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Abstract

This paper uses eight models to research what important advertising channels are.
A logit model and three heuristics are used, namely first-, last- and linear-click. Those
four models are used as a benchmark for comparison with Markov models. The Markov
models range from first- to higher-order. The paper distinguishes the types of customer
journeys: impulsive, balanced and considered. The distinction is made in two ways:
using the length of the customer journey and the number of channels in the journey.
Two channels are the most important across the whole dataset and for the types of
journeys. Impulsive journeys have the same most important channel as the entire
dataset. In contrast, balanced and considered journeys also have another important

channel.
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1 Introduction

There are various ways how companies try to convince potential customers to buy their
items. Think of a billboard on the streets, an advertisement in a newspaper or a mail
from a company. All three are examples of advertising which can be explained as providing
information to persuade, remind or motivate consumers (Ratliff & Rubinfeld, 2010). Online
advertising is on the rise, whereas offline advertising used to be the most popular way of
advertising. Online advertising expenses increased over the past years in the United States.
In 1998 the expenses were $1.8 billion, they grew to $20 billion in 2007. Thus, the expenses
multiplied by ten within nine years. The growth of the internet is one of the reasons why
online advertising is growing so fast (Ratliff & Rubinfeld, 2010). Besides, online advertising is
cheaper than offline advertising (Goldfarb, 2014). Therefore, companies may decide to switch
partly or entirely to online advertising. The most significant advantage of the internet is
that targeting on the individual level is possible and that there is direct communication and
feedback (Barbu, Ponea, & Bogdanoiu, 2019). Also, the reach of the internet is one of the
advantages since it can reach customers on both a national and global level (Hanekom &
Scriven, 2002).

There are many ways how online advertising occurs, for example, via e-mail marketing
or as an advertisement on social media. Those two are examples of advertising channels
which promote something to potential customers (Advertising channel meaning, importance,
factors amp; example, n.d.). A customer follows a journey consisting of one or more channels
before making a conversion decision: a sign-up or a purchase. Hence, the customer journeys
come across one or multiple advertising channels, which the individual uses to choose whether
to make a purchase or not.

This paper uses a dataset which contains information on 10,000 customer journeys
(Markov model for online multi-channel attribution [R package channelattribution version
2.0.5], 2022). For each customer journey, information is available on the channels’ sequence
and the conversion decision. From the dataset, it is evident that there is variation in the
journey lengths and the number of channels in the journeys across observations. The shortest
journey has a length of one, and the longest journey consists of 89 clicks. The number of
channels varies from one to eight.

Because of the variation, it is quite probable that the journeys are not all the same.
Therefore, the journeys are split into three groups: impulsive, balanced and considered. The
distinction between the three types of journeys will be based either on the length of the
journey or on the number of channels in the journey. When the length of journeys makes

the differentiation between groups, impulsive journeys will be the shortest ones, balanced



journeys are of a medium length and considered journeys are the longest. Second, the
number of channels can determine the kind of the journey. Impulsive journeys contain the
least number of channels, and considered journeys contain the most. The group in the middle
consists of balanced journeys.

It will be interesting to see whether the subgroups behave differently from the complete
dataset. Therefore, results for both the whole dataset and each group are produced. The
results come from eight models. First, several heuristics will be applied. Two single-touch
attribution models, first- and last-click, and one multiple-touch attribution model, linear-
click, are discussed. The three heuristics and a logit model are used as benchmark models.
These models are compared with some more difficult models, namely first- and higher-order
Markov graphs. All eight models will be used to conclude the importance of the channels.

Two channels seem the most important since they have the highest removal effect and
attribution results. The full dataset finds one channel the most important across all models.
All impulsive journeys and the balanced journeys based on the number of channels find the
same results. Different results arise when considered journeys are based on the number of
channels or for all considered journeys. These journeys find that the most crucial channel in
all previously mentioned results is only the most important using last-click for those channels.
For first-click, linear-click and the fourth-order Markov model, the other channel is the most
important.

This paper continues with a discussion of the existing literature, which discusses the
various channels, the models and the split between the three groups. After that, the dataset,
the journeys’ length, and the number of different channels within the journeys are discussed.
The methodology discusses three heuristics, Markov graphs and the logit model. This section
also discusses the Receiver Operating Characteristic (ROC) curve and the two corresponding
measures. The split of the groups using the length and the number of channels is also
explained in the methodology. Then, the results are presented for the whole dataset and
subgroups. The predictive accuracy and robustness will be discussed before heading to the
attribution results of the specific channels. Furthermore, the conclusion summarizes the
results of the paper. The final section discusses the limitations of this research and provides

suggestions for further research.

2 Literature Review

As discussed before, numerous channels exist for online advertising. Previous studies have
mentioned several online advertising channels. An overview and description of those chan-

nels are shown in table Al. Table A2 shows which papers discuss which types of online



advertising in their paper. Anderl, Becker, Von Wangenheim, and Schumann (2016) discuss
eleven different channels, namely type-in, search engine advertising (SEA), search engine op-
timization (SEQ), price comparison, display, newsletter, retargeting, social media, affiliate,
referrer and other. A distinction between firm-initiated and customer-initiated channels can
be made (Wiesel, Pauwels, & Arts, 2011). Firm-initiated channels are the channels where the
advertiser determines when and where the advertising takes place. The customer-initiated
channels result from customers’ actions, such as typing in a search word in a search engine.
Anderl, Becker, et al. (2016) found that the attribution results for customer-initiated channels
were higher compared to firm-initiated channels across four datasets. Hence, those channels
are expected to be more effective. The channels type-in, SEA, SEO and price comparison
are customer-initiated channels. Thus, they should be more effective. The following four are
firm-initiated, and for the resulting three, we cannot say to which group they belong. Mei,
Hua, Yang, and Li (2007) introduce another type of online advertising: video advertising.
Partner website is also a type of online advertising (Anderl, Schumann, & Kunz, 2016).

The effectiveness of channels is interesting to research such that advertising can be done
most efficiently. First- and last-click attribution are two examples of applied heuristics.
First-click gives all the credit for the conversion to the advertisement that is clicked on first
(H. Li, Kannan, Viswanathan, & Pani, 2016). First-touch assigns much credit to the search
channel. This is logical since a customer who directly searches for a product is more likely
to be interested in the product. For last-click, the last advertisement is essential. Thus, the
difference depends on which advertisement gets the credit for the conversion. Those single-
click attribution approaches assign all the value to one channel and no value to assisting
channels (Anderson & Cheng, 2017). The multi-touch attribution model used in this paper
is linear-touch which assigns the same credit to all the channels that occur in the customer
journey (Ji, Wang, & Zhang, 2016).

Anderl, Becker, et al. (2016) introduce a new attribution framework to evaluate the effec-
tiveness and interplay of channels. They propose to use a graph-based Markovian framework
to research customer journeys. Those models have been used in the marketing field, and the
number of papers on this topic increased (Harary & Lipstein, 1962). Research about brand
loyalty and buying habits used the Markovian framework (Harary & Lipstein, 1962; Styan
& Smith Jr, 1964). The Markov chains can show dependencies between different channels
in a customer journey. First-order Markov models state that the present depends only on
the previous channel (Anderl, Becker, et al., 2016). Furthermore, Archak, Mirrokni, and
Muthukrishnan (2010) propose a higher-order model where the present depends on more
channels in the past. Anderl, Becker, et al. (2016) also used two logit models in their paper.

They used the heuristics and the logit models as benchmark models to compare against



the proposed Markovian framework. In their paper higher-order Markov models outperform
first-click, last-click and the simple logit model. A logit model that includes order effects
performs the same as higher-order Markov models.

As discussed, the types of journeys are based on the length of journeys or on the number
of channels present in the journeys. Hence, the length and the number of channels need to
be known to distinguish between the journeys. A distinction between customer journeys can
be made, and three types of journeys emerge (Wolny & Charoensuksai, 2014). The first type
is an impulsive journey where customers spend not much time searching for information on
the product. The customers make an impulsive or emotional choice when deciding whether
to buy the product or not. Their opinion can be influenced easily by their mood, seeing a
product on display, previous experience or friends’ opinion, for example. Balanced journeys
are the second type of customer journeys. Customers exhibit an extended search for infor-
mation and evaluation. Cognitive evaluation is used to decide on making the purchase or
not. Traditional and digital media can trigger those journeys. What can characterize those
journeys is that the customers often do research using different sources across channels.
Lastly, considered journeys are the most elaborated journeys before deciding on the pur-
chase. Those journeys have a large pre-shopping stage where customers look for information
from several sources such as news, product reviews, blogs and friends. This information is
crucial when someone wants to make a purchase.

Previous research states that it is challenging to determine the length of a customer
journey (J. Li, Abbasi, Cheema, & Abraham, 2020). An example of a problem they mention
is that only online purchases are recorded. Hence, offline purchases are not taken into
account. Albrecht (2002) explains that cookies can recognize users when they return to a
website. However, this is only possible if the user agrees with the cookies. When this is not
the case, this delivers a problem for determining the customer journey of that individual.
Furthermore, it is difficult to determine the length when a user uses several devices because
the customer journey cannot be measured across devices. Hence, the length of customer
journeys is not always easy to measure. Thus this paper contributes to existing research
since the length of the journeys is known in the dataset. The research on the journey length
and attribution is related to customer heterogeneity which is a common topic in marketing.
Therefore, it is interesting to research.

Furthermore, research about the interaction between specific channels already exists
(Anderl, Becker, et al., 2016). Lemon and Verhoef (2016) state that the rise of new channels,
for example, mobile channels, adds complexity to the journeys. The rise of new channels can
imply that there are more channels in the journey or that those new channels replace old

channels. The rise in the number of available channels makes it easier to get the message



to a big group. However, it becomes more challenging to capture attention to the message
(Berte & Guysels, 2007). Hence, there is enough research about the number of channels for
advertising or the interaction of channels. However, it is refreshing to research the number
of channels in customer journeys, which this paper does.

As discussed in the previous paragraph, the number of channels increased over time.
This increase resulted in multichannel marketing, defined as the "design, deployment, coor-
dination, and evaluation of channels to enhance customer value through effective customer
acquisition, retention, and development" (Neslin, Grewal, et al., 2006). Consumers interact
with firms through online and offline media channels due to the rise of the internet (Cui et
al., 2021). This led to omnichannel marketing, which emphasizes a unified customer experi-
ence. Cui et al. (2021) define omnichannel as "the synergistic management of all customer
touchpoints and channels both internal and external to the firm to ensure that the customer
experience across channels as well as firm-side marketing activity, including marketing-mix
and marketing communication (owned, paid, and earned), is optimized for both firms and
their customers".

However, optimization is difficult, leading to the omnichannel problem. Cui et al. (2021)
mention three challenges in their paper. The first one are data challenges. Information is
needed on the interaction with the customer for the whole customer journey. However, the
data might not always be accessible. Second, marketing attribution challenges arise. The
effect of channels needs to be known and thus the result of the spending on marketing.
However, this information is not always available, so the second challenge arises. The final
challenge is the customer privacy challenge, where the balance between obtaining data and

the infringement of customers’ privacy must be found.

3 Data

The dataset contains 10,000 observations, and each observation has four variables (Markov
model for online multi-channel attribution [R package channelattribution version 2.0.5],
2022). The first variable 'path’ indicates the customer journey and shows the channels
in the journey in order. The states have been made anonymous and are represented as greek

letters. This is depicted in equation 1.

C = {eta,iota, alpha, beta, theta, lambda, kappa, zeta, epsilon, gamma, delta,mi} (1)

The other three variables will be explained briefly, and the descriptive statistics of those



variables can be found in table 1. The variable ’total conversions’ explains how many
conversions occurred following that journey. The mean of this variable is 1.978, implying
that, on average, 1.978 conversions occur per journey. The maximum is 4,197. In the same
way, the variable 'total null’ shows the total amount of times the journey resulted in the null
state, which can imply no transaction or a transaction that eventually ended in the null state.
The minimum is 2, the mean 6.86 and the maximum 14,413. The journeys that did not end
up in a conversion are thus the difference between total null and total conversions. The last
variable in the dataset is 'total conversion value’, which indicates the total monetary value.
It is possible to assign different values to different conversions since some are worth more
than others. This variable will be able to show the total value driven by online advertising

across all conversions. Here the mean is 7.48, and the maximum is 12,452.

Table 1: Descriptive Statistics

Variable min mean max

Total conversions 0 1978 4,197
Total conversion value 0  7.480 12,452
Total null 2  6.860 14,413

Some channels occur more often in customer journeys than others. In table 2 you can
see how often the channels occur in total over all the journeys. The table shows that eta is
the channel that occurs the most with 35.34% followed by iota, beta and alpha with 20.48%,
14.42% and 12.70%, respectively. The channels delta and mi are not used often, with only
thirteen and two occurrences corresponding to 0.02% and 0.00%. Therefore, these channels
are removed for the rest of the paper. Thus, there are fifteen observations removed, and
19,985 are still present.

Table 2: Occurrences channels

Channel Eta Iota Alpha Beta  Theta Lambda Kappa Zeta Epsilon Gamma Delta Mi

Number 26,915 15,593 9,674 10,982 4,527 4,453 832 1,187 1,561 411 13 2
% 35.34% 20.48% 12.70% 14.42% 5.94% 5.85%  1.09% 1.56% 2.05%  0.54% 0.02% 0.00%

Anderl, Becker, et al. (2016) find a high share of paths of length one in their datasets. In
table 3 the length of the journeys is shown along with the number of times that this length
occurs. In this dataset, 8.03% are one-click journeys. Journeys with a length of three are the
most common, followed by journeys with two-clicks and four-clicks with 15.75%, 15.17% and
12.69% respectively. Paths that exceed ten clicks are shown in table 4 in tens. Most paths



are at most ten clicks; this is 87.48% of the total observations. The longest path consists of

89 clicks.

Table 3: Length of the paths with maximum length of 10

Length 1 2 3 4 5 6 7 8 9 10
Number 802 1,515 1,573 1,267 1,060 785 629 510 344 250
%o 8.03% 15.17% 15.75% 12.69% 10.62% 7.86%  6.30% 5.11%  3.45%  2.50%

Cum. % 8.03% 23.20% 38.96% 51.65% 62.26% 70.13% 76.42% 81.53% 84.98% 87.48%

Table 4: Length of the paths in tens

Length 1-10 11-20 21-30 31-40  41-50 51-60 61-70 71-80  81-90

Number 8,735 999 173 42 17 10 3 5 1
% 87.48% 10.01% 1.73% 0.42% 0.17% 0.10% 0.03%  0.05% 0.01%
Cum. % 87.48% 97.49% 99.22% 99.64% 99.81% 99.91% 99.94% 99.99% 100%

The number of different channels is shown in table 5. Most journeys consist of two
different channels, with 36.16% of all journeys. When there are two channels, there are two
different channels, but a particular channel can occur several times in the journey. Journeys
with three, one and four channels are the most common after the journeys with two channels
with 29.33%, 15.60% and 12.89%, respectively. There are no journeys with more than eight

channels. The average number of channels in our dataset is 2.60.

Table 5: Number of different channels within journey

Channels 1 2 3 4 5 6 7 8
Number 1,558 3,611 2,929 1,287 431 125 41 3
% 15.60% 36.16% 29.33% 12.89% 4.32% 1.25% 0.41% 0.03%

Cum. % 15.60% 51.77% 81.10% 93.99% 98.31% 99.56% 99.97% 100%

Most journeys have a length of three or two in this dataset. It is reasonable that the
length is relatively short because of the use of multiple electronic devices and the existence
of cookies on the internet. First, people use several electronic devices to browse the internet.
The customer journey only accounts for one electronic device, so the journeys are likely to
be short. Also, part of the journey may not be tracked because users did not agree with
the cookies or have installed an ad-blocker. Anderl, Becker, et al. (2016) used four different
datasets, and the average journey length was between 1.38 and 2.46 for those datasets.

Hence, short journeys occur in other datasets as well.



In this dataset, journeys contain most often two or three different channels. On average,
European marketers use seven channels (Teradata Corporation, 2013). More than 50% of
Dutch households used more than one channel to decide whether to buy white goods, financial
products or something in the travelling industry (Van der Veen & van Ossenbruggen, 2015).

Thus, we can say that the number of different channels can vary between fields and datasets.

4 Methodology

4.1 Heuristics

As discussed in section 2, two common applied heuristics in previous research are first- and
last-click attribution. Most web analytics packages use last-click as a default setting (Digital
Marketing Encyclopedia, n.d.). The web analytics system can tell where a customer comes
from, i.e. from which channel. However, customers mostly visit several channels before
deciding whether they want to make a purchase. Hence, deciding which channel to give
all or part of the credit for this purchase is essential. The last-click attribution gives all
credit for the purchase to the last visited channel before a purchase occurs. The first-click
attribution assigns the credit to the channel visited at the start of the customer journey. So,
those two heuristics assign all the credit to a single channel in the customer journey. We call
those single-touch attribution models.

As seen in table 5, 1,558 of the 9,985 journeys consist of only one channel. Hence, in
84.40% of the customer journeys, at least two different channels occur. Therefore, another
heuristic might be appropriate in this dataset for assigning credit to more than one channel.
Those heuristics are called multiple-touch attribution models. For comparison, it would
be useful to have a multiple-touch attribution model closely related to first- and last-touch
attribution models. Therefore, the linear-click attribution is considered. This model gives
an equal amount of credit to all the channels in the customer journey (Marketing attribution

models, 2020). The three heuristics used in this paper are graphically depicted in figure Al.

4.2 Logit Model

Shao and Li (2011) proposed a simple logistic regression where the dependent variable y;
is binary and corresponds to a conversion, 1, or no conversion, 0, of customer journey i.
The probability of conversion is given in equation 2 where the explanatory variables are
represented by NC;; = Z}];1 #C(v; ;) = C), which is the number of occurrences of channel

or state k in journey 1.
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The odds are stated in equation 3:

P(y;)

=Py = exp(fo + ; BeNSi k) (3)

Equation 4 shows the logistic regression. The parameters 55 can be estimated by max-
imum likelihood (ML). The proposed model has two advantages since the model can be

interpreted easily and obtain stable and reproducible estimation results.

Py =1)

=)

)= (Bo+ > _ BeNSik) (4)

4.3 Markov graphs

Besides the three heuristics and the logit model, Markov graphs will be discussed. Anderl,
Becker, et al. (2016) modify an approach that is applied in the context of search engine
advertising which results in a graph-based Markovian framework (Archak et al., 2010). It
will reflect the journey of channels an individual takes. This journey may end in a transaction,
also called conversion, or not. The journeys are depicted in directed Markov graphs. Figure
A2 shows a simple example. The graph shows how an individual goes from one channel
to another following a directed edge and finally ends up in a transaction or not (Mauldin,
Urbanski, & Urbariski, 2003). There is a probability of 0.75 that the individual goes to C1
when he or she is currently in start. The probability of going to C2 is 0.25.

The Markov graph M = <C, W> consist of a set of states C and a transition matrix W.

For this graph, we first define a set of states, shown in equation 5.

C={C,...Cp} (5)

Furthermore, three special states are introduced: the START state, a CONVERSION
state, and an absorbing NULL state (Anderl, Becker, et al., 2016). The START state is
the start of the customer journey and is always followed by a channel. The CONVERSION
state is reached when a transaction is successful. The NULL state means no transaction has
occurred at the end of the customer journey. Hence the complete set of states is shown in

equation 6.



C = {START,C, ...,C,, CONVERSION, NULL} (6)

Edges connect the states and show the probability of going from one state to another.
Those probabilities, which are the edge weights of transition matrix W, are depicted in
equation 7. The probability that an individual goes from channel 7 to channel j is w;;. If,
for example, wsrarre, = 0.75, there is a 75% chance that an individual goes to state one
if he or she is currently at the START state. A direct edge from CONVERSION to NULL
exists such that weonversron,yurr = 1. Every journey ends in the NULL state, even when
a transaction occurs. All those weights come together in a transition matrix. An example
is depicted in figure 1 where p; ; represents the probability of going from state ¢ in period ¢
- 1 to state j in period ¢ (Craig & Sendi, 2002). So p; 2 shows the probability of going from
state 1 to state 2.

N
wij = P(Xt = Cj|Xt_1 = CZ‘),O S wij S 1, Zwij = ]_VZ (7)

j=1
All those weights come together in a transition matrix. An example is depicted in figure
1 where p; ; represents the probability of going from state 7 in period ¢ - 1 to state j in period

t (Craig & Sendi, 2002). So p; 2 shows the probability of going from state 1 to state 2.

Figure 1: Transition Matrix

Period t
1 2 3

P11 P12 P13l
P21 P22 P23|2 Periodt-1

P31 P32 P33|3

4.3.1 Markov property

For Markov graphs, the Markov property holds (Gudivada, Rao, & Raghavan, 2015). This
property means that the current state is only influenced by the previous state or a small
group of previous states. A first-order Markov graph means that the current state only
depends on the previous state. The Markov property for the first-order Markov graph is
stated in equation 8 (Rocca, 2021). A graph is of second-order when the previous two states
are important. The same reasoning holds for all other higher-order states. The Markov
property can also be written more generally for all higher-order models where the present
depends on the last k£ observations. Equation 9 shows the generalization of the Markov
property (Anderl, Becker, et al., 2016).

10



P(Xt = Ct|Xt—1 =Ci—1, X¢—2 = Cp_2, )
= P(Xt ==X = Cnfl)

P(Xt = Ct’th =1, Xm0 = C_9,..., X1 = Cl)
= P(Xt = Ct\th =1, Xpmo = Cr_9, oo, Xy = thk)

4.3.2 Removal effect

This paper uses the removal effect to determine channel effectiveness by calculating the
conversion attribution per channel. Anderl, Becker, et al. (2016) state that the removal
effect helps measuring the contribution of advertising channels. For the removal effect,
consider what happens to the probability of conversion when a specific state s; is removed.
All the edges towards s; that are removed are then shifted to the NULL state. The removal
effect shows the importance of a channel. It is calculated using two measures (Archak et
al., 2010). The first measure is Eventual Conversion(s;) which indicates the probability of
reaching conversion when you are currently in state s;. Visit(s;) shows the probability that
you ever reach state s; when you start from the START state. Removal Effect(s;) is the

product of those two measures.

4.4 ROC curves

The Receiver Operating Characteristic (ROC) curve evaluates the predictive accuracy of
the models. This curve shows the performance of a classification model for all possible
thresholds. The model plots the True Positive Rate (TPR) on the y-axis and the False
Positive Rate (FPR) on the x-axis (Hoo, Candlish, & Teare, 2017). Those two parameters
are calculated using equations 10 and 11. TPR, called sensitivity or recall, is the percentage
of True Positive (TP) classifications relative to the sum of TP and False Negative (FN)
classifications. Figure A3 shows the Positive and Negative classifications. In the case of
customer journeys, it means the percentage of accurately classified conversions over the total
number of true conversions. TPR takes on a value between zero and one, where one means
that all conversions are correctly classified. Additionally, FPR is the percentage of False
Positive (FP) classifications relative to the sum of FP and True Negative (TN) classifications.
FPR is equal to 1 - specificity, where the latter is the percentage of accurately classified non-

conversions over the total number of true non-conversions. Specificity also obtains a value

11



between zero and one. When specificity equals one or FPR equals zero, all non-conversions

are classified as non-conversions.

TP

TPR= ————— 1

B=Tp1FN (10)
FP

FPR= ———— 11

B=tpiTN (1)

An example of a ROC curve is depicted in figure A4. When the ROC curve is a 45-degree
line, the dashed line, the number of False Positives equals the number of True Positives. The
line then produces the same results as for random guessing. The better the accuracy, the
more the line deviates from the 45-degree line towards the upper left corner. Hence, the blue
line shows better accuracy than the dashed line. The upper left corner (0,1) implies no false
negatives and no false positives. This is the best possible outcome and corresponds to high
accuracy.

For comparison of models, it is helpful to have a single scalar value corresponding to the
ROC curve. The paper will use two measures: the Area Under the ROC Curve (AUC) and
the Top-Decile Lift (TDL). The first one is precisely what the name says. TDL is the ratio
of the 10% of customer journeys predicted to be most likely to end up in a conversion that
actually end up in a conversion over the baseline conversion rate (Neslin, Gupta, Kamakura,
Lu, & Mason, 2006).

4.5 Types of Customer Journeys

The dataset in this paper consists of 9,985 customer journeys. In this section, those cus-
tomer journeys are divided into three types of customer journeys: impulsive, balanced and
considered. The length of the channels and the number of channels are the two ways to
distinguish between those three types of journeys. The length of the journeys can be found
in tables 3 and 4. In this dataset, the length varies from one click to 89 clicks. The number
of different channels within a journey differs from one to eight, as seen in table 5. Some
specific channels are appropriate for certain types of channels. An obvious channel for the
considered journey is 'price comparison’. This channel is used when someone wants to know
the prices and features of products. That is in line with the description ’large pre-shopping
stage where customers look for information’ given in section 2. However, in our dataset,
the channels have been made anonymous, so it will be difficult to know which channels are
actually in the dataset.

As explained in section 2, impulsive journeys result from a quick search. Hence, it could

be argued that a quick search implies that the journeys are short or that only a few channels
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are encountered. Thus, the length of the journey is short, or only a few different channels
occur in the journey. Considered journeys are the most elaborated journeys, which imply the
longest length of journeys or the most number of channels. The journeys that lie between
the impulsive and considered journeys are balanced journeys, and hence their length and
number of channels are a bit more mediocre. Thus, the length goes from small to long from
impulsive to balanced to considered journeys. The same order is valid for the number of
channels where impulsive journeys correspond to the least amount of channels.

Three types of journeys are distinguished, resulting in three groups of 33.33%. Impulsive
journeys are the 33.33% shortest journeys, balanced journeys range from 33.33% to 66.67%
and considered journeys are the journeys starting from 66.67%. The same holds for the
number of channels. When a split is not that clear, the percentage closest to 33.33% is

chosen. This will become clear in section 4.5.1 using the actual data.

4.5.1 Length of Journeys

For the length of paths, tables 3 and 4 show how often each length occurs, and the percentage
is shown. The impulsive journey ranges from 0% to 33.33%. The cumulative percentage of
journeys with length one and two together corresponds to 23.20% and for journeys with a
length of one till three to 38.96%. It is evident that 33.33% lies in the middle of those two
percentages. The split will be made by looking at which number is closest to 33.33%, which
in this case is 38.96%. Hence, the impulsive journeys consist of journeys with lengths of one
to three. The balanced journeys range from a length of four to a length of six, ranging from
38.96% to 70.13%. Then, the considered channels are all journeys that exceed a length of
six. To conclude, impulsive channels are until a length of three, balanced channels have a
length of four to six and considered channels have a length of at least seven. This can also

be seen in table 6.

4.5.2 Number of Channels

The types of journeys will also be distinguished by looking at the number of different channels
in the journeys, which can be found in table 5. The cumulative percentage for journeys with
only one channel is 15.60% and 51.77% for journeys with two different channels. The split
for impulsive channels has to be made between those two channels. The number that is
closest to 33.33% is 15.60%. Hence, impulsive journeys consist of one channel. However,
there is only a tiny difference between the distance from 15.60% to 33.33% and from 33.33%
to 51.77%. The same holds for the balanced journeys since 51.77% and 81.10% are both
not close to 66.67%. The latter is closest to 66.67%, and therefore balanced journeys range
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from two to three different channels. Considered journeys are thus journeys that have at
least four different channels. Thus, impulsive journeys are until 15.60%, balanced journeys
range from 15.60% to 81.10%, and considered journeys are from 81.10%. It is important
to note that these groups are not all close to 33.33%, which is vital to keep in mind when
concluding. However, these groups are the most equal, and therefore these groups are used
in this paper. To conclude, impulsive journeys consist of one channel, balanced journeys of
two to three different channels and considered journeys have at least four different channels.

The splits are shown in table 6.

Table 6: Types of Journeys

Impulsive Balanced Considered

Length 1-3 4-6 7-89
Number of channels 1 2-3 4 -8

5 Results

In this section, the results are presented both for the whole dataset as well as for the three
different types of customer journeys. First, the predictive accuracy is evaluated by looking at
the ROC curves, AUC and TDL. Also, the robustness of the removal effects will be evaluated
by looking at the average standard deviation as a percentage of the average removal effect.
Thereafter, the attribution results are presented and compared across models. The transition
matrix for the first-order Markov model is given for the complete dataset and this matrix is

used to illustrate the first-order directed Markov graph.

5.1 Full dataset

This section will show the results for the complete dataset where the channels delta and
mi are removed. The dataset consists of 9,985 observations. In section 5.2 the length of
the customer journeys is used to distinguish between impulsive, balanced and considered

journeys. The split is made using the number of channels in section 5.3.

5.1.1 Predictive Accuracy

The ROC curves for the logit model and the first- to fourth-order Markov models are depicted
in figure A5 to evaluate the predictive accuracy. Anderl, Becker, et al. (2016) found that
the accuracy improved for higher-order Markov models, which also holds for this dataset.

The first-order Markov model lies most closely to the diagonal line, and the fourth-order
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Markov model is furthest away. This implies that the accuracy improves when the order of
the Markov model increases. Thus, when there is more information on a higher number of
previous channels, it is easier to estimate the following channel. However, the ROC curves are
nearly the same as the 45-degree line, which is somewhat concerning as the latter indicates
random guessing. The ROC curve of the logit model lies further from the diagonal line,
which implies higher predictive accuracy.

Table A3 shows the results for the logit model for the dataset containing 9,985 observa-
tions. Only eta, iota and the intercept are significant, the other channels are not significant.
The significance of the intercept is remarkably higher than for the two channels. Further-
more, the value for the intercept is high, and the values for the channels are somewhat similar
and close to zero. Hence, it might be the case that the logit model does not explain the
effects of the channels well since the intercept heavily influences the model.

To compare models, AUC and TDL are measured which are single scalar values. The
values are stated in table 7. AUC is expected to be not much larger than 0.5000 for the
Markov models because the ROC curves are so close to the diagonal line. The table shows
that this is the case for all four Markov models. The AUC increases when the order of the
Markov model increases. Therefore, the fourth-order Markov model has the best predictive
accuracy when AUC is used. This is in line with the conclusions drawn from the ROC
curves. The AUC for the logit model is 0.654, which is remarkably higher than the AUC
of the Markov models. It seems that the logit model is performing well. However, it is
pretty plausible that this only happens because of the highly significant intercept and that
the model is not working well. Anderl, Becker, et al. (2016) also mentioned an AUC for the
heuristic models. However, this seems to be incorrect, and they probably tried to calculate
something close to AUC to compare it to the Markov models. Therefore, AUC is only
calculated for the Markov models and the logit model in this paper.

Since AUC cannot be calculated for our heuristic models, it can be helpful to use another
measure. The TDL can be measured for all eight models and logit has the highest. However,
this is again caused by the vague results of the model. The last-click heuristic has the highest
predictive accuracy when logit is ignored. This is surprising since we might have expected

the Markov models to work best.

Table 7: Predictive Accuracy

Measure First-click Last-click Linear-click Logit Markov 1 Markov 2 Markov 3 Markov 4

AUC - - - 0.654 0.509 0.517 0.528 0.543
TDL 1.600 2.108 1.790 4.649 1.707 1.735 1.714 1.727

bold = highest AUC
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5.1.2 Robustness

The predictive accuracy is essential, but it is also important to look at the robustness since it
prevents inconsistency (Little, 2004). The robustness of the removal effect will be evaluated.
In table A4 the removal effects for the number of conversions are shown. For all four Markov
models, the removal effect of alpha is the largest, which means that the probability of ending
with a conversion drops the largest when the channel alpha is removed. Channels with the
largest removal effects after alpha are iota, eta, beta and theta.

Furthermore, the average standard deviation of the removal effects is calculated and can
be found in A5. This table will be used to calculate the average standard deviation as
a percentage of the average removal effect, for which the results can be found in table 8.

Simpler models are generally more robust, as seen from the table.

Table 8: Average standard deviation as % of aver-
age removal effect

Markov 1 Markov 2 Markov 3 Markov 4
0.90% 0.94% 0.95% 0.94%
bold = lowest %

To conclude, the results of section 5.1.1 and this section will be combined to decide
which models to include in the section 5.1.3. Of course, all three heuristics are used since
they are industry standards. The choice between Markov models depends on the predictive
accuracy and robustness. The fourth-order Markov model has the highest AUC. However,
when the TDL is used, the second-order Markov model has the highest predictive accuracy
out of the four Markov models. The first-order Markov model is the best, only with a slight
difference, when the robustness of the removal effects is considered. Only the fourth-order
Markov model could be considered, but for the complete dataset all four Markov models are
considered. When the types of journeys are researched, a choice between Markov models is

made.

5.1.3 Attribution Results

The total number of conversions in the dataset is 19,772. Table A6 shows which channel gets
the credit for the conversion using several different methods. This is depicted graphically
in figure A6. For ease of interpretation, table 9 shows this number as a percentage of the
total number of conversions. Some columns do not seem to add up to 100%, but this occurs
because of rounding to percentages. In reality, they add up to 100%, so this is not a thing

to worry about.
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First, the heuristics will be discussed. First-click shows that alpha occurs most often as
the first channel with the full credit for 31.90% of the conversions. This channel is followed
by iota, eta and beta with 23.27%, 16.00% and 14.31%, respectively, such that these channels
are also crucial at the start of the customer journey. Alpha also gets the most credit out of
all channels when using last-click with 42.72%. The channels eta and iota are the second
and third most important channels for the last-click attribution model. Linear-click assigns
value to all channels that occur in the customer journey. In this heuristic, alpha is still given
the most credit, with 38.31% of all the total conversions. Alpha is followed by iota, eta,
beta, lambda and theta with 19.49%, 17.90%, 10.53%, 5.23% and 5.17%, respectively. The
values of linear-click seem somewhat the average of first- and last-click, which makes sense
since the value is distributed equally among all channels. To conclude, heuristics show that
alpha, iota and eta are the three most important channels to reach a conversion.

Furthermore, the first- and higher Markov models give clear results. For all four models,
the order of the channels is the same. The most important channel is alpha with 27.35%
to 29.36%. Thereafter, iota, eta and beta are the most important for conversion. The
percentages differ slightly across the Markov models, but the differences are minor. The
biggest difference is for alpha with 2.01%.

In table 2 we see that the channel occurrences for alpha are as fourth following eta,
iota and beta. Table 9 shows that alpha gets the most credit out of all channels for the
conversions. Hence, alpha seems to be a important channel since the channel does not occur
the most often but comes first when the credit of a conversion is assigned. In section 5.1.2,
we saw that the removal effect was the largest for alpha, which is in line with the conclusions

from this section.

Table 9: Attribution results in comparison to heuristic models (in %) of number conversions

Channel First-click Last-click Linear-click Markov 1 Markov 2 Markov 3 Markov 4

Eta 16.00% 21.08% 17.90% 17.07% 17.35% 17.14% 17.27%
Iota 23.27% 16.95% 19.49% 19.26% 19.35% 19.33% 18.77%
Alpha 31.90%  42.72% 38.31% 27.35% 28.94% 29.31%  29.36%
Beta 14.31% 5.00% 10.53% 12.35% 12.05% 12.22% 11.71%
Theta 8.12% 3.30% 517% 10.32% 9.03% 9.47% 9.78%
Lambda 4.55% 6.09% 5.23% 6.34% 5.83% 5.94% 5.97%
Kappa 0.37% 1.16% 0.70% 1.42% 1.37% 1.10% 0.98%
Zeta 0.14% 0.54% 0.69% 2.06% 1.95% 1.78% 1.97%
Epsilon 0.50% 2.69% 1.38% 3.00% 3.34% 2.79% 3.24%
Gamma 0.83% 0.47% 0.61% 0.83% 0.78% 0.92% 0.95%

bold = highest % for each model
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5.1.4 Transition Matrix and Probabilities

The Markov chain consists of thirteen states, of which there are ten channels and three
special states. The transition matrix of the first-order Markov model is depicted in table 10
and some conclusions can be drawn from this matrix. First, when starting in the start state,
it is most likely that the individual goes to alpha with a probability of 32.70%. This might
mean that alpha is a channel that often occurs at the beginning of a short customer journey,
for example, direct type-in. This is in line with the conclusion of the importance of alpha in
first-click. Other channels that often follow start are iota, eta and beta. Conversion occurs
most often directly after alpha, but also eta and lambda are often followed by a conversion.
Null occurs after a conversion which shows that the direct edge exists. The absorbing null

state is also evident from the transition matrix.

Table 10: Transition probabilities first-order Markov

Channel Eta  Iota Alpha Beta Theta Lambda Gamma Epsilon Kappa Zeta Conversion Null
Start 0.161 0.231 0.327 0.137 0.084  0.043 0.008 0.005  0.003 0.001 - -
Eta 0.089 0.132 0.129 0.046  0.023 0.002 0.031  0.010 0.010 0.120 0.408

Tota 0.102

- 0.183 0.121 0.094 0.063 0.007 0.027  0.013 0.036 0.078 0.278
Alpha 0.041 0.109 - 0.035 0.062 0.037 0.003 0.020  0.005 0.009 0.149 0.529
Beta 0.392 0.181 0.127 - 0.070 0.029 0.004 0.015 0.005 0.015 0.037 0.126
Theta 0.079 0.229 0.361 0.084 0.048 0.005 0.032 0.015 0.012 0.032 0.102

Lambda 0.046 0.132 0.170 0.048 0.085

- 0.006 0.038  0.037 0.019 0.098 0.319
Gamma 0.088 0.168 0.227 0.082 0.080  0.066

- 0.014 - 0.011 0.057 0.206
Epsilon 0.087 0.108 0.190 0.050 0.058 0.064 0.007 - 0.011 0.027 0.095 0.303
Kappa 0.096 0.136 0.111 0.049 0.076 0.105 0.005 0.024 - 0.019 0.093 0.287
Zeta 0.081 0.292 0.194 0.095 0.068 0.083 0.002 0.048 0.012 - 0.030 0.096
Conversion - - - - - - - - - - - 1.000
Null - - - - - - - - - - - 1.000

Figure A7 shows the first-order directed Markov graph. In this figure, the states can be
found with the probabilities on the edges as well. Both the incoming and outgoing edges
sum up to one. The direct edge from conversion to null is also depicted in the figure.
Furthermore, null is an absorbing state. The transition matrix from table 10 could not have
been used since the rows have to sum up to one. That is not the case since the numbers are
rounded. Therefore, the table is adjusted a tiny bit so that the rows sum up to one. Some
rows summed up to 0.999; in that case, 0.001 was added to the channel with the largest
probability. When the rows added up to 1.001 (1.002), 0.001 (0.002) was subtracted from
the largest probability. The probabilities used for conducting the first-order directed Markov
graph are depicted in table A7.
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5.2 Length of Journeys

In this section, a split is made using the length of customer journeys where three groups
arise. The length of impulsive journeys is between one and three, balanced journeys have
a length of four to six and considered journeys are journeys that have a length of at least
seven. Those journeys occur 3,890, 3,112 and 2,983 times, respectively. Using the length to
split the data into three groups seems a good idea since the groups look similar in size.
The heuristics will be used in this section since they can conclude something about
the importance of channels at the beginning or the end of the customer journey. This is
interesting in researching the three different types of customer journeys. When looking at
the predictive accuracy and robustness in sections 5.2.1 and 5.2.2, the best Markov model
is chosen to achieve attributing results. For impulsive journeys, the length is at most three,

implying that the fourth-order Markov model is the same as the third-order model.

5.2.1 Predictive Accuracy

The ROC curves for all three types of customer journeys are shown in figure A8. The Markov
graphs lie close to the diagonal again, but there is a difference between the types of journeys.
The ROC curves lie closest to the diagonal for impulsive journeys and are further away for
balanced and considered journeys. The ROC for the logit model shows that it seems to have
high predictive accuracy for impulsive journeys. It looks more similar to the Markov models
for balanced and considered journeys.

In table 11 the AUC and TDL are shown. The logit model has the highest AUC for all
three types of customer journeys. The value for impulsive is especially high, whereas the
AUC for balanced and considered journeys is only a bit higher than for the Markov models.
Table A8 shows the logit results and this shows that the channels are (highly) significant
for impulsive journeys and are not significant for the other two types of journeys. This can
show why impulsive journeys have a higher AUC. It is again concerning that the intercept is
large. Hence, the logit model is probably unable to explain the effects of the channels. For
all three types of journeys, the fourth-order Markov model has the highest AUC out of the
Markov models and thus the highest predictive accuracy. The third-order Markov model for
impulsive journeys obtains the same value, which is logical since those two models are equal.
Again, logit has the highest TDL, which is suspected to result from the large intercept. After
logit, first-click has the highest value for impulsive journeys, and last-click has the highest
TDL for balanced and considered journeys. Hence, the heuristics seem to outperform the

Markov models, considering the TDL.
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Table 11: Predictive Accuracy

Measure  Journey  First-click Last-click Linear-click Logit Markov 1 Markov 2 Markov 3 Markov 4

AUC Impulsive - - - 0.759 0.511 0.520 0.525 0.525
Balanced - - - 0.589 0.522 0.532 0.548 0.570
Considered - - - 0.536 0.506 0.522 0.549 0.580

TDL Impulsive 1.284 0.585 0.961 5.218 1.093 1.102 1.108 1.108
Balanced 0.700 1.332 0.929 8.721 1.187 1.159 1.202 1.190
Considered 0.821 2.862 2.136 19.281 1.663 1.715 1.801 1.881

bold = highest AUC for each type of journey

5.2.2 Robustness

The removal effects for all four Markov models for the three types of customer journeys can
be found in table A9. The removal effect for alpha is the highest for impulsive and balanced
journeys. For impulsive journeys, eta is the second largest, followed by iota. For balanced
journeys, those channels are switched. The largest removal effect for considered journeys
is for iota followed by alpha and beta. The results from table 12 are important to test the
robustness of the removal effects. Models with the lowest percentage are preferred. However,

note that the percentages differ only a tiny bit.

Table 12: Average standard deviation as % of average removal effect

Impulsive Journeys Balanced Journeys Considered Journeys

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
1.14% 1.16% 1.16% 1.16% 0.95% 1.01% 1.01% 0.98% 0.64% 0.66% 0.68% 0.69%

bold = lowest % per for each type of journey

For the next section, deciding which models to use is important. All three heuristics will
be used because they have the highest TDL, excluding the logit model. Furthermore, these
models can interpret the importance of channels at the beginning or the end of customer
journeys. AUC implies that the fourth-order models give the highest predictive accuracy.
The first-order Markov models are the most robust, but this model will not be used because
of the small difference. Thus, the following section uses three heuristics and the fourth-order

Markov model.

5.2.3 Attribution Results

The number of conversions can be found in table A10. However, it is more interesting to
look at the attribution results. The results for all three types of journeys can be found in
table 13. For impulsive journeys, alpha is the most important, followed by eta, iota and beta.

All four models show that alpha and iota are the first and second most essential channels in
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balanced journeys. After those two channels, the order differs between the models with beta,
theta, eta and lambda occurring. For considered journeys, there are quite some differences
between the four models. First-click, linear-click and the Markov model find iota the most
important, whereas last-click finds alpha the most important. For first-click, alpha is the
fiftth most crucial channel. Section 5.1.3 concluded that alpha was the most important for
the complete dataset. Hence, we see that the considered journeys have a difference for the
three models where iota is the most important. Thus it can be concluded that alpha is a

vital channel at the end of a considered journey.

Table 13: Attribution Results (in %) of Number of Conversions

Impulsive Journeys Balanced Journeys Considered Journeys
Channel First Last Linear M4 First Last Linear M4 First Last Linear M4
Eta 21.15%  24.75%  22.69% 23.10%  7.00% 13.32%  9.30% 11.91%  9.24% 18.73%  12.05%  13.87%
Iota 17.86% 16.18%  17.04% 17.85% 27.71% 16.88%  20.95% 19.35% 39.64% 20.60% 27.88% 20.32%
Alpha 36.10% 43.24% 39.93% 34.40% 34.43% 49.10% 43.46% 32.43% 8.20% 28.62% 21.36% 18.81%
Beta 12.84%  5.85% 9.61% 11.08%  13.74%  3.20% 9.57%  11.45%  22.02%  4.44% 16.49%  14.07%

Theta 6.09% 1.74% 3.73% 6.19%  11.23%  4.41% 7.09%  10.45%  11.55%  8.36% 8.16%  12.68%
Lambda  4.27% 5.30% 4.72% 4.34% 3.85% 5.93% 4.98% 5.56% 7.15%  10.00%  8.02% 7.53%
Kappa 0.34% 0.63% 0.47% 0.68% 0.38% 1.86% 1.04% 1.84% 0.52% 2.28% 1.10% 1.76%
Zeta 0.04% 0.36% 0.23% 0.45% 0.16% 0.79% 1.08% 2.25% 0.52% 0.90% 2.05% 4.38%
Epsilon 0.46% 1.37% 0.89% 1.30% 0.69% 4.19% 2.00% 3.79% 0.34% 5.90% 2.41% 5.44%
Gamma  0.85% 0.58% 0.69% 0.62% 0.81% 0.32% 0.50% 0.98% 0.82% 0.19% 0.48% 1.14%

bold = highest % for each model for each type of customer journey

5.3 Number of Channels

The dataset is also split into three groups using the number of different channels occurring
in customer journeys. The journey that uses the least amount of channels is the impulsive
journey followed by balanced and considered journeys with a range of one, two to three and
at least four channels, respectively. Those journeys occur 1,558, 6,540 and 1,887 times in
the same order as mentioned in the previous sentence. This split is way less equal than the
split made using the length of the journeys. However, this is the most equal split possible

so these groups will be used. The unequal groups have to be kept in mind when drawing a

conclusion.

5.3.1 Predictive Accuracy

The ROC curves are shown in figure A9 and the values for predictive accuracy can be
found in table 14. Logit again obtains the highest AUC for impulsive and balanced journeys.
However, it is interesting that the fourth-order Markov model for considered journeys obtains
the highest predictive accuracy. The logit results in table A11 show that only eta has a low
significance for balanced journeys. Also, the intercept is high again and is highly significant.

Therefore, the comparison between Markov models is more important, and the fourth-order
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model has the highest AUC for all three types of customer journeys. When excluding logit,
the fourth-order Markov model has the highest TDL for impulsive journeys. For balanced

and considered journeys, this is last-click and first-click, respectively.

Table 14: Predictive Accuracy

Measure  Journey  First-click Last-click Linear-click Logit Markov 1 Markov 2 Markov 3 Markov 4

AUC Impulsive - - - 0.691 0.505 0.508 0.509 0.518
Balanced - - - 0.708 0.522 0.532 0.548 0.570

Considered - - - 0.534 0.506 0.522 0.549 0.602

TDL Impulsive 1.260 1.260 1.260 7.578 1.267 1.238 1.270 1.313
Balanced 1.300 2.388 1.702 5.036 1.688 1.712 1.736 1.729
Considered 3.860 1.316 2.299 8.270 1.685 1.751 1.749 1.788

bold = highest AUC for each type of journey

5.3.2 Robustness

The removal effects for all three types of customer journeys are stated in table A12. Alpha
has the highest removal effect when looking at impulsive journeys, followed by eta and iota.
Both balanced and considered journeys have the highest removal effect for iota, and the
second-largest removal effect is for alpha. Table 15 shows again that the first-order Markov

model is the most robust.

Table 15: Average standard deviation as % of average removal effect

Impulsive Journeys Balanced Journeys Considered Journeys

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
1.64% 1.66% 1.67% 1.65% 0.79% 0.81% 0.83% 0.82% 0.54% 0.57% 0.58% 0.60%

bold = lowest % for each type of journey

The attribution results will be evaluated using the three heuristics and the fourth-order
Markov model again. Using AUC, the fourth-order models show the highest predictive
accuracy. When looking at the TDL, the predictive accuracy differs among the types of
journeys. The fourth-order Markov model, last-click and first-click obtain the highest values
for impulsive, balanced and considered journeys, respectively. The first-order Markov model
is the most robust, but since the differences are minor, this model will not be used in the

next section.

5.3.3 Attribution Results

Table A13 shows the number of conversions, and the attribution results can be found in table
16. A prominent result is that the three heuristics deliver the same results for impulsive

journeys. This is logical since those journeys consist only of one channel, so the first click is
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also the last. The results for the impulsive journeys are the same as when the split of the
length of the journey was used. The order from most important to less important channels
for all four models is alpha, eta, iota and beta. For balanced journeys, the results are
somewhat different. Using first-click, the importance of alpha goes from the most important
channel to the fifth most important channel. Alpha remains the most important for last-
click. For linear-click and the Markov model, alpha was the most crucial channel when the
split was made using the length of the customer journeys, but using the split on the number
of channels iota is the most important. Thus, alpha becomes more important at the end of
the balanced journeys when the latter split is made. Also, iota becomes more important at
the beginning of the journey. For the considered channels, the results are almost entirely
similar to using the length of the journey to make the split. Only the second and third most
essential channels using last-click switched. Hence, the split using the number of channels
changes the results for balanced journeys compared to the split used in section 5.2. This

subset grew from 3,112 to 6,540 observations, and this increase could be the reason for the
differences in results.

Table 16: Attribution Results (in %) of Number of Conversions

Impulsive Journeys Balanced Journeys Considered Journeys
Channel  First Last Linear M4 First Last Linear M4 First Last Linear M4
Eta 19.25%  19.25%  19.25%  20.04%  13.00% 23.88% 17.02% 17.29% 10.33% 18.58% 13.67% 14.21%
Tota 14.00%  14.00%  14.00% 14.59% 31.98% 21.45% 25.76% 21.42% 38.60% 13.16% 22.99% 17.88%
Alpha 56.46% 56.46% 56.46% 56.14% 6.10% 28.61% 19.38%  20.39%  4.85% 25.94% 17.59%  16.55%
Beta 5.36% 5.36% 5.36% 4.85% 23.75% 4.80% 15.86% 15.16%  24.06% 3.65% 16.79%  14.74%

Theta 0.03% 0.03% 0.03% 0.00% 17.38%  6.21%  10.72% 12.72% 13.16%  9.57%  10.07%  12.85%
Lambda  4.33% 4.33% 4.33% 3.97% 4.52% 7.13% 5.69% 5.41% 6.17%  12.22%  8.69% 8.03%
Kappa 0.07% 0.07% 0.07% 0.18% 0.70% 1.95% 1.24% 1.52% 0.69% 4.22% 2.01% 2.84%
Zeta 0.00% 0.00% 0.00% 0.00% 0.22% 1.15% 1.12% 1.74% 0.57% 0.94% 2.90% 4.77%
Epsilon  0.12% 0.12% 0.12% 0.05% 0.99% 4.23% 2.37% 3.26% 0.50%  11.34%  4.43% 6.78%
Gamma  0.38% 0.38% 0.38% 0.18% 1.36% 0.59% 0.85% 1.10% 1.07% 0.38% 0.86% 1.34%

bold = highest % for each model for each type of customer journey

6 Conclusion

This paper discussed the importance of advertising channels using three heuristics, a logit
model and first- to fourth-order Markov models. The channels delta and mi were removed at
the beginning of the research since they only occurred fifteen times out of a total of 76,150
occurrences. The results are split up into three subsections. The first part of the results uses
the whole dataset, excluding delta and mi, to generate results. Thereafter, the journeys are
split into three types. First, impulsive journeys have a length that ranges from one to three
and the journey has only one type of channel. Balanced journeys have a length from four to
six and contain two or three different channels. The considered journeys exceed this so that

the length is at least seven, and there are, at the minimum, four different channels in the

23



journey.

Each subsection starts with evaluating the predictive accuracy and the robustness of the
removal effects. The predictive accuracy is measured using both AUC and TDL. The logit
model has the highest AUC and TDL for all three sections. This does not hold for the
fourth-order Markov model for considered journeys when those journeys are based on the
number of channels. However, the results for the logit model seem strange. Only a few
channels are significant, and those have really small and similar values. Furthermore, the
intercept is highly significant and is large compared to the channels. Therefore, it is expected
that the high measures for the predictive accuracy result because the intercept distorts the
results and makes it seem that logit is performing well.

When considering the predictive accuracy for the other models, AUC shows that the
fourth-order Markov model has the highest predictive performance out of the four Markov
models for all three sections. It is important to note that the third- and fourth-order models
are the same for impulsive journeys when they are defined using the length of the journeys.
TDL has contradicting results for the predictive accuracy. For the entire dataset, the predic-
tive accuracy is highest for last-click. When the types of journeys are split using the length
of the journeys, the highest value corresponds to first-click for the impulsive journeys and
last-click for the balanced and considered journeys. TDL is the highest for the fourth-order
Markov model for impulsive journeys, last-click for balanced journeys and first-click for con-
sidered journeys when the distinction is made based on the number of different channels.
The first-order Markov model is the most robust all sections. However, the differences are
minimal and therefore this model will not be used for the attribution results of the different
types of journeys.

Two channels seem to be the most important for obtaining a conversion: alpha and iota.
The whole dataset shows that the removal effect and the attribution results are the highest for
alpha. Impulsive journeys for both possible ways of splitting the journeys also conclude that
alpha has the highest removal effect and attribution results. When the split is made based
on the length of the journeys, the removal effect is highest for alpha for balanced journeys
and highest for iota for considered journeys. The attribution results for balanced journeys
are also highest for alpha. However, the attribution results for considered journeys are a bit
contradicting. Iota is the highest for first- and linear-click and for the fourth-order Markov
model. For last-click, alpha is the highest. This might imply that alpha becomes more
important at the end of considered journeys with a length of at least seven. Hence, alpha
could be important for this journey to let the customer decide whether or not a transaction
will be made. The types of journeys are also based on the number of channels. Then, the

removal effect is highest for iota for balanced and considered journeys. For both journeys,
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iota obtains the highest attribution results using first- and linear-click and the fourth-order
Markov model, and alpha obtains the highest when using last-click.

Last-click obtains several remarkable results. First, it obtains the highest TDL for the
whole dataset, balanced and considered journeys based on their length and for balanced
journeys based on the number of channels in the journey. AUC shows that the Markov
models have values close to 0.500, implying that the data is close to random. However,
the last-click attribution model overestimates any data dependencies. Also, the attribution
results for last-click are higher than for the other models. For the entire dataset, alpha gets
the highest attribution results for all models. However, using last-click, this value is 42.72%,
whereas first-click has a value of 31.90% and the Markov models have a value between 27.35%
and 29.36%. The attribution results of the types of journeys show that the last-click has
the highest value again, or it shows a higher attribution result for a different channel, alpha,
than for first-click, linear-click and the fourth-order Markov model. These results show that
the last-click attribution model overestimates the effectiveness of channels.

From previous research, the overestimating of last-click is a common known result. Ji and
Wang (2017) found that last-click overestimates the contribution of search advertisements,
such as SEO and SEA, and ignores the advertisements before the last click. This implies
that the model assigns too much value to the last channel. A quote from research about last-
click is that it "seems to partly overestimate both statistically and economically insignificant
channels and underestimate efficient ones" (Georgopoulos, 2017). Furthermore, last-touch
incentives an increase in ad exposures (Berman, 2018). This increase results in a too high
level of exposure, and the method thus results in overexposure of advertising. In turn, this
results in lower profits for the advertising company.

Overall, alpha seems to be the most important channel. This is especially true for short
journeys or journeys with a small number of channels occurring. It also holds when looking
at last-click for long journeys or journeys with many channels in the journey. For balanced
and considered channels, iota is also an important channel. The removal effects are often the
largest for iota for those two journeys. For those journeys, the attribution results for first-
and linear-click and the fourth-order Markov model are the highest for iota, where alpha has
the highest attribution result for first-click.

7 Discussion

This paper used eight models to determine the importance of advertising channels in a
dataset consisting of 10,000 observations (Markov model for online multi-channel attribution

[R package channelattribution version 2.0.5/, 2022). The models used are three heuristics,
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a logit model and first- and higher-order Markov graphs. Thus, this paper contributes to
existing research by introducing a dataset combined with eight different models.

Furthermore, the distinction between types of customer journeys is new and expands
existing research. Wolny and Charoensuksai (2014) explained the difference between three
types of customer journeys. The first type is impulsive journeys which correspond to short
journeys of length one to three or journeys with only one channel. Then, balanced journeys
are a bit longer and contain more different channels in the journey. The length is between four
and six, and the journeys contain two or three different channels. The last type of journeys
are considered journeys, and those are the longest ones or contain the most different channels.
They have a length of at least seven or contain at least four different channels.

The research on different types of customer journeys is refreshing. Hence, for further
research, it would be interesting to use these three types of customer journeys on other
datasets. A dataset that contains real information instead of anonymous channels could
contribute to this paper. Hopefully, more evident results can be drawn from that research.
Using another dataset would also be good since this dataset has some strange results. The
values for AUC indicate that the dataset is close to random, and the results for logit do not
look good either. When using another dataset, this could give better results.

Additionally, this paper used three types of journeys since those types are known from
existing research. However, it can be interesting to look at different types of journeys as well.
An example is splitting the data into ten or even more groups where the first group contains
the shortest journeys or the least number of channels. This increases for the following groups.
It is also refreshing to look at another way to split the data rather than at the length or
the number of channels. Maybe it is possible to combine those two criteria or come up with
another kind of criteria.

Another limitation in this research is that the split using the number of channels seems
unequal. Impulsive, balanced and considered journeys contain 1,559, 6,543 and 1,898 ob-
servations, respectively. It would be good to try to deal with this. One option could be to
look at several different splits and compare the results. Another possibility is to make three
groups consisting of 33.33% each exactly. In this dataset, that would mean that impulsive
journeys consist of all journeys that contain one channel and 17.74% of the 36.13% of jour-
neys with two channels. This can, of course, also be done by making the split using the
length of the journeys. However, the split already seems pretty equal in this paper, so it is
unnecessary. It can, of course, be the case that the splits are more or less equal in other

datasets. Hence, this is important to keep in mind when researching further.
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A Appendix

A.1 Table Appendix

Table Al: Description Online Advertising Channels

Channel Description

Type-in Users access the advertiser’s website by either using a URL
or by locating a bookmark, favourite or shortcut.

SEO Users type in a keyword in a search engine and they obtain
organic search results ranked by search algorithm.

SEA Users type in a keyword in a search engine and they obtain

Price Comparison

Display

Newsletter or E-mail

Retargeting

Social Media

Affiliate

Referrer
Video
Partner Website

Other

sponsored search results.

Price comparison websites show the features and prices of
products so that users can use this website for comparison.
The website directs users to the advertiser’s website.

Entails embedding a graphical object with the advertising
message into a website. The timing and exposures of dis-
play banners are determined by the firm.

Sending marketing messages toward potential customers using
e-mail, also known as e-mail marketing.

Is a subclass of display advertising that is personalized to-
wards the user based on his or her browsing history. It aims
to re-engage users who have visited a website but did not com-
plete a purchase.

Comprises a set of advertising platforms belonging to the field
of social media.

A business (e.g., retailer) rewards the affiliate (e.g., a prod-
uct review website) for referring a user toward the business’s
website.

Covers all traffic that is forwarded by external content web-
sites, for example by including a text link.

Video-oriented websites such as Youtube and Google Videos
insert advertisements at the beginning of the end of a video.
Traffic coming from a virtual showroom run by an offline part-
ner retailer.

All other types that do not fit into one of the categories above.
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Table A2: Research Online Advertising Channels

Research

Channels

Mei et al. (2007)

Shao and Li (2011)

Breuer, Brettel, and Engelen (2011)
Papadimitriou, Garcia-Molina, Krish-
namurthy, Lewis, and Reiley (2011);

Abhishek,

Fader,

and Hosanagar

(2012); Nottorf (2014)

Klapdor (2013)

H. Li and Kannan (2014)

Xu, Duan, and Whinston (2014)
Lewis and Nguyen (2014)
Anderl, Becker, et al. (2016)

Anderl, Schumann, and Kunz (2016)

Video

SEO, SEA, Display, Social Media, Video
Price Comparison, Display, Newsletter
SEA, Display

SEO, SEA, Display, Newsletter, affiliate, re-
ferrer

Type-in, SEO, SEA, Display, Newsletter, Re-
ferrer

SEA, Display, Other

SEO, SEA, Display

Type-in, SEO, SEA, Price Comparison, Dis-
play, Newsletter, Retargeting, Social Media,
Affiliate, Referrer, Other

Type-in, SEO, SEA, Price Comparison, Dis-
play, Newsletter, Retargeting, Affiliate, Part-
ner Website, Other

Table A3: Logit Model

Channel B Exp(B) ME
Eta 0.019" 1.019  0.003"
Iota 0.010° 1.010  0.002"
Alpha -0.003  0.997 -0.001
Beta 0.009 1.009  0.002
Theta -0.000  1.000  -0.000
Lambda  0.010 1.010  0.002
Gamma 0.027  1.027 0.005
Epsilon 0.024  1.025 0.004
Kappa 0.020 1.022 0.004
Zeta 0.006 1.006  0.001
Intercept -1.266""" 0.282

1 < 0.05
p < 0.01
*k )~ 0.001
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Table A4: Removal Effect Conversions

Channel Markov 1 Markov 2 Markov 3 Markov 4
Eta 0.354 0.327 0.326 0.329
Iota 0.399 0.365 0.367 0.357
Alpha 0.566 0.546 0.557 0.559
Beta 0.256 0.227 0.232 0.223
Theta 0.214 0.170 0.180 0.186
Lambda 0.131 0.110 0.113 0.114
Kappa 0.029 0.026 0.021 0.019
Zeta 0.043 0.037 0.034 0.038
Epsilon 0.062 0.063 0.053 0.062
Gamma 0.017 0.015 0.018 0.018
Average 0.207 0.189 0.190 0.190

bold = highest removal effect for each model

Table A5: Average standard deviation Removal effect

Markov 1 Markov 2 Markov 3 Markov 4

0.186 0.177 0.181 0.179

Table A6: Number of Conversions

Channel First-click Last-click Linear-click Markov 1  Markov 2  Markov 3  Markov 4
Eta 3,164 4,167 3,538.796 3,376.024  3,430.428  3,389.486  3,415.292
Iota 4,600 3,352 3,853.249 3,808.293  3,826.061  3,820.956  3,711.660
Alpha 6,308 8,447 7,574.102 5,407.690 5,722.204 5,795.932 5,805.055
Beta 2,830 988 2,082.800 2,442.332  2,383.448  2,415.342  2,314.495
Theta 1,605 653 1,022.101 2,040.311 1,785.173  1,872.669 1,933.450
Lambda 900 1,205 1,033.849 1,253.581 1,153.125  1,174.310 1,180.769
Kappa 74 230 137.964 280.975 270.188 217.959 192.875
Zeta, 27 107 136.010 406.333 385.983 351.403 390.454
Epsilon 99 531 272.087 592.209 660.997 551.570 639.779
Gamma 165 92 121.041 164.262 154.393 182.374 188.170

bold = highest number of conversion for each model
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Table A7: Transition probabilities first-order Markov

Channel Eta Iota  Alpha Beta Theta Lambda Gamma FEpsilon Kappa Zeta Conversion Null
Start 0.161 0.231 0.327 0.137 0.084 0.043 0.008 0.005  0.003 0.001 - -

Eta - 0.089 0.132 0.129 0.046 0.023 0.002 0.031 0.010  0.010 0.120 0.408
Iota 0.102 - 0.183 0.121  0.094 0.063 0.007 0.027  0.013 0.036 0.078 0.276
Alpha 0.041  0.109 - 0.035 0.062 0.037 0.003 0.020  0.005 0.009 0.149 0.530
Beta 0.391 0.181 0.127 - 0.070 0.029 0.004 0.015  0.005 0.015 0.037 0.126
Theta 0.079 0.229 0.362 0.084 - 0.048 0.005 0.032  0.015 0.012 0.032 0.102
Lambda 0.046 0.132 0.170 0.048 0.085 - 0.006 0.038  0.037 0.019 0.098 0.321
Gamma 0.088 0.168 0.228 0.082 0.080 0.066 - 0.014 - 0.011 0.057 0.206
Epsilon 0.087 0.108 0.190 0.050 0.058 0.064 0.007 - 0.011  0.027 0.095 0.303
Kappa 0.096 0.136 0.111 0.049 0.076 0.105 0.005 0.024 - 0.019 0.093 0.286
Zeta 0.081 0.291 0.194 0.095 0.068 0.083 0.002 0.048  0.012 - 0.030 0.096
Conversion - - - - - - - - 1.000
Null - - 1.000

bold = edited number compared to table 12

Table A8: Logit Model

Impulsive Journeys

Balanced Journeys

Considered Journeys

Channel B Exp(B) ME B Exp(B) ME B Exp(B) ME
Eta 0.0707 1.073  0.01277 0.023 1.023 0.004 0.007 1.007  0.001
Tota 0.003 1.003  0.001 0.005 1.005  0.001 0.005 1.005  0.001
Alpha 0.040"" 1.041  0.007"°-0.031 0.969 -0.006 -0.002 0.998 -0.000
Beta 0.075™" 1.078  0.013" 0.005 1.005  0.001 0.001 1.001  0.000
Theta -0.001  0.999  -0.000 -0.020 0.980 -0.004 -0.002 0.998  -0.000
Lambda  0.153"7 1.165  0.02777-0.006 0.994 -0.001 0.001 1.001  0.000
Gamma  0.049 1.050  0.009 0.019 1.019 0.003 0.027 1.028  0.005
Epsilon  0.094 1.099  0.016 0.003 1.003 0.001 0.004 1.004  0.001
Kappa 0.121  1.129  0.021 0.061 1.063  0.011 -0.020 0.980 -0.004
Zeta 0.141 1.152  0.025 0.021 1.022  0.004 -0.003 0.997 -0.000
Intercept -1.355""" 0.258 -1.1937" 0.303 -1.168™"" 0.311

Type of journey is based on the Length of Journeys

*p < 0.05
¥ 1 = 0.01
5k ) = 0,001
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Table A9: Removal Effect

Impulsive Journeys Balanced Journeys

Considered Journeys

Channel M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Eta 0.292 0.310 0.315 0.315 0.245 0.227 0.238 0.247 0.560 0.535 0.501 0.483
Tota 0.246 0.242 0.244 0.244 0419 0.389 0.384 0401 0.745 0.747 0.708 0.707
Alpha 0.461 0.466 0.470 0.470 0.630 0.648 0.661 0.672 0.651 0.643 0.633 0.654
Beta 0.147 0.149 0.151 0.151 0.241 0.213 0.222 0.237 0.579 0.553 0.499 0.506
Theta 0.090 0.084 0.085 0.085 0.238 0.218 0.193 0.216 0.500 0.475 0.452 0.441
Lambda 0.062 0.062 0.059 0.059 0.135 0.115 0.122 0.115 0.372 0.307 0.272 0.262
Kappa 0.010 0.009 0.010 0.010 0.035 0.029 0.034 0.038 0.089 0.086 0.076 0.061
Zeta 0.006 0.005 0.006 0.006 0.034 0.033 0.038 0.047 0.181 0.160 0.144 0.152
Epsilon  0.017 0.020 0.018 0.018 0.068 0.074 0.075 0.079 0.194 0.200 0.190 0.196
Gamma 0.013 0.011 0.008 0.008 0.017 0.012 0.013 0.020 0.042 0.046 0.039 0.040
Average 0.134 0.135 0.137 0.137 0.206 0.196 0.198 0.207 0.391 0.375 0.351 0.348

bold = highest removal effect for each model
Type of journey based on the Length of Journeys

Table A10: Number of Conversions

Impulsive Journeys Balanced Journeys

Considered Journeys

Channel  First Last Linear M4 First Last Linear M4 First Last  Linear M4
Eta 2,570 3,007 2,756.667  2,806.499 346 658 459.167 588.027 248 502  322.962  371.800
Tota 2,170 1,966  2,070.667  2,168.837 1,369 834 1,035.333 956.105 1,061 552 747.249 544.468
Alpha 4,387 5,254 4,852.000 4,180.227 1,701 2,426 2,149.717 1,602.486 220 767 572.385 504.113
Beta 1,560 711 1,167.833  1,346.175 679 158 473.067 565.583 591 119 441.900  377.092
Theta 740 211 453.333 751.811 555 218 350.050 516.207 310 224 218.718  339.714
Lambda 519 644 573.333 527.449 190 293 245.600 274.936 191 268 214916  201.777
Kappa 41 s 57.167 82.660 19 92 51.400 90.897 14 61 29.397 47.302
Zeta 5 44 28.167 55.107 8 39 52.883 111.097 14 24 54.960 117.428
Epsilon 56 166 108.333 157.447 34 207 99.067 187.406 9 158 64.687 145.875
Gamma 103 71 83.500 74.788 40 16 24.717 48.254 22 5 12.825 30.432

bold = highest removal effect for each model

Type of journey is based on the Length of Journeys
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Table All: Logit Model

Impulsive Journeys

Balanced Journeys

Considered Journeys

Channel B Exp(B) ME B Exp(B) ME B Exp(B) ME

Eta 0.016 1.016 0.003 0.029" 1.030 0.005" -0.002  0.998  -0.000

Iota 0.003  1.003 0.001  0.008 1.008 0.001  0.008  1.008 0.001

Alpha -0.003  0.997 -0.000 0.001 1.001 0.000 0.003  1.003 0.001

Beta 0.002  1.002 0.000 0.008  1.008 0.001 0.003 1.003 0.001

Theta 0.074  1.077 0.013 -0.012 0.988 -0.002 -0.009 0.991 -0.002

Lambda  0.092  1.097 0.016 0.007  1.007 0.001 0.002  1.002 0.000

Gamma -0.047 0954 -0.01 0.067 1.069 0.012 -0.049 0.952 -0.009

Epsilon 0.098 1.103 0.017 0.007  1.007 0.001 0.009 1.010 0.002

Kappa 0.044 1.045 0.008 0.045 1.046 0.008 -0.023 0978 -0.004

Intercept -1.282"" 0.278 -1.255""" 0.285 -1.1497 0.317

Type of journey is based on the Number of Channels

*p < 0.05

¥ p < 0.01

K p < 0.001

Table A12: Removal Effect
Impulsive Journeys Balanced Journeys Considered Journeys

Channel M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
Eta 0.180 0.195 0.194 0.200 0.434 0417 0419 0408 0.636 0.638 0.643 0.634
Tota 0.141 0.138 0.141 0.146 0.570 0.534 0.533 0.506 0.750 0.777 0.780 0.797
Alpha 0.564 0.566 0.569 0.561 0.466 0.471 0.484 0.481 0.660 0.683 0.713 0.738
Beta 0.063 0.055 0.049 0.048 0.390 0.364 0.361 0.358 0.646 0.634 0.640 0.658
Theta 0.001  0.000 0.000 0.000 0.341 0.315 0.304 0.300 0.554 0.561 0.586 0.573
Lambda 0.046 0.041 0.040 0.040 0.172 0.149 0.134 0.128 0.439 0.411 0.375 0.358
Kappa  0.000 0.001 0.001 0.002 0.042 0.040 0.034 0.036 0.142 0.126 0.125 0.127
Zeta 0.000 0.000 0.000 0.000 0.061 0.045 0.041 0.041 0.238 0.227 0.213 0.213
Epsilon  0.002 0.002 0.001 0.000 0.079 0.081 0.082 0.077 0.303 0.312 0.307 0.303
Gamma 0.003 0.002 0.004 0.002 0.026 0.021 0.022 0.026 0.081 0.066 0.077 0.060
Average 0.111 0.111 0.111 0.111 0.257 0.244 0.241 0.236 0445 0444 0446 0.446

bold = highest removal effect for each model
Type of journey based on the Number of Channels
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Table A13

: Number of Conversions

Impulsive Journeys

Balanced Journeys

Considered Journeys

Channel  First Last Linear M4 First Last Linear M4 First Last Linear M4
Eta 1,958 1,958 1,958  2,037.756 1,042 1,914 1,363.772  1,385.923 164 295 217.024  225.622
Tota 1,424 1,424 1,424 1488.700 2,563 1,719 2,064.233 1,716.457 613 209 365.016 283.891
Alpha 5,742 5,742 5,742 5,709.474 489 2,293 1,552.774  1,633.824 77T 412 279.329  262.878
Beta 545 545 545 493.006 1,903 385 1,271.106  1,214.857 382 58 266.694  234.117
Theta 3 3 3 0 1,393 498 859.151 1,019.147 209 152  159.950 204.014
Lambda 440 440 440 403.795 362 571 455.909 433.463 98 194 137.940 127.565
Kappa 7 7 7 18.781 56 156 99.042 121.776 11 67 31.922 45.154
Zeta 0 0 0 0 18 92 89.881 139.172 9 15 46.129 75.704
Epsilon 12 12 12 4.695 79 339 189.752 260.948 8 180 70.335 107.744
Gamma 39 39 39 18.781 109 47 68.379 88.432 17 6 13.662 21.310

bold = highest removal effect for each model

Type of journey is based on the Number of Channels
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A.2 Figure Appendix

Figure A1l: Last-, first- and linear-click

Last Click

First Click

Linear

Figure A2: Example simple Markov graph

Figure A3: Positives and Negatives

Actual
Class

Predicted class

Journey 1: C1 = C3 = CONVERSION
Journey 2: C1 — C4 — CONVERSION
Journey 3: C1 —C3 — C4 - CONVERSION
Journey 4: C2 —END

P N
True False
Positives Negatives
(TP) (FN)
False True
Positives Negatives
(FP) (TN)
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True Positive Rate

True Positive rate (Sensitivity)
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Figure A4: Example ROC curve
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Figure A6: Number of conversions
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Figure A7: First-order Markov Graph
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Figure A8: ROC curves - based on the Length of the Journeys
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Figure A9: ROC curves - based on the Number of Channels in Journeys
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A.3 Code Appendix

# CHANNEL ATTRIBUTION PACKAGE
.v=packageVersion (" ChannelAttribution")
.onAttach = function (libname, pkgname) {

packageStartupMessage (paste0 (" ChannelAttribution " ,.v))
packageStartupMessage ("Looking for attribution at path level? Try
ChannelAttributionPro! Visit https://channelattribution.io for more

information.")

# HEURISTIC MODELS

heuristic_models=function (Data, var path, var conv, var value=NULL, sep=">"){

if (!("data.frame"%in%class (Data)|"data.table"%in%class (Data))){

print ("Data must be a data.frame or a data.table")

}

if (is.character (var_path)){
if (!var_path%in%names(Data)){

print ("var_path must be a column of Data")

}
telse{

print ("var_path must be a string")
}

if (is.character (var_conv)){

if (!var_conv%in%names(Data)){

print ("var_conv must be a column of Data'")

}
telse{

print ("var_conv must be a string")

}

if (is.null(var_ value)){
if (!var_value%in%names(Data)){

print ("var_value must be a column of Data")

}
}
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if (length (sep)>1){stop("Separator must have length 1")}
if (is.null(var_value)){var_value="0"}
res=.Call ("heuristic_models_cpp", Data, var path, var conv, var value, sep)

return (as.data.frame(res))

# CHOOSE_ORDER
choose order=function (Data, var path, var conv, var null, max order=10, sep=">
", ncore=1, roc_npt=100, plot=TRUE){

if (!("data.frame"%in%class (Data)|"data.table"%in%class (Data))){
print ("Data must be a data.frame or a data.table")

}

if (is.character (var_ path)){
if (!var_path%in%names(Data)){
print ("var_ path must be a column of Data')
}
telse{

print ("var path must be a string")

}

if (is.character (var conv)){
if (!var conv%in%names(Data) ) {

print ("var _conv must be a column of Data")

}
telse{

print ("var_conv must be a string")

}

if (!is.null(var_null)){
if (!var_null%in%names(Data)){

print ("var_null must be a column of Data")

}
}

if (length (sep)>1){stop("sep must have length 1")}
if (ncore<1l){stop("ncore must be >= 1")}
if (roc_npt<10){stop("roc_npt must be >= 10")}
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s2| if (! plot%in%c (0,1)){stop("plot must be FALSE or TRUE")}
83
s1| res=.Call("choose order cpp", Data, var_ path, var conv, var null, max order,

sep, ncore, roc_npt)

ss| ck=res$auc$order|[res$auc$order!=0]
s7| res$auc$order=res$auc$order[ck]

ss| res$auc$auc=res$auc$auc|ck]

so| res$auc$pauc=res$auc$pauc|ck]

90
91| best order=res$auc$order|[res$auc$pauc=—max(res$auc$pauc)]
92
o3| if (best order=—max_ order){

94 print (paste0 (" Suggested order mnot found. Try increasing max order."))
os| }elseq

96| print (paste0("Suggested order:
pauc)))

", res$auc$order|[res$auc$pauc=—max(res$auc$

97 }
98
oo| if (plot=="TRUE"){

100 plot (res$auc$order ,res$auc$pauc,type="1" xlab="order" ,ylab="penalized auc",
main="PENALIZED AUC")

03| res [[ ’suggested order’|]=Dbest_ order
104
15| return(res)
106
107 }
108
109 # MARKOV_MODEL

110) markov_model=function (Data, var path, var conv, var value=NULL, var null=NULL,
order=1, nsim start=leb, max step=NULL, out more=FALSE, sep=">", ncore=1,
nfold=10, seed=0, conv_par=0.05, rate step sim=1.5, verbose=TRUE){

ns| if (! ("data.frame"%in%class (Data) |"data. table"%in%class (Data))){
114 print ("Data must be a data.frame or a data.table")

115 }

17| if (is.character (var path)){
ns|  if (!var_path%in%mames(Data) ) {

119 print ("var path must be a column of Data")
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120 }
121] }else{
122 print ("var_path must be a string")

123 }

125 if(is.character(var_conv)){

126]  if (!'var_conv%in%names(Data)){

127 print ("var_conv must be a column of Data")
128 }

120 }else{

130 print ("var_conv must be a string")

131 }

i3] if (lis.null(var_value)){

14| if (!var_value%in%mames(Data) ) {

135 print ("var value must be a column of Data')
136 }

137}

30| if (lis.null(var _null)){

o] if (!var_ null%in%names(Data) ) {

141 print ("var_null must be a column of Data")
142 }

143 }

144
145 order <1){stop ("order must be >= 1")}
146 nsim_start <1){stop ("nsim_ start must be >= 1")}

l'is.null (max step)){if (max step <1){stop("max step must be >= 1")}}
lout_more%in%c (0,1)){stop ("out_more must be FALSE or TRUE")}

147

if(
if(
if(
if(
if (length (sep)>1){stop("sep must have length 1")}
50| if (ncore<1){stop("ncore must be >= 1")}
if (nfold <1){stop ("nfold must be >= 1")}
if (seed <0){stop ("seed must be >= 0")}
if (conv_par<0){stop("conv_par must be > 0")}
if (rate_step_sim<0){stop("rate step sim must be > 0")}
if (!verbose%in%c (0,1)){stop("verbose must be FALSE or TRUE")}

157 if (nrow (Data|which (Data[var conv]!=0) ,])==0){stop ("Data must have at least

one converting path")}

59| if (is.null(var_ value)){var value="0"}

o] if(is.null(var null)){var null="0"}

161 if (is.null(max step)){max step=0}
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162

164

165

166

167

168

169

188

189

190

191

192

193

194

195

196

197

198

199

if(!is.null(seed)){set.seed(seed)}

res=.Call ("markov_model cpp", Data, var path, var conv, var value, var null,
order , nsim_start , max step, out more, sep, ncore, nfold, seed, conv_ par,

rate_step_ sim,verbose)

if (out_more—FALSE) {
return (as.data.frame(res))
telse{
return (list (result=as.data.frame(res$result),transition matrix=as.data.frame

(res$transition matrix) ,removal effects=as.data.frame(res$removal

effects)))

4|# TRANSITION MATRIX

5| transition matrix=function (Data, var path, var conv, var null, order=1, sep=">

", flg equal=TRUE){

if (!("data.frame"%in%class (Data)|"data.table"%in%class (Data))){
print ("Data must be a data.frame or a data.table")

}

if (is.character (var_path)){
if (!var_path%in%names(Data)){
print ("var path must be a column of Data")
}
telse{
print ("var_path must be a string")
}
if (is.character (var_conv)){
if (!var conv%in%names(Data)){

print ("var conv must be a column of Data")

}
telse{

print ("var_conv must be a string")

}

if (!is.null(var_null)){
if (!var_null%in%names(Data)){

print ("var_null must be a column of Data")

}
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200 }
201
202| if (order <1){stop ("order must be >= 1")}

203 if (length (sep)>1){stop("sep must have length 1")}

20| 1f (!flg equal%in%c (0,1)){stop("flg equal must be FALSE or TRUE")}
205
206) if (is.null(var null)){var null="0"}
207
20| res=.Call("transition matrix_cpp", Data, var path, var conv, var null, order,

sep, flg equal)

210/ return(list (channels=data.frame(id=1:length(res$channels), channel name=res$

channels) ,transition matrix=as.data.frame(res$transition matrix)))

213|# AUTO MARKOV_MODEL

214| auto_markov_model=function (Data, var path, var conv, var null, var value=NULL,
max_order=10, roc_npt=100, plot=FALSE, nsim start=1e5, max step=NULL, out
_more=FALSE, sep=">", ncore=1, nfold=10, seed=0, conv_par=0.05, rate step
sim=1.5, verbose=TRUE){

215
216 1f (!'("data.frame"%in%class (Data) | "data.table "%in%class (Data))){
217 print ("Data must be a data.frame or a data.table")

218 }

219
220/ if (is.character(var_path)){

221 if (!var_path%in%names(Data)){

222 print ("var_path must be a column of Data")
223 }

21| }elsef

225)  print ("var_path must be a string")

226 }

207| if (is.character (var_conv)){

228/ if (!'var conv%in%mames(Data)){

229 print ("var conv must be a column of Data")
230 }

231| telse{

232  print ("var_conv must be a string")

233 }
234
235 if (lis.null(var_value)){

236 if (!var_value%in%names(Data)){

23 print ("var value must be a column of Data')

~
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244

245

246

247

249

263

264

if (is.null(var_null)){
if (!var null%in%names(Data) ) {

print ("var_null must be a column of Data")

}
}

if (max order <1){stop("max order must be >= 1")}

if (roc_npt<10){stop("roc_npt must be >= 10")}

if (!plot%in%c (0,1)){stop("plot must be FALSE or TRUE")}

if (nsim_start <1){stop("nsim start must be >= 1")}

if (!is.null (max_step)){if (max step <1){stop("max step must be >= 1")}}
if (lout _more%in%c (0,1)){stop ("out_more must be FALSE or TRUE")}
if (length (sep)>1){stop("sep must have length 1")}

if (ncore<1l){stop("ncore must be >= 1")}

if (nfold <1){stop("nfold must be >= 1")}

if (seed <0){stop ("seed must be >= 0")}

if (conv_par<0){stop("conv_par must be > 0")}

if (rate_step sim<0){stop("rate step sim must be > 0")}

if (!verbose%in%c (0,1)){stop("verbose must be FALSE or TRUE")}

order=choose order (Data, var path, var conv, var null, max order=max order,
sep=sep, ncore=ncore, roc_npt=roc_npt, plot=plot)

order=order [[ "suggested order’]]

res=markov_model (Data, var path, var conv, var value=var value, var null=var_
null , order=order, nsim_ start=nsim start , max step=max step, out more=out
_more, sep=sep, ncore=ncore, nfold=nfold, seed=seed, conv_par=conv_par,

rate step sim=rate step sim, verbose=verbose)

if (out_more=—FALSE) {
return (as.data.frame(res))
telse{
return(list (result=as.data.frame(res$result),transition matrix=as.data.frame

(res$transition matrix),removal effects=as.data.frame(res$removal
effects)))

1+|# REMOVE JOURNEYS WITH DELTA AND MI
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275|# Delta present in observations: 659, 1702, 1889, 2392, 3020, 5045, 5889,

)| Heuristics2 <— heuristic_models(Data2, var path = ’'path’, var conv

5933, 6404, 6504, 6977, 7232, 7496

5|4 Mi present in observations: 2094, 3033

Data2 <— Data[—c (659, 1702, 1889, 2392, 3020, 5045, 5889, 5933, 6404, 6504,
6977, 7232, 7496, 2094, 3033), ]

o|# HEURISTICS

conversions ', var_value="total conversion value’)

282/ # MARKOV 1 TO 4

289

290

291

292

293

294

295

296

297

298

299

300

301

Markovl 2 <— markov_model(Data2, var path = "path", var conv = "total
conversions",
il var_value="total conversion value", var null="total null", order = 1)
Markov2 2 <— markov_model(Data2, var path = "path", var conv = "total
conversions",
7l var_value="total conversion value", var null="total null", order = 2)
Markov3 2 <— markov_model (Data2, var path = "path", var conv = "total
conversions"
var value="total conversion value", var null="total null", order = 3)
Markov4 2 <— markov_model(Data2, var path = "path", var conv = "total
conversions",
var_value="total conversion_ value", var null="total null", order = 4)
# LOGIT

# Imported an excel file with the number of occurrences of each channel in
each observation —> file is called Channel occurences

Channels occurences 2 <— Channels occurences[—c (659, 1702, 1889, 2392, 3020,
5045, 5889, 5933, 6404, 6504, 6977, 7232, 7496, 2094, 3033), |

logit2 <— glm(formula = cbind(Data2$total conversions, Data2$total null) = (
Channels occurences 2$eta + Channels occurences 2%iota + Channels
occurences 2%alpha + Channels occurences 2$beta + Channels occurences 2$
theta + Channels occurences 2$lambda + Channels occurences 2$kappa +
Channels occurences 2$zeta + Channels occurences 2$epsilon + Channels
occurences_ 2$gamma) , family = binomial("logit"), data = Data2)

summary (logit2)

exp(logit2$coefficients)

marg2 <— logitmfx (formula = cbind (Data2$total conversions, Data2$total null)

(Channels_occurences 2$eta + Channels occurences 2$iota + Channels

occurences 2$alpha + Channels occurences 2$beta + Channels occurences 2%
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302

303

304

305

306

307

308

309

310

311

312

318

314

315

316

317

318

319

320

321

322

323

324

330

331

332

333

334

335

theta + Channels occurences 2$lambda + Channels occurences 2%kappa +
Channels occurences 2$zeta + Channels occurences 2$epsilon + Channels

occurences 2%gamma), data = Data2)

## PLOT THE NUMBER OF CONVERSIONS

# Rename the columns

colnames (Heuristics2) < c¢(’channel’, ’first touch conversions’, ’first touch
value’, ’last _touch conversions’, ’last touch value’, ’linear touch
conversions’, ’linear touch value’ )

colnames (Markovl 2) <— c¢(’channel’, ’conversionl’, ’valuel’)

colnames (Markov2 2) <— c¢(’channel’, ’conversion2’, ’value2’)

colnames (Markov3 2) <— c¢(’channel’, ’conversion3’, ’value3’)

colnames (Markov4 2) <— c¢(’channel’, ’conversiond’, ’valued’)

# Merge Heuristics and Markov Models

H Ml 2 <— merge(Heuristics2 , Markovl 2, by="channel")

H M1 M2 2 <— merge(H M1 2, Markov2 2, by="channel")

H M1 M2 M3 2 <~ merge(H M1 M2 2, Markov3 2, by = "channel")
HM 2 <— merge(H M1 M2 M3 2, Markovd 2, by = "channel")

# Conversion

7

# Select conversion columns

Conversion HM 2 < HM 2[,colnames (HM 2)%in%c (’channel’, ’first touch
= pil i P ) —_ —
conversions’, ’last touch conversions’, ’linear touch conversions’, ’
conversionl’, ’conversion2’, ’conversion3’, ’'conversiond’)]

# Rename columns
)

colnames (Conversion HM 2) <— ¢(’channel’, ’first touch’, ’last touch’,
linear touch’, ’Markovl’, ’'Markov2’, ’'Markov3’, ’'Markov4’)

# Transforms the dataset into a data frame that ggplot2 can use to graph the
outcomes

Conversion HM 2 <— melt(Conversion HM 2, id=’channel’)

# Plot the total conversions

s| ggplot (Conversion HM 2 | aes(channel, value, fill = variable)) +

geom_bar (stat="identity ', position="dodge’) +
ggtitle ("TOTAL CONVERSIONS’) +

theme (axis. title.x = element text(vjust = —2)) +
theme(axis. title.y = element text(vjust = +2)) +
theme(title = element text(size = 16)) +

theme (plot. title=element text(size = 20)) +

ylab ( n ll)
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336

337

338

339

340

34

34

N

343

344

345

346

347

348

349

350

360

361

362

363

364

365

366

367

368

369

/]
370 | 77

# ROC CURVES
res2=choose_order (Data2, var path="path", var conv="total conversions", var
null="total null")

ROC logit <— roc(test logit$bin conv, predicted log)

fpri 2 = res2 [["roc" J][["1"][["fpr"]]

trpl 2 = res2 [["rvoc" |][["1"]][["tpr"]]
fpr2 2 = res2 [["roc"|][["2"]][["fpr"]]
trp2 2 = res2 [["roc" |][["2"]][["tpr"]]

fpr3 2 = res2 [["voc" |][["3"]][["fpr"]]
trp3 2 = res2 [["voc" ||[["3"]][["tpr"]]
fprd_2 = res2 [["roc" J][["4" [][["fpr"]]
trpd 2 = res2 [["rvoc" |][["4" ]][["tpr"]]
trp_logit = ROC logit [["sensitivities"]]
spec_logit <— ROC_logit [["specificities"]]

frp logit = c(1) — spec_logit

plot (fprl 2 ,trpl 2,type="1" xlab="False Positive Rate" ylab="True Positive
Rate" ,main="ROC")
lines (fprl 2,trpl 2,col="red")

55/ lines (fpr2 2 ,trp2 2,col="blue")

(
lines (fpr3_2,trp3 2,col="green")
lines (fprd 2,trp4 2,col="purple")
lines (frp logit, trp logit, col="pink")

legend ("right", legend=c("First order","Second order", "Third order","Fourth
order", "Logit"),
col=c("red","blue", "green", "purple", "pink"),lty=1)

# REMOVAL EFFECT + TRANSITION MATRIX

# Calculate Removal effect + transition matrix/probability

ml 2 = markov_model(Data2, "path", "total conversions", var value="total
conversion_ value", var null="total null", out more=TRUE, order = 1)
m2 2 = markov_model (Data2, "path", "total conversions", var value="total
conversion_value", var null="total null", out more=TRUE, order = 2)
m3 2 = markov_model(Data2, "path", "total conversions", var value="total
conversion_value", var null="total null", out more=TRUE, order = 3)
m4 2 = markov_model (Data2, "path", "total conversions", var value="total
conversion_ value", var null="total null", out more=TRUE, order = 4)

Calculate standard deviation of removal effect
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s7i|removal effects ml 2 <— ml 2[["removal effects"]][["removal effects conversion
" ]]

s72|sum (removal effects ml 2)/10

a3l sd (removal effects ml 2)

s71| sd (removal effects ml 2)/(sum(removal effects ml 2)/10)

sre| removal _effects m2 2 <— m2 2[["removal effects"|][["removal effects conversion
" ]]

s77|sum (removal effects m2 2)/10

ars| sd (removal effects m2 2)

s7o| sd (removal effects m2 2)/(sum(removal effects m2 2)/10)

ssi|removal effects m3 2 <— m3 2[["removal effects"|][["removal effects conversion
" ]]

ss2|sum (removal effects m3 2)/10

ss3| sd (removal effects m3 2)

ss1| sd (removal effects m3 2)/(sum(removal effects m3 2)/10)

sse| removal effects md 2 <— md 2[["removal effects"|][["removal effects conversion
11

ss7|sum (removal effects m4 2)/10

sss| sd (removal effects md 2)

ssol sd (removal effects md 2)/(sum(removal effects md 2)/10)

390
s01|# MARKOV GRAPH FIRST ORDER

s92|# Create Markov Chain first —order

s03| statesNames=c ("start" ,"eta", "iota", "alpha", "beta", "theta", "lambda", "
gamma" , "epsilon", "kappa", "zeta", "conversion", " null")

s04| MarkovChain <—mew ("markovchain", transitionMatrix=matrix (c(

5050, 0.161, 0.231, 0.327, 0.137, 0.084, 0.043, 0.008, 0.005, 0.003, 0.001, 0,
0,

306/ 0, 0, 0.089, 0.132, 0.129, 0.046, 0.023, 0.002, 0.031, 0.010, 0.010, 0.120,
0.408,

307/ 0, 0.102, 0, 0.183, 0.121, 0.094, 0.063, 0.007, 0.027, 0.013, 0.036, 0.078,
0.276,

39810, 0.041, 0.109, 0, 0.035, 0.062, 0.037, 0.003, 0.020, 0.005, 0.009, 0.149,
0.530,

300/ 0, 0.391, 0.181, 0.127, 0, 0.070, 0.029, 0.004, 0.015, 0.005, 0.015, 0.037,
0.126,

w00[ 0, 0.079, 0.229, 0.362, 0.084, 0, 0.048, 0.005, 0.032, 0.015, 0.012, 0.032,
0.102,

010, 0.046, 0.132, 0.170, 0.048, 0.085, 0, 0.006, 0.038, 0.037, 0.019, 0.098,
0.321,

o4




102

103

404

405

106

407

408

109

111

412

413

414

428

429

130

13

432

136

33| Markov4d 2$conversiond /sum

0, 0.088, 0.168, 0.228, 0.082, 0.080, 0.066, 0, 0.014, 0, 0.011, 0.057, 0.206,
0, 0.087, 0.108, 0.190, 0.050, 0.058, 0.064, 0.007, 0, 0.011, 0.027, 0.095,

0.303,

0, 0.096, 0.136, 0.111, 0.049, 0.076, 0.105, 0.005, 0.024, 0, 0.019, 0.093,
0.286,

0, 0.081, 0.291, 0.194, 0.095, 0.068, 0.083, 0.002, 0.048, 0.012, 0, 0.030,
0.096,

o, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,1,
o, 0, 0, 0, 0, 0, O, 0, 0, 0, O, O, 1), byrow=TRUE, nrow=13, dimnames=list (
statesNames ,statesNames) ) )

graph <— as(MarkovChain, "igraph")
V(graph)["start"]|$color<"red"

V(graph)["eta"]$color<—"green"
V(graph)["iota"]|$color<—"blue"
V(graph) ["alpha"]$color<—"black"
V(graph) ["beta"]|$color<—"yellow"
V(graph) ["theta"]|$color<"gray"
V(graph) ["lambda"]|$color<—"orange"
V(graph) ["gamma" |$color<—"brown"
V(graph)["epsilon"]$color<—"salmon"
V(graph) ["kappa"]$color<—"orchid"
V(graph)|["zeta"|$color<—"plum"
V(graph) ["conversion"|$color<—"orchid"

;) plot (graph, vertex.color=V(graph)$color, vertex.size=10, vertex.label.cex=1,

vertex.label.dist=2, edge.arrow.size=0.2, edge.label=E(graph)$prob)

;| # Attribution vs heuristics in %

| Heuristics2$first touch conversions/sum(Heuristics2$first touch conversions)x

100
Heuristics2$last touch conversions/sum(Heuristics2$last touch conversions)*100
Heuristics2$linear touch conversions/sum(Heuristics2$linear touch conversions)
*100
Markovl 2$conversionl /sum 100
*100
x100

*100

Markovl 2$conversionl
Markov2 2$conversion2 /sum(Markov2 2$conversion2

Markov3 2$conversion3d /sum(Markov3 2$conversion3

/_\/_\/_\,_\
— — — —

Markov4 2$conversion4

5| chisq_first conversion2 <— chisq.test (Heuristics2$first touch conversions/sum/(

Heuristics2$first touch conversions)*100)
chisq last conversion2 <— chisq.test(Heuristics2$last touch conversions/sum/(

Heuristics2$last touch conversions)*100)
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140

442

147

144

o

446

460

161

162

163

464

465

166

167

468

7| chisq_linear conversion2 <— chisq.test (Heuristics2$linear touch conversions/

sum( Heuristics2$linear touch conversions)*100)

chisq _markovl conversion2 <— chisq.test (Markovl 2$conversionl /sum(Markovl 2%
conversionl )x100)

chisq markov2 conversion2 <— chisq.test (Markov2 2$conversion2 /sum(Markov2 2%
conversion2)x100)

chisq _markov3 conversion2 <— chisq.test (Markov3 2$conversion3 /sum(Markov3 2%
conversion3)*100)

chisq _markov4 conversion2 <— chisq.test (Markov4d 2$conversiond /sum(Markovd 2%

conversion4 )x100)

# PREDICTIVE ACCURACY

# Top Decile Lift

Expected first conversion2 = chisq first conversion2 [["expected"]]
Observed_first_conversion2 = chisq_first conversion2 [["observed"]]

TDL first conversion2 <— TopDecileLift (Expected first conversion2 , Observed

first conversion2)

Expected last conversion2 = chisq last conversion2 [["expected"]]
Observed last conversion2 = chisq last conversion2 [["observed"]]
TDL last conversion2 <— TopDecileLift (Expected last conversion2 , Observed last

_conversion2)

;| Expected linear conversion2 = chisq linear conversion2 [["expected"]]

Observed linear conversion2 = chisq linear conversion2 [["observed"]]

5/TDL linear conversion2 <— TopDecileLift (Expected linear conversion2, Observed

linear conversion2)

| Expected markovl conversion2 = chisq markovl conversion2 [["expected"]]

s| Observed _markovl conversion2 = chisq markovl conversion2 [["observed"]]

TDL markovl conversion2 <— TopDecileLift (Expected markovl conversion2

Observed markovl conversion2)

Expected markov2 conversion2 = chisq markov2 conversion2 [["expected"]]
Observed markov2 conversion2 = chisq markov2 conversion2 [["observed"]]
TDL markov2 conversion2 <— TopDecileLift (Expected markov2 conversion2 ,

Observed_markov2 conversion2)

Expected markov3 conversion2 = chisq markov3 conversion2 [["expected"]]
Observed markov3 conversion2 = chisq markov3 conversion2 [["observed"]]
TDL markov3 conversion2 <— TopDecileLift (Expected markov3 conversion2 ,

Observed markov3 conversion2)
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169

470

489

190

491

492

193

194

495 | ##

496

497

498

199

500

Expected markov4 conversion2 = chisq markov4d conversion2 [["expected"]]
Observed markov4 conversion2 = chisq markov4 conversion2 [["observed"]]
TDL markov4 conversion2 <— TopDecileLift (Expected markov4d conversion2 ,

Observed markov4 conversion?2)

Expected logit = sum(logit2$effects) /9985
Observed logit = logit2$effects
TDL logit <— TopDecileLift (Expected logit , Observed logit)

# AUC

78| # Markov models —> values found [U#FFFD]res2[U+FFFD]

res2=choose_order (Data2, var path="path", var conv="total conversions",
var_null="total null")

Preferred order is 5

3|7 Logit

Data2$conv_and null <— Data2$total conversions + Data2$total null

5| Data2 logit <— Data2 %% slice (rep(l:n(), Data2$conv_and null))

Data2 logit <— Data2 logit %%

group by (path) %%

mutate (row_number = 1:n())

Data2 logit$bin conv <— ifelse (Data2 logit$row number <= Data2 logit$total
conversions , 1, 0)

Data2 logit$bin null <— ifelse (Data2 logit$bin conv =— 0, 1, 0)

Channels occurences logit <— Channels occurences 2 %% slice (rep(l:n(), Data2$

conv_and null))

logit nonagg <— glm(formula = cbind(Data2 logit$bin conv, Data2 logit$bin null
) 7 (Channels_occurences logit$eta + Channels occurences logit$iota +
Channels occurences logit$alpha + Channels occurences logit$beta +
Channels occurences logit$theta + Channels occurences logit$lambda +
Channels occurences logit$kappa + Channels occurences logit$zeta +
Channels occurences logit$epsilon + Channels occurences logit$gamma) ,

family = binomial("logit"), data = Data2 logit)

Use 80% of dataset as training set and remaining 20% as testing set

sample logit <— sample(c(TRUE, FALSE), nrow(Data2 logit), replace=TRUE, prob=c
(0.8,0.2))

train logit <— Data2 logit [sample logit , |

test logit <— Data2 logit[!sample logit , |

Channels occurences nonagg <— Channels occurences logit[!sample logit , |

so1|# Fit logistic regression model (on train)
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502

model logit nonagg2 <— glm(formula = cbind(test logit$bin conv, test logit$
bin null) 7 (Channels occurences nonagg$eta + Channels occurences nonagg$
iota + Channels occurences nonagg$alpha + Channels occurences nonagg$beta
+ Channels _occurences nonagg$theta + Channels occurences nonagg$lambda +
Channels occurences nonagg$kappa + Channels occurences nonagg$zeta +
Channels occurences nonagg$epsilon + Channels occurences nonagg$gamma) ,

family = binomial("logit"), data = train logit)

Calculate probability of default for each individual in test dataset
predicted log <— predict (model logit nonagg2, test logit , type="response")
auc(test logit$bin conv, predicted log)

# TYPES OF JOURNEYS — SPLIT MADE BY LENGTH JOURNEYS

# Make subsamples

Data2$length <— sapply(strsplit (as.character(Data2$path),">") FUN=function (x){
length (x[x!="Null"]) })

Length impulsive 2 <— subset (Data2, length < 4)

Length balanced 2 <— subset(Data2, length >3 & length < 7)

s| Length considered 2 <— subset(Data2, length > 6 & length < 90)

5|7 Heuristics

i| Heuristics length impulsive 2 <— heuristic_models(Length impulsive 2, var path

= ’'path’, var conv = ’"total conversions’, var value='total conversion
value )
Heuristics length balanced 2 <— heuristic_models(Length balanced 2, var path =

)

"path’, var conv = ’total conversions’, var value=’total conversion value

")
Heuristics length considered 2 <— heuristic _models(Length considered 2, var
path = ’path’, var conv = ’total conversions’, var value=’total conversion

_value )

Heuristics length impulsive 2$first touch conversions/sum(Heuristics length
impulsive 2$first touch conversions)=*100

Heuristics length impulsive 2$last touch conversions/sum(Heuristics length
impulsive 2$last touch conversions)*100

Heuristics length impulsive 2$linear touch conversions/sum(Heuristics length

impulsive 2$linear touch conversions)=*100

Heuristics length balanced 2$first touch conversions/sum(Heuristics length
balanced 2$first touch conversions)*100
Heuristics length balanced 2$last touch conversions/sum(Heuristics length

balanced 2$last touch conversions)x100
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539

540

546

5| Markovl length considered 2 <— markov _model (Length considered 2, var path =

| Heuristics_length balanced 2$linear touch conversions/sum(Heuristics length

balanced 2$linear touch conversions)*100

Heuristics length considered 2$first touch conversions/sum(Heuristics length
considered 2$first touch conversions)=*100

Heuristics length considered 2$last touch conversions/sum(Heuristics length
considered 2$last touch conversions)*100

Heuristics length considered 2$linear touch conversions/sum(Heuristics length

considered 2$linear touch conversions)x100

2|# Markov 1
3| Markovl length impulsive 2 <— markov_model(Length impulsive 2, var path ="
path" | var conv = "total conversions", var value="total conversion value",
var_null="total null", order = 1)
Markovl length balanced 2 <— markov_model(Length balanced 2, var path = "path"
, var _conv = "total conversions", var value="total conversion value", var

null="total null", order = 1)
n

path", var conv = "total conversions", var value="total conversion value",
var_null="total null", order = 1)

+# Markov 2

;| Markov2 length impulsive 2 <— markov_model(Length impulsive 2, var path = "
path" | var conv = "total conversions", var value="total conversion value'",
var_null="total null", order = 2)

Markov2 length balanced 2 <— markov_model(Length balanced 2, var path = "path"
, var _conv = "total conversions", var value="total conversion value", var
null="total null", order = 2)

Markov2 length considered 2 <— markov_model(Length considered 2, var path ="

h'", v v = v i , Vv v = onversi v ,
ath" ar_con "total conversions" ar_value="total conversion_ value"

var_null="total null", order = 2)

1| Markov2 length balanced 2$total conversion/sum(Markov2 length balanced 2%total

_conversion )x100

3|# Markov 3

1| Markov3 length impulsive 2 <— markov_model(Length impulsive 2, var path ="
path" | var conv = "total conversions", var value="total conversion_ value",
var_null="total null", order = 3)

5| Markov3 length balanced 2 <— markov _model(Length balanced 2, var path = "path"
, var_conv = "total conversions", var value="total conversion value", var_

null="total null", order = 3)

Markov3 length considered 2 <— markov_model (Length considered 2, var path =

path", var conv = "total conversions", var value="total conversion value",
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549

550

551

554

559

560

561

562

563

564

565

566

567

568

569

var_null="total null", order = 3)

Markov 4

Markov4 length impulsive 2 <— markov _model(Length impulsive 2, var path = "
path", var conv = "total conversions", var value="total conversion value",
var_null="total null", order = 4)

Markov4 length balanced 2 <— markov_model (Length balanced 2, var path = "path"
, var_conv = "total conversions", var value="total conversion value", var_
null="total null", order = 4)

Markov4 length considered 2 <— markov_model(Length considered 2, var path ="

path", var conv = "total conversions", var value="total conversion value",

var_null="total null", order = 4)

Markov4 length impulsive 2$total conversion/sum(Markov4d length impulsive 2%
total conversion)*100
Markov4 length balanced 2$total conversion/sum(Markov4d length balanced 2%total

_conversion )x100

55| Markov4 length considered 2$total conversion/sum(Markov4d length considered 2§

total conversion)x100

Expected logit length impulsive = sum(logit2 length impulsive$effects) /3890

exp length impulsive = sum(predicted log length impulsive)/10902

Observed logit length impulsive = logit2 length impulsive$effects

TDL logit length impulsive <— TopDecileLift (exp length impulsive, Observed
logit length impulsive)

Expected logit length balanced = sum(logit2 length balanced$coefficients) /11

exp_ length balanced = sum(predicted log length balanced)/

Observed logit length balanced = logit2 length balanced$effects

TDL logit length balanced <— TopDecileLift (Expected logit length balanced,
Observed logit)

Expected logit length considered = sum(logit2 length considered$coefficients)/
11

Observed logit length considered = logit2 length considered$coefficients

TDL logit length considered <— TopDecileLift (Expected logit length considered,
Observed logit)

# Logit
# Imported three excel files with the number of occurrences of each channel in
each observation —> files are called Channel occurences length impulsive,

Channel occurences length balanced, Channel occurences length considered
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580

581

logit2 length impulsive <— glm(formula = cbind (Length impulsive 2$total
conversions , Length impulsive 2$total null) = (Channels occurences length
impulsive$eta + Channels occurences length impulsive$iota + Channels
occurences length impulsive$alpha + Channels occurences length impulsive$
beta + Channels occurences length impulsive$theta + Channels occurences
length impulsive$lambda + Channels occurences length impulsive$kappa +
Channels occurences length impulsive$zeta + Channels occurences length
impulsive$epsilon + Channels occurences length impulsive$gamma), family =
binomial ("logit"), data = Length impulsive 2)

summary (logit2 length impulsive)

550 exp(logit2 length impulsive$coefficients)

marg2 length impulsive <— logitmfx (formula = cbind (Length impulsive 2$total
conversions , Length impulsive 2$total null) = (Channels occurences length
impulsive$eta + Channels occurences length impulsive$iota + Channels
occurences length impulsive$alpha + Channels occurences length impulsive$
beta + Channels occurences length impulsive$theta + Channels occurences
length impulsive$lambda + Channels occurences length impulsive$kappa +
Channels occurences length impulsive$zeta + Channels occurences length
impulsive$epsilon + Channels occurences length impulsive$gamma), data =

Length impulsive 2)

logit2 length balanced <— glm(formula = cbind (Length balanced 2$total
conversions , Length balanced 2$total null) = (Channels occurences length
balanced$eta + Channels occurences length balanced$iota + Channels
occurences length balanced$alpha + Channels occurences length balanced$
beta + Channels occurences length balanced$theta + Channels occurences
length balanced$lambda + Channels occurences length balanced$kappa +
Channels occurences length balanced$zeta + Channels occurences length
balanced$epsilon + Channels occurences length balanced$gamma), family =
binomial ("logit"), data = Length balanced 2)

summary (logit2 length balanced)

exp(logit2 length balanced$coefficients)

marg2 length balanced <— logitmfx (formula = cbind (Length balanced 2$total
conversions , Length balanced 2$total null) = (Channels occurences length
balanced$eta + Channels occurences length balanced$iota + Channels
occurences length balanced$alpha + Channels occurences length balanced$
beta + Channels occurences length balanced$theta + Channels occurences
length balanced$lambda + Channels occurences length balanced$kappa +
Channels occurences length balanced$zeta + Channels occurences length
balanced$epsilon + Channels occurences length balanced$gamma), data =
Length balanced 2)
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logit2 length considered <— glm(formula = cbind (Length considered 2$total
conversions , Length considered 2$total null) ~ (Channels occurences length
_considered$eta + Channels occurences length considered$iota + Channels
occurences length considered$alpha + Channels occurences length considered
$beta + Channels occurences length considered$theta + Channels occurences
length considered$lambda + Channels occurences length considered$kappa +
Channels occurences length considered$zeta + Channels occurences length
considered$epsilon + Channels occurences length considered$gamma), family
= binomial("logit"), data = Length considered 2)

summary (logit2 length considered)

sss|exp(logit2 length considered$coefficients)

marg2 length considered <— logitmfx (formula = cbind (Length considered 2$total
conversions , Length considered 2$total null) = (Channels occurences length
_considered$eta + Channels occurences length considered$iota + Channels
occurences length considered$alpha + Channels occurences length considered
$beta + Channels occurences length considered$theta + Channels occurences
length considered$lambda + Channels occurences length considered$kappa +
Channels occurences length considered$zeta + Channels occurences length
considered$epsilon 4+ Channels occurences length considered$gamma), data =
Length considered 2)

# ROC

# Impulsive

res_length impulsive 2=choose order(Length impulsive 2, var path="path", var
conv="total conversions", var null="total null")

ROC logit length impulsive <— roc(test logit length impulsive$bin conv,
predicted log length impulsive)

fprl length impulsive 2 = res length impulsive 2[["roc"||[["1"]][["fpr"]]
trpl length impulsive 2 = res length impulsive 2[["roc"[][["1"]][["tpr"]]
fpr2 length impulsive 2 = res length impulsive 2[["roc"|][["2"]][["fpr"]]
trp2 length impulsive 2 = res length impulsive 2[["roc" [][["2"]][["tpr"]]
fpr3 length impulsive 2 = res length impulsive 2[["roc" |][["3"]][["fpr"]]
trp3_length impulsive 2 = res length impulsive 2[["roc"[][["3"|][["tpr"]]
fpr4 length impulsive 2 = res length impulsive 2[["roc"||[["4"|][["fpr"]]
trp4 length impulsive 2 = res length impulsive 2[["roc"[][["4"]][["tpr"]]
trp_logit length impulsive = ROC logit length impulsive [["sensitivities"]]
spec_logit length impulsive <— ROC logit length impulsive [["specificities"]]
frp logit length impulsive = ¢(1) — spec_logit length impulsive

plot (fprl length impulsive 2,trpl length impulsive 2 type="1", 6 xlab="False

Positive Rate",ylab="True Positive Rate" main="ROC")
lines (fprl length impulsive 2,trpl length impulsive 2,col="red")
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35| lines

lines (fpr2 length impulsive 2,trp2 length impulsive 2,col="blue")
lines (fpr3 length impulsive 2,trp3 length impulsive 2,col="green")
lines (fpr4d length impulsive 2,trp4 length impulsive 2,col="purple")
lines (frp logit length impulsive, trp logit length impulsive, col="pink")
legend ("right", legend=c("First order","Second order", "Third order","Fourth
order", "Logit"),
col=c("red","blue", "green" "purple", "pink") , lty=1)

# Balanced

res_length balanced 2=choose order(Length balanced 2, var path="path", var_
conv="total conversions", var null="total null")

ROC logit length balanced <— roc(test logit length balanced$bin conv,
predicted log length balanced)

fprl length balanced 2 = res length balanced 2[["roc"|][["1"]][["fpr"]]
trpl length balanced 2 = res length balanced 2[["rvoc" ||[["1"]][["tpr"]]
fpr2 length balanced 2 = res length balanced 2[["roc"||[["2"|][["fpr"]]
trp2 length balanced 2 = res length balanced 2[["roc"|][["2"]][["tpr"]]
fpr3_length balanced 2 = res_length balanced 2[["roc"|][["3"]][["fpr"]]
trp3_length balanced 2 = res_length balanced_ 2[["roc" |][["3"]][["tpr"]]
fpr4 length balanced 2 = res length balanced 2[["roc"[][["4"]][]["fpr"]]

j| trp4_length balanced 2 = res length balanced 2[["roc"[][["4"]][]["tpr"]]
7l trp_logit length balanced = ROC logit length balanced [["sensitivities"]]
| spec_logit length balanced <— ROC logit length balanced [["specificities"]]

frp logit length balanced = ¢(1) — spec_logit length balanced

plot (fprl length balanced 2,trpl length balanced 2,type="1" xlab="False
Positive Rate" ylab="True Positive Rate" ,main="ROC")

lines (fprl length balanced 2,trpl length balanced 2,col="red")

fpr2 length balanced 2,trp2 length balanced 2,col="blue")

fpr3 _length balanced 2,trp3 length balanced 2,col="green")

lines
lines

fpr4 length balanced 2,trp4 length balanced 2,col="purple")

~ o~~~

lines (frp logit length balanced, trp logit length balanced, col="pink")

legend ("right", legend=c("First order","Second order", "Third order","Fourth
order", "Logit"),
col=c("red","blue", "green", "purple", "pink") 6 lty=1)

# Considered
res length considered 2=choose order(Length considered 2, var path="path", var

_conv="total conversions", var null="total null")
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ROC logit length considered <— roc(test logit length considered$bin conv,
predicted log length considered)

fprl length considered 2 = res_length considered 2[["roc"||[["1"]][["fpr"]]
trpl length considered 2 = res length considered 2[["roc"]|][["1"]][["tpr"]]
fpr2 length considered 2 = res length considered 2[["voc"|][["2"]][["fpr"]]
trp2 length considered 2 = res length considered 2[["voc"||[["2"|][["tpr"]]
fpr3 length considered 2 = res length considered 2[["roc"||[["3"]][["fpr"]]
trp3_length considered 2 = res_length considered 2[["roc"|][["3"]][["tpr"]]
fprd4_length considered 2 = res_length considered 2[["roc"||[["4"]][["fpr"]]
trp4 length considered 2 = res length considered 2[["roc"|][["4"]][["tpr"]]
trp logit length considered = ROC logit length considered [["sensitivities"]]
spec_logit length considered <— ROC logit length considered [["specificities"]]
frp logit length considered = ¢(1) — spec_logit length considered

plot (fprl length considered 2,trpl length considered 2, ,type="1" xlab="False
Positive Rate",ylab="True Positive Rate" ,main="ROC")
lines (fprl length considered 2,trpl length considered 2,col="red")
lines (fpr2 length considered 2,trp2 length considered 2,col="blue")
lines (fpr3 length considered 2,trp3 length considered 2,col="green")
(

lines (frp logit length considered, trp logit length considered, col="pink")

legend ("right", legend=c("First order","Second order", "Third order","Fourth
order", "Logit"),
col=c("red","blue", "green" "purple", "pink"), lty=1)
# AUC

£ Markov models — values found in[U+FFFD]redength impulsive [R+FFFD][U+FFFD]res
length balanced [@+FFFD][U+FFFD]redength considered [@+FFFD]

Logit Impulsive

Length impulsive 2$conv_and null <— Length impulsive 2$total conversions +
Length impulsive 2$total null

Length impulsive 2logit <— Length impulsive 2 %% slice (rep(l:n(), Length
impulsive 2$conv_and null))

Length impulsive 2logit <— Length impulsive 2logit %%

group_ by (path) %%

mutate (row_number = 1:n())

Length impulsive 2logit$bin conv <— ifelse (Length impulsive 2logit$row number
<= Length impulsive 2logit$total conversions, 1, 0)

Length impulsive 2logit$bin null <— ifelse (Length impulsive 2logit$bin conv —

0, 1, 0)
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Channels occurences length impulsive logit <— Channels occurences length

impulsive %% slice (rep(1:n(), Length impulsive 2$conv_and null))

logit nonagg length impulsive <— glm(formula = cbind (Length impulsive 2logit$
bin conv, Length impulsive 2logit$bin null) = (Channels occurences length
impulsive logit$eta + Channels occurences length impulsive logit$iota +
Channels occurences length impulsive logit$alpha + Channels occurences
length impulsive logit$beta + Channels occurences length impulsive logit$
theta + Channels occurences length impulsive logit$lambda + Channels
occurences length impulsive logit$kappa + Channels occurences length
impulsive logit$zeta + Channels occurences length impulsive logit$epsilon
+ Channels _occurences length impulsive logit$gamma), family = binomial ("

logit"), data = Length impulsive 2logit)

Use 80% of dataset as training set and remaining 20% as testing set

sample logit length impulsive <— sample(c(TRUE, FALSE), nrow(Length impulsive
2logit), replace=TRUE, prob=c(0.8,0.2))

train_logit length impulsive <— Length impulsive 2logit[sample logit length
impulsive , |

test logit length impulsive <— Length impulsive 2logit[!sample logit length
impulsive , |

Channels occurences nonagg length impulsive <— Channels occurences length

impulsive logit[!sample logit length impulsive, |

Fit logistic regression model (on train)

model logit nonagg2 length impulsive <— glm(formula = cbind(test logit length
_impulsive$bin conv, test logit length impulsive$bin null) = (Channels
occurences nonagg length impulsive$eta + Channels occurences nonagg length
_impulsive$iota + Channels occurences nonagg length impulsive$alpha +
Channels occurences nonagg length impulsive$beta + Channels occurences
nonagg length impulsive$theta + Channels occurences nonagg length
impulsive$lambda + Channels occurences nonagg length impulsive$kappa +
Channels occurences nonagg length impulsive$zeta + Channels occurences
nonagg length impulsive$epsilon + Channels occurences nonagg length
impulsive$gamma) , family = binomial("logit"), data = train logit length

impulsive)
# Calculate probability of default for each individual in test dataset
predicted log length impulsive <— predict(model logit nonagg2 length impulsive
, test logit length impulsive, type="response")

auc(test logit length impulsive$bin conv, predicted log length impulsive)

# Logit — Balanced
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Length balanced 2$conv_and null <— Length balanced 2$total conversions +
Length balanced 2$total null

Length balanced 2logit <— Length balanced 2 %% slice (rep(l:n(), Length
balanced 2%$conv_and null))

Length balanced 2logit <— Length balanced 2logit %%

group_ by (path) %%

mutate (row_number = 1:n())

0| Length balanced 2logit$bin conv <— ifelse (Length balanced 2logit$row number <=

Length balanced 2logit$total conversions, 1, 0)

701| Length balanced 2logit$bin null <— ifelse (Length balanced 2logit$bin conv =—

0, 1, 0)
Channels occurences length balanced logit <— Channels occurences length
balanced %% slice (rep(1l:n(), Length balanced 2$conv_and null))

logit nonagg length balanced <— glm(formula = cbind (Length balanced 2logit$bin

_conv, Length balanced 2logit$bin null) (Channels_occurences length
balanced logit$eta + Channels occurences length balanced logit$iota +
Channels occurences length balanced logit$alpha + Channels occurences
length balanced logit$beta + Channels occurences length balanced logit$
theta + Channels occurences length balanced logit$lambda + Channels
occurences length balanced logit$kappa + Channels occurences length
balanced logit$zeta + Channels occurences length balanced logit$epsilon +
Channels occurences_ length balanced logit$gamma), family = binomial("logit

"), data = Length balanced 2logit)

# Use 80% of dataset as training set and remaining 20% as testing set

7| sample logit length balanced <— sample(c(TRUE, FALSE), nrow(Length balanced 2

logit), replace=TRUE, prob=c(0.8,0.2))

train_logit length balanced <— Length balanced 2logit|[sample logit length
balanced , |

test logit length balanced <— Length balanced 2logit[!sample logit length
balanced , |

Channels occurences nonagg length balanced <~ Channels occurences length

balanced logit [!sample logit length balanced, |

Fit logistic regression model (on train)

slmodel logit nonagg2 length balanced < glm(formula = cbind(test logit length

balanced$bin conv, test logit length balanced$bin null) = (Channels
occurences nonagg length balanced$eta + Channels occurences nonagg length
balanced$iota + Channels occurences nonagg length balanced$alpha +
Channels occurences nonagg length balanced$beta + Channels occurences
nonagg length balanced$theta + Channels occurences nonagg length balanced$

lambda + Channels occurences nonagg length balanced$kappa + Channels
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occurences_nonagg length balanced$zeta + Channels occurences nonagg length
_balanced$epsilon + Channels occurences nonagg length balanced$gamma) ,

family = binomial("logit"), data = train_ logit length balanced)

5|# Calculate probability of default for each individual in test dataset

predicted log length balanced <— predict(model logit nonagg2 length balanced,
test logit length balanced, type="response")

lauc(test logit length balanced$bin conv, predicted log length balanced)

# Logit — Considered

Length considered 2$conv_and null <— Length considered 2$total conversions -+
Length considered 2$total null

Length considered 2logit <— Length considered 2 %% slice (rep(1l:n(), Length
considered 2$conv_and null))

Length considered 2logit <— Length considered 2logit %%

;| group_by(path) %%

mutate (row_number = 1:n())

25| Length considered 2logit$bin conv <— ifelse (Length considered 2logit $row

number <= Length considered 2logit$total conversions, 1, 0)
Length considered 2logit$bin null <— ifelse (Length considered 2logit$bin conv
0, 1, 0)
Channels occurences length considered logit <— Channels occurences length
considered %% slice (rep(l:n(), Length considered 2%conv_and null))

logit nonagg length considered <— glm(formula = cbind (Length considered 2logit

$bin_conv, Length considered 2logit$bin_ null) (Channels _occurences
length considered logit$eta + Channels occurences length considered logit$
iota + Channels occurences length considered logit$alpha + Channels
occurences_ length considered logit$beta + Channels occurences length
considered logit$theta + Channels occurences length considered logit$
lambda + Channels occurences length considered logit$kappa + Channels
occurences length considered logit$zeta + Channels occurences length
considered logit$epsilon + Channels occurences length considered logit$

gamma) , family = binomial("logit"), data = Length considered 2logit)

# Use 80% of dataset as training set and remaining 20% as testing set

sample logit length considered <— sample(c(TRUE, FALSE), nrow(Length
considered 2logit), replace=TRUE, prob=c(0.8,0.2))

train logit length considered <— Length considered 2logit [sample logit length
considered , |

test logit length considered <— Length considered 2logit[!sample logit length
considered , |
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735 Channels occurences nonagg length considered <— Channels occurences length
considered logit[!sample logit length considered, |

736
37|# Fit logistic regression model (on train)

model logit nonagg2 length considered < glm(formula = cbind(test logit

~
&0

length considered$bin conv, test logit length considered$bin null) = (
Channels occurences nonagg length considered$eta + Channels occurences
nonagg length considered$iota + Channels occurences nonagg length
considered$alpha + Channels occurences nonagg length considered$beta +
Channels occurences nonagg length considered$theta + Channels occurences
nonagg length considered$lambda + Channels occurences nonagg length
considered$kappa + Channels occurences nonagg length considered$zeta +
Channels occurences nonagg length considered$epsilon + Channels occurences
_nonagg length considered$gamma), family = binomial("logit"), data = train

_logit_length considered)

7a0|# Calculate probability of default for each individual in test dataset
71| predicted log length considered <— predict(model logit nonagg2 length
considered , test logit length considered, type="response')

72l auc(test logit length considered$bin conv, predicted log length considered)

7aa|# TOP DECILE LIFT

15|# Impulsive

76| chisq first conversion length impulsive 2 <— chisq.test (Heuristics length
impulsive 2$first touch conversions/sum(Heuristics length impulsive 2§
first touch conversions)x100)

7a7| chisq last conversion length impulsive 2 <— chisq.test (Heuristics length
impulsive 2%last touch conversions/sum(Heuristics length impulsive 2$last
touch conversions)*100)

7as| chisq linear conversion length impulsive 2 <— chisq.test (Heuristics length
impulsive 2$linear touch conversions/sum(Heuristics length impulsive 2§
linear touch conversions)*100)

7a0| chisq markovl conversion length impulsive 2 <

750l chisq . test (Markovl length impulsive 2$total conversion/sum(Markovl length
impulsive 2$total conversion)x100)

751| chisq markov2 conversion length impulsive 2 <—

752| chisq . test (Markov2 length impulsive 2$total conversion/sum(Markov2 length
impulsive 2$total conversion)x100)

73| chisq markov3 conversion length impulsive 2 <—

754| chisq . test (Markov3 length impulsive 2$total conversion/sum(Markov3 length
impulsive 2$total conversion)=100)

755| chisq _markov4 conversion length impulsive 2 <— chisq.test (Markov4d length

impulsive 2$total conversion/sum(Markov4 length impulsive 2$total
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conversion )*100)

Expected first conversion length impulsive 2 = chisq first conversion length
impulsive 2[["expected"]]

Observed first conversion length impulsive 2 = chisq first conversion length
impulsive 2[["observed"]]

TDL first conversion length impulsive 2 <— TopDecileLift (Expected first
conversion length impulsive 2, Observed first conversion length impulsive
2)

Expected last conversion length impulsive 2 = chisq last conversion length
impulsive 2[["expected"]]
Observed last conversion length impulsive 2 = chisq last conversion length

impulsive 2[["observed"]]

763| TDL_last conversion length impulsive 2 <— TopDecileLift (Expected last

conversion length impulsive 2, Observed last conversion length impulsive
2)

Expected linear conversion length impulsive 2 = chisq linear conversion length
_impulsive 2[["expected"]]
Observed linear conversion length impulsive 2 = chisq linear conversion length

_impulsive 2[["observed"]]

767|TDL_linear conversion length impulsive 2 <— TopDecileLift (Expected linear

conversion length impulsive 2, Observed linear conversion length impulsive

2)

Expected logit length impulsive = sum(logit2 length impulsive$effects) /3890

Observed logit length impulsive = logit2 length impulsive$effects

TDL logit length impulsive <— TopDecileLift (Expected logit length impulsive,
Observed logit length impulsive)

;| Expected _markovl conversion length impulsive 2 = chisq markovl conversion

length impulsive 2[["expected"]]
Observed markovl conversion length impulsive 2 = chisq markovl conversion

length impulsive 2[["observed"]]

5| TDL _markovl conversion length impulsive 2 <— TopDecileLift (Expected markovl

conversion length impulsive 2, Observed markovl conversion length
impulsive 2)
Expected markov2 conversion length impulsive 2 = chisq markov2 conversion

length impulsive 2[["expected"]]

| Observed _markov2 conversion length impulsive 2 = chisq markov2 conversion

length impulsive 2[["observed"]]
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77s| TDL_markov2 conversion length impulsive 2 <— TopDecileLift (Expected markov2
conversion length impulsive 2, Observed markov2 conversion length

impulsive_2)

7s0| Expected markov3 conversion length impulsive 2 = chisq markov3 conversion
length impulsive 2[["expected"]]

7s1| Observed markov3 conversion length impulsive 2 = chisq markov3 conversion
length impulsive 2[["observed"]]

72| TDL_markov3 conversion length impulsive 2 <— TopDecileLift (Expected markov3
conversion length impulsive 2, Observed markov3 conversion length

impulsive 2)

7sa| Expected markov4 conversion length impulsive 2 = chisq markov4 conversion
length impulsive 2[["expected"]]

7s5) Observed markov4 conversion length impulsive 2 = chisq_ markov4 conversion
length impulsive 2[["observed"]]

76| TDL _markov4 conversion length impulsive 2 <— TopDecileLift (Expected markov4
conversion length impulsive 2, Observed markov4d conversion length

impulsive 2)

7ss|# Balanced

70| chisq first conversion length balanced 2 <— chisq.test (Heuristics length
balanced 2$first touch conversions/sum(Heuristics length balanced 2$first
touch conversions)*100)

70| chisq_ last conversion length balanced 2 <— chisq.test (Heuristics length
balanced 2$last touch conversions/sum(Heuristics length balanced 2%last
touch conversions)*100)

7o1| chisq linear conversion length balanced 2 <— chisq.test(Heuristics length
balanced 2$linear touch conversions/sum(Heuristics length balanced 2%
linear touch conversions)*100)

792| chisq_markovl conversion length balanced 2 <— chisq.test (Markovl length
balanced 2$total conversion /sum(Markovl length balanced 2%$total conversion
)*100)

793| chisq _markov2 conversion length balanced 2 <— chisq.test (Markov2 length
balanced 2%total conversion/sum(Markov2 length balanced 2$total conversion
)%100)

794| chisq_markov3 conversion length balanced 2 <— chisq.test (Markov3 length
balanced 2$total conversion /sum(Markov3 length balanced 2%total conversion
)*100)

7o5| chisq _markov4 conversion length balanced 2 <~ chisq.test (Markov4d length
balanced 2%total conversion/sum(Markov4d length balanced 2$total conversion
)%100)
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07| Expected first conversion length balanced 2 = chisq first conversion length

balanced 2[["expected"]]

Observed first conversion length balanced 2 = chisq_ first conversion length
balanced 2[["observed"]]

TDL first conversion length balanced 2 <— TopDecileLift (Expected first

conversion length balanced 2, Observed first conversion length balanced 2)

Expected last conversion length balanced 2 = chisq last conversion length
balanced 2[["expected"]]

Observed last conversion length balanced 2 = chisq last conversion length
balanced 2[["observed"]]

TDL last conversion length balanced 2 <— TopDecileLift (Expected last

conversion length balanced 2, Observed last conversion length balanced 2)

Expected linear conversion length balanced 2 = chisq linear conversion length
balanced 2[["expected"]]

Observed linear conversion length balanced 2 = chisq linear conversion length
balanced 2[["observed"]]

TDL linear conversion length balanced 2 <— TopDecileLift (Expected linear
conversion length balanced 2, Observed linear conversion length balanced
2)

Expected logit length balanced = sum(logit2 length balanced$effects)/3112

Observed logit length balanced = logit2 length balanced$effects

TDL logit length balanced <— TopDecileLift (Expected logit length balanced,
Observed logit length balanced)

Expected markovl conversion length balanced 2 = chisq markovl conversion
length balanced 2[["expected"]]

Observed markovl conversion length balanced 2 = chisq_ markovl conversion
length balanced 2[["observed"]]

TDL markovl conversion length balanced 2 <— TopDecileLift (Expected markovl

conversion length balanced 2, Observed markovl conversion length balanced

2)
7| Expected markov2 conversion length balanced 2 = chisq markov2 conversion
length balanced 2[["expected"]]
Observed markov2 conversion length balanced 2 = chisq markov2 conversion

length balanced 2[["observed"]]

s10] TDL_markov2 conversion length balanced 2 <— TopDecileLift (Expected markov2

conversion length balanced 2, Observed markov2 conversion length balanced
2)
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s21| Expected _markov3 conversion length balanced 2 = chisq markov3 conversion
length balanced 2[["expected"]]

s22| Observed markov3 conversion length balanced 2 = chisq markov3 conversion
length balanced 2[["observed"]]

s23| TDL_markov3 conversion length balanced 2 <— TopDecileLift (Expected markov3
conversion length balanced 2, Observed markov3 conversion length balanced
2)

s25| Expected _markov4 conversion length balanced 2 = chisq markov4d conversion
length balanced 2[["expected"]]

s26| Observed markov4 conversion length balanced 2 = chisq markov4 conversion
length balanced 2[["observed"]]

s27| TDL markov4 conversion length balanced 2 <— TopDecileLift (Expected markov4
conversion length balanced 2, Observed markov4 conversion length balanced
2)

s20|# Considered

sso| chisq_ first conversion length considered 2 <— chisq.test (Heuristics length
considered 2$first touch conversions/sum(Heuristics length considered 2%
first touch conversions)x100)

ss1| chisq_last conversion length considered 2 <— chisq.test (Heuristics length
considered 2$last touch conversions/sum(Heuristics length considered 2§
last touch conversions)=*100)

ss2| chisq linear conversion length considered 2 <— chisq.test(Heuristics length
considered 2$linear touch conversions/sum(Heuristics length considered 2%
linear touch conversions)*100)

s33| chisq _markovl conversion length considered 2 <— chisq.test (Markovl length
considered 2%total conversion/sum(Markovl length considered 2$total
conversion )*100)

ss1| chisq _markov2 conversion length considered 2 <— chisq.test (Markov2 length
considered 2$total conversion/sum(Markov2 length considered 2$total
conversion )*100)

55| chisq markov3 conversion length considered 2 <— chisq.test (Markov3 length

I

considered 2%total conversion/sum(Markov3 length considered 2$total
conversion)*100)

s36| chisq_markov4 conversion length considered 2 <— chisq.test (Markov4d length
considered 2$total conversion/sum(Markov4d length considered 2$total

conversion )*100)

sss| Expected first conversion length considered 2 = chisq first conversion length
considered 2[["expected"]]
s30| Observed first conversion length considered 2 = chisq first conversion length

considered 2[["observed"]]
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TDL first conversion length considered 2 <— TopDecileLift (Expected first
conversion length considered 2, Observed first conversion length

considered 2)

Expected last conversion length considered 2 = chisq last conversion length
considered 2[["expected"]]

Observed last conversion length considered 2 = chisq last conversion length
considered 2[["observed"|]

TDL last conversion length considered 2 <— TopDecileLift (Expected last

conversion length considered 2, Observed last conversion length considered

_2)

Expected linear conversion length considered 2 = chisq linear conversion
length considered 2[["expected"]]

Observed linear conversion length considered 2 = chisq linear conversion
length considered 2[["observed"]]

TDL linear conversion length considered 2 <— TopDecileLift (Expected linear

conversion length considered 2, Observed linear conversion length

considered 2)

Expected logit length considered = sum(logit2 length considered$effects) /2983

Observed logit length considered = logit2 length considered$effects

TDL logit length considered <— TopDecileLift (Expected logit length considered,
Observed logit length considered)

Expected markovl conversion length considered 2 = chisq markovl conversion

length considered 2[["expected"]]

55| Observed markovl conversion length considered 2 = chisq markovl conversion

length considered 2[["observed"]]

5|/ TDL_markovl conversion length considered 2 <— TopDecileLift (Expected markovl

conversion length considered 2, Observed markovl conversion length

considered 2)

Expected markov2 conversion length considered 2 = chisq markov2 conversion
length considered 2[["expected"]]

Observed markov2 conversion length considered 2 = chisq markov2 conversion
length considered 2[["observed"]]

TDL markov2 conversion length considered 2 <— TopDecileLift (Expected markov2
conversion length considered 2, Observed markov2 conversion length

considered 2)

Expected markov3 conversion length considered 2 = chisq markov3 conversion

length considered 2[["expected"]]
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s6s| Observed _markov3 conversion length considered 2 = chisq markov3 conversion
length considered 2[["observed"]]

s61| TDL _markov3 conversion length considered 2 <— TopDecileLift (Expected markov3
conversion length considered 2, Observed markov3 conversion length
considered 2)

865
s66| Expected markov4 conversion length considered 2 = chisq markov4 conversion
length considered 2[["expected"]]

s67| Observed _markov4 conversion length considered 2 = chisq markov4d conversion
length considered 2[["observed"]]

s6s| TDL markov4 conversion length considered 2 <— TopDecileLift (Expected markov4
conversion length considered 2, Observed markov4 conversion length

considered 2)

s70|# REMOVAL EFFECT + TRANSITION MATRIX

s71|# Impulsive

s2iml length impulsive 2 = markov_model (Length impulsive 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out more=TRUE, order = 1)

s73jm2 length impulsive 2 = markov_model(Length impulsive 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out_more=TRUE, order = 2)

s74|m3 length impulsive 2 = markov_model(Length impulsive 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out _more=TRUE, order = 3)

s75\m4 length impulsive 2 = markov_model(Length impulsive 2, "path", "total
conversions", var value="total conversion value", var null="total null"

out_more=TRUE, order = 4)

s77|# Balanced

s7sjml_length balanced 2 = markov _model (Length balanced 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out_more=TRUE, order = 1)

s7olm2 length balanced 2 = markov_model (Length balanced 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out_more=TRUE, order = 2)

ssojm3 length balanced 2 = markov_model (Length balanced 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out_more=TRUE, order = 3)

ssiimd length balanced 2 = markov _model(Length balanced 2, "path", "total
conversions", var value="total conversion_ value", var null="total null",

out_more=TRUE, order = 4)
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ss3|# Considered

ssajml length considered 2 = markov_model(Length considered 2, "path", "total
conversions", var value="total conversion_ value", var null="total null"
out_more=TRUE, order = 1)

sss)m2 length considered 2 = markov_model (Length considered 2, "path", "total
conversions", var value="total conversion value", var null="total null"
out_more=TRUE, order = 2)

ss6)m3 length considered 2 = markov_model(Length considered 2, "path", "total
conversions", var value="total conversion value", var null="total null"
out_more=TRUE, order = 3)

ss7imd length considered 2 = markov_model(Length considered 2, "path", "total
conversions", var value="total conversion value", var null="total null"

out_more=TRUE, order = 4)
888
sso|# STANDARD DEVIATION REMOVAL EFFECT

s00|# Impulsive

sorfremoval effects ml length impulsive 2 <— ml length impulsive 2[["removal
effects"|][["removal effects conversion"]]|

so2|sum (removal effects ml length impulsive 2)/10

s03| sd (removal effects ml length impulsive 2)

so4| sd (removal effects ml length impulsive 2)/(sum(removal effects ml length
impulsive 2)/10)

895
sos| removal effects m2 length impulsive 2 <— m2 length impulsive 2[["removal
effects"]][["removal effects conversion"]]

sorfsum(removal effects m2 length impulsive 2)/10

s0s| sd (removal effects m2 length impulsive 2)

soo| sd (removal effects m2 length impulsive 2)/(sum(removal effects m2 length
impulsive 2)/10)

900
oo removal effects m3 length impulsive 2 <— m3 length impulsive 2[["removal
effects"]][["removal effects conversion"]]

oo2fsum (removal effects m3 length impulsive 2)/10

o03| sd (removal effects m3 length impulsive 2)

901| sd (removal effects m3 length impulsive 2)/(sum(removal effects m3 length
impulsive 2)/10)

905
oos| removal effects md length impulsive 2 <— m4 length impulsive 2[["removal
effects"]][["removal effects conversion"]]

oo7|sum (removal effects md length impulsive 2)/10

oos| sd (removal effects md length impulsive 2)

o9 sd (removal effects md4 length impulsive 2)/(sum(removal effects md length
impulsive 2)/10)

I6)




o11|# Balanced

ozl removal effects ml length balanced 2 <— ml length balanced 2[["removal effects
"1][["removal effects_conversion"]]
oi3sum(removal effects ml length balanced 2)/10

o14| sd (removal effects ml length balanced 2)

015/ sd (removal effects ml length balanced 2)/(sum(removal effects ml length
balanced 2)/10)

o7 removal effects m2 length balanced 2 <— m2 length balanced 2[["removal effects
"T]1[["removal effects conversion"]]
ois|sum(removal effects m2 length balanced 2)/10

o19] sd (removal effects m2 length balanced 2)

920/ sd (removal effects m2 length balanced 2)/(sum(removal effects m2 length
balanced 2)/10)

o22f removal effects m3 length balanced 2 <— m3 length balanced 2[["removal effects
"]1][["removal effects conversion"]]

923/ sum (removal effects m3 length balanced 2)/10

021/ sd (removal effects m3 length balanced 2)

025/ sd (removal effects m3 length balanced 2)/(sum(removal effects m3 length
balanced 2)/10)

oo removal effects md length balanced 2 <— m4 length balanced 2[["removal effects
"]11[["removal effects conversion"]]

o2s|sum (removal effects md length balanced 2)/10

920l sd (removal effects md length balanced 2)

930| sd (removal effects md4 length balanced 2)/(sum(removal effects md length
balanced 2)/10)

931
932|# Considered

oss| removal effects ml length considered 2 <— ml length considered 2[["removal
effects"]][["removal effects conversion"]]

os4| sum (removal effects ml length considered 2)/10

935/ sd (removal effects ml length considered 2)

os6| sd (removal effects ml length considered 2)/(sum(removal effects ml length
considered 2)/10)

oss| removal effects m2 length considered 2 <— m2 length considered 2[["removal
effects"|][["removal effects conversion"]]|

oso|sum (removal effects m2 length considered 2)/10

os0| sd (removal effects m2 length considered 2)
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963

964

965 | #

966

967

sd(removal effects m2 length considered 2)/(sum(removal effects m2 length
considered 2)/10)

removal effects m3 length considered 2 <— m3 length considered 2[["removal
effects"]][["removal effects conversion"]]

sum(removal effects m3 length considered 2)/10

sd(removal effects m3 length considered 2)

sd(removal effects m3 length considered 2)/(sum(removal effects m3 length
considered 2)/10)

removal effects md length considered 2 <— m4 length considered 2[["removal
effects"]][["removal effects conversion"]]|

sum(removal effects m4 length considered 2)/10

sd(removal effects md length considered 2)

sd(removal effects md length considered 2)/(sum(removal effects md length
considered 2)/10)

# TYPES OF JOURNEYS — SPLIT MADE BY NUMBER CHANNELS

# Imported excel file where the number of different channels is counted (excel
file is calldd+FFFD]Numberchannels[U+FFFDIhe column in the excel file is
calle dU+FFFD] Numbehames[U+FFFD] )

# Remove journeys with delta and mi

# Delta present in observations: 659, 1702, 1889, 2392, 3020, 5045, 5889,
5933, 6404, 6504, 6977, 7232, 7496

7|# Mi present in observations: 2094, 3033

Numberchannels2 <— Numberchannels[—c¢ (659, 1702, 1889, 2392, 3020, 5045, 5889,
5933, 6404, 6504, 6977, 7232, T496, 2094, 3033), |

Data2$numberofchannels <— c¢(Numberchannels2$Number channels)

Channels impulsive 2 <— subset (Data2, numberofchannels < 2)

Channels balanced 2 <— subset(Data2, numberofchannels > 1 & numberofchannels <
1)

Channels considered 2 <— subset(Data2, numberofchannels > 3 & numberofchannels
< 9)

Heuristics

Heuristics channels impulsive 2 <— heuristic_models(Channels impulsive 2, var_
path = ’path’, var conv = ’"total conversions’, var value=’total conversion
_value )

Heuristics channels balanced 2 <— heuristic_models(Channels balanced 2, var_

path = ’path’, var conv = ’total conversions’, var_ value=’total conversion

_value )
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Heuristics channels considered 2 <— heuristic_models(Channels considered 2,
var_path = ’path’, var conv = ’'total conversions’, var value=’total

conversion_value )

Heuristics channels impulsive 2$first touch conversions/sum(Heuristics
channels impulsive 2$first touch conversions)=*100

Heuristics channels impulsive 2%last touch conversions/sum(Heuristics channels
_impulsive 2$last touch conversions)x100

Heuristics channels impulsive 2$linear touch conversions/sum(Heuristics

channels impulsive 2$linear touch conversions)x100

Heuristics channels balanced 2$first touch conversions/sum(Heuristics channels
_balanced 2$first touch conversions)x100

Heuristics channels balanced 2%last touch conversions/sum(Heuristics channels
balanced 2$last touch conversions)x100

Heuristics channels balanced 2$linear touch conversions/sum(Heuristics

channels balanced 2$linear touch conversions)*100

Heuristics channels considered 2$first touch conversions/sum(Heuristics
channels considered 2$first touch conversions)*100

Heuristics channels considered 2%last touch conversions/sum(Heuristics
channels considered 2$last touch conversions)*100

Heuristics channels considered 2$linear touch conversions/sum(Heuristics

channels considered 2$linear touch conversions)=*100

# Markov 1

Markovl channels impulsive 2 <— markov_model (Channels impulsive 2, var path =
"path", var conv = "total conversions", var value="total conversion value"
, var_null="total null", order = 1)

Markovl channels balanced 2 <— markov_model (Channels balanced 2, var path = "
path", var conv = "total conversions", var_ value="total conversion value",
var_null="total null", order = 1)

Markovl channels considered 2 <— markov_model (Channels considered 2, var path
= "path", var conv = "total conversions", var value="total conversion

value", var null="total null", order = 1)

# Markov 2

Markov2 channels impulsive 2 <— markov_model (Channels impulsive 2, var path =
"path", var conv = "total conversions", var value="total conversion value"
, var_null="total null", order = 2)

Markov2 channels balanced 2 <— markov_model (Channels balanced 2, var path = "

path", var conv = "total conversions", var_ value="total conversion value",

var_null="total null", order = 2)
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Markov2 channels considered 2 <— markov_model (Channels considered 2, var path
= "path", var conv = "total conversions", var value="total conversion

value", var null="total null", order = 2)

# Markov 3

Markov3 channels impulsive 2 <— markov_model (Channels impulsive 2, var path =
"path", var conv = "total conversions", var value="total conversion value"
, var_null="total null", order = 3)

Markov3 channels balanced 2 <— markov_model (Channels balanced 2, var path = "
path", var conv = "total conversions", var value="total conversion value",
var_null="total null", order = 3)

Markov3 channels considered 2 <— markov_model (Channels considered 2, var path
= "path", var conv = "total conversions", var value="total conversion

value", var null="total null", order = 3)

# Markov 4

Markov4 channels impulsive 2 <— markov_model (Channels impulsive 2, var path =
"path", var conv = "total conversions", var value="total conversion value"
, var_null="total null", order = 4)

Markov4 channels balanced 2 <— markov_model (Channels balanced 2, var path = "
path", var conv = "total conversions", var value="total conversion value",
var_null="total null", order = 4)

Markov4 channels considered 2 <— markov_model (Channels considered 2, var path
= "path", var _conv = "total conversions", var value="total conversion

value", var null="total null", order = 4)

Markov4 channels impulsive 2$total conversion/sum(Markov4d channels impulsive 2
$total conversion)*100

Markov4 channels balanced 2$total conversion/sum(Markov4d channels balanced 2%
total conversion)x100

Markov4 channels considered 2$total conversion/sum(Markov4d channels considered

_28total conversion)*100

# Logit

# Imported three excel files with the number of occurrences of each channel in
each observation —> files are called Channel occurences channels
impulsive , Channel occurences channels balanced, Channel occurences
channels considered

logit2 channels impulsive <— glm(formula = cbind (Channels impulsive 2$total
conversions , Channels impulsive 2$total null) = (Channels occurences
channels impulsive$eta + Channels occurences channels impulsive$iota +
Channels occurences channels impulsive$alpha + Channels occurences

channels impulsive$beta + Channels occurences channels impulsive$theta +
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1016
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Channels occurences_channels impulsive$lambda + Channels occurences
channels impulsive$kappa + Channels occurences channels impulsive$zeta +
Channels occurences channels impulsive$epsilon + Channels occurences
channels impulsive$gamma), family = binomial ("logit"), data = Channels
impulsive 2)

summary (logit2 channels impulsive)

exp(logit2 channels impulsive$coefficients)

marg2 channels impulsive <— logitmfx (formula = cbind (Channels impulsive 2%
total conversions, Channels impulsive 2$total null) =~ (Channels occurences
_channels impulsive$eta + Channels occurences channels impulsive$iota +
Channels occurences channels impulsive$alpha + Channels occurences
channels impulsive$beta + Channels occurences channels impulsive$theta +
Channels occurences channels impulsive$lambda + Channels occurences
channels impulsive$kappa + Channels occurences channels impulsive$epsilon
+ Channels occurences channels impulsive$gamma), data = Channels balanced
2)

logit2 channels balanced <— glm(formula = cbind (Channels balanced 2$total
conversions , Channels balanced 2$total null) ~ (Channels occurences
channels balanced$eta + Channels occurences channels balanced$iota +
Channels occurences channels balanced$alpha + Channels occurences channels
_balanced$beta + Channels occurences channels balanced$theta + Channels
occurences channels balanced$lambda + Channels occurences channels
balanced$kappa + Channels occurences channels balanced$zeta + Channels
occurences channels balanced$epsilon + Channels occurences channels
balanced$gamma) , family = binomial("logit"), data = Channels balanced 2)

summary (logit2 channels balanced)

exp(logit2 channels balanced$coefficients)

marg2 channels balanced <— logitmfx (formula = cbind (Channels_balanced 2$total
conversions , Channels balanced 2$total null) ~ (Channels occurences
channels balanced$eta + Channels occurences channels balanced$iota +
Channels occurences channels balanced$alpha + Channels occurences channels
_balanced$beta + Channels occurences channels balanced$theta + Channels
occurences_ channels balanced$lambda + Channels occurences channels
balanced$kappa + Channels occurences channels balanced$zeta +

Channels occurences_channels balanced$epsilon + Channels_occurences channels

balanced$gamma) , data = Channels balanced 2)

logit2 channels considered <— glm(formula = cbind (Channels considered 2$total
conversions , Channels considered 2$total null) = (Channels occurences
channels considered$eta + Channels occurences channels considered$iota +
Channels occurences channels considered$alpha + Channels occurences

channels considered$beta + Channels occurences channels considered$theta +
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Channels occurences channels considered$lambda + Channels occurences
channels considered$kappa + Channels occurences channels considered$zeta +
Channels occurences channels considered$epsilon + Channels occurences
channels considered$gamma) , family = binomial("logit"), data = Channels
considered 2)
summary (logit2 channels considered)
exp(logit2 channels considered$coefficients)
marg2 channels considered <— logitmfx (formula = cbind (Channels considered 2%
total conversions, Channels considered 2%$total null) = (Channels
occurences channels considered$eta + Channels occurences channels
considered$iota + Channels occurences channels considered$alpha + Channels
_occurences_channels considered$beta + Channels occurences channels
considered$theta + Channels occurences channels considered$lambda +
Channels occurences channels considered$kappa +
Channels _occurences_channels considered$zeta + Channels_occurences_channels_
considered$epsilon + Channels occurences channels considered$gamma), data

= Channels considered 2)

- ROC
Impulsive
res_channels impulsive 2=choose order (Channels impulsive 2, var path="path",
var_conv="total conversions", var null="total null")
ROC logit channels impulsive <— roc(test logit channels impulsive$bin conv,

predicted log channels impulsive)

fprl channels impulsive 2 = res channels impulsive 2[["roc" ||[["1"]][["fpr"]]
trpl channels impulsive 2 = res channels impulsive 2[["roc"]][["1"]][["tpr"]]
fpr2 channels impulsive 2 = res channels impulsive 2[["roc" |][["2"]][["fpr"]]
trp2 channels impulsive 2 = res channels impulsive 2[["vroc" ||[["2"|][["tpr"]]
fpr3 channels impulsive 2 = res channels impulsive 2[["roc" ||[["3"]][["fpr"]]
trp3_channels _impulsive 2 = res_channels _impulsive 2[["roc"|][["3"]][["tpr"]]
fpr4 channels impulsive 2 = res channels impulsive 2[["roc" ||[["4"]][["fpr"]]
trp4 channels impulsive 2 = res channels impulsive 2[["roc" |][["4"]][["tpr"]]

trp logit channels impulsive = ROC logit channels impulsive [["sensitivities"]]
spec_logit channels impulsive <— ROC logit channels impulsive [["specificities"

I

frp logit channels impulsive = ¢(1) — spec_logit channels impulsive

plot (fprl channels impulsive 2,trpl channels impulsive 2,type="1" xlab="False
Positive Rate" ylab="True Positive Rate" ,main="ROC")

lines (fprl channels impulsive 2,trpl channels impulsive 2 ,col="red")

lines (fpr2 channels impulsive 2,trp2 channels impulsive 2,col="blue")

lines (fpr3 channels impulsive 2,trp3 channels impulsive 2,col="green")
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lines (fpr4 channels impulsive 2,trp4 channels impulsive 2, col="purple")

lines (frp logit channels impulsive, trp logit channels impulsive, col="pink")

legend ("right", legend=c("First order","Second order", "Third order","Fourth
order", "Logit"),
col=c("red","blue", "green", "purple", "pink"), 6 lty=1)

# Balanced

="path", var

res_channels balanced 2=choose order (Channels balanced 2, var path
_conv="total conversions", var null="total null")
ROC logit channels balanced <— roc(test logit channels balanced$bin conv,

predicted log channels balanced)

fprl channels balanced 2 = res channels balanced 2[["roc"]|][["1"]][["fpr"]]
trpl channels balanced 2 = res channels balanced 2[["roc"]][["1"]][["tpr"]]
fpr2 channels balanced 2 = res channels balanced 2[["roc"]][["2"]][["fpr"]]
trp2 channels balanced 2 = res channels balanced 2[["roc"|][["2"]][["tpr"]]
fpr3 channels balanced 2 = res channels balanced 2[["rtoc"||[["3"]][["fpr"]]
trp3 _channels balanced 2 = res channels balanced 2[["roc"||[["3"]][["tpr"]]
fpr4d channels balanced 2 = res channels balanced 2[["roc"]][["4"]][["fpr"]]
trp4 channels balanced 2 = res channels balanced 2[["roc"]|][["4" ]][["tpr"]]
trp logit channels balanced = ROC logit channels balanced [["sensitivities"]]
spec_logit channels balanced <— ROC logit channels balanced [["specificities"]]

frp logit channels balanced = c¢(1) — spec_logit channels balanced

plot (fprl channels balanced 2,trpl channels balanced 2, ,type="1" xlab="False
Positive Rate" ylab="True Positive Rate" ,main="ROC")
lines (fprl channels balanced 2,trpl channels balanced 2,col="red")
lines (fpr2 channels balanced 2,trp2 channels balanced 2,col="blue")
lines (fpr3 channels balanced 2,trp3 channels balanced 2,col="green")
(
(

lines (fpr4d channels balanced 2,trp4 channels balanced 2,col="purple")
lines (frp_logit channels balanced, trp logit channels balanced, col="pink")
legend ("right", legend=c("First order","Second order", "Third order","Fourth
order", "Logit"),
col=c("red" ,"blue", "green" "purple", "pink"), lty=1)

# Considered

res channels considered 2=choose order (Channels considered 2, var path="path",
var_conv="total conversions", var null="total null")

ROC logit channels considered <— roc(test logit channels considered$bin conv,

predicted log channels considered)
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0s2| fprl _channels considered 2 = res channels considered 2[["roc"||[["1"]][["fpr"

I

083/ trpl_channels considered 2 = res channels considered 2[["roc" |][["1"]][["tpr"
I

1s4) fpr2 channels considered 2 = res channels considered 2[["roc"J][["2"]][["fpr"
I

10s5| trp2_channels considered 2 = res channels considered 2[["roc"|][["2"|][["tpr"
I

s6| fpr3 _channels considered 2 = res channels considered 2[["roc"]|][["3"]][["fpr"
I

1s7| trp3_channels considered 2 = res channels considered 2[["roc"|][["3"]][["tpr"
I

10ss| fprd _channels considered 2 = res channels considered 2[["roc"||[["4"]][["fpr"
I

0s0| trp4_channels considered 2 = res channels considered 2[["roc"|][["4" ]][["tpr"

I

o] trp logit channels considered = ROC logit channels considered [["sensitivities"
I

91| spec_logit channels considered <— ROC logit channels considered [["
specificities"]]

1092| frp_logit channels considered = ¢(1) — spec_logit channels considered

1093
1004| plot (fprl channels considered 2,trpl channels considered 2,type="1" xlab="
False Positive Rate",ylab="True Positive Rate" ,main="ROC")

1095/ lines (fprl _channels considered 2,trpl channels considered 2,col="red")

1096| lines (fpr2_channels considered 2,trp2 channels considered 2,col="blue")
17| lines (fpr3 channels considered 2,trp3 channels considered 2,col="green")

190s| lines (fprd _channels considered 2,trp4 channels considered 2,col="purple")

~ o~~~

90| lines (frp logit channels considered , trp logit channels considered, col="pink"

)

1100

1o1| legend ("right", legend=c("First order","Second order", "Third order","Fourth
order", "Logit"),

1102 col=c("red","blue", "green",( "purple", "pink"), 6 lty=1)

1103

1104

1105|# AUC

1106|# Markov models —> values found in[U+FFFD]rechannels impulsive [@+FFFD][U+FFFD]res

channels balanced [@+FFFD][U+FFFD]rexchannels considered [@+FFFD]

1os|# Logit — Impulsive

1109| Channels impulsive 2$conv_and null <— Channels impulsive 2$total conversions +

Channels impulsive 2$total null
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1110 Channels _impulsive 2logit <— Channels impulsive 2 %% slice (rep(1l:n(),
Channels impulsive 2$conv_and null))

11| Channels _impulsive 2logit <— Channels impulsive 2logit %%

12| group by (path) %%

13| mutate (row_number = 1:n())

1114] Channels impulsive 2logit$bin conv <— ifelse (Channels impulsive 2logit$row
number <= Channels impulsive 2logit$total conversions, 1, 0)

1115 Channels _impulsive 2logit$bin null <— ifelse (Channels impulsive 2logit$bin
conv =— 0, 1, 0)

1116| Channels _occurences channels impulsive logit <— Channels occurences channels

impulsive %% slice (rep(1:n(), Channels impulsive 2$conv_and null))

1118/ logit _nonagg channel impulsive <— glm(formula = cbind (Channels impulsive 2
logit$bin conv, Channels impulsive 2logit$bin null) = (Channels occurences
_channels _impulsive logit$eta + Channels occurences channels impulsive
logit$iota + Channels occurences channels impulsive logit$alpha + Channels
_occurences_channels impulsive logit$beta + Channels occurences channels
impulsive logit$theta + Channels occurences channels impulsive logit$
lambda + Channels occurences channels impulsive logit$kappa + Channels
occurences channels impulsive logit$zeta + Channels occurences channels
impulsive logit$epsilon + Channels occurences channels impulsive logit$

gamma) , family = binomial("logit"), data = Channels impulsive 2logit)

1120|# Use 80% of dataset as training set and remaining 20% as testing set

21| sample _logit channels impulsive <— sample (¢ (TRUE, FALSE), nrow(Channels
impulsive 2logit), replace=TRUE, prob=c(0.8,0.2))

1122| train_logit channels impulsive <— Channels impulsive 2logit [sample logit
channels impulsive , |

23| test _logit channels impulsive <— Channels impulsive 2logit [!sample logit
channels impulsive , |

1124 Channels _occurences nonagg channels impulsive <— Channels occurences channels

impulsive logit[!sample logit channels impulsive, |

26| # Fit logistic regression model (on train)
127 model logit nonagg2 channels impulsive <— glm(formula = cbind(test logit
channels impulsive$bin conv, test logit channels impulsive$bin null) = (

Channels occurences nonagg channels impulsive$eta + Channels occurences
nonagg channels impulsive$iota + Channels occurences nonagg channels
impulsive$alpha + Channels occurences nonagg channels impulsive$beta +
Channels occurences nonagg channels impulsive$theta + Channels occurences
nonagg channels impulsive$lambda + Channels occurences nonagg channels
impulsive$kappa + Channels occurences nonagg channels impulsive$zeta +

Channels occurences nonagg channels impulsive$epsilon + Channels
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occurences nonagg channels impulsive$gamma), family = binomial("logit"),

data = train logit channels impulsive)

Calculate probability of default for each individual in test dataset
predicted log channels impulsive <— predict (model logit nonagg2 channels
impulsive, test logit channels impulsive, type="response")

auc(test logit channels impulsive$bin conv, predicted log channels impulsive)

Logit Balanced
Channels balanced 2$conv_and null <— Channels balanced 2$total conversions +
Channels balanced 2$total null

5| Channels balanced 2logit <— Channels balanced 2 %% slice (rep(1l:n(), Channels

balanced 2%conv_and null))

Channels balanced 2logit <— Channels balanced 2logit %%

group_ by (path) %%

mutate (row_number = 1:n())

Channels balanced 2logit$bin conv <— ifelse (Channels balanced 2logit$row
number <= Channels balanced 2logit$total conversions, 1, 0)

Channels balanced 2logit$bin null <— ifelse (Channels balanced 2logit$bin_ conv
— 0, 1, 0)

Channels occurences channels balanced logit <— Channels occurences channels
balanced %% slice (rep(1l:n(), Channels balanced 2$conv_and null))

;| logit _nonagg channel balanced <— glm(formula = cbind (Channels balanced 2logit$

bin_conv, Channels balanced 2logit$bin null) 7 (Channels occurences
channels balanced logit$eta + Channels occurences channels balanced logit$
iota + Channels occurences channels balanced logit$alpha + Channels
occurences channels balanced logit$beta + Channels occurences channels
balanced logit$theta + Channels occurences channels balanced logit$lambda
+ Channels occurences channels balanced logit$kappa + Channels occurences
channels balanced logit$zeta + Channels occurences channels balanced logit
$epsilon + Channels occurences channels balanced logit$gamma), family =

binomial ("logit"), data = Channels balanced 2logit)

5|# Use 80% of dataset as training set and remaining 20% as testing set

sample logit channels balanced <— sample(c(TRUE, FALSE), nrow(Channels
balanced 2logit), replace=TRUE, prob=c(0.8,0.2))

train_logit channels balanced <— Channels balanced 2logit [sample logit
channels balanced, |

test logit channels balanced <— Channels balanced 2logit [!sample logit
channels balanced, |

Channels _occurences nonagg channels balanced <— Channels occurences channels

balanced logit[!sample logit channels balanced, |
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# Fit logistic regression model (on train)

model logit nonagg2 channels balanced <— glm(formula = cbind(test logit
channels balanced$bin_conv, test logit channels balanced$bin null) =~ (
Channels occurences nonagg channels balanced$eta + Channels occurences
nonagg channels balanced$iota + Channels occurences nonagg channels
balanced$alpha + Channels occurences nonagg channels balanced$beta +
Channels occurences nonagg channels balanced$theta + Channels occurences
nonagg channels balanced$lambda + Channels occurences nonagg channels
balanced$kappa + Channels occurences nonagg channels balanced$zeta +
Channels occurences nonagg channels balanced$epsilon + Channels occurences
_nonagg channels balanced$gamma), family = binomial("logit"), data = train

_logit_channels balanced)

Calculate probability of default for each individual in test dataset
predicted log channels balanced <— predict(model logit nonagg2 channels
balanced , test logit channels balanced, type="response")

auc(test logit channels balanced$bin conv, predicted log channels balanced)

Logit Considered

Channels considered 2$conv_and null <— Channels considered 2$total conversions
+ Channels _considered 2$total null

Channels considered 2logit <— Channels considered 2 %% slice (rep(l:n(),
Channels considered 2$conv_and null))

Channels considered 2logit <— Channels considered 2logit %%

group_ by (path) %%

mutate (row_number = 1:n())

Channels considered 2logit$bin conv <— ifelse (Channels considered 2logit$row
number <= Channels considered 2logit$total conversions, 1, 0)

Channels considered 2logit$bin null <— ifelse (Channels considered 2logit$bin
conv =— 0, 1, 0)

Channels _occurences channels considered logit <— Channels occurences channels

considered %% slice (rep(1l:n(), Channels considered 2$conv_and null))

logit nonagg channel considered <— glm(formula = cbind (Channels considered 2
logit$bin conv, Channels considered 2logit$bin null) = (Channels
occurences channels considered logit$eta + Channels occurences channels
considered logit$iota + Channels occurences channels considered logit$
alpha + Channels occurences channels considered logit$beta + Channels
occurences channels considered logit$theta + Channels occurences channels
considered logit$lambda + Channels occurences channels considered logit$
kappa + Channels occurences channels considered logit$zeta + Channels

occurences_channels considered logit$epsilon + Channels occurences
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1173

1174

1179

1180
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1187

channels considered logit$gamma), family = binomial("logit"), data =

Channels considered 2logit)

Use 80% of dataset as training set and remaining 20% as testing set

sample logit channels considered <— sample(c(TRUE, FALSE), nrow(Channels
considered 2logit), replace=TRUE, prob=c(0.8,0.2))

train_logit channels considered <— Channels considered 2logit [sample logit
channels considered , |

test logit channels considered <— Channels considered 2logit[!sample logit
channels considered, |

Channels occurences nonagg channels considered <~ Channels occurences channels

_considered logit[!sample logit channels considered , |

Fit logistic regression model (on train)
model logit nonagg2 channels considered <— glm(formula = cbind(test logit

channels considered$bin conv, test logit channels considered$bin null) =~ (
Channels occurences nonagg channels considered$eta + Channels occurences
nonagg channels considered$iota + Channels occurences nonagg channels
considered$alpha + Channels occurences nonagg channels considered$beta +
Channels occurences nonagg channels considered$theta + Channels occurences
_nonagg channels considered$lambda + Channels occurences nonagg channels
considered$kappa + Channels occurences nonagg channels considered$zeta +
Channels occurences nonagg channels considered$epsilon + Channels
occurences nonagg channels considered$gamma), family = binomial("logit"),

data = train_logit channels considered)

# Calculate probability of default for each individual in test dataset
predicted log channels considered <— predict(model logit nonagg2 channels
considered , test logit channels considered, type="response")

auc(test logit channels considered$bin conv, predicted log channels considered

)

# TOP DECILE LIFT

# Impulsive

5| chisq first conversion channels impulsive 2 <— chisq.test(Heuristics channels

impulsive 2$first touch conversions/sum(Heuristics channels impulsive 2%
first touch conversions)x100)

chisq last conversion channels impulsive 2 <— chisq.test (Heuristics channels
impulsive 2%last touch conversions/sum(Heuristics channels impulsive 2§
last touch conversions)=*100)

chisq linear conversion channels impulsive 2 <— chisq.test(Heuristics channels
_impulsive 2$linear touch conversions/sum(Heuristics channels impulsive 2§

linear touch conversions)*100)
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1189

1190

1191

1193

1194

1195

1196

1197

1198

1199

1203

s| chisq_markovl conversion channels impulsive 2 <— chisq.test (Markovl channels

impulsive 2$total conversion/sum(Markovl channels impulsive 2$total
conversion )x100)

chisq _markov2 conversion channels impulsive 2 <— chisq.test (Markov2 channels
impulsive 2$total conversion/sum(Markov2 channels impulsive 28total
conversion )*100)

chisq markov3 conversion channels impulsive 2 <— chisq.test (Markov3 channels
impulsive 2$total conversion/sum(Markov3 channels impulsive 2$total
conversion )x100)

chisq markov4 conversion channels impulsive 2 <— chisq. test (Markov4d channels
impulsive 2$total conversion/sum(Markov4d channels impulsive 28total

conversion )*100)

Expected first conversion channels impulsive 2 = chisq first conversion
channels_impulsive 2[["expected"]]

Observed first conversion channels impulsive 2 = chisq first conversion
channels impulsive 2[["observed"]]

TDL first conversion channels impulsive 2 <— TopDecileLift (Expected first
conversion channels impulsive 2, Observed first conversion channels

impulsive_2)

Expected last conversion channels impulsive 2 = chisq last conversion channels
_impulsive 2[["expected"]]

Observed last conversion channels impulsive 2 = chisq last conversion channels
_impulsive 2[["observed"]]

TDL last conversion channels impulsive 2 <— TopDecileLift (Expected last
conversion channels impulsive 2, Observed last conversion channels

impulsive 2)

Expected linear conversion channels impulsive 2 = chisq linear conversion
channels impulsive 2[["expected"]]

Observed linear conversion channels impulsive 2 = chisq linear conversion
channels impulsive 2[["observed"]]

TDL linear conversion channels impulsive 2 <— TopDecileLift (Expected linear
conversion channels impulsive 2, Observed linear conversion channels

impulsive_2)

5| Expected logit channels impulsive = sum(logit2 channels impulsive$effects)/

1558

il Observed logit channels impulsive = logit2 channels impulsive$effects

TDL logit channels impulsive <— TopDecileLift (Expected logit channels

impulsive , Observed logit channels impulsive)
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1200 Expected markovl conversion channels impulsive 2 = chisq markovl conversion
channels impulsive 2[["expected"]]

1210/ Observed _markovl conversion channels impulsive 2 = chisq markovl conversion
channels impulsive 2[["observed"]]

1211 TDL markovl conversion channels impulsive 2 <— TopDecileLift (Expected markovl
conversion channels impulsive 2, Observed markovl conversion channels

impulsive 2)

1215| Expected _markov2 conversion channels impulsive 2 = chisq markov2 conversion
channels_impulsive 2[["expected"]]

1214 Observed markov2 conversion channels impulsive 2 = chisq markov2 conversion
channels impulsive 2[["observed"]]

1215| TDL markov2 conversion channels impulsive 2 < TopDecileLift (Expected markov2
conversion channels impulsive 2, Observed markov2 conversion channels

impulsive_2)

1217 Expected markov3 conversion channels impulsive 2 = chisq markov3 conversion
channels impulsive 2[["expected"]]

1215| Observed _markov3 conversion channels impulsive 2 = chisq markov3 conversion
channels impulsive 2[["observed"]]

1219] TDL _markov3 conversion channels impulsive 2 <— TopDecileLift (Expected markov3
conversion channels impulsive 2, Observed markov3 conversion channels

impulsive 2)

1221 Expected _markov4 conversion channels impulsive 2 = chisq markov4 conversion
channels_impulsive 2[["expected"]]

1222 Observed markov4 conversion channels impulsive 2 = chisq markov4d conversion
channels impulsive 2[["observed"]]

1223| TDL markov4 conversion channels impulsive 2 <— TopDecileLift (Expected markov4
conversion channels impulsive 2, Observed markov4d conversion channels

impulsive_2)

1225|# Balanced

1226] chisq_first conversion channels balanced 2 <— chisq.test (Heuristics channels
balanced 2$first touch conversions/sum(Heuristics channels balanced 2%
first touch conversions)x100)

1227| chisq_last conversion channels balanced 2 <— chisq.test (Heuristics channels
balanced 2$last touch conversions/sum(Heuristics channels balanced 2$last
touch conversions)*100)

1228) chisq_linear conversion channels balanced 2 <— chisq.test (Heuristics channels

balanced 2$linear touch conversions/sum(Heuristics channels balanced 2%

linear touch conversions)*100)
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1236

1239

124(

chisq _markovl conversion channels balanced 2 <— chisq.test (Markovl channels
balanced 2%total conversion/sum(Markovl channels balanced 2$total
conversion )x100)

chisq_markov2 conversion channels balanced 2 <— chisq.test (Markov2 channels
balanced 2%total conversion/sum(Markov2 channels balanced 2$total
conversion )*100)

chisq markov3 conversion channels balanced 2 <— chisq.test (Markov3 channels
balanced 2%total conversion/sum(Markov3 channels balanced 2$total
conversion )x100)

chisq _markov4 conversion channels balanced 2 <— chisq.test (Markov4d channels
balanced 2$total conversion/sum(Markov4d channels balanced 2%total

conversion )*100)

Expected first conversion channels balanced 2 = chisq_ first conversion

channels balanced 2[["expected"]]

35 Observed first conversion channels balanced 2 = chisq first conversion

channels balanced 2[["observed"]]

TDL first conversion channels balanced 2 <— TopDecileLift (Expected first
conversion channels balanced 2, Observed first conversion channels
balanced 2)

5] Expected last conversion channels balanced 2 = chisq last conversion channels

balanced 2[["expected"]]

Observed last conversion channels balanced 2 = chisq last conversion channels
balanced 2[["observed"]]

TDL last conversion channels balanced 2 <— TopDecileLift (Expected last
conversion channels balanced 2, Observed last conversion channels balanced

2)

2| Expected linear conversion channels balanced 2 = chisq linear conversion

channels balanced 2[["expected"]]

5| Observed linear conversion channels balanced 2 = chisq linear conversion

channels balanced 2[["observed"]]

TDL linear conversion channels balanced 2 <— TopDecileLift (Expected linear
conversion channels balanced 2, Observed linear conversion channels
balanced 2)

j| Expected logit channels balanced = sum(logit2 channels balanced$effects) /6540

217 Observed logit channels balanced = logit2 channels balanced$effects

1249

TDL logit channels balanced <— TopDecileLift (Expected logit channels balanced,

Observed logit channels balanced)

90




1250

1251

Expected markovl conversion channels balanced 2 = chisq markovl conversion
channels balanced 2[["expected"]]
Observed markovl conversion channels balanced 2 = chisq markovl conversion

channels balanced 2[["observed"]]

2|/TDL _markovl conversion channels balanced 2 <— TopDecileLift (Expected markovl

conversion channels balanced 2, Observed markovl conversion channels

balanced 2)

Expected markov2 conversion channels balanced 2 = chisq markov2 conversion

channels balanced 2[["expected"]]

5| Observed markov2 conversion channels balanced 2 = chisq markov2 conversion

channels balanced 2[["observed"]]

;| TDL_markov2 conversion channels balanced 2 <— TopDecileLift (Expected markov2

conversion channels balanced 2, Observed markov2 conversion channels
balanced_ 2)

25s| Expected markov3 conversion channels balanced 2 = chisq markov3 conversion

1259

1260

1261

1262

1268

1269

channels balanced 2[["expected"]]

Observed markov3 conversion channels balanced 2 = chisq markov3 conversion
channels balanced 2[["observed"]]

TDL markov3 conversion channels balanced 2 <— TopDecileLift (Expected markov3
conversion channels balanced 2, Observed markov3 conversion channels

balanced 2)

Expected markov4 conversion channels balanced 2 = chisq markov4 conversion
channels balanced 2[["expected"]]

Observed markov4 conversion channels balanced 2 = chisq markov4 conversion
channels balanced 2[["observed"]]

TDL markov4 conversion channels balanced 2 <— TopDecileLift (Expected markov4
conversion channels balanced 2, Observed markov4 conversion channels
balanced 2)

# Considered

7| chisq first conversion channels considered 2 <— chisq.test(Heuristics channels

_considered 2$first touch conversions/sum(Heuristics channels considered 2
$first touch conversions)*100)

chisq last conversion channels considered 2 <— chisq.test(Heuristics channels
considered 2$last touch conversions/sum(Heuristics channels considered 2%
last touch conversions)=*100)

chisq linear conversion channels considered 2 <— chisq.test (Heuristics
channels considered 2$linear touch conversions/sum(Heuristics channels

considered 2$linear touch conversions)*100)
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1270

1281

chisq markovl conversion channels considered 2 <— chisq. test (Markovl channels
considered 2$total conversion/sum(Markovl channels considered 2$total
conversion )x100)

chisq markov2 conversion channels considered 2 <— chisq.test (Markov2 channels
considered 2$total conversion/sum(Markov2 channels considered 2$total
conversion )*100)

chisq markov3 conversion channels considered 2 <— chisq.test (Markov3d channels
considered 2$total conversion/sum(Markov3 channels considered 2$total
conversion )x100)

chisq _markov4 conversion channels considered 2 <— chisq.test (Markov4d channels
considered 2%total conversion/sum(Markov4d channels considered 2$total

conversion )*100)

5| Expected first conversion channels considered 2 = chisq_ first_ conversion

channels considered 2[["expected"]]

76| Observed first conversion channels considered 2 = chisq first conversion

channels considered 2[["observed"]]
TDL first conversion channels considered 2 <— TopDecileLift (Expected first
conversion_ channels considered 2, Observed first conversion channels

considered 2)

Expected last conversion channels considered 2 = chisq last conversion
channels considered 2[["expected"]]

Observed last conversion channels considered 2 = chisq last conversion
channels considered 2[["observed"]]

TDL last conversion channels considered 2 <— TopDecileLift (Expected last
conversion channels considered 2, Observed last conversion channels

considered 2)

233 Expected linear conversion channels considered 2 = chisq linear conversion

channels considered 2[["expected"]]
Observed linear conversion channels considered 2 = chisq linear conversion

channels considered 2[["observed"]]

255|TDL linear conversion channels considered 2 <— TopDecileLift (Expected linear

1288

1289

1290

conversion channels considered 2, Observed linear conversion channels

considered 2)

Expected logit channels considered = sum(logit2 channels considered$effects)/
1887

Observed logit channels considered = logit2 channels considered$effects

TDL logit channels considered <— TopDecileLift (Expected logit channels

considered , Observed logit channels considered)
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1291

1292

1294

1295

1296

1298

1299

1300

1301

Expected markovl conversion channels considered 2 = chisq markovl conversion
channels considered 2[["expected"]]
Observed markovl conversion channels considered 2 = chisq markovl conversion

channels considered 2[["observed"]]

3|/ TDL_markovl conversion channels considered 2 <— TopDecileLift (Expected markovl

_conversion channels considered 2, Observed markovl conversion channels

considered 2)

Expected markov2 conversion channels considered 2 = chisq markov2 conversion
channels_considered_ 2[["expected"]]
Observed markov2 conversion channels considered 2 = chisq markov2 conversion

channels considered 2[["observed"]]

207| TDL_markov2 conversion channels considered 2 <— TopDecileLift (Expected markov2

_conversion channels considered 2, Observed markov2 conversion channels

considered 2)

Expected markov3 conversion channels considered 2 = chisq markov3 conversion
channels considered 2[["expected"]]

Observed markov3 conversion channels considered 2 = chisq markov3 conversion
channels considered 2[["observed"]]

TDL markov3 conversion channels considered 2 <— TopDecileLift (Expected markov3
_conversion channels considered 2, Observed markov3 conversion channels

considered 2)

s03| Expected markov4 conversion channels considered 2 = chisq markov4 conversion

1304

1305

1306

1307

1308

1309

1310

channels considered 2[["expected"]]

Observed markov4 conversion channels considered 2 = chisq markov4 conversion
channels considered 2[["observed"]]

TDL markov4 conversion channels considered 2 <— TopDecileLift (Expected markov4
_conversion_ channels considered 2, Observed markov4d conversion channels

considered 2)

# REMOVAL EFFECT + TRANSITION MATRIX

# Impulsive

ml channels impulsive 2 = markov_model(Channels impulsive 2, "path", "total
conversions", var_ value="total conversion_ value", var null="total null",
out_more=TRUE, order = 1)

m2 channels impulsive 2 = markov_model (Channels impulsive 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out_more=TRUE, order = 2)

m3 channels impulsive 2 = markov_model (Channels impulsive 2, "path", "total
conversions", var_ value="total conversion_ value", var null="total null",

out _more=TRUE, order = 3)
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1312/m4 _channels impulsive 2 = markov_model (Channels impulsive 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out_more=TRUE, order = 4)

1314|# Balanced

1315\ml channels balanced 2 = markov_model(Channels balanced 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out more=TRUE, order = 1)

1316/m2_channels balanced 2 = markov_model (Channels balanced 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out_more=TRUE, order = 2)

1517\m3 _channels balanced 2 = markov_model (Channels balanced 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out _more=TRUE, order = 3)

1s15)m4d_channels balanced 2 = markov_model (Channels balanced 2, "path", "total
conversions", var value="total conversion value", var null="total null",

out_more=TRUE, order = 4)

1320]# Considered

1321ml_channels considered 2 = markov_model (Channels considered 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out_more=TRUE, order = 1)

1322)m2 channels considered 2 = markov_model(Channels considered 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out_more=TRUE, order = 2)

1323)m3_channels considered 2 = markov_model(Channels considered 2, "path", "total
conversions", var value="total conversion value", var null="total null",
out_more=TRUE, order = 3)

1324/m4 channels considered 2 = markov_model (Channels considered 2, "path", "total
conversions", var value="total conversion_ value", var null="total null",

out_more=TRUE, order = 4)

1326|# STANDARD DEVIATION REMOVAL EFFECT

Impulsive

1328 removal _effects ml channels impulsive 2 <— ml channels impulsive 2[["removal
effects"]][["removal effects conversion"]]

1320 sum (removal effects ml channels impulsive 2)/9

1330] sd (removal effects ml channels impulsive 2)

1331) sd (removal effects ml channels impulsive 2)/(sum(removal effects ml channels

impulsive 2)/9)

1333 removal effects m2 channels impulsive 2 <— m2 channels impulsive 2[["removal

effects"]][["removal effects conversion"]]
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sum(removal effects m2 channels impulsive 2)/9
1335| sd (removal _effects m2 channels impulsive 2)
1336| sd (removal _effects m2 channels impulsive 2)/(sum(removal effects m2 channels

impulsive 2)/9)

1335 removal effects m3 channels impulsive 2 <— m3 channels impulsive 2[["removal
effects"|][["removal effects conversion"]]|

1330/ sum (removal _effects m3 channels impulsive 2)/9

1300 sd (removal effects m3 channels impulsive 2)

1311) sd (removal effects m3 channels impulsive 2)/(sum(removal effects m3 channels

impulsive 2)/9)

1313 removal _effects m4 channels impulsive 2 <— md4 channels impulsive 2[["removal
effects"]][["removal effects conversion"]]

1314 sum (removal effects m4 channels impulsive 2)/9

35| sd (removal effects md channels impulsive 2)

1346| sd (removal effects md channels impulsive 2)/(sum(removal effects md4 channels
impulsive 2)/9)

1347
1348|# Balanced

30| removal effects ml channels balanced 2 <— ml channels balanced 2[["removal
effects"]][["removal effects conversion"]]

1350/ sum (removal effects ml channels balanced 2)/10

1351 sd (removal effects ml channels balanced 2)

1352| sd (removal effects ml channels balanced 2)/(sum(removal effects ml channels
balanced 2)/10)

1353
1351 removal effects m2 channels balanced 2 <— m2 channels balanced 2[["removal
effects"]][["removal effects conversion"]]|

1355 sum (removal effects m2 channels balanced 2)/10

1356| sd (removal effects m2 channels balanced 2)

1357) sd (removal effects m2 channels balanced 2)/(sum(removal effects m2 channels
balanced 2)/10)

1s50| removal _effects m3 channels balanced 2 <— m3 channels balanced 2[["removal
effects"]][["removal effects conversion"]]

1360/ sum (removal effects m3 channels balanced 2)/10

1361] sd (removal effects m3 channels balanced 2)

1362] sd (removal effects m3 channels balanced 2)/(sum(removal effects m3 channels
balanced 2)/10)

1363

1361 removal effects md4d channels balanced 2 <— m4 channels balanced 2[["removal

effects"]][["removal effects conversion"]]
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1365

1366

1367

1368

1369

1370

1379

1380

1382

1383

1384

@
ot

1386

1387

1388

sum (removal effects m4 channels balanced 2)/10

sd(removal effects m4 channels balanced 2)

sd(removal effects md channels balanced 2)/(sum(removal effects md channels
balanced 2)/10)

# Considered

removal effects ml channels considered 2 <— ml channels considered 2[["removal
_effects"|][["removal effects conversion"]]

sum (removal effects ml channels considered 2)/10

sd(removal effects ml channels considered 2)

sd(removal effects ml channels considered 2)/(sum(removal effects ml channels
considered 2)/10)

sl removal effects m2 channels considered 2 <— m2 channels considered 2[["removal

_effects"]][["removal_effects_conversion"]]

sum (removal effects m2 channels considered 2)/10

7| sd (removal effects m2 channels considered 2)

;| sd (removal effects m2 channels considered 2)/(sum(removal effects m2 channels

considered 2)/10)

removal effects m3 channels considered 2 <— m3 channels considered 2[["removal
_effects"]][["removal effects conversion"]]

sum (removal effects m3 channels considered 2)/10

sd(removal effects m3 channels considered 2)

sd(removal effects m3 channels considered 2)/(sum(removal effects m3 channels
considered 2)/10)

removal effects md4 channels considered 2 <— m4 channels considered 2[["removal
_effects"|][["removal effects conversion"]]

sum (removal effects md4d channels considered 2)/10

sd(removal effects md channels considered 2)

sd (removal effects md channels considered 2)/(sum(removal effects md4d channels
considered 2)/10)
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