
A simplification of the Mixture of Theories ∗

Felix Scheepens 545351

ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Bachelor Thesis (FEB63007)

Supervisor: A. Baillon, Second Assessor: M. Zhelonkin

Date final version: 3 July 2022

Abstract

The Mixture of Theories (MoT) model is a model that is used for predicting

human decision making. It is revolutionary because it performs better than other

models, while it is a simplification of these models. However, it does still contain

a very large amount of parameters. The goal of this paper is to see whether the

MoT model can be made more parsimonious. I do that by imposing a simplified

version of the model, taking out the probability weighting functions from the MoT

model. I investigate whether this can predict human decision making with similar

performance as the MoT model. The findings of this paper are that the gain in

simplicity comes at the cost of a drop in performance. However, the utility function

that my simplified model generates is of similar shape as the one in MoT.

∗The views stated in this thesis are those of the author and not necessarily those of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

1

Contents

1 Introduction 3

2 Literature review 4

3 Data 6

3.1 Training/Test split . 8

4 Methodology 8

4.1 Mixture of Theories . 8

4.2 Simplification of MoT . 10

4.3 Setting the (hyper)parameters . 12

5 Results 14

5.1 Setting (hyper)parameters . 14

5.2 Comparison simplified model with MoT . 17

6 Conclusion 18

2

1 Introduction

A long time desire in the field of economics, has been to predict human decision making

(Bernoulli, 1954). Since the 1970s, the search for prediction models for human decision

making has intensified (Dawes, 1971; Levison & Tanner, 1972). Initially, it was assumed

that people made their decisions to maximize their expected utility (EU) (Von Neumann &

Morgenstern, 1947), but this approach has some major limitations (Davis & Jensen, 1994;

Hodgson et al., 2012). Because of that, new models were introduced, like the prospect

theory (PT) (Tversky & Kahneman, 1992, 1974). Briefly, this is an approach based on

the assumption that gains and losses are valued differently by individuals (Levy, 1992).

More recently, research focused on complementing this theory by performing data-driven

research. To be more precise: machine learning models were used to forecast human

decision making and to verify existing theories (Noti et al., 2016; Rosenfeld & Kraus,

2018). An issue in machine learning is the large amount of data needed for good results

(Peterson et al., 2021). Peterson et al. (2021) is the first to use a properly large dataset

to analyze people’s choices. They do that by using machine learning methods to derive

different types of models that can describe the way people make decisions.

One of these models is the “context-dependent” model. A special case of this model

is the so-called Mixture of Theories (MoT) model. Here they combine the principles of

PT and EU into one model, which turns out to perform extremely well. However, it does

contain a lot of parameters, which makes it hard to interpret. For that reason it might

be desirable to have less parameters. That is where my research comes in.

In this paper, I will investigate whether I can simplify the Mixture of Theories (MoT)

model, without losing too much model performance. In other words:

”Is it possible to make the MoT model more parsimonious?”

I will answer the research question by making use of the choices13k dataset, which is a

dataset that contains over 13000 choice problems. In each problem, people get the choice

between two gambles: A and B. An example of a choice problem could be the following:

A: 50% chance on 10 payoff, 50% on 0. B: 100% certainty of 4 payoff. For each problem

there is data available about what fraction of people chose gamble B. I will use that as a

benchmark for the model.

3

I will answer the research question by introducing a simplified version of the MoT

model, and go through the same steps as MoT to determine P (A), which is the probability

of choosing gamble A over gamble B. This requires the usage and training of a neural

network, a custom loss function, and a grid search to optimize the parameters in function

V s, which determines the value of a gamble. After finding the best performing simplified

model, I compare the performance of my model with that of MoT, by means of the MSE.

In addition, I compare the characteristics of the utility functions in both models.

This contributes to existing literature, since MoT is a new concept which is not well

known yet. If I can find a way to simplify it without losing performance, that could

be very useful for companies that have their customers make choices, like sport betting

websites. If these choices can be be predicted more easily, it is easier to adapt to for these

companies to maximize their profits.

The results of this paper are that after finding the best version of our simplified model,

it did not come near the performance of the MoT model. The MSE Peterson et al. (2021)

found for MoT was 0.0113, and in my model it was 0.0502. The gain in simplicity in my

simplified model thus comes at a cost of worse performance. However, the models have

similarities, as the utility function from the simplified model had the same shape as the

one from the MoT model.

This paper is structured in the following way. First, I will review existing literature.

After that, I further elaborate on the dataset I used. In Section 4, I describe the used

methods in detail. In Section 5, the results are displayed and discussed, and lastly in

Section 6 I draw a conclusion.

2 Literature review

Since the Peterson et al. (2021) paper is such a crucial paper for this research, I will will

summarize what they did in this section.

In their research, they had the goal to “progress in understanding how people make

decisions by using large datasets to power machine learning algorithms, constrained to

produce interpretable psychological theories.” Peterson did that by focusing on risky

choice problems: decision makers have two options, called a “gamble”, which differ in

4

payoffs and probabilities. For example: gamble A could be recieving 100 with a probability

of 0.5 or 0 with a probability of 0.5, and gamble B receiving 200 with probability 0.5 or

-100 with probability 0.5. The variable of interest is P (A), the probability that gamble

A gets chosen over gamble B. The goal is to find a function that can describe as many

choice problems as possible. But, this is a large challenge. Since the value and probability

for each possible outcome of each gamble define the amount of dimensions of the space

of possible outcomes, the space of possible choice problems is extremely big. That is,

because each pair of gambles could in theory require any amount of dimensions. In

addition, because the function we aspire to obtain has to map choice problems from a

gamble to a probability, the space of possible functions is even bigger.

That is where Peterson et al. (2021) will use machine learning methods like ’deep

neural networks’. These methods are very useful for approximating functions, which is

of course desirable in this case. But, as said before, for machine learning to be useful,

a large dataset is needed. Also, the functions discovered are often hard to interpret, or

sometimes it is even impossible. For that reason, these are mostly poor scientific models.

With the goal of overcoming these challenges, the ’choices13k’ dataset (Peterson et al.,

2021; Bourgin et al., 2019) was used for research. This is a dataset consisting of a little

over 13000 risky choice problems. For each problem, there are a few variables for which

the values are in the dataset as well. The contents of these will be discussed in greater

detail in the Data section.

In their goal for finding a function that is useful for as many choice problems as

possible, they use the following methods. As said, these are all based on machine learning

applications. What they do, is that they define a hierarchy of decision theories. In this

hierarchy, an increasing number of constraints is being reflected. They make a distinction

between classes, each of which are explained in detail in the supplementary materials of

Peterson et al. (2021). These are the following, ranked from most to least constraints:

1. Neural EU

2. Neural PT

3. Neural CPT

4. Value-Based

5. Context-dependent

5

On the “context-dependent” model, there is only one constraint, and that is that the

function needs to be differentiable. Hence, this is a fully unconstrained neural network,

that takes all information about the gambles as input. Peterson et al. (2021) comes to the

conclusion that the “context-dependent” model comes to the best results, which implies

that it results in the best predictions to view payoffs and probabilities of a certain gamble

in a way that is dependent on the context of the other gamble. However, the big limitation

is that this method provides limited psychological insight.

The next step Peterson et al. (2021) takes, is to analyze another restricted class of

context-dependent models; Contextual Multiplicative Models. These models are used to

show the key properties of the best performing context-dependent model. Peterson et al.

(2021) drew the following conclusion: “Outcomes and probabilities are largely combined

to form an average but are subjectively transformed in ways that depend on information

across both gambles, especially outcomes.” Researchers hope to find a theory that has

these characteristics, while also able to be extrapolated to other datasets.

To do this, Peterson et al. (2021) compared the best performing context-dependent

model with expected utility theory, and determined patterns in the shortcomings of

prospect theory. This lead to the hypothesis that people use different strategies for dif-

ferent choice problems, which was tested by using a Mixture of Theories model. This is

the model I will try to simplify in this paper. In short, it is a model that combines a

convex combination of two utility functions with a convex combination of two probability

functions to determine the gamble values. The weights for both convex combinations are

obtained by separate neural networks. How this is done exactly, is explained in great

detail in Section 4.1.

3 Data

In this section I will explain what data I used, how I transformed it to be able to work

with it and how I split it in a training set and a test set.

In this research I am going to make use of the choices13k dataset (Peterson et al., 2021;

Bourgin et al., 2019). This is a set that consists of 13006 risky choice problems. A risky

choice problem constist of two gambles: A&B. In this dataset, gamble A is constrained

6

to have only two possible outcomes. In contrast, gamble B can have an unconstrained

amount of possible outcomes. Out of all gambles B in this dataset, the one with the most

has 9 possible outcomes.

The dataset contains a lot of variables, but not all are used in this research. First, I

cleaned the data based on two variables Feedback and Ambiguity: Feedback is a boolean

that indicates whether participants were informed about the actual outcome of the gamble.

Because people made a choice 5 times in the same problem, this could influence their

decision in the later tries. Ambiguity is a boolean that indicates whether the probabilities

of outcomes in gamble B were made invisible or not. If it is false, a player had complete

information, and thus the probabilities were known by the participant.

In this research I only used the choice problems which had TRUE as their Feedback

value, and FALSE for Ambiguity, because that is what Peterson et al. (2021) did as well.

Effictively, this means that I only consider the choice problems that are fully observable.

This left me with 9831 choice problems to perform the research on.

I split the dataset in 5, using Excel:

• A 9831 x 2 matrix XA, which contains all payoffs of all gambles A. Elements xAj ,i

represent payoff i for gamble A of the j’th choice problem.

• A 9831 x 2 matrix PA , which contains all probabilities for the payoffs in XA.

Elements pAj ,i represent the probability off payoff i for gamble A of the j’th choice

problem.

• A 9831 x 9 matrix XB, which contains all payoffs of all gambles B. Elements xBj ,i

represent payoff i for gamble B of the j’th choice problem.

• A 9831 x 9 matrix PB, which contains all probabilities for the payoffs in XB. Ele-

ments pBj ,i represent probability off payoff i for gamble B of the j’th choice problem.

• A 9831 x 1 vector ytrue, which contains the bRate, so the fraction of people who

chose for gamble B, for all choice problems. Elements ytrue,j represent the fraction

of people who chose gamble B in the j’th choice problem.

Because not all gambles B have the same amount of possible outcomes, there are

empty spots in XB and PB, which I filled with zeros.

7

3.1 Training/Test split

An important part of managing the data, is to split it in a training and test set. The

train set is used to base our model on, and the test set is used to validate our model.

In this research, I used a 90/10 train/test split. Risky choice problems were assigned

randomly to the train and test set, by making use of the train test split function from

the sklearn.model selection library in Python. That now gave a set of 8847 problems to

base the training on, and 984 in the test set. In the Results section, I will present the

outcomes of our optimization based on the train set, and after that compare it with the

results of the test set.

4 Methodology

As said, I am going to investigate whether I can make the Mixture of Theories model in

Peterson et al. (2021) more parsimonious. To be able to do this, we first need a deeper

understanding of the Mixture of Theories model itself. That will be explained in the first

subsection. In the second subsection I will explain the simplified model. In this model

I take out the probability weighting functions and restrict one of the utility functions

to be the identity function. In the third subsection I will discuss how I decide on the

(hyper)parameters of the model.

4.1 Mixture of Theories

The Mixture of Theories (MoT) model is, as the name suggests, a mixture between two

existing models: the Expected Utility approach, which bases values of gambles on the

expected utility of their payoffs, and the Prospect Theory, which states that people tend

to overestimate small probabilities, and underestimate large ones.

To be more precise, MoT relies on two separate convex combinations, one of two utility

functions, and one of two probability weighting functions:

V (Gj) =
∑
i

[ωju1(xGj ,i)) + (1− ωj)u2(xGj ,i][ω
′

jπ1(pGj ,i) + (1− ω
′

j)π2(pGj ,i)] (1)

In (1), it holds that Gj ∈ {Aj, Bj}, where Aj and Bj are the two gambles of choice

problem j, which is thus an element of {1, 2, ..., 8847}. In addition, ωj and ω
′
j are restricted

8

to be between 0 and 1. The i is an index whithin the gambles. For gambles A it ranges

from 1 to 2, for gambles B from 1 to 9.

For the utility functions, we use the following representation, in the supplementary

materials of Peterson et al. (2021) this is referred to as the ”General Power”:

um(xGj ,i) =

βm ∗ xαm
Gj ,i

if xGj ,i ≥ 0

−λm(−δmxGj ,i)
γm if xGj ,i < 0

(2)

In (2), it holds that m ∈ {1, 2} and for i and Gj the same holds as in (1).

For the probability functions, we use the ”Kahneman-Tversky” representation:

πk(pGj ,i) =
pαk
Gj ,i

(pαk
Gj ,i

+ (1− pGj ,i)
αk)

1
αk

(3)

In (3), it holds that k ∈ {3, 4} and for i and Gj the same holds as in (1). Because of

data-fitting, one of the two functions will always be estimated as the identity function.

For that reason, Peterson et al. (2021) restricts one to be the identity function in advance,

to reduce model parameters.

Peterson et al. (2021) estimates two neural network simultaneously: one with the

payoffs of a gamble as input, and weights ωj and 1 − ωj for all j as output, and the

other with the probabilities corresponding to these payoffs as input, and the weights ω
′
j

and 1 − ω
′
j for all j as output. In the next step, these weights will be used to calculate

the value of each gamble using (1). These values, specific for every gamble in a choice

problem, will be used to calculate the probability of choosing A over B in a specific

problem (P (Aj)), using the following formula:

P (Aj) =
eη∗V (Aj)

eη∗V (Aj) + eη∗V (Bj)
(4)

In (4), η is a parameter that captures the level of determinism in a choice. It will be

one of the parameters to optimize over.

The last step is to use P (A) to determine the Mean Squared Error (MSE). For this

the ytrue from our data is used. The MSE of this model is calculated as follows:

MSE =
1

N

N∑
j=1

(P (Bj)− ytrue,j)
2 (5)

9

where N stands for the total number of problems, 8847 in our case, and j is a problem-

specific index. The neural network will be optimized by minimizing the MSE by finding

the optimal values for all parameters, so all ωj, ω
′,
j , the η, and the parameters of the two

utility and probability weighting functions.

To clarify, I illustrated the model below, where the MSE will be minimized:

Figure 1: Illustration of the MoT model

In this research, I will see whether I can simplify this idea by reducing the number of

parameters, hence try making it more parsimonious. I will do this by constructing and

evaluating a different model, which will be explained in the next subsection.

4.2 Simplification of MoT

Because of the many parameters in the MoT model, it is still quite hard to interpret. For

that reason, I decided to see whether I could get similar results as the MoT, but with a

simplified model.

MoT imposes a function that values every gamble (1). In this function there are two

different probability weighting functions (πk(pGj ,i)), and two different utility functions

(um(xGj ,i)). As said before, the weights for the two convex combinations are decided

by two neural networks simultaneously. One of the probability functions was already

restricted to be the identity function, but I will restrict the other one to be the identity

10

function as well. Consequence of this is that the principles of the Prospect Theory are

no longer in the model. In addition, the weights for both probability weighting functions

in (1) (ω
′
j and (1 − ω

′
j)) no longer have to be estimated. That means that there are no

longer two Neural Networks to be estimated, but only 1, the one for the weights of the

utility functions. Please note that this is still a mixture of existing theories. Namely,

the Expected Value theory (u1(xGj ,i) is the identity function) and the Expected Utility

theory (u2(xGj ,i) is to be estimated).

I will also make a simplification in the area of the utility functions: one of the two

utility functions will be restricted to be the identity function as well. That means that

all parameters in (2) are equal to 1. Only the parameters of one utility function, and the

η in (4) will now have to be estimated, and the weights ωj and (1− ωj). This will make

our life a lot easier in the coding aspect, but it is still a complex problem. Let’s make it

more formal.

The first step is to estimate ωj with a Neural Network, with the payoffs of all possible

outcomes as input:

Figure 2: NN for simplified model

Next, I will use the ωj’s in a simplified value function, to calculate the values for every

gamble:

V s(Gj) =
∑
i

[pGj ,i(ωj ∗ xGj ,i + (1− ωj) ∗ u(xGj ,i))] (6)

After I have obtained the simplified values, I will estimate the probability of choosing

option A over option B in the same way as (4), but using the values obtained from (6)

instead of (1). The last step is to calculate the MSE and optimize over the ωj’s in such

a way that the MSE is minimized.

11

In my case however, it is not straighforward to minimize the loss function. That is,

because a normal loss function takes in the output of the neural network, and immediately

compares that with the real value. It optimizes over the weights on the nodes to minimize

the loss. However, in this case a couple of steps have to be taken before the output of the

neural network can be compared with the ‘real value’, the ytrue. These steps also take in

the train data. In other words: the loss is dependent on the train data, which I have to

account for.

A custom loss function will have to be defined. After programming the neural network,

and functions (4), (5) and (6), I can specify the custom loss function. In TensorFlow,

which is the library I am using, a loss function is restricted to have two inputs: predicted

values and real values. The predicted values are automatically taken as the output of

the neural network. Because of this, I need to include the data needed to transform the

predicted values, in the real values in some way. So, I decided to define a new numpy

array called data, which contains the train set of the following variables: ytrue, XA, PA, XB

and PB. These will be used to transform the predicted values, thus the output from the

neural network, in such a way that we can compare it to ytrue. Whithin the loss function

this array is split, and the subarrays can be used as input for the value (6), probability

(4) and MSE (5) functions. Now the steps can be taken whithin the loss function in the

right order, and I can compare the transformed output of the neural network to the ytrue

and optimize over this loss.

4.3 Setting the (hyper)parameters

In neural networks there are hyperparameters. These are parameters that control the

learning process of the network, but cannot be derived via training. Examples are the

batch size, learning rate and the number of epochs. The best values for these are only

obtainable via trial and error. To test which work best, I will initialize the parameters in

(4) and (2). The first utility function is already set as the identity funcion. The second

utility function has a risk averse shape in Peterson et al. (2021), so I will initialize the

parameters in such a way that the shape is similar. Hence, I use β2 = 1, α2 = 0.8, γ2 =

0.8, λ2 = 2 and δ2 = 1. For η I will use an initial value of 0.25.

12

Peterson et al. (2021) uses 200 epochs and a learning rate of 0.01. To decide on which

batch size I will use, I will test different values with the same values as Peterson et al.

(2021) for the epochs and learning rate. I will compare the performance of batch sizes 32,

64, 128, 256 and 512, by looking at the value of the loss function of the the train set after

training, as well as the shape of the learning curve. It should be descending smoothly

until it converges.

Previous research (K. & C., 2020) states that with a large learning rate, a larger batch

size performs better. But, I use a limited amount of epochs (200), for two reasons. The

first is that Peterson et al. (2021) uses it and I will compare my results to the results of

the MoT. Secondly, an increase of the amount of epochs leads to a very long run time,

due to the laptop I am using. This limited amount of epochs is critical to the tradeoff of

using small and large batch sizes.

A large batch size will lead to poorer generalization and slower convergence. A small

batch size converges faster to good solutions, because the model already learns before it

has seen all the data. But, it is not guarenteed that it converges to the optima (Keskar

et al., 2016). In the Results section I will show which batch size is best for the data used

in this research. Because the ADAM optimizer, which is used in this research, does not

generalize as well as other optimizers like SGD (K. & C., 2020), I will use the smaller

batch size if results for two or more batch sizes are similar.

After the batch size is decided, I will optimize the parameters in (2) and (4). Since the

first utility function is set as the identity function, the parameters that will be optimized

are β2, α2, λ2, δ2, γ2 and η. The initial plan was do that by performing a non linear

regression on these parameters, after fixing the ωs as the ωs found after training the

model. However, because it kept going to local optima which did not get valid functions,

I decided to use a grid search. Because this is a brute force method I had to impose some

restrictions to keep te run time down. These restrictions are based on the utility function

used in Tversky & Kahneman (1992). The restrictions were: β2 = 1, α2 = γ2 and δ2 = 1.

Hence, the grid search will be done over 3 parameters: α2, λ2 and η. I will let η range

from 0.1 to 1, α2 from 0.1 to 2 and λ2 from 0.1 to 3. All parameters are incremented

with steps of 0.1. Hence, I will perform a grid search on all 10 ∗ 20 ∗ 30 = 6000 possible

combinations, and use the combination of parameters that provides the lowest value of

13

the loss function.

Next, I will use these parameters to train the neural network again and find new ωs.

The performance of this model will be better, because the parameters are now optimized.

This is the model I will compare with the MoT model.

5 Results

In the first subsection of this section I will present the results of setting the (hyper)parameters.

In the second subsection I will compare the eventual model performance to the MoT model

presented in Peterson et al. (2021).

5.1 Setting (hyper)parameters

The first step I take is to determine which batch size to use. After training the neural

network for batch sizes 32, 64, 128, 256 and 512, I got the following results:

Figure 3: Batch size = 32,

minimal loss = 0.0928

Figure 4: Batch size = 64,

minimal loss = 0.0928

14

Figure 5: Batch size = 128,

minimal loss = 0.0928

Figure 6: Batch size = 256,

minimal loss = 0.0923

Figure 7: Batch size = 512,

minimal loss = 0.0927

If we take a look at the figures above, we can see that the batch size of 256 has the

lowest value for the loss function. It is important to note that there is a random factor to

these outcomes. However, I trained the model a couple of times for all batch sizes, and

the minimum value of the loss function never deviated more than 0.0002 from the values

in the figures. For that reason I chose to use a batch size of 256 from now on.

The next step is to optimize over the parameters β2, α2, λ2, δ2, γ2 and η. As explained,

that was done imposing restrictions on β2, α2, γ2 and δ2, which made it so that I optimize

over three parameters: α2, λ2 and η. That resulted in the following values:

η α2 λ2

values 0.1 0.1 0.1

Table 1: Outcomes of the grid search

15

This gave a loss value of 0.0550. But, because these parameters are at the lower bound

of the range I searched in, I will perform another optimization for the parameters, but

now with η ranging from 0.01 − 0.11, and increments of 0.01. I will let the other two

parameters stay in the same range and same increments as before.

The new outcomes were:

η α2 λ2

values 0.01 0.6 3

Table 2: Outcomes of the grid search with new range for η

When I plot the utility function with these parameters, it becomes clear that it does

have a similar shape as the utility function in Peterson et al. (2021):

Figure 8: U2(xGj ,i) with optimized parameters from Table 2

One can see that the utility function is such that people value great wins less than big

losses. Hence, based on this utility function, it seems that people have more risk-averse

behavior. This is in line with the findings using the MoT model.

The MSE for the model that was trained with the initialized values, while using these

parameters was 0.0497, which is way better than the 0.0923 found previously.

Because of the big decrease in loss I found using these parameters, I will train the

neural network again while making use of the parameters in Table 2, to find new ωs and

get an even better performing model. I also implement the restrictions β2 = 1, α2 = γ2

16

and δ2 = 1. This results in a new optimized model, which has a slightly lower value for

the loss:

init. param. (trained) opt. param. (untrained) opt. param. (trained)

min. loss 0.0923 0.0497 0.0495

Table 3: Comparison model performance with initialized/optimized parameters

In Table 3 one can see that the MSE lowers about 46% when I use the optimized

parameters to train a new model, when we compare it to the old model. In addition,

there is a very slight performance increase after training the model with the optimized

parameters, compared to the optimized parameters in the old trained model, based on

the initialized parameters.

These are thus the final results for the trained model, and in the next subsection I will

compare the results of the test set to the results from Peterson et al. (2021) MoT.

5.2 Comparison simplified model with MoT

In Table 4 below one can find the values of the average MSE for out of sample predictions.

MoT simplified model

loss 0.0113 0.0502

Table 4: Comparison MoT and simplified model out of sample predictions

Clearly the Mixture of Theories model outperforms my simplified version. It performs

around four and a half times better. This could be due to a couple of reasons. Firstly, the

Prospect Theory approach outperforms the Expected Utility approach. This is shown in

Peterson et al. (2021) Table s1. This clearly indicates that the Prospect Theory is a very

useful approach for this problem, and in the simplified approach I used, it is completely

let go of. Secondly, I did not make a distinction between dominated gambles and normal

gambles. Dominated gambles are gambles that contain strictly higher payoffs than payoffs

from the other gamble. For those gambles Peterson et al. (2021) finds another parameter,

namely Pdom. This is a fixed probability for all gambles that are set up this way. However,

17

I treat all dominated gambles the same as all other, which could lead to worse predictions

for normal gambles.

A similarity is the shape of the utility functions I found:

Figure 9: U2(xGj ,i) from simplified model
Figure 10: U2(xGj ,i) from Peterson et al.

(2021)

In the Figure 9&10 above, it is clearly visible that the utility function I found has

a similar shape as the one found by Peterson et al. (2021). That is, people value losses

greater than wins. Hence, people tend to make risk-averse decisions. It is surprising that

these are as similar as they are. That is, because we took out the whole part of the

Prospect Theory. It is reasonable to believe that that would affect the way this function

is shaped, because we now base the model on this utility function and the identity utility

function instead of the four functions used in MoT. However, that is clearly not the case

which is a very useful insight.

6 Conclusion

For this paper, the goal was to answer ther research question:

”Is it possible to make the MoT model more parsimonious?”

I do this by introducing a simplified setup of the MoT model, and then optimize the

parameters in this model. After the parameters are optimized, I compare the MSE of

18

both models to draw conclusions regarding performance, and I compare the properties of

the utility functions of both models.

The setup I used is as follows: using the choices13k dataset I declare a neural network,

which takes the payoffs of every outcome in all gambles, so the matrices XA and XB, as

input, and outputs weights ωj and 1 − ωj for all j. These omegas are then used in a

value function (V s), which makes use of the output weights for a convex combination of

two utilitity function. Based on these and the probabilities of all payoffs (PA and PB)

the value of both gambles for every problem is calculated. I then use these values to

determine P (A), which is the probability of choosing gamble A over B for all gambles.

Lastly, I use these estimated probabilities to calculate the MSE. The model is optimized

by minimizing the MSE with the ωjs, parameter in P (A) (η) and the parameters in one

of the utility functions (β2, α2, λ2, δ2, γ2) as parameters. I had to impose some restrictions

on β2, α2, γ2 and δ2 to make the grid search executable.

I find that the simplified model performs significantly worse than the MoT, with a

MSE of 0.0502 compared to the 0.0113 of MoT. In addition, I find that leaving out the

probability functions does not cause the utility function to change in shape, which is

quite surprising considering all the extra information that is now imbedded in the utility

function.

The main conclusion, and thus the answer to our research question, is that the gain

in simplicity comes at the cost of a drop in performance. In my interpretation of the

word parsimonious, the performance of the simplified model should be similar to the

performance of the MoT model. In that sense, I did not manage to make the MoT model

more parsimonious. That is likely due to oversimplifying. However, this does not mean

that MoT cannot be made more parsimonious. Unfortunately due to time limitations, I

could not try more complex methods, that still simplify MoT. A good idea for further

research could be to identify patterns in risky choice problems. Then one might be able

to base decision rules for which utility or probability function to use on these patterns,

which takes away paramaters for the weights of the convex combination to be estimated.

If a similar performance as MoT is found with a decision rule, parameters (ω
(′)
j) are taken

out and the MoT model in thus made more parsimonious.

19

References

Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. Economet-

rica, 22 (1), 23–36.

Bourgin, D. D., Peterson, J. C., Reichman, D., Russell, S. J., & Griffiths, T. L. (2019,

09–15 Jun). Cognitive model priors for predicting human decisions. In Proceedings of

the 36th international conference on machine learning (Vol. 97, pp. 5133–5141).

Davis, G. C., & Jensen, K. L. (1994). Two-stage utility maximization and import demand

systems revisited: Limitations and an alternative. Journal of Agricultural and resource

Economics , 409–424.

Dawes, R. M. (1971). A case study of graduate admissions: Application of three principles

of human decision making. American psychologist , 26 (2), 180.

Hodgson, G. M., et al. (2012). On the limits of rational choice theory. Economic Thought ,

1 (1, 2012).

K., I., & C., M. (2020). The effect of batch size on the generalizability of the convolutional

neural networks on a histopathology dataset. ICT Express , 6 , 312-315.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On

large-batch training for deep learning: Generalization gap and sharp minima. Retrieved

from http://arxiv.org/abs/1609.04836

Levison, W. H., & Tanner, R. (1972). A control theory model for human decision making.

In Seventh annual conference on manual control (Vol. 281, p. 23).

Levy, J. S. (1992). An introduction to prospect theory. Political psychology , 171–186.

Noti, G., Levi, E., Kolumbus, Y., & Daniely, A. (2016). Behavior-based machine-

learning: A hybrid approach for predicting human decision making. Retrieved from

https://arxiv.org/abs/1611.10228

Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D., & Griffiths, T. L. (2021). Us-

ing large-scale experiments and machine learning to discover theories of human decision-

making. Science, 372 (6547), 1209–1214.

20

Rosenfeld, A., & Kraus, S. (2018). Predicting human decision-making: From prediction

to action. Synthesis Lectures on Artificial Intelligence and Machine Learning , 12 (1),

1–150.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases.

Science, 185 (4157), 1124–1131.

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative repre-

sentation of uncertainty. Journal of Risk and uncertainty , 5 (4), 297–323.

Von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior,

2nd rev. Retrieved from https://psycnet.apa.org/record/1947-03159-000

21

Code Appendix

****Note that Python version 3.8 was used for this research****

In this section I will explain the code I used for the computations done in this paper.

I will elaborate on all the steps that are taken. In the code, I put corresponding number

of the steps below to see clearly which step is taken where.

1. First, I install the packages needed. These can be found in the requirements.txt file.

2. Secondly, I load the data and change them to NumPy arrays to make the compu-

tations later a little easier.

3. The third step is to split the data files in training and test sets.

4. The next step is to define all the functions. TensorFlow requires individual obser-

vations, while the parameter optimization uses the whole dataset. For that reason,

I have to declare the functions twice, in a little different way.

5. The fifth step is to declare the neural network: set the amount of nodes and declare

the activation functions. Also, declare the optimizer, learning rate and loss function

of the neural network.

6. The next step is to train the neural network, and store the output.

7. After training, I evaluate the out of sample prediction performance.

8. For visualization purposes, I plot the loss curve of the training of the model.

9. The next step is to optimize the parameters of utility function 2 and the η using a

grid search.

For plotting the utility function I found, I used Desmos, and filled in the following

formula: {x ≥ 0 : x0.6, x < 0 : −3 ∗ (−1 ∗ x)0.6}

22

