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Abstract

In this paper we propose three alternative versions of the LEarning with Subset Stacking
(LESS) model [Birbil et al., 2021] to improve prediction accuracy. The goal of LESS is to find
relations between input and output data with heterogeneous features by training multiple
local regressors using subsets of the original data. These local models are then combined
into a global predictor. We identified three possible restrictions in the original LESS model.
Firstly, subset generation is random. Thus, no optimality is guaranteed. Secondly, local
learning is only provided with one regression technique, assuming that every subset is best
predicted using the same approach. Lastly, global regression is primarily done using linear
regression. We introduce LESS_cl which uses a clustering technique as opposed to random
subset generation, LFESS_cl_ll which adds multiple regression techniques to the local learning
step, and Advanced LESS which extends LFESS_cl_ll by tuning the global estimator. We
compare the performance of our models to various well known regression methods on 10
datasets. We conclude that Advanced LESS is the best performing model, outperforming
default LESS. Tt is also competitive with the other methods for most datasets.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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Introduction

If we have a dataset (X, y) with X being the input variable, and y being the output variable,
we can use common regression techniques such as linear regression or decision tree regres-
sion to create prediction models for y using X. However, if the input data can be split
into well-separated subsets, using a regression technique that treats the entire input data as
one can lead to lower prediction accuracy. Dividing the original data into multiple subsets
and treating these subsets as separate training datasets can significantly increase prediction
accuracy.

In this paper, our main goal is to improve prediction accuracy for the LEarning with Subset
Stacking (LESS) algorithm as introduced in [Birbil et al., 2021]. The idea behind LESS is to
split the dataset into different subsets on which local regressors are trained. Then, a global
estimator is trained using features that contain the local estimators and weights which are
dependent on the relative position of a sample to each of the subsets.

We analysed the five steps made in LESS and identified some possible restrictions. Firstly,
for subset creation [Birbil et al., 2021] mainly focus on an anchor selection approach where
clusters are formed randomly. This random method does not maximize inter-cluster distance
and will not guarantee well-separated clusters, even though this is crucial for high accuracy
prediction [Sreedhar et al., 2017]. Although the paper discusses a LESS variant where K-
Means clustering is used, it lacks further clustering applications. Secondly, local learning is
done using the same regression technique for every generated subset. Assuming that every
subset can be efficiently described using the same type of regression can be seen as signifi-
cantly restrictive. Even with perfect clustering cluster shapes may greatly differ, and thus,
enforcing the same technique on every cluster may come at the cost of overall prediction
accuracy. Lastly, the original paper mainly discusses using a linear regressor as global esti-
mator. In the paper, only one example is shown where apart from a linear regressor, also a
decision tree regressor is considered.

Apart from changes in the LESS algorithm, we also decided to include three more datasets
when testing model performance. Doing this will broaden our understanding of the perfor-
mance of the models. To answer our main research question ” How can we increase prediction
accuracy in the LESS model”, the points mentioned above lead us to form the following

sub-questions:

SQ1. How does LESS prediction accuracy change when using clustering methods for subset



generation?

SQ2. How does LESS prediction accuracy change when we provide multiple regression

techniques in the local learning step?

SQ3. How does LESS prediction accuracy change when using non-linear regressors as global

estimators?

Since the original LESS model does not allow the use of more than one regression tech-
nique in the local learning step, we have slightly modified the algorithm to allow for different

models to be used on different subsets.

The following outlines how our modified LESS version works. First, we use a clustering
method to form datasets instead of using the random anchor approach as was mainly used
in [Birbil et al., 2021]. Then, local models are trained using these generated subsets. In
contrast to the original LESS model, we allow the user to provide a collection of regression
techniques for the local training step. After this, features are generated by combining weights
and the local estimators. These weights are inversely related to the data point’s distance to
each of the local learner’s subset. Then, a global estimator is trained using the features. For

this step, we consider three different types of regression.

The remainder of this paper is structured as follows: In the literature section we discuss
relevant literature that discusses methods similar to the LESS method. In the data section
we give an overview of the 10 datasets that we use in this paper. In the methodology section
we first present the workings of the original LESS model, followed by an explanation of how
exactly we updated LESS for our purpose and an example of our LESS model on 2-d trigono-
metric data. Then we compare the performance of our updated LESS with the default LESS
and some sophisticated prediction methods on the datasets mentioned in the data section. In
the conclusions section, we conclude this paper and also mention some potential extensions
to our LESS method.

Literature

In this section we discuss literature that is related to our new LESS implementation as well
as the original LESS model.



Learning with randomized subsets

There are multiple methods that use learning with randomized subsets. When all of the
local predictors are treated the same, meaning that no weights are used for aggregation, this
approach is called Bagging [Breiman, 1996aj. Unlike LESS, Bagging uses a bootstrapping
method for subset selection so that subsets are generated via sampling with replacement. The
size of the newly generated subset is equal to the size of the original subset, but duplicate
data points may occur. Subagging [Bithlmann and Yu, 2002,/Andonova et al., 2002, Evgeniou
et al., 2004] is a version of Bagging where the training dataset is split up into multiple
different smaller subsets. In contrast to the Bagging methods, Stacking [Breiman, 1996b)
Wolpert, 1992] uses optimization to weight each of the local regressors in the aggregation
stage. Magging [Bithlmann and Meinshausen, 2014| is an approach that combines features
of both Bagging and Stacking. Particularly, aggregation is done by a weighted average of the
local estimators, where generally, the weights are varying. Furthermore, the weights used in
their approach do not depend on the response variable.

The LESS method we propose differs from both the original LESS as from the methods
mentioned above since it uses samples’ locality information for weight generation (as LESS
does), and enables users to provide a group of estimation techniques as local regressors, as
in |[Breiman, 1996b].

Local learning methods

Because of the local learning step in LESS, it can also be seen as a local learning method.
There are several methods that rely on local learning. LOcally Estimated Scatterplot Smooth-
ing (LOESS) |Cleveland, 1979] is one of these methods. LOESS applies a simple regression
model (often linear) to a small subset of points around the point that is to be predicted.
LOESS can be seen as a generalization of kernel regression |Nadaraya, 1964], which fits ker-
nel functions around each known data point. When we want to predict a new data point,
we use a combination of the known outputs, where each output is weighed with weights
calculated using the kernel functions.

Another similar method is the Gaussian Process Regression (GPR) method [Williams and
Rasmussen, 2006). Here, a Gaussian process is used to evaluate the distance between data
points. A covariance matrix is created which has higher values is samples are closer to each-

other. When the size of the datasets is very large the covariance matrix may be difficult to



compute. For this scenario, the Bayesian Committee Machine (BCM) [Tresp, 2000 can be

used. It splits the dataset into multiple subsets and trains regression systems on these.

Data

In this section we give an overview of the data. In total we used 10 datasets. Of these
datasets, 7 were also used in [Birbil et al., 2021], these can be seen in the top half of Table
1. The CPU dataset has the least number of samples, and also contains the least amount
of information since the number of attributes is also small. The Superconduct dataset has
the most amount of samples and also contains the most amount of data, since it also has the
largest number of attributes. All of the datasets used in this paper are from [Dua and Graff,
2017).

In Table 1, Instance gives the name of the dataset, Samples shows the number of samples in

the dataset, and Attributes shows the number of explanatory variables in the dataset.

Table 1: The properties of the datasets

Instance Samples | Attributes
Abalone 4177 8
Airfoil 1503 5
CCPP 9568 4
CPU 209 7
Energy 19735 26
Housing 506 13
Superconduct | 21263 81
Fires 244 10
Auto 392 7
Concrete 1030 8

Most of the data attributes were continuous. However, some of the features contained dis-

crete values. For the Abalone dataset, we had to manually transform the Sex € {Infant, Male, Female}
attribute into numerical values {—1,1,0}. We removed some of the attributes, such as dates
and car names, since these couldn’t be efficiently converted to numerical values. From the En-
ergy and Fires dataset, we removed the date attributes. From the CPU dataset we removed 2
name attributes and finally from the Auto dataset we removed the car-name attribute. The
Auto dataset was the only dataset containing missing values. Since we were only dealing

with six of such data points, we simply removed them from the dataset.
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Methodology

In this section we will first discuss the original LESS model as introduced in [Birbil et al.,
2021] and then we will explain the new LESS version where adjustments in subset creation,
local model training and global model training were made. We also present an example of
our extended LESS model with specific choices for the clustering method and provided local

estimators.

Original LESS

We consider a training dataset (X, y), where X contains the input vectors z; € RP. Further-
more, y; denotes the output of the data point where y; € R with i € {1,...,n}.

The LESS algorithm splits the original dataset (X,y) into multiple subsets (X;,v;), j €
{1,...,m} where the goal is to cluster similar data points. After this step, regression models
are applied on each of the subsets and the trained models are combined to form features

which are used to train the global model.

Subset selection. The first step of the LESS algorithm consists of splitting the original
dataset into m different subsets. There are multiple approaches to subset selection. |Birbil
et al., 2021] mainly focus on a selection process where m initial anchor data points are cho-
sen at random, and then for each anchor k-nearest samples are chosen and grouped into the
same cluster. Alternatively, one can use clustering methods in order to cluster the dataset.
Methods like K-means clustering do not only minimize the inter-cluster distance, but also try
to maximize the intra-cluster distance [Witten and Tibshirani, 2010]. This leads to better

separated clusters and will help increase prediction accuracy.

Local learning. The main idea behind LESS is to train different local predictors for
every subset. In the original LESS algorithm, one type of regression is given and the m
different subsets are used to train models L(z|Xj,y;), j € {1, ..., m}. When predicting a new
data point, we want to weigh local predictors differently according to their subset’s distance
to the data point. In other words, we inflate the weight given to local predictors of which
the dataset is closer to the data point. To this purpose, we define a weight function that is

inversely related to the distance from z; to subset X :



o) exp{—Ad(x,z;)}
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Here, d(-,-) can be any distance metric chosen by the user and z; is the centroid of the clus-
ter. The centroid may be computed as the average of all data points in a cluster or may be
explicitly given for some clustering methods such as K-means clustering. Furthermore, \ is a
parameter that determines the influence the distance metric has on the weights. Note that the

default weight function chosen for our research is the same as provided by |Birbil et al., 2021].

Feature generation. The third step in LESS is feature generation. This is where we
transform our original data (X, y) into feature data points in order to add the local proximity
information into the data used to train the global predictor. We do this by combining the
locally trained models £(z| X, y;) and the previously calculated weights w;(x) in the following

manner:

i) = [wi (@) L2 X1, 91), - Wi (23) L(2| X, Yo )T (2)

These feature vectors contain additional information regarding the relative position of a data

point to the clusters.

Global learning. The second to last step consists of learning a regression model using
the feature data vectors previously generated. The aim is to use the feature vectors z; to
predict the outcome y;. To simplify notation, we will use Z to be the matrix containing
the feature vectors z] as rows. We denote the trained global model as G(z|Z,y) so that the

prediction of a sample o € R becomes go = G(20|Z,y) where 2, is defined by [2|

Averaging. Finally, averaging can be applied when subset creation is random. In the
original LESS model random anchor points are chosen. Thus, averaging can be applied to
reduce variance. When clustering methods contain a randomization parameter for initial
centroid initialization, averaging will also be applied. When averaging is applied through r

iterations of the above algorithm, the final prediction will be:

. 1 < 01 (¢
=-) AL 3
o =~ ZZIQ(ZO |Z\9 ) (3)



where z((f) refers to || for iteration £.

LESS extensions

Here we present the adjustments made in our implementation of the model. There are three
major changes we made in our version of LESS. The first change appears in the first step
where we used clustering algorithms to form subsets instead of the random anchor selection
method used in the original model. In the second step we lifted the constraint of using the
same type of regression model for every subset and enabled different types of models to be
fitted on different subsets. The last adaption made was in step four of the process, where we

test the effect of using different types of regression models for the global predictor.

Using clustering methods. Since the random anchor selection technique picks random
points as cluster centroids and directly assigns the clusters, there is no guarantee of finding
well-separated clusters. Since the separation of clusters is essential for prediction accuracy,
considering clustering methods instead of random assignments seems like a logical step. To
form clusters, we consider the K-means, Birch, Optics and Mean-Shift algorithms. This
means we tested our model using all of these alternatives, and choose the best performing

one for each dataset.

K-Means [Sreedhar et al., 2017] begins by choosing m different initial centroids and as-
signing each data point to the nearest centroid. Once these clusters are formed, the algo-
rithm computes the new centroid of each cluster by averaging over all points in a cluster.
Each data point is then again assigned to the nearest centroid and this is done until (local)
convergence is reached i.e. the clusters don’t change anymore. K-Means is a fairly simple

clustering method and is efficient for most datasets with even cluster sizes with flat geometry.

In contrast to the K-Means algorithm, Birch [Zhang et al., 1996] uses hierarchical clus-
tering. Birch builds a height-balanced Clustering Feature Tree which contains information
about the data instead of all the actual input data. Since Birch uses a compressed version

of the input data, it is very practical for high-dimensional, large datasets.

The Optics algorithm [Ankerst et al., 1999 finds density-based clusters in spatial data.

This means that it identifies clusters based on the idea that clusters are continuous regions of



high point-based density, separated by regions of low point-based density. Optics clustering
can be used for datasets of uneven cluster sizes, variable cluster density, and it is also good

for outlier removal.

Finally the Mean-Shift algorithm is based on Kernel Density Estimation, which estimates
the probability density function of the data. As the name suggests, Mean-Shift tries to shift
the data points towards the nearest peak of the density function. Mean-Shift uses a band-
width parameter to evaluate the number of clusters. A large bandwidth will often result in

fewer clusters, and a small bandwidth will result in more clusters.

Optimized local and global learning. A large restriction in the original LESS model
is that every subset within an iteration of the process is trained with the same type of re-
gression model. If a subset has a non-linear shape and the local estimator happens to be a
linear model, the prediction accuracy will be significantly lower. This lead us to remove this
constraint by allowing the user to specify a number of different regression types £;(z|X;, y;).
Once the subsets are formed, our algorithm trains each of the provided regression techniques
on the first cluster and chooses the technique that produces the lowest mean squares error.
It does this iteratively for the clusters, until every cluster has an associated trained model.
The models provided for this step are entirely up to the user. However, we mainly focus our

efforts on simple linear regression, Kernel Ridge regression and on Decision Tree Regression.

Kernel Ridge regression is a method that combines Ridge regression with the kernel trick.
Ridge regression is used when the explanatory variables (X;) are highly correlated, so that the
regular LR parameters would be difficult to compute. The kernel trick uses kernel functions
to transform the data into a higher dimension, without actually computing new coordinates.
Decision Tree regression uses a regression tree to form the best fitting model. When forming
the tree, mean squared error is used to evaluate which decisions to make.

For our last extension, we test model performance when using different regression techniques
for the global estimator. Again, we consider linear regression, Kernel Ridge regression and

Decision Tree regression.
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Figure 1: LESS variants using K-Means clustering with varying number of clusters and
different local estimators provided. linear (LR), kernel ridge (KR) and decision tree (DTR)
regression. Global learning is done with LR

LESS example

Now that we have introduced our version of LESS, we will present an example of how our

implementation works on a 2-dimensional dataset generated with a sin function, similar to

the approach used in [Birbil et al., 2021]. In Figure 1, the blue dots represent the data points

in our training set, and the red dots represent the test set. From left to right, we see the
effect of increasing the number of clusters, and from top to bottom we see the effect of added
local estimators.

In the top two rows, we clearly see that the fit of LESS highly depends on the number of
clusters provided to the K-Means method when using LR and KR. We see that too few
clusters lead to a bad fit, but too many clusters may lead to overfitting. The bottom row,
where Decision Tree regression is added, we see that the number of provided clusters plays a
significantly smaller role. This is because decision tree regressors can find non-linear patterns
in the data. We observe an increased variance in the bottom row which could mean that

adding the decision tree regressor will cause overfitting.

Results

In this section we compare the performance of seven different models on the datasets men-

tioned in the Data section. The models we tested are the following. Firstly, our Advanced
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LESS, which implements all of the possible extensions proposed in the methodology sec-
tion. This method uses clustering, a set of local learners, and is tuned using different global
learners. Next, we propose an algorithm without tuning of the global learner (LESS_cl_ll),
meaning it uses clustering and a set of local learners. Our third model only uses clustering
(LESS_cl), and is most similar to the default LESS. Furthermore, we test three state of the
art regression techniques. We use a Random Forest (RF) approach, a Gradient Boosting
(GB) approach and a Support Vector (SVR) approach. We implemented these methods in
Python 3.7, and used a similar approach as [Birbil et al., 2021].

The default LESS uses linear regression for both local learning and global learning. Fur-
thermore, the percentage of samples parameter is used to compute the number of neighbors
and the number of subsets. The random anchor selection method is used to form subsets.

Since the Advanced LESS and the LESS_cl_ll both use a set of local learners, we must specify
this set before running our regressions. For both methods, we provided {LR, KR, DTR}.
For all four versions of LESS, we used the distance function d(z,2') = ||z — /|| and a A
value of 0.01. The number of replications LESS uses when the averaging step is performed
is set to 20. Furthermore, we used 5-fold cross validation for all of our tests. Since all of
these methods’ performances rely on hyperparameters, we have used hyperparameter tuning

for each of them. All of the hyperparameter sets used for tuning can be found in Table 2.

Table 2: Here we see the hyperparameters that were tuned for each of the given regression
techniques.

Method Hyperparameter Sets

Advanced LESS clustering algorithm, {K-Means, Birch, Optics, Mean-Shift }; number of clusters®, {5, 10, 20, 50, 100, 200, 500};
global estimator, {LR, KR, DTR}

LESS_cl ll clustering algorithm, {K-Means, Birch, Optics, Mean-Shift}; number of clusters*, {5, 10, 20, 50, 100, 200, 500};

LESS_cl clustering algorithm, {K-Means, Birch, Optics, Mean-Shift}; number of clusters*, {5, 10, 20, 50, 100, 200, 500};

Default LESS percentage of samples, {0.01, 0.05, 0.1, 0.2, 0.3}

Random Forest (RF) number of estimators, {100, 200}

Gradient Boost (GB) learning rate, {0.01, 0.1, 0.5}; number of estimators, {100, 200}

Support Vector Regression (SVR) | regularization parameter, {0.1, 1.0, 10.0, 100.0}

* this parameter set is only used when K-Means or Birch is used

In Table 3 we see the results of the models tested on our datasets. Here, we have high-
lighted the best performing model for each dataset.
We see that exchanging the random anchor method for a clustering method is beneficial i.e.
leads to a lower mean squared error (mse) in only 4 of the datasets. However, when we add
the additional feature of providing a set of local regressors instead of only using LR, we see

a significant decrease in the mse for 9 of the datasets when compared to both the default

12



model as well as the model using clustering. Finally, the Advanced LESS performs best of
all of the proposed LESS models. It significantly outperforms all other LESS models for six
of the datasets. For CPU, the default model performs best. and for Abalone, Housing and
Auto Advanced LESS and LESS_cl_ll share the lowest mse among the LESS models.

When comparing our the LESS models to the other methods, we see that the GB model
performs best on 5 of the 10 datasets. Although Advanced LESS does not manage to outper-
form all models in many datasets, we can observe that the overall performance of Advanced

LESS is on par with the performance of the best performing algorithm for most datasets.

Table 3: Results for the regression models trained on each of the datasets. Here, the first
value in each cell shows the average mean squared error (mse) using 5-fold cross-validation,
and the value between brackets shows the std. of the mse.

Problem Advanced LESS LESS_cl_ll LESS_cl Default LESS RF GB SVR

Abalone 4.8807 (0.0247) 4.8807 (0.0247) 6.2842 (0.3203) 5.9353 (0.3198) 4.9871 (0.0373) 4.9041 (0.0593) 6.6556 (0.025)

Airfoil 1958998.6279 (475951.8814)  6206029.5957 (687151.1974)  13118842.1485 (4681233.8037) 150982503463 (866471.2806) 4649020.4174 (126805.2528) 4233168.8908 (367473.5918) 31296664.3464 (303804.6635)
CcCcpp 12.1935 (0.4465) 13.8933 (0.05) 37 (0.0462) 16.2186 (0.019) 12.2955 (0.0826) 12.185 (0.3412) 15.9826 (0.0245)
CPU 2628.2948 (1899.8197) 2628.2948 (1899.8197) 5283 (3103.2694) 955.8218 (682.8133) 5711.6423 (2757.6616) 4898.0992 (3087.5366) 17174.9187 (5 846)
Energy* 5801.0326 (114.0565) 7262.9989 (12.4729) 51 (15.5816) 8443.4848 (56.4698) 5392.9915 (41.583) 6519.6993 (134.4414) 8079.727 (.

Housing 11.074 (2.0173) 11.074 (2.0173) 17.1607 (1.1664) 11.3743 (0.7842) 10.857 (1.1346) 10.1554 (1.0796) 14.7122 (3
Superconduct* | 109.9012 (1.1596) 182.5748 (10.1953) 211.761 (2.0709) 285.4954 (4.0851) 104.412 (0.9839) 129.3571 (1.898) 183.2393 (1.4789)
Fires 0.0063 (0.003) 0.0073 (0.002) 0.046 (0.0065) 0.0436 (0.0033) 0.0061 (0.0027) 0.0135 (0.007) 0.0377 (0.0037)

Auto 10.0068 (0.6242) 10.0068 (0.6242) 10.1316 (0.524) 10.6324 (0.7373) 10.4322 (0.6126) 10.4929 (0.9028) 10.2279 (0.2066)
Concrete 29.148 (3.2879) 34.2183 (0.9296) 97.1006 (2.4102) 79.5537 (20.9602) 26.3612 (2.4656) 21.4201 (1.8937) 39.1584 (6.5979)

* For these datasets the Optics and Mean-Shift clustering algorithms did not converge

Conclusion

Now that we have analysed the results of all different LESS extensions, we can find an answer
to each of3 our sub-questions, which will help us answer our main research question. To recap,

our sub-questions were the following:

SQ1. How does LESS prediction accuracy change when using clustering methods for subset

generation?

SQ2. How does LESS prediction accuracy change when we provide multiple regression

techniques in the local learning step?

SQ3. How does LESS prediction accuracy change when using non-linear regressors as global

estimators?

To find an answer SQ1 we compare the performance of LESS cl with Default LESS. What
we see in the results section is that only adding a clustering method to the default LESS

method does not necessarily lead to an increase in prediction accuracy (lower mse), and in
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six datasets even leads to a significant reduction. This means that simply adding a clustering
method does not lead to better performing LESS model.

For SQ2, we take a look at the performance of LESS ¢l ll. Now that we are using a set of
local regression techniques instead of a single one, we see that prediction accuracy signifi-
cantly increases (lower mse). LESS_cl_ll outperforms both LESS_cl and Default LESS in 9
datasets. Providing additional regression techniques for the local learning step significantly
improves prediction accuracy.

To answer SQ3 we look at the difference between Advanced LESS and LESS_cl_ll. Logically,
we see that Advanced LESS always performs at least as well as LESS _cl_ll, due to the fact
that the global estimator that is used in LESS ¢l Il (LR) is also given in the hyperparameter
tuning set of Advanced LESS. The two methods have the same mse for 4 datasets. For the
other 6 datasets, Advanced LESS significantly outperforms LESS_cl_ll.

Now that we have answered our sub-questions we can try to formulate an answer to our
main research problem ” How can we increase prediction accuracy in the LESS model”. Only
adding a clustering method to the default LESS algorithm does not increase prediction ac-
curacy. However, both adding a set of regression techniques to the local learning step as well

as using different global estimators can significantly increase prediction accuracy.

There are some limitations to our work which could be addressed in following studies. Firstly,
we only tune a limited number of hyperparameters for the clustering methods. For Birch, the
maximum number of CF sub-clusters could be tweaked. For Optics, the minimum number of
samples needed to form a cluster, the maximum epsilon distance and the epsilon parameter
could be tuned both for better clustering performance, but also for faster convergence rates.
Furthermore, the method for finding the best local regressor on each subset was implemented
without splitting the subset into a training and testing set. Splitting the subsets into two
may reduce the chance of overfitting. However, this may increase computation time. Of
course, one could also test a larger variety of clustering methods, local regressor sets and

global predictors to further improve prediction ability.
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