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Abstract

In online advertising, customers are exposed to a sequence of digital channels, e.g., social

media advertising, search engine advertising and optimisation, and responsive websites, before

making a conversion decision, i.e., purchases, sign-ups, or subscriptions. Measuring the individ-

ual contribution of each channel to a conversion event is a critical task for marketers to maximise

the cost effectiveness of their marketing strategy. Commonly used attribution approaches such

as rule-based heuristics fail to model the sequential nature of the customer journey while more

advanced techniques like Markov chains are unable to model long-term dependencies along the

customer journey. In response, we propose a long short-term memory framework, capable of

processing long-term channel interplay effects, for the multi-touch attribution problem. An

attention mechanism is used to learn channel attributions from the conversion prediction objec-

tive and a second LSTM model that distinguishes between channel impressions and clicks is also

proposed. Applying our analysis to two datasets, we find that the LSTM models demonstrate

substantial predictive performance gains over heuristic, logistic regression and Markovian base-

line models, generating slightly different attribution scores. Our results also indicate that the

difference between clicks and impressions on a channel’s conversion contribution is negligible.

Disclaimer: The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

The advent of online digital advertising can be traced back to 1994 when AT&T purchased a small

rectangular space on HotWired magazine’s website to display the world’s first banner ad, at a cost

of US$30,000. The three decades since have seen a veritable explosion in the adoption of digital

marketing strategies with an estimated digital ad-spend of US$183.1bn in 2021, accounting for

64.2% of total advertising expenditure (Adgate, 2021). The evolution of smart devices and the

internet landscape has contributed to the development of a wide variety of online ads and digital

channels, including responsive websites, search engine marketing, affiliate marketing, in-app adver-

tising, social media, email and mobile advertising (McCarthy, 2021). Customers may be exposed

to any of these channels on various devices, possibly interacting with the same channel more than

once, before reaching a potential conversion, that is, a purchase, sign-up or subscription. Anderl,

Becker, Von Wangenheim, and Schumann (2016) define this sequence of advertising interactions

(aka touchpoints) preceding a conversion decision as an online customer journey. For marketers

to maximise their return on online advertising expenditure, evaluating which ad-interaction in the

customer journey actually contributed to the conversion is critical. Attribution allows firms to

identify which channels offer the largest contribution to user conversions.

Common approaches to attribution include rudimentary rule-based heuristics, such as first-touch

attribution (FTA) or last-touch attribution (LTA), which ignore the influence of any ad-interactions

besides the first or last ones in the customer journey (Wang, Zhang, Yuan, et al., 2017). Similar

rule-based solutions exists for multi-touch attribution models (MTA) as well. For example, linear

attribution assigns equal credit to all touchpoints in the customer journey, while time decay assigns

fixed percentages based on the chronological order of touchpoints. Not only do such approaches

ignore the sequential nature of customer journeys and the timing between ad impressions (H. Li

& Kannan, 2014), they also fail to incorporate any differences in the effect on user behaviour

between channels. For example, newsletters stored in an email inbox can be repeatedly accessed

and often drive conversion through other channels, especially by directing traffic to the company

website (Breuer, Brettel, & Engelen, 2011). These effects would be undervalued by first-touch and

last-touch heuristics.

To tackle the aforementioned shortcomings, several data-driven attribution models have been de-

veloped in recent years. Shao and Li (2011) proposed a bagged logistic regression model, which

was then extended by Dalessandro, Perlich, Stitelman, and Provost (2012) using causal inference

methods as an answer to the lack of interpretability. However, unbiased estimation of causal param-

eters proves difficult under certain assumptions and the model still does not consider the sequential

nature of the customer journey. Kireyev, Pauwels, and Gupta (2016) developed a vector autore-

gressive model, which does consider the temporal factor but does not account for spillover effects,
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i.e. the impact of channel visits on a conversion through other channels (H. A. Li & Kannan, 2013).

A survival theory-based model presented by (Zhang, Wei, & Ren, 2014) acknowledges that different

digital advertising channels can have different different impacts on user conversions but makes the

critical assumption that said impact invariably deteriorates over time. Anderl et al. (2016) propose

a graph-based Markovian model to determine channel contribution. In their proposed framework,

the sequential nature of customer journeys is modelled as first and higher order Markov chains.

Transition probabilities are used to investigate channel spillover and carryover effects (the impact

of channel visits on a conversion through subsequent visits to the same channel). Higher order

Markov chains allow for analysis of channel (sub)sequences and associated spillover effects. To

elucidate, a user’s decision to convert or visit a particular channel may be dependent not just on

the previous channel, but on the order of a given subset of channels visited previously. We refers

to these dependencies as higher-order dependencies. Theoretically, Markov models can account

for these higher-order dependencies. In practice, however, the suggested framework suffers from

scalability issues due to computational limits on the order of the Markov chain. This stems from

the fact that the state space increases exponentially with the order of the Markov chain (Graves,

Wayne, & Danihelka, 2014).

Neural networks are another increasingly popular tool in the field of MTA problems, especially

recurrent neural networks (RNN). RNN models have long been used for speech recognition and

machine translation tasks for the same reason that they are apt for MTA: they provide a flexible

means of processing sequential dependencies in data (Du, Zhong, Nair, Cui, & Shou, 2019). As

Du et al. (2019) explain, the RNN architecture allows them to efficiently store information about

the past, making them suitable to handle non-Markovian dependencies. That being said, the most

important quality of an attribution model is its ’explainability’. Beyond interpreting customer

journeys and accurately associating them with conversions or non-conversions, their parameters

should justify these results and answer the question: Why was the customer journey associated

with a conversion or non-conversion? In other words, attribution models must be able to identify

which specific touchpoints in the customer journey contributed to the conversion decision and

quantify these contributions. As is the case for most neural networks, simple RNNs are a black

box - we do not know how individual nodes in the neural network work together to produce a final

output. In the case of a base RNN model, it is virtually impossible to glean insights from node

weights to ascertain the dergee of influence of each touchpoint on a customer’s conversion decision.

Clearly, RNNs require some additional mechanisms to obtain explainable results in the form of

attribution scores for each channel. In view of the benefits and limitations of neural networks

relative to frequently used attribution modelling techniques, we propose the following research

question:
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Can we obtain explainable results from neural network attribution models, that are comparable to

commonly used techniques in an multi-touch attribution setting?

However, due to the vanishing gradient problem, deep RNNs struggle to handle long-term depen-

dencies (Hochreiter, 1998). Long short-term memory (LSTM) was proposed as a solution to this

vanishing gradient problem plaguing simple RNNs (Hochreiter & Schmidhuber, 1997). Within the

field of neural network-based attribution modelling, several papers focus on the LSTM framework

in their quest for higher predictive performance. Ren et al. (2018) propose a Dual-attention Recur-

rent Neural Network (DARNN) for MTA that learns the attribution values through an attention

mechanism directly from the conversion estimation objective. Yang, Dyer, and Wang (2020) com-

bined an LSTM-based conversion prediction model with an additive feature attribution model.

Deep Neural Net with Attention for Multi-touch Attribution, or DNAMTA for short, is a similar

LSTM-based conversion prediction model that also incorporates user-context information such as

demographic information (Arava, Dong, Yan, Pani, et al., 2018). This brings us to the first research

subquestion:

How does an LSTM-based neural network approach to conversion prediction and multi-touch

attribution compare to other commonly used approaches, such as rule-based heuristics, logistic

regression and Markov chains?

Further, as Ren et al. (2018) point out, the vast majority of proposed MTA solutions disregard

differences in user pre-conversion behaviour, particularly the difference between ad clicks and ad

impressions. An impression occurs when a digital advertisement is displayed to a visitor on their

screen, whereas a click, as the name might suggest, involves the visitor clicking on the advertisement

to be directed to an online property (Commercial Web Services, 2011). Most studies either treat

clicks and impressions equally, or attribute conversion either solely to clicks or solely to impressions

(Ren et al., 2018). The degree of user interaction with a given advertisement could substantially

influence conversion, thereby providing additional valuable insights into true channel attribution.

This motivates our second research subquestion:

To what extent can additional user-advertisement interaction information - for example, click or

impression - improve the performance of the LSTM-based model?

2 Related Works

Data-driven MTA solutions remain a prominent area of interest for marketing scholars. In this

section, we attempt to synthesise the main findings of academic literature related to attribution

modelling - beginning with a broader view of the prevalent data-driven attribution models, followed

by popular neural network solutions.
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In the logistic regression model proposed by Shao and Li (2011), the explanatory variables are the

number of touches in each advertising channel. The estimated coefficients are interpreted to reflect

the attribution score of each channel. However, the exact method of deriving attribution scores from

the estimated coefficients is left unexplained. Alongside their logistic regression, (Shao & Li, 2011)

suggested a probabilistic model that derived attribution from first and second order conditional

conversion probabilities. They found that bootstrap aggregating (bagging) improved the predic-

tive performance of logistic regression, yielding more accurate predictions than the probabilistic

model. Danaher and Van Heerde (2018) use a probit model to derive an attribution formulation

that factors in carryover and interaction effects, discovering a proportional relationship between the

marginal effectiveness of a channel times its number of exposures. Other studies explore the use of

time series models to predict and attribute conversion. De Haan, Wiesel, and Pauwels (2016) in-

vestigate the difference between firm-initiated contact (FIC) and customer-initiated contact (CIC)

with a structural vector autoregression (SVAR) model, concluding that CIC was 26.7 times more

effective than FIC. The multivariate time series model put forth by Kireyev et al. (2016) suggests

that the dynamic interaction between paid search and display ads increases their effectiveness over

time. Xu, Duan, and Whinston (2014) present a Bayesian hierarchical framework that models

advertisement clicks and purchases as dependent random events in continuous time. Their model

outperforms several benchmark MTA models and demonstrates that the conversion rate measure

is biased against display advertisements relative to paid search. Markov chain analysis is a pop-

ular branch of MTA solutions as well. Anderl et al. (2016) model the customer journey as first

and higher-order Markov walks, using rule-based heuristics and two logit models as benchmarks.

Their findings confirm that heuristic approaches can produce misleading results that can lead to

incorrect attribution conclusions, and identify both carryover and spillover effects. However, due

to computational limits on the order of the Markov chain, they restrict their higher-order analysis

to an order of 4.

RNN attribution models, specifically LSTM-based attribution models with their capability of pro-

cessing long-term sequential dependencies, offer an answer to the scalability issues associated with

the Markovian framework. Although neural networks and LSTM-based models have been known

to outperform simpler models such as logistic regression, they remain a comparatively unexplored

area of research. Much of this has to do with the fact that LSTMs, as is the case with most neural

networks, are difficult to interpret. Hence, several studies have been dedicated to developing new

techniques to estimate conversion attribution with LSTMs. The Dual-attention Recurrent Neural

Network implemented by Ren et al. (2018) was named as such because it applies the attention

mechanism to both user clicks and conversion predictions. According to them, the attention mech-

anism simultaneously contributes to prediction accuracy while naturally learning the attribution

of all touchpoints. DNAMTA (Arava et al., 2018) estimates attribution the same way but with a
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single attention layer. In addition to their attention attribution score, they make use of fractional

and incremental attribution scores. The DeepMTA model proposed by Yang et al. (2020) is com-

prised of two stages: the first is a phased LSTM framework to model the customer journey, the

second an additive features explanation model to interpret the first stage by calculating the weight

of each touchpoint using Shapley values and linear regression.

3 Data

Our research is based on three publicly available clickstream datatsets. As Bucklin and Sismeiro

(2009) explain, the internet allows for efficient, unobtrusive collection of information on a user’s

online activity, known as clickstream data, including information on customer journeys. This section

provides an overall description of the datasets used, an overview of the required data pre-processing,

as well as some descriptive statistics in Table 1 for context.

3.1 Kaggle Dataset

For the Kaggle dataset1, each row represents a touchpoint in a customer journey. It contains

information on 586,000 touchpoint observations, with variables denoting the user id, the marketing

channel involved, the timestamp of the interaction, the nature of the interaction (impression or

conversion), whether or not the user converted, and the value of the potential conversion. Assuming

that each user id represents a unique customer journey, the timestamp information enables us to

generate rows for separate customer journeys. If the final touchpoint for a given user id is associated

with a conversion, this implies that the corresponding customer journey ended in a conversion.

Further processing involves generating a channel visits variable for each channel to count the number

of visits to each channel in a given customer journey. To map the last four touchpoints in a customer

journey, four dummy variables channel t, with t = 1, 2, 3, 4 are generated, for each channel. These

dummies are set to 1 if, counting from the end of the customer journey, the given channel exists at

the specified position t, and 0 otherwise.

Table 1: Descriptive statistics for datasets.

Description Kaggle Criteo

Number of different channels 5 10
Number of impressions 586737 937840
Number of clicks - 369785
Number of customer journeys 240108 189213
Average journey length 2.444 4.957
Number of conversions 17639 15648
Journey conversion rate 0.073 0.083

1https://www.kaggle.com/code/hughhuyton/multitouch-attribution-modelling/notebook
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3.2 Criteo Dataset

Published by Criteo AI Labs (Diemert Eustache, Meynet Julien, Galland, & Lefortier, 2017), this

dataset contains data on over 16.5 million touchpoints, a sample of 30 days of Criteo live traffic

data. For each touchpoint, it provides the timestamp, the associated user id and campaign/channel

id. Variables indicating whether or not a conversion occurred in the 30 days after the interaction,

and whether or not the user actually clicked on the impression are also included.

Since this dataset contains nearly 700 channels, many of which are associated with very few user

ids, we evaluate a subset of the data comprising only the 10 most frequently visited channels. This

is vital to ensure ease of attribution interpretation. After grouping on the basis of user ids, any

groups that include visits to channels outside the list of the 10 most frequent are discarded. We

generate separate customer journeys using a process similar to Ren et al. (2018). For users with

multiple conversions events, their touchpoint sequences are split up such that each sequence contains

a maximum of one conversion, thereby representing a customer journey, while ensuring that each

sequence has a minimum length of 3 and a maximum length of 20. Additional data pre-processing

to identify the number of visits to each channel and the final four touchpoint channels is carried

out as previously indicated. Further, we utilise the click indicator variable for each touchpoint to

construct a click info variable in the form of a vector. For all customer journeys, the length of the

vector is equal to 10, as each index corresponds to a unique channel. The value at a given index

denotes the number of clicks on that channel during the customer journey.

4 Methodology

For our methodology we make use of the baselines (last-touch, first-touch, logistic regression) and

Markovian models presented by Anderl et al. (2016). This research is supplemented by our addition

of two long short-term memory neural networks.

Since the true causal relationship between online channel impressions and user conversions is un-

known for our real-world datasets, it is impossible to evaluate the accuracy of attribution results

produced different models. A credible attribution model should, however, be able to correctly pre-

dict conversion events (Lodish, 2001). For this reason, predictive performance serves as the primary

basis for comparison of our attribution models. To this end, we use the area under the receiver

operating characteristic (ROC) curve (AUC) as a measure of predictive accuracy. AUC exhibits a

number of desirable properties when compared to overall accuracy, chief among them being that it

is invariant to a priori class probabilities (Bradley, 1997). To reduce bias of our prediction results,

they are calculated across 10 cross-validation repetitions.
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Before presenting the models used in our analysis, it is useful to introduce some notation. First,

let c ∈ {1, 2, ..., C} denote our customer. Each customer c has a unique customer journey. For

customer c, their customer journey is represented by a sequence of v ∈ {1, 2, ..., Vc} touchpoints,

and a conversion decision yc which is equal to 1 if the user converts and 0 otherwise. The vth

touchpoint in customer c’s journey can be denoted by sc,v. A touchpoint in any given customer

journey involves a visit to marketing channel k ∈ {1, 2, ...,K}, so a visit of customer c to channel

k at touchpoint v can be written as sc,v = k.

4.1 Baseline Models

4.1.1 Rule-based Heuristics

As previously mentioned, two common rule-based heuristics for attribution modelling are last-touch

(LTA) and first-touch (FTA) attribution. As their names might suggest, LTA attributes 100% of

the conversion credit to the final touchpoint in the customer journey, while FTA attributes 100% of

the conversion credit to the first touchpoint in the customer journey. Let ac,v refer to the conversion

credit attribution to touchpoint v in customer c’s journey.

aLTA
c,v =

0, v = {1, 2, ..., (Vc − 1)}

1, v = Vc

(1)

aFTA
c,v =

0, v = {2, ..., Vc }

1, v = 1
(2)

For LTA (FTA), calculating the overall attribution Ak of conversion credits to a given channel k is

a simple matter of dividing the total number of customer journeys that ended in conversion with

that channel at the final (first) touchpoint, by the total number of customer journeys that ended

in a conversion.

ALTA
k =

∑C
c=1 I[sc,Vc = k, yc = 1]∑C

c=1 yc
(3)

AFTA
k =

∑C
c=1 I[sc,1 = k, yc = 1]∑C

c=1 yc
(4)

Given the last (first) touchpoint of a customer journey, the empirical probability of conversion can

be calculated for LTA (FTA) by dividing the number of customer journeys with a given channel at

the last (first) touchpoint that results in a conversion, by the total number of customer journeys

with that channel at the last (first) touchpoint.

pLTA(yi = 1|sc,Vc) =

∑C
c=1 I[sc,Vc = k, yc = 1]∑C

c=1 I[sc,Vc = k]
(5)
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pFTA(yi = 1|sc,1) =
∑C

c=1 I[sc,1 = k, yc = 1]∑C
c=1 I[sc,1 = k]

(6)

4.1.2 Logistic Regression

The choice of the non-linear logistic regression functional form is justified insofar as the dependent

variable, i.e. the conversion decision, is binary. Unfortunately, existing literature does not clearly

delineate a method to extract attributions from logistic regression coefficient estimates. For that

reason, they are primarily used as baselines for predictive accuracy comparisons against the other

models, in the context of this study.

The first of our logistic regressions uses the number of visits to each channel in a customer journey

as explanatory variables to model the probability of a conversion, as implemented by Shao and Li

(2011). The variable xc,k represents the number of times customer c visited channel k along their

customer journey. The model can be specified as follows:

logit(yc) = α+

K∑
k=1

βkxc,k, (7)

where

xc,k =

Vc∑
v=1

I[sc,v = k], (8)

As before, we can estimate the conversion probability of a customer given their touchpoint his-

tory:

p̂log1(yc = 1|{xc,1, xc,2, ..., xc,K}) = Λ(α̂+

K∑
k=1

β̂kxc,k), (9)

where Λ(x) = 1
1+e−x , the logistic function. As explained in Section 2, this model fails to appropri-

ately model the sequential nature of the customer journey. The second logistic regression attempts

to tackle this shortcoming by including the order of the final four touchpoints as the explanatory

variable. This is accomplished using the dummy variable dc,k,t which is set to 1 if customer c visits

channel k at touchpoint t in their customer journey, and 0 otherwise. In this case, for customer

c, t ∈ {(Vc − 3), (Vc − 2), (Vc − 1), (Vc)}, an element of the subset of the last 4 touchpoints in the

customer journey. The second logit model can be specified in the following manner:

logit(yc) = γ +
K∑
k=1

Vc∑
t=(Vc−3)

δk,tdc,k,t. (10)
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Similarly, given the final four touchpoints of a customer journey, the conversion probability can be

calculated:

p̂log2(yc = 1|{dc,1,(Vc−3), ..., dc,K,Vc}) = Λ(γ̂ +
K∑
k=1

Vc∑
t=(Vc−3)

δ̂k,tdc,k,t). (11)

4.2 Markov Chains

The following Markovian attribution framework draws directly from the structure outlined in Anderl

et al. (2016). In their paper, customer journeys are modelled as chains in a directed Markov

graph. Markov chains are probabilistic models that describe sequences of events or system states,

predicated on the notion that the probability of a system transitioning to a given state, depends

solely on the current state of the system. Markov graphs are represented by a set of states, S,

and a transition matrix, W, containing the probabilities of the system moving from a given state

to any other state in the state space, including that state itself. For example, in Markov graph

M = {S,W}:
S = {s1, s2, ..., sn} (12)

wi,j = p (Xt = sj | Xt−1 = si) , 0 ≤ wi,j ≤ 1,

N∑
j=1

wi,j = 1 ∀i (13)

In the first order Markov graph, a state correpsonds to one channel. Anderl et al. (2016) also

add three special states: a START state to denote the starting point of every customer journey,

a CONVERSION state for customer journeys associated with a successful conversion, and an

absorbing NULL state for customer journeys without a conversion. Furthermore, the transition

probability wk1,k2 denotes the probability that a visit to channel k1 at a given touchpoint, is followed

by a visit to channel k2 at the next touchpoint. For a given sample of customer journeys with channel

set or statesH = {h1, h2, ..., hn}, an example Markov graph could be specified asG = {E,F}, where
state space E = {START,CONV ERSION,NULL} ∪ H and F is the transition matrix. This

transition matrix can be computed empirically from the data.

We now move to the process of assigning conversion credits to each channel. In Anderl et al. (2016),

attribution is based on an ad factor called the ’removal effect’. Simply put, the ’removal effect’ of

a channel k (REk) is the change in the probability of reaching the CONVERSION state from the

START state, after the removal of k from the channel set. It is further proved that the ’removal

effect’ is equivalent to the product of two other ad factors, namely, ’visit’ and ’eventual conversion’

ad factors. For channel k, ’visit’ indicates the probability of ever passing k on a random walk

beginning in the START state, while ’eventual conversion’ refers to the probability of reaching the

CONVERSION state from k. Although Anderl et al. (2016) do not clearly indicate their preferred

method of deriving the ’removal effect’, we opt for the stochastic simulation method available in

the ChannelAttribution package (Altomare, Loris, & Altomare, 2016). This involves using the
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empirically computed transition probabilities to simulate customer journeys in the form of random

walks beginning in the START state, as well as random walks beginning with each channel. The

’eventual conversion’ and ’visit’ values for each channel are estimated on this set of simulations.

Once the ’removal effects’ have been obtained, the subsequent attribution (Ak,Markov) reported

for each channel is equal to its ’removal effect’ as a percentage of the sum of ’removal effects’

for all channels. This ensures that attributions add up to 1, allowing for easier comparison of

models.

AMarkov
k =

REk∑K
k=1REk

(14)

In response to studies suggesting web users exhibit behaviour that may violate the Markov as-

sumption (Chierichetti, Kumar, Raghavan, & Sarlos, 2012), Anderl et al. (2016) formulate higher

order Markov models. For a Markov model of order r, transition probabilities now depend on

the past r observations. Key to the higher order framework is recognising that a Markov chain

of order r > 1 across state space H can be represented as a first order Markov chain across

state space Hr, composed of r-tuples of states in H. For example, the transition probability

P (Xt = ha | Xt−1 = hb, Xt−2 = hc, Xt−3 = hd) ≡ P (Xt = {ha, hb, hc} | Xt−1 = {hb, hc, hd}). The

’removal effect’ of each tuple can be calculated by applying the aforementioned simulation tech-

nique to this first order translation. The ’removal effect’ of each channel k is then obtained by

averaging the ’removal effects’ of all tuples containing channel k at their final index.

Conversion predictions can also be extracted from a Markov graph. In the case of a first order

model, the estimated conversion probability is equal to the transition probability of moving from

the channel at the final touchpoint of a given customer journey, to the CONVERSION state.

Analogously, for a higher order (r) graph, this is equal to the transition probability of moving from

the final r-tuple of channels in the customer journey, to the CONVERSION state.

p̂Markov(yc = 1|sc,Vc = k) = p(Xt = CONV ERSION |Xt−1 = sc,Vc = k) (15)

p̂Markov(yc = 1|{(sc,(Vc−r) = ki), ..., (sc,Vc = ki+r)}) = p(Xt = CONV ERSION |Xt−1 = {ki, ..., ki+r})
(16)

We make use the of the publicly available ChannelAttribution Python package to calculate tran-

sition probabilities and implement the stochastic simulation method to derive removal effects

(Altomare et al., 2016).
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4.3 LSTM-based Models

4.3.1 Recurrent Neural Networks

Recurrent neural networks, or RNNs, are a class of neural networks for processing sequential data,

typically in the form of vectors xt where t ∈ {1, ..., T} (Goodfellow, Bengio, & Courville, 2016).

Unlike feedforward neural networks, RNNs incorporate a feedback loop that enable them to retain

information from previous events. RNNs can be represented as a chain of repeating modules of a

neural network, each of which take an input vector, xt, and produce an output vector, hidden state

ht. However, the output of a module is not influenced by the current input alone, but also by the

history of previous inputs (Karpathy, 2015). As the network learns to use the previous state as a

summary of past input sequences (Goodfellow et al., 2016):

ht = f(xt, ht−1, θ) (17)

Predictions can be derived from RNN outputs ht by first applying an appropriate activation func-

tion, such as the hyperbolic tangent (tanh), and then multiplying the result by a weight matrix

V , for hidden layer to output layer connections (Goodfellow et al., 2016). It is also possible to

tailor RNNs to various input-output size combinations. Examples include sequence output (one to

many), sequence input (many to one), and sequence input and output (many to many).

4.3.2 Long Short-Term Memory

Although RNNs can store information from past inputs to produce current outputs, as the gap

between relevant past inputs and and desired present outputs increases, their performance dete-

riorates. This issue was first noticed by Hochreiter (1998), who termed it the vanishing gradient

problem. During backpropagation, the error gradients at deeper layer in the RNN are calculated

as the product of gradients of all the nodes’ activation functions (typically sigmoid functions) with

respect to their weights. As the number of layers in the network increases, the value of this product

begins to approach 0, and the gradient vanishes as it moves backwards through the net, leading to

poor weight updates and ineffective training.

The Long short-term memory (LSTM) network is a special type of RNN, proposed by Hochreiter

and Schmidhuber (1997) as a solution capable of learning long term dependencies. The fundamental

differences between RNN and LSTM lies in the structure of their repeated modules. Generally,

RNNs contains a single activation layer, whereas LSTM modules contain four interacting layers

and a cell state in addition to the hidden state. The following description of an LSTM network

largely adheres to the notation and structure outlined in Olah (2015).

Three gate units, based on sigmoid layers, are used to control the flow of information through the
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cell state. The first gate, appropriately named the ’forget gate’, determines what information is

retained by the cell state and what is discarded from it. For every element in the previous cell state

vector ct−1, a sigmoid layer σ in the ’forget gate’ outputs a value between 0 and 1 indicating the

proportion of information to be retained (0 being retain nothing, 1 being retain everything). This

layer ft takes the previous hidden state ht−1 and the current input vector xt as inputs.

ft = σ (Wf · [ht−1, xt] + bf ) (18)

The ’input gate’ decides what new information is to be stored in the cell state, and is composed of

two parts. In the first, the current input vector xt and the previous hidden state ht−1 are passed

through a sigmoid layer to once again identify the important elements (it). In the second, the same

information is passed through a tanh layer to generate a candidate vector c̃t that could be added

to the cell state.
it = σ (Wi · [ht−1, xt] + bi)

c̃t = tanh (WC · [ht−1, xt] + bc)
(19)

The next to step is to actually compute the new cell state vector ct by multiplying the previous

cell state ct−1 by ft (forgetting unimportant information) and adding i ∗ c̃t (storing only important

new information).

ct = ft ∗ ct−1 + it ∗ c̃t (20)

The final ’output gate’ ascertains which elements of the current cell state ct are relevant for the

output by once again passing the previous hidden state ht−1 and the current input xt through a

sigmoid layer in ot. The cell state ct is subjected to a hyperbolic tangent transformation before

being multiplied by this gating signal to produce the final output hidden state ht.

ot = σ (Wo [ht−1, xt] + bo)

ht = ot ∗ tanh (ct)
(21)

4.3.3 Attention

We employ an attention mechanism to derive attribution results for each channel from our LSTM

outputs. Attention was first introduced by Bahdanau, Cho, and Bengio (2014) to improve the per-

formance of encoder-decoder architectures used in sequence-to-sequence (seq2seq) neural networks,

in which two RNNs work in combination to transform one sequence into another. Such models are

commonly used for neural machine translation tasks. The encoder converts an input sequence into a

vector, which is then read by the decoder and transformed into the desired output. Seq2seq models

usually encounter difficulty processing long input sequences as they only use the final hidden state

output of the encoder as the context vector for the decoder. This mean that the encoder condenses
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the entire input sequence in a single hidden state vector. The longer the sequence, the more difficult

it becomes to capture all contextual information or the relation between elements, and the poorer

the performance of the seq2seq model. The attention mechanism solves this by utilising all the

encoder hidden states across the sequence during the decoding process. The decoder has access

to the entire input sequence and can select or pay ‘attention’ to specific elements to generate an

output.

There are two types of attention mechanisms: Bahdanau attention (Bahdanau et al., 2014) and

Luong attention (Luong, Pham, & Manning, 2015). Their differences lie in the calculation of an

alignment score and the choice of decoder hidden state. The alignment score scoret, quantifies the

’attention’ the decoder pays to each encoder output. The alignment score of the Bahdanau model

is given by:

˜scoret = va(tanh (Wa (st−1, H))), (22)

where H denotes the encoder hidden states, st−1 denotes the previous decoder hidden state, and

va and Wa are weight matrices to be learned. Since we are only dealing with a single output, the

previous decoder hidden state is the initial decoder hidden state. The Bahdanau alignment function

is also referred to as the ’concat’ function (Luong et al., 2015) or ’additive attention’ (Vaswani et

al., 2017) for the manner in which the encoder hidden states are concatenated with the initial

decoder hidden state.

In addition to the ’concat’ alignment function, Luong et al. (2015) specify two multiplicative’

alternatives:

˜scoret = sTt H (23)

˜scoret = sTt WaH. (24)

The dot alignment score (23) is a simple dot product of the encoder hidden states H and current

decoder hidden state st, while the general alignment score (24) is a dot product of the decoder

hidden state st and a linear transformation of the encoder states H.

For our analysis, we will use Bahadanau additive attention. We now provide a general overview

of the attention process. First, the encoder generates a hidden state for each element in the input

sequence. The initial hidden state of the decoder is set equal to the final hidden state of the

encoder. The following step involves calculation of an alignment score scoret, which quantifies the

’attention’ the decoder pays to each encoder output. Luong proposes three specifications for the

alignment scoring function. The alignment scores or attention weights are run through a softmax

layer so that they all add up to 1.

scoret = softmax ( ˜scoret) (25)
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A context vector wt is created by multiplying the encoder outputs by the attention weights.

wt = scoretH (26)

4.3.4 Model Architecture

As we wish to predict a binary output (conversion decision) given an input sequence (the customer

journey), we implement a many-to-one encoder-decoder network with attention in PyTorch. The

‘PackedSequence’ PyTorch class allows us to consider variable length inputs. Variable length input

sequences in the same batch are zero-padded such that all inputs are the same length, equal to that

of the longest input. Additionally, the original length of each sequence is stored in the ‘PackedSe-

quence’ object. Input sequences are further transformed into sequences of one-hot encoded vectors

to improve predictive accuracy.

The encoder module uses a single layer bidirectional LSTM. Bidirectional recurrent neural networks

connect two hidden layers in opposite directions, training in positive and negative time directions

along the input sequence. The encoder outputs a tensor containing all the hidden states for each

element in the sequence, and a tensor containing the final hidden state for each element in the

sequence. The latter, as previously explained, is used as the initial hidden state for the decoder.

The attention module calculates attention weights as detailed in the previous section, outputting

an attention vector for each input sequence. Since several input sequences in a batch have been

zero-padded and we do not want to pay any attention to these pads, we use a masking function to

ensure that attention is only calculated over the original length of the input sequence. The decoder

calculates a context vector for each input by multiplying the encoder output and the attention

weights. Passing the context vector through a linear layer followed by a sigmoid layer yields our

conversion predictions. A visual representation of the base LSTM model can be found in Figure 1.

For our second model incorporating click information, the network is almost identical to the ’non-

click’ network specified above. Additional steps include generating a click vector for each input

sequence or customer journey. The length of this vector is equal to the number of unique channels

in the dataset and each element denotes the number of clicks in a given channel along a cus-

tomer journey. This vector is then fed through a linear layer, the output of which is concatenated

with conversion prediction obtained in the final step of the ’non-click’ network. The concatenated

vector is passed through another linear layer to generate the final, click-incorporating conversion

prediction.

Both models must also include a mechanism to account for the class imbalance problem. Class

imbalance describes a situation wherein one or more classes are more frequently occurring than
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Figure 1: Visual representation of base LSTM model.

other classes. Imbalanced datasets introduce a bias in the learning process, resulting in predictions

that are skewed towards the majority class(es). Undersampling and oversampling are two methods

for handling class imbalance, however, both have their drawbacks. Undersampling involves deleting

samples from the majority class which implies a loss of valuable information, whereas oversampling

involves adding samples to the minority class which could lead to overfitting and longer training

times. Instead, we address class imbalance by adding a sample weight parameter to our loss

function, thereby leaving the distribution of our data intact. By attaching higher weights to a

minority class and a majority weight for a majority class, we introduce a stronger penalty for

minority class probability prediction errors, mitigating the aforementioned bias. Binary cross-

entropy was chosen as the loss function, as is appropriate for a classification task. In both the

15



Kaggle and Criteo datasets, the conversions are vastly outnumbered by non-conversions. Therefore,

we attach a higher weight to conversions which is equivalent to the ratio of non-conversions to

conversions.

For both networks, the widely popular Adam optimiser was used with a learning rate between 0.01

and 0.001 depending on the results for each dataset. After some experimentation, it was found that

a batch size of 128 and 5 epochs yielded good results.

4.3.5 Attention Attributions

For each input batch, our LSTM model outputs an attention matrix the same length of the batch,

in which each row contains the attention weights for the input sequence in the corresponding row

of the input batch. Each element in a given input sequence denotes a touchpoint in the customer

journey and accordingly, each element in its attention weight vector denotes the attribution of that

touchpoint. We represent the attribution of the v’th touchpoint in customer c’s journey as αc,v.

The unnormalised attribution Âk,LSTM for a given channel k is equal to the mean attribution of

channel k across all customer journeys containing that channel ending in a conversion:

Âk,LSTM =

∑Ck
c=1

∑Vc
v=1 ycαc,vI[sc,v = k]

Ck
, (27)

where Ck is the number of customer journeys containing channel k, yc is a binary variable indicating

a conversion and sc,v denotes the v’th touchpoint in customer c’s journey. For comparison of our

attribution results to other models we normalise Âk,LSTM .

Ak,LSTM =
Âk,LSTM∑K
k=1 Âk,LSTM

(28)

5 Results

5.1 Predictive Accuracy

The first step in analysing our results is establishing the credibility of our proposed LSTM attribu-

tion model. To do so, we compare its conversion predictive performance against that of the baseline

models and Markov models presented in Anderl et al. (2016). As mentioned in the Methodology

section, we use the (area under the) ROC curve as a measure of predictive accuracy. The ROC

curve visualises the tradeoff between the sensitivity (true positive rate or TPR) and the specificity

(1 - false positive rate or FPR). Sensitivity indicates the model’s ability to correctly predict conver-

sions, while specificity indicates the model’s ability to correctly predict non-conversions. Ideally,

models should be both specific and sensitive which is demonstrated by a TPR tending to 1 and an

FPR tending to 0. Given that ROC curves plot the FPR on the x-axis and TPR on the y-axis,
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better performing models yield curves close to the top-left of the graph. For random classifiers, the

TPR and FPR are equivalent and the ROC lies along the 45-degree diagonal. ROC performance

can be summarised by a scalar value, the area under the ROC curve or AUC. The higher the AUC,

the better the predictive performance of the model. Random guessing has an AUC of 0.5 while

a perfect predictor has an AUC of 1. The predictive accuracy results can be found in Table 2

while the out-of-sample ROC curves can be found in Figures 2 and 3. Note that, unless otherwise

specified, predictive performance refers to the out-of-sample predictions.

Table 2: Predictive accuracy.
Markov

Sample Dataset LTA FTA Logit 1 Logit 2 Order 1 Order 2 Order 3 Order 4 LSTM LSTM (click)

In-sample Kaggle 0.544 0.544 0.587 0.589 0.495 0.524 0.539 0.567 0.589 na
Criteo 0.673 0.666 0.686 0.688 0.672 0.675 0.676 0.675 0.696 0.706

Out-of-sample Kaggle 0.543 0.544 0.586 0.589 0.516 0.546 0.550 0.544 0.588 na
Criteo 0.673 0.666 0.686 0.687 0.639 0.638 0.632 0.598 0.695 0.705

Figure 2: AUC, ROC curves for Kaggle dataset.

(a) Last-touch (b) Logit 2

(c) Markov order 4 (d) LSTM

We find that the LSTM model (without click information) achieves better in-sample and out-of-

sample predictive performance than nearly all the other models for both the Kaggle and Criteo

dataset. The only exception is the logit 2 model for the Kaggle dataset. Notably, in terms of

out-of-sample predictions for the Criteo dataset, the Markov models are outperformed not only by
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the LSTM model, but also the baseline heuristics and logistic regressions. For the Kaggle dataset,

the Markov model performance is comparable to heuristics but still below that of the logistic

regressions. Markov model conversion predictions are based on empirically calculated transition

probabilities, making them very sensitive to class imbalance. That the number of conversions are

vastly outweighed by the number of non-conversions (see Table 1) for both datasets, could suggest a

reason for the relatively poor performance of the Markov models. By contrast, the LSTM framework

accounts for the class imbalance by adding a weight parameter to its loss function which contributes

to the improvements in its predictive power. Furthermore, for the Criteo dataset, as the order of

the Markov model increases, predictive performance decreases. For the Kaggle dataset on the other

hand, predictive performance increases up to order 3 and then decreases. One could infer that the

exact order of ad-interactions has more of an influence on conversions for the Kaggle dataset than

the Criteo dataset. Alternatively, higher order Markov models have too many parameters and

could be overfitting the training data, as evidenced by the difference between the in-sample and

the out-of-sample predictive performance of the Markov models for the Criteo dataset.

Because heuristics like first-touch and last-touch attribution focus only on a single touchpoint in

the customer journey, theoretically, they tend to perform a lot better when datasets contain a large

number of short customer journeys comprising only one channel visit before the conversion decision.

Table 2 indicates a relatively high predictive accuracy for the heuristic models, approximately equal

to the LSTM model performance for the Criteo dataset, and to the best performing Markov model

for the Kaggle dataset. The latter result seems reasonable considering an average customer journey

length of 2.44 touchpoints in the Kaggle dataset (see Table 1). Lower average journey lengths

imply a larger number of short customer journeys. Notice too that the difference between the

predictive accuracy of the heuristic model and that of the optimal model is much larger for the

Kaggle dataset than the Criteo dataset. Based on the aforementioned theory, the relatively superior

performance of the heuristic for the Criteo datatset could be attributed to a potentially shorter

average customer journey length. However, Table 1 shows that the average customer journey length

for the Criteo dataset is more than twice that of the Kaggle dataset, implying a lower proportion

of short customer journeys. Coupled with the impressive performance of the logit models over the

(higher-order) Markov models, these results reiterate the notion that for the Criteo dataset, the

selection of channels a user interacts with has a larger impact on conversion decisions than the

order in which the user interacts with them.

To assess the benefit of adding click information to our model, we direct our attention to graphs

(d) and (e) in Figure 3, and to the last two columns in Table 2. Although incorporating click

information improves the performance of our LSTM model for the Criteo dataset, the difference is

not substantial (an AUC increase of 0.01). Considering that more than a third of all ad-interactions

in the dataset were clicks, we can disregard the possibility that the available click information was
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Figure 3: AUC, ROC curves for Criteo Dataset

(a) Last-touch (b) Logit 2

(c) Markov order 3 (d) LSTM

(e) LSTM with click info

insufficient for the neural network to learn. Rather, it appears that a click on a particular channel

has little to no additional effect on user conversion compared to a regular channel impression.

The core takeaways from our predictive performance analysis are as follows. In terms of out-of-

sample performance, the LSTM model outperforms all the other baseline and Markov models for

the Criteo dataset, and all but the logit 2 model for the Kaggle dataset. This accuracy in its

predictions lends credibility to its attribution scores. The Markov models are among the poorest

performing models, a results which could be attributed to the class imbalance between conversions

19



and non-conversions for both datasets. Finally, adding customer click information to the LSTM

model yields no considerable predictive accuracy improvement over the base LSTM model.

5.2 Attribution Results

Next, we take a closer look at the attribution results of our proposed LSTM framework and compare

it to the attribution of heuristic baselines and the Markovian framework. The attribution scores

for the Kaggle dataset can be found in Table 4 and in Table 6 for the Criteo dataset. Our first

observation is that compared to the Kaggle dataset, the spread between LSTM attribution scores

and the average attributions scores of the other models for the Criteo dataset is far smaller. This

is indicated by a lower root mean squared difference between LSTM attributions and the average

of the heuristic and Markov attributions for the Criteo dataset (3.28 percentage points) than the

Kaggle dataset (7.54 percentage points). The comparison also reveals that for both datasets,

the LSTM models flatten the distribution of attribution scores across all channels, leading to a

more even share of contribution between all the channels. We find that the standard deviation

of the LSTM attributions scores for the Kaggle dataset is 4.918 percentage points, more than 2

percentage points less than the most evenly distributed heuristic or Markov model. The smoothing

effect by the LSTM models is less pronounced for the Criteo dataset, with LSTM attributions

standard deviations of 6.739 percentage points (without click information) and 7.047 percentage

points (with click information), against an minimum standard deviation of 7.690 percentage points

for the heuristic or Markov models.

Table 3: Estimation results for Logit model 1,
Kaggle dataset.

Channel Coefficient (β) Odds ratio (eβ)

Intercept -2.726***
Facebook 0.078*** 1.081
Instagram 0.079*** 1.082
Online display 0.038*** 1.039
Online video 0.096*** 1.100
Paid search 0.035*** 1.036

Note: *p < 0.1, **p < 0.05, ***p < 0.01

Table 4: Attribution results for Kaggle dataset, in percentages.

Markov
Channel FTA LTA Order 1 Order 2 Order 3 Order 4 LSTM

Facebook 29.350 30.053 30.558 29.864 29.595 29.405 20.468
Instagram 13.204 12.722 17.498 18.412 17.932 18.000 15.827
Online Display 12.246 12.127 12.083 11.829 11.398 11.485 17.233
Online Video 18.232 19.321 16.293 15.820 16.492 16.717 28.261
Paid Search 26.969 25.778 23.569 24.075 24.582 24.394 18.211

We then turn our attention to the Kaggle dataset for which the Logit 1 estimation results and
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model attribution results can be found in Tables 3 and 4. Attribution scores derived from the

baselines and Markovian frameworks show little variation, with a maximum difference of roughly 5

percentage points between the highest and lowest attribution score for any given channel. All six

of these models rank Facebook, Paid Search and Online Display as first, second and last in terms

of attribution, while Instagram and Online Video, nearly equal in terms of contribution, share the

third and fourth spots. The LSTM attribution scores on the other hand deviate significantly from

the average attribution scores of the other models. It attributes the most conversion credits to

Online Video, the least to Instagram, and a roughly equal amount to Online Display and Paid

Search. As mentioned previously, we have no ground truth to compare these attribution scores

to, making it impossible to judge how accurate they are. However, our logit model results and

existing attribution theory could provide some justification for these results. As Table 3 shows, the

Online Video coefficient is significant and the largest of all channels. The fact that it is the stronger

predictor of conversion events could provide some explanation for its high LSTM attribution score.

Xu et al. (2014) found that the last-touch heuristic is biased towards search engine advertising.

Our results for Paid Search are consistent with their research, as illustrated by the 7 percentage

point difference between the last-touch and LSTM attribution scores for paid search. With regards

to the comparatively high LSTM attribution score for Online Display, we turn to Ilfeld and Winer

(2002) for an explanation. According to their research, as display advertising can be considered a

form of banner advertising aimed at raising brand awareness rather than driving final conversions,

they are often underrepresented by single-touch heuristic approaches. In Anderl et al. (2016), for

the two datasets including the Display channel, the Markov order 3 model does attribute a greater

percentage of conversion credits to the Display channel than both first-touch and last-touch models;

however, the absolute difference is small (< 2 percentage points). A similar phenomenon can be

found in our results as well. Along with online display ads, Ilfeld and Winer (2002) also consider

social media, such as Facebook and Instagram, a form of banner advertising. Our results for the

Instagram channel appear to follow the same pattern as our Online Display results, that being

underestimation by the heuristic models relative to the Markov and LSTM models, in line with

Ilfeld and Winer (2002). The results for the Facebook channel on the other hand stand in contrast

to their findings, with an LSTM attribution score approximately 10 percentage points lower than

the heuristic attribution scores. Furthermore, Ghose and Todri-Adamopoulos (2016) show that

branding pre-roll advertising, more specifically a 15-30 second video advertisement, though having

a strong effect on driving traffic to the advertiser’s website though organic search, has little to no

effect on a customer’ conversion probability. Meanwhile, our LSTM model attributes the largest

percentage of conversion credits to Online Video. These opposing results could be explained by

differences in video placement (e.g. website pop-ups or autoplay before a user-selected video), video

duration, the goal of the video ad campaign (e.g. sales or website traffic) and a multitude of other

factors.
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The Criteo dataset does not specify the exact form of online channel, instead, each channel is as-

signed a number. The lack of information about the various channel structures renders comparison

of individual channel attribution scores meaningless. Looking at Table 6, we once again notice that

attribution scores derived by the baseline and Markov models are quite similar for all channels.

Another interesting observation is that all the channel coefficient estimates from the Logit 1 model

are negative (see Table 5). An increase in the number of visits to any channel is therefore associated

with a decrease in the probability of a conversion event. As such, shorter customer journeys in the

Criteo dataset are more likely to end in a conversion than longer ones. LSTM with click attribu-

tion scores are largely similar to LSTM attribution scores, with the root mean squared difference

between the two less than 0.5 percentage points. Considering the minimal difference in predictive

accuracy between the two models (see Table 2), this result is unsurprising and reinforces the claim

that a click on a given channel does not improve its contribution to a conversion event, relative to

a regular impression of that channel.

Table 5: Estimation results for Logit model 1,
Criteo dataset.

Channel Coefficient (β) Odds ratio (eβ)

Intercept -1.548***
1 -0.076*** 0.927
2 -0.178*** 0.837
3 -0.593*** 0.553
4 -0.189*** 0.828
5 -0.338*** 0.713
6 -0.016*** 0.985
7 -0.245*** 0.782
8 -0.240*** 0.787
9 -0.269*** 0.764
10 -0.357*** 0.700

Note: *p < 0.1, **p < 0.05, ***p < 0.01

Table 6: Attribution results for Criteo dataset, in percentages.

Markov
Channel FTA LTA Order 1 Order 2 Order 3 Order 4 LSTM LSTM (click)

1 24.546 25.045 24.142 25.110 25.259 24.362 17.822 18.670
4 13.561 13.273 14.210 13.476 13.856 13.714 9.959 9.236
8 4.723 4.787 4.849 4.921 4.188 4.671 8.057 7.862
2 13.433 13.292 12.633 12.522 12.909 12.211 10.303 10.317
5 4.850 4.454 5.382 6.157 5.595 5.696 5.369 5.087
9 6.116 6.122 6.021 5.626 5.990 6.549 7.237 7.166
6 22.041 22.604 21.217 21.185 21.211 21.979 25.196 25.828
10 3.272 3.176 3.309 2.813 2.921 3.416 5.721 5.662
3 2.230 1.981 2.680 2.655 2.238 2.066 2.103 2.200
7 5.228 5.266 5.557 5.535 5.833 5.337 8.232 7.972
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6 Conclusion

In this study, we introduced an explainable multi-touch attribution model based on a recurrent

neural network that was capable of handling long-term dependencies, such as spillover and carryover

effects, between channels in a customer journey. Using a long short-term memory framework, we

were able to model the sequential nature of customer journeys and with the help of an attention

mechanism, our model was able to evaluate the overall conversion contribution of each channel in

the dataset. We further propose a second LSTM model that incorporates the number of clicks

on each channel in the customer journey, to analyse the additional influence of a click on a given

channel over an impression.

In the absence of a ground truth to measure the results of our attribution framework against,

predictive accuracy offered a suitable means of model comparison. Along those lines, two commonly

used heuristics, first-touch and last-touch attribution, and two logistic regression models were

selected as baselines, in addition to the Markovian framework proposed by Anderl et al. (2016).

Note that the logistic regressions illustrate the strength of a channel as a predictor of a conversion

rather than its contribution to the conversion, making them more appropriate as a benchmark for a

model’s predictive accuracy rather than an attribution model. Applying our analysis to two publicly

available clickstream datasets, we show that both our LSTM models achieve a higher in-sample

and out-of-sample predictive accuracy than nearly all of the other models, asserting the validity

of their attribution results. The Markov models are among the poorest performing, a result that

could be attributed to the class imbalance between conversions and non-conversions within both

datasets. Although our LSTM attributions scores differ from the attribution scores calculated by

the baseline and Markov models (which themselves show little variation), the deviation is fairly

small. The LSTM models also have a smoothing effect on the amplitude of channel attributions,

ensuring a more even distribution of conversion credits between channels relative to the baseline

and Markov models. With regards to the LSTM framework incorporating click information, we

find no substantial improvement in the predictive accuracy over the base LSTM model, nor do we

find a significant difference in their attribution scores. This leads us to the conclusion that there is

little to no difference between the impact of a channel click or impression on a conversion.

Our research has several limitations that open avenues for future research. Chief among them is the

availability of real world clickstream data. Our analysis is applied to only two datasets, producing

company-specific results that may suffer from a lack of generalisability. Furthermore, of the two

datasets, only Kaggle specifies the exact type of channel. For future studies, multiple datasets,

ideally sharing several online channels, could be considered. Doing so would allow for calculation

of generalisable attributions for individual channels in a multi-touch setting. The average customer

journey length of the Kaggle dataset also implies a large proportion of journeys comprised of

23



one or two touchpoints. Shorter journeys render complex attribution techniques like our LSTM

framework redundant as single-touch heuristics prove adequate. Separately, although our LSTM

model is capable of processing long term spillover and carryover effects in a more computationally

efficient manner than Markov chains for example, its current framework is unable to explain or

visualise these channel relationships. Additional research is necessary to develop neural network

based solutions to mapping out channel interplay effects. Other improvements to our models include

incorporating unique user information or using alternative attribution scores (e.g. removal effect,

Shapley values). Our models derive attribution scores based on a channel’s contribution to a binary

conversion decision. However, some conversions could have a higher value than others, for example,

one purchase conversion might be worth US$10 and another might be worth US$100. Attribution

models that reflect channel contribution to the overall monetary value of conversions would be

extremely useful for businesses. Another prevalent issue is the absence of true causal relationship

information between channel visits and conversions. Future research could make use synthetic data

to establish a ground truth to compare the accuracy of attributions against.

Deploying the LSTM attribution framework that we propose has numerous managerial implica-

tions. To begin with, marketers could enhance the effectiveness and streamline the budget of their

marketing strategies by substituting financial resources away from channels with a low attribution

scores to those with stronger contributions. The ability to calculate conversion probabilities given

a customer journey enables marketers to discern the most effective or persuasive channel to present

to the user next, thereby facilitating the implementation of real-time bidding strategies and further

improving marketing cost efficiency. By modifying the definition of the binary conversing variable,

marketers can also track the real-time performance of individual channels with regards to different

marketing goals such as brand awareness or sales.
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Appendix A

Figure 4: AUC, ROC curves for Kaggle dataset.

(a) First-touch (b) Logit 1

(c) Markov order 1 (d) Markov order 2

(e) Markov order 3
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Appendix B

Figure 5: AUC, ROC curves for Criteo dataset.

(a) First-touch (b) Logit 1

(c) Markov order 1 (d) Markov order 2

(e) Markov order 4
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