̂22GLD − β̂23USD − β̂24GDP = α̂2it + ϵ̂2it (21)

(Rit−Rft)− β̂31(Rmt−Rft)− β̂32SMBt− β̂33HMLt− β̂34OIL− β̂35GLD− β̂36USD− β̂37GDP = α̂3it+ ϵ̂3it

(22)

Hence, equation 20 and equation 21 show the double-sorted portfolios adjusted for Fama-French risk and

macroeconomic risk, respectively. This while equation 22 takes into account both the Fama-French and

macroeconomic factors. This will be done for all five double-sorted portfolios, providing us with 5 x 3 new

datasets of excess returns. RP-PCA and PCA will be performed on these adjusted portfolios to examine

whether RP-PCA still outperforms PCA when significant factors are removed from the dataset in advance.
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5 Empirical results

In this section, the RP-PCA methodology is tested in practice to see if it performs significantly better than

the traditional PCA methodology. This will be tested empirically in three ways. First, French’s double-sorted

portfolios will be used, after which the methods will be applied to the large cross-sectional anomaly portfolios

of Kozak, Nagel and Santosh (2020). Both these two empirical applications have been done before in the

research of Lettau & Pelger (2020b). We add to the existing empirical literature of RP-PCA by applying the

methodology and comparing it with PCA to the adjusted double-sorted portfolios as described in Section 4.

All models will be compared based on the three different measures: (a) the maximum Sharpe Ratio,

(b) the root-mean-squared pricing errors (RMSα) and (c) the average idiosyncratic variance (σ̄2
ϵ ). For the

calculation of the out-of-sample measures for the ’normal’ double-sorted and the single-sorted portfolios using

monthly data, a 20-year rolling window (T*=240) is used to make predictions of the out-of-sample returns

and pricing errors at t + 1. For the adjusted portfolios containing daily returns a rolling window of 1 year

(T*=250) will be used.

5.1 Double-sorted portfolios

The first analysis compares the RP-PCA and PCA methodology based on the criteria for the 5x5 double-

sorted portfolios. In addition, these methods are compared to the well-known Fama-French three-factor model

(FF) that uses the market risk premium, SMB (sorted on size) and HML (sorted on book-to-market) factors

as explained in Section 2. We slightly differ here from the empirical application as has been done by Lettau

& Pelger (2020b), who made use of an HML factor sorted on the second characteristic of the portfolios, due

to uncertainty about how these HML factors were constructed. The choice of the ’original’ HML factor still

yields the same conclusions as in Lettau & Pelger’s paper. In the application of the double-sorted portfolios,

the γ = 20, although the results are robust to this setting.

The results for the out-of-sample (OOS) values of the RP-PCA, PCA and FF methods can be seen in

Table 1. In the table, it is immediately noticeable that for seven out of the eight cases, the maximal OOS

Sharpe Ratio of the RP-PCA is higher than that of the PCA and FF models. Moreover, RP-PCA dominates

PCA and FF in terms of smaller cross-sectional pricing errors. For the idiosyncratic variance, we observe that

PCA and RP-PCA outperform the FF model because the PCA methodology, by construction, minimizes the

idiosyncratic variance by trying to capture as much covariation as possible. Concluding from the table, we

see that in five of the eight cases PCA actually gives us higher idiosyncratic variation σ̄2
ϵ than RP-PCA.

An explanation on why RP-PCA performs better than classical PCA can be derived via three different

dimensions. The compositions of the factors and/or the order of the factors may differ between PCA and

RP-PCA. And in addition, RP-PCA can sometimes discover latent factors that PCA cannot detect. An

example of these three different ways will be shown for the ’size/accruals and the ’size/short-term reversal

portfolios.

In Figure A.1 in the appendix, we see the values of the maximal Sharpe Ratios, root-mean-squared pricing
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Table 1: Out-of-sample values of RP-PCA, PCA and FF models for double-sorted portfolios

SR RMSα σ2
e

RP-PCA PCA FF RP-PCA PCA FF RP-PCA PCA FF
SIZE&BM 0.21 0.18 0.17 0.17 0.17 0.18 7.97% 7.91% 7.97%
SIZE&ACC 0.21 0.12 0.15 0.09 0.11 0.10 6.74% 6.44% 7.17%
SIZE&INV 0.26 0.23 0.23 0.13 0.15 0.13 6.95% 7.00% 7.07%
SIZE&OP 0.13 0.14 0.15 0.09 0.09 0.11 6.93% 7.08% 8.54%
SIZE&ST-REV 0.16 0.11 0.10 0.18 0.19 0.20 7.89% 7.86% 10.87%
SIZE&MOM 0.21 0.18 0.01 0.20 0.21 0.30 8.30% 8.40% 13.76%
SIZE&IVOL 0.29 0.23 0.23 0.16 0.17 0.22 6.22% 6.24% 7.11%
SIZE&VOL 0.27 0.21 0.21 0.18 0.19 0.23 6.27% 6.30% 7.04%

Note: Out-of-sample maximal Sharpe Ratios, root-mean-squared pricing errors and unexplained idiosyn-
cratic variance for different 5x5 double-sorted portfolios. Bold numbers indicate the best model for the
specific performance measure.

errors and the unexplained idiosyncratic variance for different numbers of factors as a function of γ. It turns

out that for the unexplained time-series variation, the value is independent of the choice of γ. For the

size/accrual portfolios, it can be seen that the models with one or two factors also have Sharpe Ratios and

pricing errors α that are unaffected by the choice of γ. This implies that for these models, RP-PCA and

PCA perform similarly. In contrast, the addition of a third factor (yellow line) changes the constant level

of the Sharpe Ratios and the pricing errors. These SR and RMSα increase and decrease, respectively, as γ

increases from -1 to 4, until they become constant again.

For the size/short-term reversal portfolio, the right panel of Figure A.1 shows us that for the one-factor

model, PCA and RP-PCA are equivalent because the out-of-sample SR and RMSα are constant over γ.

However, things change for models with a higher order of factors such as the two-factor model (orange line).

For the two-factor model, the Sharpe Ratio first falls until γ = 4 and then rises again till γ = 20 before

remaining at a constant level. This while the three-factor model only rises moderately for higher values of γ.

Figure A.2 in the appendix shows the heatmaps of the first three statistical factors of the size/accrual

and the size/short-term reversal portfolios to explain the intuition behind the aforementioned phenomena.

In panel (a) and (b) the first two heatmaps of the RP-PCA and PCA factors look similar. The first two

factors represent the market and SMB factor of the Fama-French model. This can be observed because the

first heatmap has positive weights for all portfolios with a slight preference for the smaller sized portfolios.

The second heatmap shows us the SMB factor as we go short in the large-stock portfolios and long in the

small-stock portfolios due to the negative and positive loadings, respectively. The third factor differs for

RP-PCA and PCA in that it gives us little information and no clear distinguishable pattern that can be

derived from the heatmap of PCA. This while for RP-PCA we can observe negative weights for high-accrual

portfolios and positive weights for low-accrual portfolios, which is similar to a HML (based on accruals)

factor. The RP-PCA is thus able to detect a ’latent’ factor in the size/accrual portfolio which implies the

increase and decrease in the SR and RMSα for changes in γ in Figure A.1.

As with the size/accrual portfolios, the first factor of the size/short-term reversal portfolios looks similar.
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The first factor again represents the market factor of the Fama-French model. This time, however, the

difference between RP-PCA and PCA is not due to PCA’s inability to detect certain factors, but rather

the order of the factors being different. In the case of RP-PCA in panel (c), the second factor has negative

weights for high-reversal portfolios and positive weights for the small-reversal portfolios, while this is the

third factor for PCA and represents a ’long-minus-short factor’. The third factor for RP-PCA is the SMB

factor, which in turn is the second factor for PCA but then with a change of sign (Lettau & Pelger (2020b)

do not find this change of sign in their heatmap, which is most likely due to a difference in scaling). The

intuition behind this interchange is that RP-PCA prefers the ’long-minus-short’ reversal factor because of

its greater contribution to the cross-sectional dimension, while the SMB factor is more responsible for the

common time-series variation preferred by PCA. This stems from the fact that the return dispersion is much

smaller along the size dimension than along the reversal dimension, which leads RP-PCA to assign extra

weight to the high SR factors.

5.2 Single-sorted portfolios

PCA and RP-PCA are designed to handle much larger cross-sectional datasets and therefore we will use a

dataset with large, single-sorted decile portfolios as described in Section 3. The dataset is based on different

anomaly characteristics, whose portfolios are more likely to contain ’weak’ latent factors. The original data

sets consists of 10 decile portfolios for all 37 anomaly characteristics, which gives a total of 370 portfolio.

Just like Letta & Pelger, we will mostly use only the first and last deciles of the portfolios (N = 74) because

these deciles contain most of the relevant information, as will be shown later.

5.2.1 The choice of γ and the optimal number of systematic factors.

The analysis begins by determining how many ’systematic’ factors and ’idiosyncratic factors’ are in the data

and how different values of γ affect this relationship. We determine the number of factors by looking at the

pattern of successive eigenvalue differences of the form 1
T X

⊤X + γXX
⊤

. Figure 1 shows us these patterns

of eigenvalue differences for different values of γ. In the upper panel the first and last deciles of the sample

are used and in the lower panel the full sample is used. Using the Onatski criterion, we conclude that the

fifth eigenvalue difference for γ < 10 and the sixth eigenvalue difference for γ ≥ 10 are lower than the critical

value. This illustrates that the fifth systematic factor is weak and can only be detected if one chooses γ

high enough. For the full sample in panel (b), the optimal number of factor does not differ with the N=74

portfolios, indicating that most of the relevant information for determining the number of systematic factors

is present in the first and last deciles of the portfolios.

5.2.2 Estimation: RP-PCA vs PCA

For figure 2, we compare the in-sample and out-of-sample SR, RMSα and σ2
e of the 74 first-decile and last-

decile portfolios. We set γ = 10 and calculate the three criteria for the different models based on their
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N = 74

N = 370

Figure 1: Eigenvalue differences for Single-sorted portfolios

Note: The differences of successive eigenvalues of the covariance matrix ΣRP = 1
T X

⊤X+γXX
⊤

for different
weights γ. The N = 74 consists of the first and last deciles of the 37 single-sorted decile portfolios.

different number of systematic factors. In the first row, we find that adding factors to the IS increases the

SR, but the size of the increase varies per factor. In addition, it can be obtained that the SRs are significantly

lower for PCA than for RP-PCA. It also stands out that for the RP-PCA case, especially the second and fifth

factors lead to a sudden increase in the SR. The patterns of the OOS SRs are similar to those of the IS, so

there is no problem of excessive overfitting. And adding more factors than five gives only slight improvements

in the SR for RP-PCA, confirming the presence of the five systematic factors for RP-PCA.

For the RMSα, it is important to note that in all cases the pricing errors are larger for PCA than for

RP-PCA. For the IS pricing error, especially adding the second factor and fifth factor leads to a rapid drop

in the α for RP-PCA. And for IS and for OOS, we see that adding additional factors after adding the fifth

factor leads to only small reductions in the pricing errors. Furthermore, the pricing errors in the five-factor
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Figure 2: Performance measures of fit for 74 decile-1 and decile-10 portfolios
Note: The maximal Sharpe Ratios, root-mean-squared pricing errors and unexplained idiosyncratic variance
for various numbers of factors, both for in-sample and out-of-sample. The weight γ is set to 10.

model of the RP-PCA are almost half the size of the pricing errors of PCA, both for IS and OOS.

The last row shows the idiosyncratic variance whose figures seem similar for the RP-PCA and PCA

models. Remember that PCA by construction minimizes the unexplained variation σ̄2
ϵ in-sample, but not

necessarily out-of-sample. Here the differences between the IS and OOS case are negligible. RP-PCA thus

leads to higher Sharpe Ratios and lower pricing errors than PCA, while still capturing similar amounts of

time-series covariation.

In Table 2 we compare the three different criteria for the RP-PCA and PCA methods using different

numbers of factors and different samples. For comparison, we also use the three- and five-factor Fama-French

model. Panel (a) shows that RP-PCA dominates PCA and Fama-French in terms of the maximal Sharpe

Ratios and the pricing errors. This while the idiosyncratic variation of RP-PCA takes on similar values to

PCA. As a robustness check, the results of the full sample and the shorter sample (T=530) of 98 portfolios

are shown in panel (b) and (c). From these results we can conclude that a RP-PCA model with five factors

is the preferred model to use.

17



Table 2: The values of the fit of RP-PCA, PCA and Fama-French models

In-sample Out-of-sample
Model (K) SR RMSα σ2

e SR RMSα σ2
e

Panel A: 74 portfolios
RP-PCA (3) 0.37 0.23 13.88% 0.31 0.22 15.42%
PCA (3) 0.23 0.27 13.74% 0.11 0.26 15.88%
Fama-French (3) 0.21 0.31 17.49% 0.14 0.25 16.54%
RP-PCA (5) 0.59 0.16 10.43% 0.50 0.15 12.11%
PCA (5) 0.32 0.21 10.30% 0.24 0.19 12.04%
Fama-French (5) 0.32 0.26 16.05% 0.24 0.19 13.91%
Panel B: 370 portfolios
RP-PCA (3) 0.24 0.17 12.79% 0.20 0.15 14.39%
PCA (3) 0.17 0.17 12.70% 0.13 0.15 14.74%
Fama-French (3) 0.21 0.18 14.61% 0.12 0.16 14.89%
RP-PCA (5) 0.59 0.13 10.82% 0.47 0.12 12.70%
PCA (5) 0.25 0.14 10.69% 0.18 0.14 12.57%
Fama-French (5) 0.32 0.16 13.60% 0.21 0.13 13.74%
Panel C: 98 portfolios
RP-PCA (3) 0.44 0.31 13.67% 0.27 0.25 16.42%
PCA (3) 0.19 0.32 13.34% 0.11 0.26 16.41%
Fama-French (3) 0.21 0.39 17.02% 0.12 0.29 17.52%
RP-PCA (5) 0.73 0.23 10.36% 0.48 0.17 12.84%
PCA (5) 0.37 0.25 10.22% 0.23 0.21 12.74%
Fama-French (5) 0.34 0.31 15.25% 0.22 0.22 14.74%

Note: The numbers in bold are the best-performing models for given K in terms of maximal Sharpe Ratios,
root-mean-squared pricing errors and unexplained idiosyncratic variation. In panel A an B are 74 and 370
decile-1 and decile-10 portfolios, respectively. Panel C shows 98 decile-1 and decile-1- for a time period
November 1973 - December 2017 (T=530). Panel A and B are from November 1963 till December 2017
(T=650).

Figure A.3 in the appendix shows the individual cross-sectional pricing errors based on a five-factor

model and ranks the anomalies according to their Sharpe Ratio. For PCA, it appears that for both in-sample

and out-of-sample, the α’s become highest for the high-SR anomalies. For RP-PCA, the pricing errors

are significantly lower than PCA for most anomalies, especially for the high-SR anomalies. In addition,

the differences in pricing errors between RP-PCA and PCA for short-term reversal (strev) and momentum

(mom) become much smaller OOS. Therefore, we conclude that RP-PCA gives lower pricing errors, especially

OOS, compared to PCA and in particular does a better job for the portfolios that are most mispriced by

PCA, i.e. the high Sharpe Ratio portfolios.

5.2.3 Cross-sectional factors vs time-series

Table 3 shows the mean, variance and Sharpe Ratios of individual RP-PCA and PCA factors. The factors

have been normalized as in Lettau & Pelger (2020b) so that comparisons can be made between the factors.

As is often the case in factor modelling, the first factor has much higher variance than the rest of the factors.

As expected, the PCA has ranked its factors according to their variance. For example, the second factor

has a variance of 102.55, but a mean of 0.18, which is lower than almost all factors. This indicates that this
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Table 3: Characteristics of individual factors

RP-PCA PCA
Factor Mean Variance SR Mean rank Mean Variance SR Mean rank

1 5.02* 1935.06 0.11 1 4.83* 1944.86 0.11 1
2 2.32* 66.32 0.35 2 0.18 102.55 0.02 9
3 0.30 100.99 0.07 4 1.65* 69.13 0.2 2
4 0.10 65.45 0.03 6 1.05* 64.16 0.13 3
5 0.73* 26.34 0.45 3 0.83 20.21 0.18 4

6 0.03 19.55 0.04 9 0.34* 19.42 0.08 7
7 0.14* 17.96 0.16 5 0.79* 16.17 0.20 5
8 0.05 15.42 0.06 7 0.57* 15.10 0.15 6
9 0.04 13.55 0.06 8 0.20. 13.48 0.05 8
10 0.03 11.97 0.04 10 0.04 11.96 0.01 10

Note: In the table the mean, variance and Sharpe Ratio of the incremental uncorrelated factor component
are shown. The bold numbers indicate the top five factors with the highest means while the (*) indicate the
significant means.

factor is probably not priced, but does capture a lot of co-movement. The ranking of the RP-PCA factors

depends not only on the variances but also on the means. So has the second factor of RP-PCA a lower

variance than the third factor, but it does have a higher and significant mean. Thus, this second factor is

priced but does capture less time-series variation than the third factor. Hence, for RP-PCA, the third and

fourth factors capture more co-movement while the second and fifth factor have higher means, yielding higher

Sharpe Ratios and thus a higher probability of being priced, which in turn is important for capturing more

of the cross-sectional returns.

Table 4: The in-sample and out-of sample fit for RP-PCA for a subset of factors

In-sample Out-of-sample
Factors SR RMSα σ2

e SR RMSα σ2
e

[1,2,3,4,5] 0.59 0.16 10.43% 0.50 0.15 11.84%
[1] 0.11 0.33 20.75% 0.10 0.32 22.65%
[1,2,5] 0.57 0.23 17.07% 0.50 0.18 18.11%
[2,5] 0.41 1.69 74.72% 0.38 0.34 21.97%
[1,3,4] 0.12 0.33 13.93% 0.02 0.31 15.89%
[3,4] 0.03 0.66 93.06% -0.08 0.52 55.88%

Note: In-sample and out-of-sample Sharpe Ratios, root-mean squared pricing errors and unexplained id-
iosyncratic variation for subset of factors. The weight γ = 10.

To check whether the aforementioned claims are correct, the RP-PCA factors are divided into several

subsets for which the three criteria are calculated. The first subset of [1] is very similar to the CAPM in that

the first factor is highly correlated with the market return. It captures almost 80% of the total time-series

variation.

For the subset [1,2,5] we see that the Sharpe Ratio is almost identical to the model that includes all five
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factors. The pricing errors are slightly higher and the idiosyncratic variation is about one and a half times as

large. Omitting factor one from this subset still yields a reasonably high SR of about 0.34, but the removal

of the first factor drastically increases the RMSα and the σ̄2
ϵ for the IS fit and to a lesser extent of the OOS

fit. This difference is due to the assumption of orthogonality of the factors for the IS fit, while this is not

necessarily the case out-of-sample. For the OOS factors, the second and fifth factor are able to capture some

of the variation caused by the first factor. It can thus be concluded that a factor model with the first, second

and fifth factor captures slightly less time-series variation, but does provide us with similar SRs and α’s.

For the subsets of factor 3 and 4, it works the other way around. The SRs and RMSα are similar to a

model with only the first factor. Therefore, the factors do not significantly affect the SRs and the RMSα’s.

However, the idiosyncratic variation of subset [1,3,4] is only a little higher than the full specification.

Hence, the first RP-PCA factor is the most essential factor and is relevant to both the cross-sectional and

time-series fit. To capture the time-series variation, it is best to use a three-factor model with factors [1,3,4],

while to capture most of the cross-sectional returns, a model with subset [1,2,5] should be used.

5.2.4 Portfolio weights in RP-PCA and PCA SDFs

The SDF is a linear combinations of the factors and is therefore also a linear combination of the test assets.

Figure A.4 in the appendix shows the implied SDF by the RP-PCA and PCA factors for the single-sorted

anomaly portfolios. Again, the anomaly portfolios are ranked according to their Sharpe Ratios. In Figure

A.4 it can be seen that the SDFs are composed of long-short portfolios because the weights for almost all

decile-1 and decile-10 portfolios are negative and positive, respectively. For the RP-PCA SDF, we see that

the weights are highest for the high-SR portfolios, while this effect does not occur for the PCA loadings. This

implies that the RP-PCA SDF is mainly composed of high-SR portfolios which explains the higher Sharpe

Ratios of the RP-PCA factors compared to the PCA factors.

5.2.5 Portfolio weights and returns

To learn more about the differences between RP-PCA and PCA, we look at the relation between portfolio

weights and returns. In figure A.5 of the appendix, we show the average returns of the 74 anomaly portfolios

on the horizontal-axis and the SDF loadings on the vertical-axis. The composition of the SDF has a strong

connection with the returns of the portfolios for the RP- PCA case as shown in the figure for RP-PCA. We

see in the figure that portfolios with negative weights also have the lowest returns, while the portfolios with

positive loadings yield higher returns.

For PCA, we see, as with RP-PCA, a positive correlation between the returns and the portfolio weights,

but this time the relationship is weaker. We now have portfolios with negative weights but with fairly high

returns. And indeed, the correlation between the returns and loadings for PCA is 0.56, compared to the

correlation of 0.87 for RP-PCA. We have previously established that the SDF loadings for RP-PCA have a

stronger correlation with the returns than PCA and it is therefore to be expected that the implied SR of
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Table 2 is considerably higher for RP-PCA than PCA, namely 0.50 versus 0.24.

5.3 Adjusted portfolios

This section compares the adjusted portfolios based on size and book-to-market, investment, operating prof-

itability, short-term reversal and momentum. For a valid comparison, the original portfolios that have not

been adjusted for Fama-French and macroeconomic risk are used as benchmark portfolios. Since we are

working with daily data and a different sample period than was used with the double-sorted portfolios of

Section 5.1, it does not necessarily make sense to use the same assumptions on the number of factors K and

especially the rolling window T∗. Therefore, in Figure 3 the cumulative variance for the number of factors

is shown for the non-adjusted size/book-to-market and the size/momentum portfolio. The figure shows the

amount of variance explained for the first 10 factors of RP-PCA. It can be seen that the first factor of RP-

PCA already explains more than than 85% of the total variance for both portfolios. Based on the figure we

can conclude that selecting three principal components makes sure that 95% of the total variance will be

explained. Therefore, for our further analysis we have chosen to set K = 3 factors.

Figure 3: Cumulative variance explained by factors
Note: The total variance explained by number of factors for the size/book-to-market and size/momentum
portfolios. Red line indicates a thresholf of 95% variance explained.

Not only the choice of K is important for our analysis, but also the choice of the rolling window for the

out-of-sample analysis. Since we have moved from monthly to daily observations, we should be able to obtain

more precise out-of-sample results if the sample period would remain the same. Unfortunately, the data of the

macroeconomic factors were only available from February 2007, so we have a much shorter sample range at

our disposal. We have decided to go with a rolling window of 1 year (T*=250) for our out-of-sample analysis.

The reason for the choice of a rolling window of 1 year is that it is often used in practice in analysing returns

(e.g. Wang et al., 2011; Aloui et al., 2016) and also reduces the computational cost of RP-PCA. A rolling

window of 1 year gives us the benefit that it takes into account anomalies such as the momentum cycle and

the January effect. On the other hand, it is also not too long such that the out-of-sample results are unable
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to capture business cycles.

Nevertheless, as a robustness check to see if the choice of rolling window T∗ has a large impact on the

out-of-sample results, we compute the OOS Sharpe Ratios for different rolling windows and portfolios. For

this computation we set γ = 20 as Lettau & Pelger (2020b) showed that the results were not sensitive to this

choice. Table 5 gives us the results, showing that the out-of-sample results are very sensitive to the choice

of the rolling window. Moreover, there is no clear window that ’outperforms’ the others in terms of having

stable OOS Sharpe Ratios, when compared to the IS Sharpe Ratios. Ranking all the rolling windows for

each portfolio from best to worst in terms of stability relative to the IS Sharpe Ratios, shows us that the 1

year rolling window slightly dominates the other rolling windows. Therefore, for the reasons stated above,

we decided to choose a rolling window of 1 year (T*=250), but keep in mind that the out-of-sample results

are sensitive to this choice.

Table 5: Sharpe Ratios for different rolling windows

In-Sample Month 1/2 Year 1 Year 3 Years 5 Years
SIZE&BM 0.0347 0.0571 0.0443 0.0425 0.016 0.033
SIZE&INV 0.0365 0.0573 0.0363 0.0263 0.0172 0.0251
SIZE&OP 0.0365 0.0394 0.0274 0.0366 0.0182 0.0152
SIZE&ST-REV 0.0374 0.0486 0.0184 0.0145 0.0021 0.0021
SIZE&MOM 0.0352 0.0465 0.0244 0.0134 0.0044 0.0274

Note: The table shows the in-sample and out-of-sample maximal Sharpe Ratios for RP-PCA using different
rolling windows. The rolling windows T* are set to 21, 125, 250, 750 and 1250, respectively. Factors K = 3
and γ = 20.

5.3.1 Influence of macroeconomic variables

The Fama-French factors are known to play a role in describing the returns of stock portfolios, as described

in Section 2. The market risk premium provides the investor with excess return to compensate for the

additional risk of investing in that particular portfolio. The SMB shows the long-run tendency of small-cap

companies outperforming large-cap companies and the HML shows the long-term trend of value companies

outperforming growth companies.

Regarding the macroeconomic factors, as shown in Section 2, the empirical influence on stocks is not so

clear and often even ambiguous. Therefore, it is critical to show how the macroeconomic factors affect our

portfolios.

Panel (a) in Figure 4 shows us the heatmaps for each macroeconomic factor, regressed on the non-adjusted

size/book-to-market portfolio, to examine the individual effect of the macroeconomic variables on the excess

returns.

For the oil factor, we find that all coefficients are positive. This means that an increase in oil prices has a

positive impact on stock returns. Since the US is an oil-producing country and the portfolios are built upon

the NYSE, NASDAQ and the Amex, we are not surprised to find this correlation. Furthermore, it appears

that large-cap companies in particular benefit from a rise in the oil price, which is probably due to the fact
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that most oil companies are large multinationals. This is because oil firms have to incur high start-up costs

to buy all the machinery and oil fields.

The second heatmap from panel (a) shows us that the gold price in general has a positive impact on the

portfolio returns. This seems counter-intuitive to the relationships found in previous research, described in

Section 2. Possible reasons for this could be that we did not take inflation into account or that we had to

work with a short sample size. What is striking, however, is that the effect is strongly negative for large-cap

and high book-to-market firms, the so-called ’large value’ companies. One possible reason for this is that

gold can be seen as an alternative to these stocks. When the stock market is falling, large value companies

are often considered as more reliable than small/growth stocks and can therefore, just like gold, be used as

a ’hedge’ for the stock market.

For the GDP factors, we observe very large positive coefficients. Theoretically, this makes sense, since an

increase in the US GDP should lead to higher profits for firms, less unemployment and more confidence in

the economy as a whole, which should have a positive effect on stock returns. It seems large capitalizations

in particular benefit from GDP growth and that companies with low book-to-market ratios are also slightly

more affected by a rise in GDP.

The final heatmap in panel (a) for the USD factors shows us large negative signs for all portfolios. This

implies that a depreciation of the USD has led to higher stock returns in the period from 2007 to 2022. As

mentioned in Section 2, this implies that empirically, the positive effects of the depreciation, higher exports

and an improved international competitive position, outweigh the negative effects of having higher costs of

imports and having an increased domestic price level. The USD exchange rate appears to play a lesser role

for smaller firms.

In panel (b) we see the influence of each macroeconomic variable when all factors are taken together,

the Fama-French factors and the macroeconomic factors. The heatmaps show us the coefficients for the

macroeconomic factors from the regression of equation 19. The coefficients of the Fama-French factors on the

excess returns are not shown because their influence has been examined extensively in the past (see Section

2). The first thing to note is that the coefficients of the macroeconomic factors are quite small because the

Fama-French factors play a large role in explaining the excess returns of the portfolios. Nonetheless, most

of the coefficients are statistically significant, implying that the macroeconomic variables do influence the

excess returns.

What is interesting about the oil factor in panel (b) is that it primarily plays a role for large-cap companies.

This makes sense, because as mentioned earlier, oil companies - the ones most directly affected - tend to have

a large market capitalization and the US stock market incorporates quite a large number of companies in

this industry.

For the coefficients of the gold factor in the multiple regression, it is difficult to distinguish a clear

pattern. It is notable, however, that the gold price has little effect on the low book-to-market firms, the

growth companies. The gold price has more of an effect on the excess returns of value companies, especially

for the large caps, yielding a similar relationship as seen earlier in the heatmap of panel (a).
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(a) Single regression (b) Multiple regression

Figure 4: Heatmaps of macroeconomic coefficients for a single and multiple regression
Note: Heatmaps showing the coefficients of the macroeconomic factors regressed on the size/book-to-market
portfolio. The single regression uses only the macroeconomic factor as explanatory variable. The multiple
regression regresses all macroeconomic and Fama-French factors on the portfolio as in equation 19.
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The coefficients of the GDP factor in panel (b) show the largest coefficients on the diagonal of the heatmap.

Moreover, it seems that especially in the middle zone of the heatmaps, i.e., not in the outer portfolios, the

returns are positively affected by an increase in GDP, while the large value companies and the small growth

companies are negatively affected by GDP. One possible explanation for this observed pattern is that much

emphasis is often placed on the differences between small vs large-cap and value vs growth companies. As a

result, mid-cap companies and ’neutral’ companies (in terms of book-to-market) can sometimes be overlooked

when the economy is booming.

Finally, it is also difficult to discern a clear pattern for the USD coefficients in panel (b). The only thing

that stands out is that growth companies are more negatively affected than value companies. This could be

because growth stocks - often in the large cap-market segments synonymous with glamour stocks - tend to

get more attention from foreign investors, who are more susceptible to changes in the USD exchange rate.

Hence, Fama-French factors have been proven to help explain the stocks returns and judging from the

heatmaps it seems that macroeconomic factors also play a role in explaining the excess returns.

5.3.2 Estimation results for adjusted portfolios: RP-PCA vs PCA

Table 6 shows the in-sample maximal Sharpe Ratio, the root-mean-squared pricing error and the unexplained

idiosyncratic variance for the adjusted portfolios. The Sharpe Ratios and the pricing errors have been

converted to monthly values rather than daily values to facilitate interpretation.

What is immediately striking about the results of the in-sample analysis is that RP-PCA consistently

dominates PCA in terms of maximal Sharpe Ratios and cross-sectional pricing errors. It seems that RP-PCA

still outperforms PCA in finding (additional) latent factors, when one removes the very prominent Fama-

French and macroeconomic risk from the dataset in advance. Although the PCA performs better in terms

of idiosyncratic variance, recall that PCA by construction minimizes the unexplained idiosyncratic variation

and that the differences are quite small for all portfolios.

Comparing panel A with panel D, it becomes clear that adjusting the portfolios for the risk of the Fama-

French factor improves the Sharpe Ratios for four out of the five cases and the pricing errors for three out

of the five cases. Especially for the size/short-term-reversal portfolio, there is a huge increase in the Sharpe

Ratio. However, the momentum portfolio does not seem to benefit from the inclusion of the Fama-French

factors.

Looking at panel B, we find that again in four out of five cases that the portfolios adjusted for macroe-

conomic risk have higher Sharpe Ratios. Adjusting for the macroeconomic factors does not seem to produce

better results in explaining excess returns when looking at the pricing errors, for all the RMSα the benchmark

portfolios have smaller cross-sectional pricing errors.

Lastly, panel C adjusts the portfolios for Fama-French and macroeconomic risk and provides us with

four out of five times higher Sharpe Ratios and in three out of five cases lower pricing errors compared to

the non-adjusted portfolios. In addition, it has, on average, the highest Sharpe Ratios and second-smallest

pricing errors of all portfolios.
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Comparing all panels with each other reveals that the difference between RP-PCA and PCA is more

prominent in the portfolios adjusted for Fama-French risk than for macroeconomic risk. Table 7 displays the

differences between the Sharpe Ratios and pricing errors between RP-PCA and PCA. What is particularly

noteworthy is that removing the Fama-French factors and macroeconomic factors from the excess returns

yields even larger in-sample differences between RP-PCA and PCA, compared to the other panels. This

suggest that when these ’evident’ factors are removed from the portfolios, RP-PCA is better in finding

additional latent factors than PCA. This follows from the research of Lettau & Pelger (2020b) who state that

RP-PCA is better in detecting weak factors than PCA.

Table 6: In-sample fit of RP-PCA and PCA for (non)-adjusted portfolios

In-sample
SR RMSα σ2

e

RP-PCA PCA RP-PCA PCA RP-PCA PCA

Panel A: Adjusted for FF-risk
SIZE&BM 0.184 0.170 0.125 0.128 55.14% 55.13%
SIZE&INV 0.174 0.164 0.109 0.111 57.42% 57.41%
SIZE&OP 0.206 0.203 0.101 0.101 41.11% 41.11%
SIZE&ST-REV 0.263 0.198 0.316 0.323 34.25% 34.20%
SIZE&MOM 0.084 0.077 0.156 0.157 33.44% 33.44%

Panel B: Adjusted for Macro-risk
SIZE&BM 0.181 0.177 0.194 0.196 17.78% 17.78%
SIZE&INV 0.258 0.254 0.109 0.110 17.64% 17.64%
SIZE&OP 0.145 0.144 0.230 0.231 19.66% 19.65%
SIZE&ST-REV 0.201 0.193 0.359 0.360 16.40% 16.40%
SIZE&MOM 0.195 0.193 0.159 0.160 16.28% 16.28%

Panel C: Adjusted for FF+Macro-risk
SIZE&BM 0.210 0.193 0.132 0.135 56.11% 56.10%
SIZE&INV 0.214 0.196 0.115 0.119 58.92% 58.91%
SIZE&OP 0.257 0.253 0.095 0.096 42.30% 42.29%
SIZE&ST-REV 0.286 0.197 0.311 0.325 34.18% 34.09%
SIZE&MOM 0.097 0.086 0.170 0.172 33.54% 33.53%

Panel D: Non-adjusted
SIZE&BM 0.159 0.156 0.172 0.173 4.96% 4.96%
SIZE&INV 0.167 0.166 0.102 0.102 4.42% 4.41%
SIZE&OP 0.167 0.161 0.164 0.169 5.76% 5.76%
SIZE&ST-REV 0.171 0.167 0.352 0.353 4.86% 4.86%
SIZE&MOM 0.161 0.160 0.126 0.126 4.97% 4.97%

Note: The table is showing the in-sample maximal Sharpe Ratios, root-mean-squared pricing errors and the
unexplained idiosyncratic variation for the (non)-adjusted portfolios. The values for the SR and RMSα are
monthly Sharpe Ratios and pricing errors. Portfolios adjusted for FF-risk and macro-risk are portfolios with
excess returns minus the impact of the Fama-French and macroeconomic factors. Numbers in bold indicate
which method performed best for the particular portfolio on the respective criteria. Factors is K = 3 with
weight γ = 20

In Table 8 we see the out-of-sample results reported for the three different criteria. What stands out
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Table 7: Differences in fit for RP-PCA and PCA

In-Sample Out-of-sample
Portfolios SR RMSα SR RMSα

(A) Adjusted for FF-risk 0.097 0.013 0.499 0.004
(B) Adjusted for macro-risk 0.019 0.005 0.167 0.028
(C) Adjusted for FF + macro-risk 0.136 0.023 0.586 0.025
(D) Non-adjusted 0.013 0.005 0.093 0.004

Note: Absolute differences in Sharpe Ratio and root-mean-squared pricing errors between RP-PCA and PCA
for the (non-)adjusted portfolios, both in-sample and out-of-sample.

is that RP-PCA outperforms PCA in terms of higher Sharpe Ratios, but this time not in terms of having

smaller pricing errors. This while for the idiosyncratic variance, PCA no longer strictly dominates RP-PCA,

although the differences between the two methods are still quite small.

Comparing panels A, B and C, we see that C produces the highest Sharpe Ratios and the lowest cross-

sectional pricing errors for three of the five portfolios. Comparing the Sharpe Ratios of panel C to the

portfolios of panel D, we observe that the adjusted portfolios outperform the non-adjusted portfolios 60%

of the time, especially for the size/short-term reversal portfolio of RP-PCA (0.387 to 0.066). Furthermore,

for all the adjusted portfolios of panel C, the cross-sectional pricing errors are lower than for the non-

adjusted portfolios of panel D. Hence, in OOS, the portfolios that take into account the Fama-French and

macroeconomic factors clearly do a better job of explaining the excess returns. However, it is more difficult

to capture the time-series variation when compared to panel D.

Looking at the differences between RP-PCA and PCA for the Sharpe Ratios in Table 7, we see that the

differences are way larger out-of-sample than in-sample. Furthermore, the Sharpe Ratio difference is again

largest for the portfolios adjusted for Fama-French and macroeconomic risk, with a difference of 0.586. This

proves once again that RP-PCA outperforms PCA when ’strong’ factors are removed, and other latent factors

have to be found.

Regarding the difference in pricing errors for the RP-PCA compared to the PCA, we note that the

differences are also way larger out-of-sample. The difference is the largest for panel B, closely followed by

panel C with differences of 0.028 and 0.025 respectively. This is a lot higher than the difference of 0.004

of panel D and shows us two things: (1) the dominance of RP-PCA over PCA and (2) the even higher

dominance of RP-PCA when only weak factors are present in the data.
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Table 8: Out-of-sample fit of RP-PCA and PCA for (non)-adjusted portfolios

Out-of-sample
SR RMSα σ2

e

RP-PCA PCA RP-PCA PCA RP-PCA PCA

Panel A: Adjusted for FF-risk
SIZE&BM 0.113 0.069 0.115 0.108 51.29% 51.36%
SIZE&INV 0.168 0.099 0.101 0.098 55.19% 55.42%
SIZE&OP 0.089 0.081 0.134 0.117 40.63% 40.56%
SIZE&ST-REV 0.368 0.074 0.261 0.292 33.78% 33.71%
SIZE&MOM 0.129 0.043 0.112 0.111 32.41% 32.49%

Panel B: Adjusted for Macro-risk
SIZE&BM 0.116 0.067 0.172 0.183 16.81% 16.80%
SIZE&INV 0.113 0.103 0.123 0.133 16.16% 16.23%
SIZE&OP 0.162 0.118 0.166 0.169 17.23% 17.29%
SIZE&ST-REV 0.019 -0.018 0.330 0.33 16.46% 16.47%
SIZE&MOM 0.147 0.120 0.132 0.143 15.83% 15.82%

Panel C: Adjusted for FF + Macro-risk
SIZE&BM 0.154 0.109 0.117 0.111 52.41% 52.48%
SIZE&INV 0.189 0.120 0.111 0.114 57.06% 57.12%
SIZE&OP 0.138 0.108 0.122 0.111 41.90% 41.9%
SIZE&ST-REV 0.387 0.092 0.250 0.285 33.70% 33.71%
SIZE&MOM 0.172 0.025 0.109 0.114 32.64% 32.77%

Panel D: Non-adjusted
SIZE&BM 0.194 0.170 0.152 0.156 4.49% 4.50%
SIZE&INV 0.120 0.106 0.119 0.116 4.05% 4.04%
SIZE&OP 0.167 0.137 0.166 0.167 4.80% 4.81%
SIZE&ST-REV 0.066 0.040 0.324 0.324 4.84% 4.83%
SIZE&MOM 0.062 0.063 0.120 0.122 4.87% 4.85%

Note: The table is showing the out-of-sample maximal Sharpe Ratios, root-mean-squared pricing errors and
the unexplained idiosyncratic variation for the (non-)adjusted portfolios. The values for the SR and RMSαA
are monthly Sharpe Ratios and pricing errors. Numbers in bold indicate which method performed best for
the particular portfolio on the respective criteria. The rolling window is set to T*=250, for K = 3 factors
and weight γ = 20.

6 Conclusion

In this paper, we test a brand-new estimator for latent asset pricing components that makes use of information

in the first and seconds moments of the returns; the Risk-Premium Principal Component Analysis (RP-

PCA). The goal of this new method is to extract factors that capture time-series variation on the one hand

and provide us with smaller cross-sectional pricing errors on the other. The RP-PCA can be seen as a

transformation of the original PCA combined with Ross’s theory of the APT, resulting in an additional

penalty term on the pricing errors.

The key findings can be described as follows. For the double-sorted portfolios we have seen that RP-PCA

outperforms PCA and FF in most cases, especially in terms of higher maximal Sharpe Ratios and lower
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cross-sectional pricing errors. Furthermore, we have seen that the main difference between RP-PCA and

PCA lies in the detection, compositions and order of the factors.

For the 370 single-sorted anomaly portfolios, only five RP-PCA factors are needed to explain most of the

time-series variation and cross-sectional moments. For these factors, the RP-PCA method gave us higher

maximal Sharpe Ratios and smaller cross-sectional pricing errors than PCA, both in-sample and out-of-

sample. This is while the captured time-series variation remained very similar for both methods.

The first factor of the single-sorted portfolios that is selected according to RP-PCA is a long-only factor

and has a high mean and high variance. And it is closely related to the overall market performance. The

second and fifth factors have low variance but yield high Sharpe Ratios due to the weights of the factors being

significantly correlated with the high means of the portfolio returns. Building a model with factors 1,2 and

5 gives us a model that is able to capture similar amounts of cross-sectional returns differences as a model

that makes use of all five factors. The third and fourth factor on the other hand help capture the time-series

co-movement, but have low means and provide us with low Sharpe Ratios. Thus, a model consisting of factors

1, 3 and 4 does not help us explain the cross-sectional return differences, but does capture almost all of the

time-series variation.

When comparing the RP-PCA with the PCA factors, the PCA factors have significantly lower Sharpe

Ratios than the RP-PCA factors. This is because as a result of the additional penalty term on the cross-

sectional pricing errors, the portfolio loadings of the SDF are tilted towards the characteristic-portfolios that

have higher return premia. For different specifications and samples these empirical findings are robust.

For portfolios consisting of daily returns we also found evidence that RP-PCA dominates PCA for the

in-sample analysis, in terms of higher Sharpe Ratios and lower cross-sectional pricing errors, while yielding

similar idiosyncratic variance. For the out-of-sample case, RP-PCA strictly dominates PCA in terms of

higher Sharpe Ratios. The dominance is less strong for cross-sectional pricing errors, but overall RP-PCA

also outperforms PCA here. The difference between RP-PCA and PCA was more noticeable for the adjusted

portfolios. The more systematic risk we removed from the excess returns, the greater the differences in

performance between RP-PCA and PCA became. This verifies Lettau & Pelger’s assertion that RP-PCA

performs especially well if the factors are weak.

In addition, we have proven that regardless of the method you use, removing Fama-French risk from

the returns yields, on average, higher Sharpe Ratios and lower cross-sectional pricing errors for both in-

sample and out-of-sample cases. This proves once again that Fama-French factors are helpful in describing

stock returns. For macroeconomic factors, we obtain similar conclusions in-sample, but not out-of-sample.

However, removing both macroeconomic risk and Fama-French risk from the portfolios gave us the highest

Sharpe Ratios and lowest cross-sectional pricing errors, both in-sample and out-of-sample. This shows that

there may be room for improvement on the Fama-French three-factor model through additional addition of

macroeconomic components. As indicated earlier, one of the problems with the incorporation of macroe-

conomic variables is always that market participants do incorporate expectations about such variables in

their analysis. Stated differently, at any moment in time, they do not only look at the value of these macro
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variables at that moment, but also the expected trends in these variables. This can translate into situations

where the negative effect of, for example, a downfall in the level of a specific variable is already incorporated

in the prices before the actual deterioration happens. And if it later turns out that the deterioration was less

big than expected, it may actually at that point in time lead to a positive rebound. This introduces potential

ambiguity. However, our results do indicate that the incorporation of four important macroeconomic indi-

cators (oil price, gold price, GDP growth and USD exchange rate) can improve the results of the standard

Fama-French three-factor model. Albeit that the latter do continue to explain the bulk of cross-sectional

variation in stock returns. A detailed examination of the implications of adding macroeconomic factors to

the three-factor model is beyond the scope of this paper, but could nonetheless be a very interesting topic

for further research.
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A Appendix

Figure A.1: Out-of-sample values as a function of γ
Note: The out-of-sample maximal Sharpe Ratios, root-mean-squared pricing errors, and unexplained idiosyn-
cratic variance for size/accrual portfolios (Left) and size/Short-term reversal portfolios (Right) as a function
of γ for different number of factors.
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(a) Size/Accrual: RP-PCA

(b) Size/Accrual: PCA

(c) Size/Short-Term Reversal: RP-PCA

(d) Size/Short-Term Reversal: PCA

Figure A.2: Factors for Size/Accrual and Size/Short-Term Reversal portfolios
Note: Heat map of portfolio loadings of K = 3 factors. RP-PCA weight is set to γ = 20
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Figure A.3: Root-mean-squaed pricing errors α per characteristic
Note: In-sample and out-of-sample, root-mean squared pricing errors for the 37 single-sorted portfolios
(N=74) using K = 5 factors.
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Figure A.4: Portfolio loadings for SDFs of RP-PCA and PCA
Note: The RP-PCA and PCA portfolio weights of SDF for the single-sorted anomaly portfolios. The char-
acteristics on the x-axis are sorted by their Sharpe Ratio.
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Figure A.5: Portfolio weights of the RP-PCA and PCA SDFs
Note: Scatter plots of the mean returns of the portfolios on the horizontal axis and the SDF loadings on the
vertical axis for decile-1 and decile-10 of the 37 single-sorted portfolios.
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