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Abstract

The forecast combination puzzle is a phenomenon that the average of a set of forecasters is more

robust than a complex combination of those forecasters. In this paper, the SLOPE procedure is

used to construct a weighted combination to try and beat the simple average. Kremer et al.

(2022) used the SLOPE penalty function in the context of index tracking. They find that SLOPE

is able to produce similar results as other state of the art techniques. This was partly because

SLOPE is well-equipped to deal with groups in the data, which can also be useful when combining

forecasters. Forecasters from the European Central Bank are combined according to the SLOPE

procedure and are then compared with the average of these forecasters. The main finding is that,

although the SLOPE forecasters perform well, they do not significantly outperform the simple

average.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

The average of a set of forecasters is repeatedly found to outperform more advanced forecasting

combinations (Smith & Wallis, 2009). This is unintuitive as the quality of forecasters may differ

substantially, and different forecasters of the same variable can be highly correlated. Therefore, this

is a widely researched topic. Genre et al. (2013) dive into the shrinking of portfolio weights and

Samuels and Sekkel (2017) investigate whether trimming the dataset before averaging improved the

forecasts.

Diebold and Shin (2019) use a least absolute shrinkage and selection operator (LASSO) based

penalty to resolve this issue. However, this partially-egalitarion LASSO technique is inefficient as it

uses two steps. First it gives k selected forecasters a nonzero weight, after which these weights are

pulled towards 1/k. A more elegant solution is the SLOPE penalty function. Because of its design

it sets weights to zero and forms groups without having to use two steps.

The sorted L1 penalized estimator (SLOPE) procedure finds the weights that minimize the

difference between a benchmark and a weighted combination of factors. Kremer et al. (2022) use it

in the context of Index Tracking (IT), where an index is cloned by making a weighted combination

of the constituents of that index. However, it can also be used in a forecasting framework to create

a new forecaster that is a weighted combination of other forecasters.

Kremer et al. (2022) found that SLOPE was able to get similar results as other state of the art

techniques in the IT framework, which is partly caused by the fact that SLOPE is especially well-

equipped to deal with groups in the data. This can prove to be useful when creating a combination

of forecasters. When the simple average is taken of a group of forecasters, they are essentially placed

in one group with equal weights. Thus, the possibility to create more than one group could prove

to be useful in the creation of forecasters. This leads to the main research question of this paper:

“To what extent can the equally weighted forecaster be improved by using a

SLOPE-weighted combination of different forecasters?”

The forecasters that are combined are collected by the European Central Bank (ECB) in its

Survey of Professional Forecasters (SPF). The weights of these combinations are calculated by

the SLOPE procedure. This paper finds that SLOPE-weighted forecasters perform well, yet no

significant evidence is found that they outperform the simple average of the ECB forecasters.

The structure of this paper is as follows. First, the existing literature is used to explain why

SLOPE is used in a forecast combination framework. Thereafter, the methodology of the SLOPE
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penalty is explained. Then, the results found by Kremer et al. (2022) are replicated, after which the

SLOPE-weighted forecasts are evaluated, together with a LASSO and equally-weighted portfolio.

The conclusion concludes.

2 Literature

2.1 SLOPE procedure

Kremer et al. (2022) use the SLOPE procedure in the context of index tracking and hedge fund

replication. Index tracking or hedge fund replication focuses on replicating a benchmark index or a

hedge fund with a linear combination of the index constituents or with a set of risk factors.

This has become increasingly popular as more people want to generate similar profits as the

benchmarks, but purchasing all of the individual index constituents is time-consuming and hedge

funds carry restrictions like not being open to everyone (Giamouridis & Paterlini, 2010). The most

common way to construct tracking portfolios is by minimizing a certain tracking error between the

clone and the benchmark. For example, Rudolf et al. (1999) take the squared difference between

the returns of the benchmarks and its clone.

Creating sparse portfolios through penalty functions

When minimizing this error, the index tracking problem comes down to performing ordinary least

squares (OLS). However, because OLS only focuses on minimizing the error, it can occur that the

benchmark replica consists of a big number of small fractions of different assets. Because this is

costly to implement in practise (Giuzio et al., 2018), sparse portfolio’s with a small number of assets

are preferred. Penalty functions that penalize the inclusion of new assets into the portfolio are used

to create sparse portfolios.

One of the most well known penalty function is the least absolute shrinkage and selection

operator (LASSO) penalty, first used by Santosa and Symes (1986) and introduced to statistical

literature by Tibshirani (1996). Brodie et al. (2009) found that it is able to produce sparse clones

that take transaction costs into account and Giamouridis and Paterlini (2010) show that LASSO

can construct sparse and stable hedge fund clones.

However, LASSO still has a number of disadvantages. For example, when assets are equally

correlated, LASSO randomly picks one (Bondell & Reich, 2008). The most notable problem with

regards to this paper is that LASSO is stuck in the no short-sale area given a budget constraint
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(DeMiguel et al., 2009). This means that it is not able to have negative weights for the optimal

solutions.

There are non-convex solutions to this but they require a lot of computational power. The most

elegant solution is the sorted L1 penalized estimator (SLOPE) penalty, proposed by Bogdan et al.

(2013) and introduced to the index tracking framework by Kremer et al. (2022). Due to the form of

the penalty function, SLOPE is able to group strongly correlated assets together. This is a feature

that can be very useful in the context of index tracking, which is shown by the fact that SLOPE is

able to produce similar results as other state of the art methods (Kremer et al., 2022).

2.2 Forecast combination

As the SLOPE method finds a combination that mimics a certain benchmark, it can also be used

to create a forecaster. The benchmark becomes the variable that is being forecasted, and it is

mimicked by a linear combination of a number of other forecasters.

There has been plenty of research into the combination of different forecasting techniques. Bates

and Granger (1969) were one of the first to show that a combination of forecasts often leads to a

better performance. Even a simple average of the forecasters can lead to dramatic performance

improvements (Clemen, 1989). More advanced geometric techniques have been used by for example

Hsiao and Wan (2014), who used different eigenvector approaches to determine the best forecaster.

SLOPE-weighted forecast combinations

Diebold and Shin (2019) used a LASSO-based approach, the partially-egalitarian (pe)LASSO penalty,

to combining forecasts, where they discovered that it did not outperform the average of the forecasts,

but they state that new procedures based on the LASSO could prove to be valuable extensions.

A natural upgrade on the LASSO penalty function is the SLOPE penalty function. Contrary

to the the peLASSO used by Diebold and Shin (2019), it does not need two steps to set weights

to zero and then pull them into groups. This is done at once because of the form of the penalty

function.

The grouping procedure of SLOPE was one of the reasons why it performed so well in the index

tracking framework Kremer et al. (2022) used it in. However, it could also prove to be a valuable

feature in the forecast combination framework. When using the average of different forecasters,

all of these forecasters are essentially put into one group with the same weight of 1/(amount of

forecasters).
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Being able to form more than one group to put these forecasters into could lead to forecasting

improvements. Such groups could be formed in a way where bad forecasters are put together in a

group with weight zero, while better forecaster are put together in a group with a higher, nonzero,

weight. In such a framework, it is still possible to assign the biggest weights to a small number of

best performing forecasters.

This all makes me believe that research into using the SLOPE procedure to create a forecaster

can be a valuable addition to the preexisting literature.

3 Methodology

The notation used in this section is the same as in Kremer et al. (2022). The goal in both the index

tracking and forecasting framework is to mimic a certain benchmarks time series, which is denoted

by T × 1 vector Y = [Y1, Y2, · · · , YT ]. This clone is made by making a weighted combination of k

different factors. R = [r1, · · · , rK ] is the T ×K matrix of those factors, with rj = [rj1, r
j
2, · · · , r

j
T ]

the T×1 the individual time series. For index tracking k different index constituents are considered,

for the forecast combinations k different forecasters are combined.

Finding the optimal weights

The optimal weights ŵ minimize the squared 2-norm of the difference between the benchmark and

the weighted combination, while considering a penalty function and the constraint that the weights

are nonnegative and should add up to one:

argmin
w∈RK

∥Y −Rw∥22 + ρλ(w),

s.t. 1′w = 1,

wi ≥ 0, ∀i = 1, . . . ,K.

(1)

In the index tracking framework, 1′w = 1 is a budget constraint that ensures that the constructed

portfolio can be afforded. For forecasting purposes, this constraint is still present because a com-

bination of unbiased forecasters stays unbiased when their weights add up to one. As the forecasts

come from the ECB, a certain level of quality can be expected from them and thus unbiasedness of

the individual forecasters is a reasonable assumption.

The assumption of non-negative weights also holds for both the index tracking problem and the

combining of forecasts. Kremer et al. (2022) use it to ensure that no short sales are performed. In

the forecast combination framework, it is also included. This is because, again, a certain level of

4



quality is expected of the ECB forecasters and thus it is not expected that they would get assigned

negative weights. By including this constraint, extra information is added to the model.

Penalty functions

Two different forms of the penalty function ρλ(w) are considered in this paper. Namely, the

aforementioned LASSO and SLOPE penalty functions. The LASSO penalty has the following

form:

ρλ(w) = λ×
K∑
i=1

|wi|, (2)

where every weight is punished by the same value of λ. This is not the case for the SLOPE penalty,

which is a variation on the LASSO penalty. It looks as follows:

ρλ(w) =

K∑
i=1

λi|w|(i) = λ1|w|(1) + λ2|w|(2) + · · ·+ λK |w|(K), (3)

s.t λ1 ≥ λ2 ≥ · · ·λK ≥ 0 and |w|(1) ≥ |w|(2) ≥ · · · |w|(K),

where the lambdas are a sequence of tuning parameters chosen before the minimization process and

|w|(i) corresponds to the i-th largest weight of weight vector w.

Grouping property of the SLOPE penalty

The SLOPE structure promotes the formation of different groups that have equal weights, which

works as follows. Keep in mind that the penalty function ρλ(w) in (3) should be kept small.

Increasing the second biggest weight |w|(2) is penalized less than increasing |w|(1) with the same

amount as λ1 > λ2. Therefore, increasing |w|(2) costs less up until the point where |w|(1) = |w|(2).

From there, increasing one of the two weights makes it the largest weight and thus it is punished

by the bigger value of λ1.

Slope promotes grouping because of the high cost to break out of this impasse. It is important

to note that SLOPE does not force groups together, when it is not optimal to form a group this will

not occur. The choice of lambda also plays a part in this, as bigger gaps between the lambdas means

that SLOPE is more likely to form groups. The bigger the gaps between the different lambdas, the

higher the cost to break out of the equilibrium, relative to increasing other values, which makes it

more likely that groups are formed.
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4 Replication of Kremer et al. (2022)

Kremer et al. (2022) use SLOPE to create sparse index clones. After introducing the used method-

ology, a simulation study is performed to examine the behaviour of SLOPE for generated data.

Following this, clones of different hedge funds and S&P indices are created and their performances

are evaluated. This section first replicates the simulations. Thereafter, the index clones are repli-

cated and evaluated.

4.1 Simulation study

The simulation study is performed to examine the behaviour of SLOPE on data that has been

generated with an underlying group structure. The design of the simulation follows problem (1),

where solution w is of interest because it minimizes the difference between a given benchmark vector

Y and return matrix R.

Simulation design

Kremer et al. (2022) assume that asset return matrix RT×K follows an underlying risk factor

structure, where there are S risk factors that are responsible for the differences between the asset

returns. Assume that FT×S = [f1 f2 · · · fs] is the risk factor matrix, with fi the T × 1 vector of

returns for the i-th risk factor. With BS×K as the loading matrix for the individual risk factors, the

return matrix R can be constructed as follows, where ϵ is a T ×K matrix of independent normally

distributed error terms,

R = F × B + ϵ. (4)

The simulated data has T = 500 observations, K = 99 amount of assets and S = 3 risk factors.

To construct matrix R, the same procedure as Kremer et al. (2022) is performed. This means that

the risk factors f1, f2, f3 are independent and follow the multivariate standard normal N(0, I3×3)

distribution and loadings matrix BS×K consists of 33 copies of each of the following columns: [0.77

0.64 0]’, [0.9 0 -0.42]’ and [0 0.31 0.64]’. The columns of the resulting matrix R are normalized,

after which it is used to create the benchmark Y:

Y = Rw + v, (5)

where v is a T × 1 vector of normally distributed error terms, with v ∼ σ×N(0, 1) and σ = 0.0015.

For w, two scenarios are considered. This replication section focuses on the first scenario, where w
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is chosen in such a way that the assets belonging to group 1, 2 and 3 have coefficients of 0, 2 and

3, respectively. This leads to the following w:

w = [0 0 · · · 0 0︸ ︷︷ ︸
Group1

2 2 · · · 2 2︸ ︷︷ ︸
Group2

3 3 · · · 3 3︸ ︷︷ ︸
Group3

].

Choosing λ

To use the SLOPE-penalty (3), a non-increasing sequence of tuning parameters is needed. Kremer

et al. (2022) follow Bogdan et al. (2013) by choosing the tuning parameters as λi = αΦ−1(1−qi), ∀i =

1, . . . , k, where Φ is the CDF of the standard normal distribution and qi = i × θ/2k. The value of

θ determines how fast the lambda sequence decreases and is set to 0.1.

What value α should have is up for debate. Bellec et al. (2018) found that α should be slightly

larger than σ, while Bogdan and Frommlet (2020) discovered that setting α < σ is beneficial for real

life data. Based on these results and the value of σ (0.0015), Kremer et al. (2022) vary the value

of α on a grid of 12 logarithmically spaced points between 10−3.5 ≈ 0.0003 and 10−1.7 ≈ 0.02. As

a starting point, a sequence with no difference between the lambda values is used, this particular

SLOPE penalty is equal to the LASSO penalty. The different lambda sequences can be found in

figure 1.

Figure 1: Lambda sequences

Simulation results

Kremer et al. (2022) perform a simulation where the R and Y matrices are simulated 1000 times

for which problem (1) is solved for each of the 12 lambda sequences. This leads to 1000 different ŵ
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vectors for every lambda sequence. The number of nonzero coefficients and the number of groups

in the obtained weight vectors are recorded. Figure 2a shows the average of these values over 1000

iterations for every lambda sequence. To measure the performance, the Mean Squared Error (MSE)

and the Mean Squared Prediction Error (MSPE) are computed. They are calculated as:

MSE(ŵ) = E[||w − ŵ||22], (6)

MSPE(ŵ) = E[||Rw −Rŵ||22], (7)

wherew and ŵ are respectively the true and estimated portfolio weights and ||w−ŵ||22 =
∑K

i=1(wi−

ŵi)
2. The average over 1000 iterations of both the MSE and MSPE for the different lambda

sequences can be found in figure 2b.

(a) Nonzero groups and coefficients (b) Average MSE & MSPE

Figure 2: Simulation results

Figure 2 and the results derived from it are similar to the results from Kremer et al. (2022). In

figure 2a it can be seen that when the gaps between lambdas is zero, and thus there is a LASSO

penalty, the number of groups is approximately equal to the number of coefficients. This means

that no groups are formed which corresponds with the behaviour that is expected of LASSO. As

the gaps become bigger the SLOPE penalty begins to form and assets get grouped together. This

is in line with the theoretical findings of section 3. Figure 2b shows that this leads to a better

performance as both the MSE and MSPE decrease. Larger gaps lead to a more severe penalty when

including new variables, which leads to SLOPE grouping almost all of the assets together. Both

the MSE and MSPE values start to increase again when this happens.
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4.2 Application on real world data

After applying SLOPE procedure to simulated data, Kremer et al. (2022) use it on real world data

where S&P 100, 200 and 500 indices are cloned. This is done by solving problem (1), where the

returns of the index in question and the returns of the individual constituents of this index are used

as Y and R, respectively.

S&P data

The S&P 200 data was difficult to obtain and it focuses on the Australian market, as opposed to

the S&P 100 and 500 which focus on the American market. Therefore, this replication section omits

the investigation of the S&P 200 index.

The returns of both the S&P 100 and S&P 500 and of their respective constituents were obtained

from Datastream for the period of 31 December 2004 until 29 January 2016, which leads to T = 2890

return observations. There are stocks that got included into the S&P indices between 2004 and

2016. When this is the case, the data up until the point they got included is missing and thus these

stocks are dropped from the dataset. Because of these omissions the S&P 100 has K = 86 assets

and the S&P 500 has K = 409 assets.

Rolling window explanation

The performance of the produced index clones are investigated by means of a rolling window ap-

proach with a window size of τ = 750 daily observations. At time t, the previous 750 observations

are used to estimate ŵt. Using this vector, the out of sample excess return between the constructed

clone and the index can be estimated as: Yt+i − Rt+iŵt. This is done for i = 1, . . . , n, after which

the rolling window moves forward and drops the first n and adds the next n observations and the

process starts again. Choosing n = 21 ensures that the portfolio is rebalanced monthly. Because of

the amount of observations T = 2890 and the values n = 21 and τ = 750, the window rolls forwards

M = 101 times. This leads to 101 different optimal weight vectors ŵt.

Choosing λ

Similar as to the simulation study, a lambda sequence is needed for the penalty function and it is

constructed in the same way as before. The method of Bogdan et al. (2013) is followed again which

leads to tuning parameters λi = αΦ−1(1 − qi), ∀i = 1, . . . , k, where Φ is the CDF of the standard

normal distribution and qi = i× θ/2k with θ = 0.1. Kremer et al. (2022) use a grid of 100 linearly

spaced alphas, however it is not specified between what values this grid lies. In this paper, the same

upper and lower bound of 10−3.5 ≈ 0.0003 and 10−1.7 ≈ 0.02 from the simulation study are used.
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Additionally, a LASSO penalty is also considered, for which the lambdas do not decrease after the

initial value is set: λ1 = λLASSO.

The optimal tuning parameter is chosen by minimizing a criterion inspired by the Bayesian

information criterion (BIC), which focuses on a trade-off between the performance and the amount

of active weights. The chosen lambda sequence is the one that minimizes:

SC = Mn× log

(∑M
t=1

∑n
i=1(Y t+1 −Rt+iŵt)

2

Mn

)
+ log(Mn)×

∑k
i=1 I(wi ̸= 0)

k
, (8)

where I(·) is an indicator function and thus counts the amount of active weights of the portfolio.

The first part keeps the tracking error volatility low, while the second part keeps the amount of

active positions low. Equation (8) slightly deviates from the information criterion used by Kremer

et al. (2022) as they deviated from the traditional version of the Bayesion Information Criterion

(BIC).

Evaluation criteria

With the obtained lambda, optimal weight vector ŵ can be calculated. The tracking ability of the

clones are then evaluated by looking at the tracking error volatility (TEV) and the tracking error

(TE):

TEV =
1

Mn

M∑
t=1

n∑
i=1

(Y t+1 −Rt+iŵt)
2, (9)

TE =
1

Mn

M∑
t=1

n∑
i=1

(Y t+i −Rt+iŵt). (10)

These can then be used to compute the information ratio, given by the ratio of the TE to the

TEV. Because Kremer et al. (2022) are interested in creating a sparse portfolio that is cost efficient,

statistics on the total number of active positions (AP) and the average total turnover (TO) are

included. These statistics are given by:

AP =
1

M

M∑
t=1

K∑
i=1

I(wi,t ̸= 0), (11)

TO =
1

M

M∑
t=1

K∑
i=1

|wi,t−1 − wi,t|). (12)

Because the created portfolios ideally should perform well out of sample, the predictive abilities of

the models are analysed as well. The predictive R2
OOS is given by:

R2
OOS = 1−

∑M
t=1

∑n
i=1(Y t+1 −Rt+iŵt)

2∑M
t=1

∑n
i=1(Y t+1)2

. (13)
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Empirical results

The values of all the introduced statistics for both the LASSO and SLOPE penalty on the S&P

100 and 500 data can be found in table 1. An optimal strategy has good tracking capabilities with

respect to the index. We see that for both the S&P 100 and 500 indices SLOPE has lower values

for both the tracking error volatility and the tracking error.

Additionally, a low number of active positions and turnover ratio are desired to create a sparse

and cost-efficient clone. LASSO has slightly lower values than SLOPE for these statistics for both

the S&P 100 and S&P 500 indices. Finally, a high R2
OOS is desired to evaluate the out of sample

performance. Both SLOPE and LASSO show the same value of 0.99 for this criterion for both

indices.

S&P100 S&P500

LASSO SLOPE LASSO SLOPE

Tracking Error Volatility (in%) 5.10 4.98 3.10 2.90

Tracking Error (in%) 0.90 0.75 1.63 1.48

Information Ratio 0.176 0.151 0.526 0.510

Active Positions 79 81 276 321

Turnover (in%) 0.042 0.045 0.072 0.096

Predicted R2
OOS 0.99 0.99 0.99 0.99

Table 1: Tracking statistics S&P indices

5 Extension: SLOPE-weighted forecasts

Kremer et al. (2022) use the SLOPE procedure for index cloning, where to goal is to clone an index

with a combination of its constituents. However, in this section the SLOPE procedure is used to

make forecast combinations.

5.1 Data and methods

The data used for this extension is the European Central Bank’s (ECB) quarterly survey of profes-

sional forecasters (SPF). The SPF is a panel that makes 1 year ahead predictions for the harmonised

index of consumer prices (HICP) inflation, real GDP (RGDP) growth and the seasonally adjusted

unemployment rates. The survey was launched in the last quarter of 1999 and the most recent
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observations are from the first quarter of 2022. The sample is cut off at the beginning of 2020, as to

not include the COVID-19 outbreak and its influence on the economic climate because this was an

exogenous shock to the market and it is not expected that the forecasts can predict such an event.

This means that there are a total of t = 82 time periods where the survey is sent to 130 different

forecasters.

Cleaning the data

There are many missing responses throughout the survey because forecasters sometimes do not

reply. Such an unbalanced dataset cannot be used to come to meaningful conclusions and to solve

this a procedure introduced by Genre et al. (2013) is used. First, the forecasters who did not

respond in 4 consecutive surveys, which corresponds to one calendar year, are excluded from the

data. This leaves 13, 12 and 9 forecasters for HICP, RGDP and unemployment, respectively.

After removing these unresponsive forecasters, there are still several gaps in the data. Genre

et al. (2013) introduced the following linear filter to fill these gaps:

ŷi,t+1 − ȳt+1 = βi(ŷi,t − ȳt) + ϵi,t+1, (14)

where ȳt is the average prediction of the forecasters that did respond. Missing observation ŷi,t+1

from forecaster i at time t+1 can be constructed as ȳt+1+βi(ŷi,t− ȳt). The βi values are estimated

with an OLS regression and measure to what extend a forecasters predictions are above or below

the mean of the other forecasters.

When the first observation of a forecaster is missing, the recursive formula 14 cannot be used

and this value will be set to ȳ1. In the rare case that the first 2 or even 3 values are missing, these

will also be set to ȳ2 or ȳ3. These values are not used when estimating the β values to prevent a

bias towards zero.

Combining the forecasts

With this cleaned and filtered ECB SPF data problem (1) is solved to find the best forecast combi-

nation for the three SPF variables. The rolling window approach used to create the forecasts ŷt+1|t

are the same as used in Diebold and Shin (2019).

The first 5 observations are used to ’burn in’ the forecasts, then for observations 6-20 all the

available data is used to create an optimal weight vector ŵ. For periods t > 20, the previous 20

observations are used to create a ŵ to construct a forecaster for time t+ 1.

The SLOPE penalty function (3) is used and the lambda sequence is given by λi = αΦ−1(1 −

qi),∀i = 1, . . . , k. A set of 100 linearly spaced α values is used to create 100 different lambda
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sequences. The value of α that leads to the ŵ’s with the lowest Root Mean Squared Error (RMSE)

is used. The RMSE is defined as:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
, (15)

where yi is the true value of the parameter and ŷi = Rŵ its estimator. The RMSE gives the error

that a forecaster has when making predictions, and thus low values are preferred.

Mincer-Zarnowitz regression

To evaluate the performance of our different forecasters, Mincer-Zarnowitz regressions, introduced

by Mincer and Zarnowitz (1969) are used. A Mincer-Zarnowitz regression is made by regressing the

target time series on the forecast as follows:

yt+1 = α+ βŷt+1|t + ϵ, (16)

for which the joint hypothesis of α = 0 and β = 1 is tested. An α of zero means that the forecaster

is unbiased, while a β of one means that the forecaster is efficient. These regressions are used to

determine if a single forecaster is able to accurately mimic the time series it is forecasting.

Diebold-Mariano test

To compare the performance of different forecasting methods against each other, another method

is used. The Diebold-Mariano (DM) test, introduced by Diebold and Mariano (1995), is used

to compare the performance of two different forecasting methods against each other. The null

hypothesis of the test is that two different forecasters have equal forecast accuracy. This test is

conducted by making use of the loss-differential. Let ŷ1 and ŷ2 be different forecasters for time

series y. Then, the residuals of forecaster i = 1, 2 at time t are calculated as ei,t+1 = ŷi,t+1|t − y.

With these, the loss differential at time t is defined as:

dt = e2t,1 − e2t,2.

Under the null hypothesis, the forecasters perform the same and the loss differential has value zero.

The DM test tests whether this true against the two-sided alternative hypothesis of the forecasters

not performing the same. The DM test statistic is:

DM =
d̄√

T−1 × V ar(d)
∼ N(0, 1), (17)

where a significant positive (negative) DM test statistic implies that forecaster 1 (2) has a larger

error than the other forecaster and thus performs worse.
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5.2 Results

In this section, the SLOPE-weighted forecasts are evaluated. They are compared to forecast com-

binations made with the LASSO penalty and to an equally weighted combination of all the ECB’s

forecasters.

Figure 3 shows the different SLOPE weighted forecasts and the equally weighted ECB’s forecasts

against the levels of inflation, real GDP and unemployment. The figure shows that the predictions

seem to be somewhat lagged behind the true value of the parameters. This is not unexpected when

taking into account that SLOPE chooses combinations of one year ahead forecasts. Additionally, it

can be observed that the SLOPE forecaster and the ECB average are similar and that they follow

the true value quite closely.

RMSE values

Table 2 shows the RMSE values of the different forecasters for the three forecasted variables. We

observe that for the HICP inflation, the SLOPE and LASSO forecasters have a lower RMSE than

the ECB average. Between these two, SLOPE has a slightly smaller RMSE than LASSO. Regarding

the real GDP, the RMSE values lie much closer together. For the ECB average and LASSO, the

values are almost the same, with SLOPE being slightly below them. Finally, for the unemployment

forecasts, the ECB average has the lowest RMSE, with SLOPE and LASSO being almost equal.

HICP RGDP UNEMP

RMSE

ECB average 0.811 1.427 0.727

LASSO 0.762 1.428 0.740

SLOPE 0.758 1.420 0.739

Table 2: RMSEs for different forecasting methods
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Figure 3: Graphs with the true values and the forecasts of the three different ECB SPF variables

Mincer-Zarnowitz results

The results of the Mincer-Zarnowitz regression can be found in table 3. What stands out is the fact

that all three the forecasters predict the HICP inflation well, but are not able to accurately predict

the unemployment levels. For SLOPE-weighted HICP forecasts, there is not enough evidence to

reject the null-hypothesis of bias and inefficiency at even the 10% level. Likewise, this is also the

case for the LASSO forecasts and the ECB average. However, for the ECB average the parameter

values lie further away from the null parameters which translates into lower p-values.

For the real GDP forecasters, the SLOPE forecasts still perform well as they do not reject the
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null-hypotheses at the 5% level. However, they would reject at the 10% level. This is also the case

for the α of the LASSO forecast, but there the null hypothesis of β = 1 would reject at even the

5% level. Finally, both the α and the β in the Mincer-Zarnowitz regression for the average of the

ECB forecasters would not reject at the 5% level and the β does not reject at the 10% level.

The unemployment forecasters do not perform that well according to the Mincer-Zarnowitz

regression results. All three the different forecasters reject both the null hypotheses of α = 0 and

β = 1, as all the p-values are ≤ 0.001. This seems odd, as the RMSE values for the unemployment

forecasts were similar to the RMSEs of the forecasters for the other two variables.

HICP RGDP UNEMP

SLOPE α -0.03 (p = 0.923) 0.37(p = 0.075) 2.27(p < 0.001)

β 1.09 (p = 0.626) 0.78(p = 0.052) 0.77(p < 0.001)

LASSO α -0.01 (p = 0.986) 0.35(p = 0.092) 2.29(p < 0.001)

β 1.06 (p = 0.720) 0.77(p = 0.043) 0.774(p < 0.001)

ECB average α -0.60 (p = 0.240) -0.59(p = 0.065) 1.82(p < 0.001)

β 1.42 (p = 0.174) 1.28(p = 0.139) 0.82(p = 0.001)

Table 3: Parameter estimates of the Mincer-Zarnowitz regressions with between brackets the p-values of the

α’s and β’s being equal to 0 and 1, respectively.

Diebold-Mariano results

The Diebold-Mariano statistics for the HICP inflation, real GDP and unemployment forecasts can

be found in table 4, 5 and 6, respectively. The lowest p-values can be found in table 4, where the

SLOPE and LASSO forecasts have a negative DM test statistic when compared to the ECB average.

However, we observe that none of the tests find enough evidence to reject the null-hypothesis

of dt = 0, at any of the usual significance levels. This is somewhat disappointing as it means that

there is not enough evidence found to conclude that a SLOPE-weighted combination outperforms

the equally-weighted forecaster. Nonetheless, it does mean that the SLOPE weighted forecast

combination is not worse than the equally weighted forecast combination, which is known to be a

good forecaster.
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1

2
LASSO ECB average

SLOPE -0.30(p = 0.764) -1.25(p = 0.212)

LASSO x -1.29(p = 0.194)

Table 4: DM statistics of the error of forecast combi-

nation (1) minus the error of forecast combination (2)

with corresponding p-values for the inflation forecasts.

1

2
LASSO ECB average

SLOPE 0.47 (p = 0.642) -0.73 (p = 0.465)

LASSO x -0.74 (p = 0.458)

Table 5: DM statistics of the error of forecast combi-

nation (1) minus the error of forecast combination (2)

with corresponding p-values for the inflation forecasts.

1

2
LASSO ECB average

SLOPE -1.04(p = 0.296) 0.93(p = 0.351)

LASSO x 1.10(p = 0.269)

Table 6: DM statistics of the error of forecast combi-

nation (1) minus the error of forecast combination (2)

with corresponding p-values for the inflation forecasts.
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6 Conclusion

The goal of this paper was to answer the research question:

”To what extent can the equally weighted forecaster be improved by using a SLOPE-weighted

combination of different forecasters?”

This was done by combining ECB forecasts on inflation, GDP and unemployment according to

weights calculated with the SLOPE procedure.

Regarding the inflation and the GDP forecasts, the SLOPE combination has a lower MSPE than

the equally-weighted forecaster. However, in forecasting the unemployment, the equally weighted

portfolio has a lower RMSE than the SLOPE forecaster.

To formally examine whether one of the two forecasters outperformed the other, a Diebold-

Mariano test was performed. However, this test did not find significant proof that one forecaster

outperformed the other. Therefore, I cannot say with proof that a SLOPE-weighted forecaster is

an improvement over the equally weighted forecaster.

However, for the inflation forecasters, the SLOPE forecasts has a lower RMSE value than the

ECB average and the DM test statistic is nearly significant. This, combined with the fact that

SLOPE is well-equipped to make groups of forecasters, makes me believe that SLOPE-weighted

forecasts could still be a better choice than the simple average of a group of forecasters. To make

more use out of the grouping property of SLOPE, a larger set of forecasters could be used to make

a SLOPE-weighted forecast. This is something that could be investigated in further research.

18



References

Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Journal of the Operational

Research Society, 20 (4), 451–468.
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Appendix

For both the replication and extension part of this thesis, I made use of the matlab code that Philipp

J. Kremer sent which calculates the SLOPE weights.

Replication code

The code for the replication is in map Algo. For the simulation part, run replication simulation code.

For the S&P data, use replication spdata slope code for the SLOPE results and replication spdata lasso code

for the LASSO results. Line 11 in both these programs looks like this:

SP_X = xlsread(’sp100_2016.xlsx’, ’X’);

where sp100 2016 can be changed to sp500 2016 to get the results for the S&P 500 data. After this,

run replication plotter to create the figures in this paper. This code is not very clean and efficient

but it works, the code for the extension is more tidy.

Extension code

First run extension code.m. The different datasets for the three variables can be called in line 5,

which looks as follows:

data = xlsread(’SPF_data_clean.xlsx’,’HICP’);

and to change the variable from inflation, ’HICP’ can be changed to ’RGDP’ and ’UNEMP’. Note

that the unemployment data has zeros in them when a variable is missing, thus

X = cleanData(X,max_gap);

should be changed towards

X = cleanDataUnemp(X,max_gap);

When using this code on the unemployment data. After running extension code, Plotter.m can be

used to plot the values of the estimates against the true values and the equal weight portfolio. After

this, run Evaluation.m to calculate the evaluation criteria.
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